robotArxiv
robotArxiv
Robotics 43
☆ Dropping the D: RGB-D SLAM Without the Depth Sensor
We present DropD-SLAM, a real-time monocular SLAM system that achieves RGB-D-level accuracy without relying on depth sensors. The system replaces active depth input with three pretrained vision modules: a monocular metric depth estimator, a learned keypoint detector, and an instance segmentation network. Dynamic objects are suppressed using dilated instance masks, while static keypoints are assigned predicted depth values and backprojected into 3D to form metrically scaled features. These are processed by an unmodified RGB-D SLAM back end for tracking and mapping. On the TUM RGB-D benchmark, DropD-SLAM attains 7.4 cm mean ATE on static sequences and 1.8 cm on dynamic sequences, matching or surpassing state-of-the-art RGB-D methods while operating at 22 FPS on a single GPU. These results suggest that modern pretrained vision models can replace active depth sensors as reliable, real-time sources of metric scale, marking a step toward simpler and more cost-effective SLAM systems.
EmbodiedCoder: Parameterized Embodied Mobile Manipulation via Modern Coding Model
Recent advances in control robot methods, from end-to-end vision-language-action frameworks to modular systems with predefined primitives, have advanced robots' ability to follow natural language instructions. Nonetheless, many approaches still struggle to scale to diverse environments, as they often rely on large annotated datasets and offer limited interpretability.In this work, we introduce EmbodiedCoder, a training-free framework for open-world mobile robot manipulation that leverages coding models to directly generate executable robot trajectories. By grounding high-level instructions in code, EmbodiedCoder enables flexible object geometry parameterization and manipulation trajectory synthesis without additional data collection or fine-tuning.This coding-based paradigm provides a transparent and generalizable way to connect perception with manipulation. Experiments on real mobile robots show that EmbodiedCoder achieves robust performance across diverse long-term tasks and generalizes effectively to novel objects and environments.Our results demonstrate an interpretable approach for bridging high-level reasoning and low-level control, moving beyond fixed primitives toward versatile robot intelligence. See the project page at: https://anonymous.4open.science/w/Embodied-Coder/
comment: Demo Page: https://anonymous.4open.science/w/Embodied-Coder/
☆ DYMO-Hair: Generalizable Volumetric Dynamics Modeling for Robot Hair Manipulation
Hair care is an essential daily activity, yet it remains inaccessible to individuals with limited mobility and challenging for autonomous robot systems due to the fine-grained physical structure and complex dynamics of hair. In this work, we present DYMO-Hair, a model-based robot hair care system. We introduce a novel dynamics learning paradigm that is suited for volumetric quantities such as hair, relying on an action-conditioned latent state editing mechanism, coupled with a compact 3D latent space of diverse hairstyles to improve generalizability. This latent space is pre-trained at scale using a novel hair physics simulator, enabling generalization across previously unseen hairstyles. Using the dynamics model with a Model Predictive Path Integral (MPPI) planner, DYMO-Hair is able to perform visual goal-conditioned hair styling. Experiments in simulation demonstrate that DYMO-Hair's dynamics model outperforms baselines on capturing local deformation for diverse, unseen hairstyles. DYMO-Hair further outperforms baselines in closed-loop hair styling tasks on unseen hairstyles, with an average of 22% lower final geometric error and 42% higher success rate than the state-of-the-art system. Real-world experiments exhibit zero-shot transferability of our system to wigs, achieving consistent success on challenging unseen hairstyles where the state-of-the-art system fails. Together, these results introduce a foundation for model-based robot hair care, advancing toward more generalizable, flexible, and accessible robot hair styling in unconstrained physical environments. More details are available on our project page: https://chengyzhao.github.io/DYMOHair-web/.
comment: Project page: https://chengyzhao.github.io/DYMOHair-web/
☆ A Preview of HoloOcean 2.0 ICRA 2025
Marine robotics simulators play a fundamental role in the development of marine robotic systems. With increased focus on the marine robotics field in recent years, there has been significant interest in developing higher fidelitysimulation of marine sensors, physics, and visual rendering capabilities to support autonomous marine robot development and validation. HoloOcean 2.0, the next major release of HoloOcean, brings state-of-the-art features under a general marine simulator capable of supporting a variety of tasks. New features in HoloOcean 2.0 include migration to Unreal Engine (UE) 5.3, advanced vehicle dynamics using models from Fossen, and support for ROS2 using a custom bridge. Additional features are currently in development, including significantly more efficient ray tracing-based sidescan, forward-looking, and bathymetric sonar implementations; semantic sensors; environment generation tools; volumetric environmental effects; and realistic waves.
comment: 5 pages, 9 figures, submitted to the ICRA 2025 aq2uasim workshop
☆ Vision-Guided Targeted Grasping and Vibration for Robotic Pollination in Controlled Environments
Robotic pollination offers a promising alternative to manual labor and bumblebee-assisted methods in controlled agriculture, where wind-driven pollination is absent and regulatory restrictions limit the use of commercial pollinators. In this work, we present and validate a vision-guided robotic framework that uses data from an end-effector mounted RGB-D sensor and combines 3D plant reconstruction, targeted grasp planning, and physics-based vibration modeling to enable precise pollination. First, the plant is reconstructed in 3D and registered to the robot coordinate frame to identify obstacle-free grasp poses along the main stem. Second, a discrete elastic rod model predicts the relationship between actuation parameters and flower dynamics, guiding the selection of optimal pollination strategies. Finally, a manipulator with soft grippers grasps the stem and applies controlled vibrations to induce pollen release. End-to-end experiments demonstrate a 92.5\% main-stem grasping success rate, and simulation-guided optimization of vibration parameters further validates the feasibility of our approach, ensuring that the robot can safely and effectively perform pollination without damaging the flower. To our knowledge, this is the first robotic system to jointly integrate vision-based grasping and vibration modeling for automated precision pollination.
☆ Towards Autonomous Tape Handling for Robotic Wound Redressing
Chronic wounds, such as diabetic, pressure, and venous ulcers, affect over 6.5 million patients in the United States alone and generate an annual cost exceeding \$25 billion. Despite this burden, chronic wound care remains a routine yet manual process performed exclusively by trained clinicians due to its critical safety demands. We envision a future in which robotics and automation support wound care to lower costs and enhance patient outcomes. This paper introduces an autonomous framework for one of the most fundamental yet challenging subtasks in wound redressing: adhesive tape manipulation. Specifically, we address two critical capabilities: tape initial detachment (TID) and secure tape placement. To handle the complex adhesive dynamics of detachment, we propose a force-feedback imitation learning approach trained from human teleoperation demonstrations. For tape placement, we develop a numerical trajectory optimization method based to ensure smooth adhesion and wrinkle-free application across diverse anatomical surfaces. We validate these methods through extensive experiments, demonstrating reliable performance in both quantitative evaluations and integrated wound redressing pipelines. Our results establish tape manipulation as an essential step toward practical robotic wound care automation.
Multi-Robot Distributed Optimization for Exploration and Mapping of Unknown Environments using Bioinspired Tactile-Sensor
This project proposes a bioinspired multi-robot system using Distributed Optimization for efficient exploration and mapping of unknown environments. Each robot explores its environment and creates a map, which is afterwards put together to form a global 2D map of the environment. Inspired by wall-following behaviors, each robot autonomously explores its neighborhood based on a tactile sensor, similar to the antenna of a cockroach, mounted on the surface of the robot. Instead of avoiding obstacles, robots log collision points when they touch obstacles. This decentralized control strategy ensures effective task allocation and efficient exploration of unknown terrains, with applications in search and rescue, industrial inspection, and environmental monitoring. The approach was validated through experiments using e-puck robots in a simulated 1.5 x 1.5 m environment with three obstacles. The results demonstrated the system's effectiveness in achieving high coverage, minimizing collisions, and constructing accurate 2D maps.
☆ Cross-Embodiment Dexterous Hand Articulation Generation via Morphology-Aware Learning
Dexterous grasping with multi-fingered hands remains challenging due to high-dimensional articulations and the cost of optimization-based pipelines. Existing end-to-end methods require training on large-scale datasets for specific hands, limiting their ability to generalize across different embodiments. We propose an eigengrasp-based, end-to-end framework for cross-embodiment grasp generation. From a hand's morphology description, we derive a morphology embedding and an eigengrasp set. Conditioned on these, together with the object point cloud and wrist pose, an amplitude predictor regresses articulation coefficients in a low-dimensional space, which are decoded into full joint articulations. Articulation learning is supervised with a Kinematic-Aware Articulation Loss (KAL) that emphasizes fingertip-relevant motions and injects morphology-specific structure. In simulation on unseen objects across three dexterous hands, our model attains a 91.9% average grasp success rate with less than 0.4 seconds inference per grasp. With few-shot adaptation to an unseen hand, it achieves 85.6% success on unseen objects in simulation, and real-world experiments on this few-shot generalized hand achieve an 87% success rate. The code and additional materials will be made available upon publication on our project website https://connor-zh.github.io/cross_embodiment_dexterous_grasping.
☆ Hybrid Quantum-Classical Policy Gradient for Adaptive Control of Cyber-Physical Systems: A Comparative Study of VQC vs. MLP
The comparative evaluation between classical and quantum reinforcement learning (QRL) paradigms was conducted to investigate their convergence behavior, robustness under observational noise, and computational efficiency in a benchmark control environment. The study employed a multilayer perceptron (MLP) agent as a classical baseline and a parameterized variational quantum circuit (VQC) as a quantum counterpart, both trained on the CartPole-v1 environment over 500 episodes. Empirical results demonstrated that the classical MLP achieved near-optimal policy convergence with a mean return of 498.7 +/- 3.2, maintaining stable equilibrium throughout training. In contrast, the VQC exhibited limited learning capability, with an average return of 14.6 +/- 4.8, primarily constrained by circuit depth and qubit connectivity. Noise robustness analysis further revealed that the MLP policy deteriorated gracefully under Gaussian perturbations, while the VQC displayed higher sensitivity at equivalent noise levels. Despite the lower asymptotic performance, the VQC exhibited significantly lower parameter count and marginally increased training time, highlighting its potential scalability for low-resource quantum processors. The results suggest that while classical neural policies remain dominant in current control benchmarks, quantum-enhanced architectures could offer promising efficiency advantages once hardware noise and expressivity limitations are mitigated.
comment: 6 pages, 5 figures, 2 tables, 17 equations, 1 algorithm
☆ Information-Theoretic Policy Pre-Training with Empowerment
Empowerment, an information-theoretic measure of an agent's potential influence on its environment, has emerged as a powerful intrinsic motivation and exploration framework for reinforcement learning (RL). Besides for unsupervised RL and skill learning algorithms, the specific use of empowerment as a pre-training signal has received limited attention in the literature. We show that empowerment can be used as a pre-training signal for data-efficient downstream task adaptation. For this we extend the traditional notion of empowerment by introducing discounted empowerment, which balances the agent's control over the environment across short- and long-term horizons. Leveraging this formulation, we propose a novel pre-training paradigm that initializes policies to maximize discounted empowerment, enabling agents to acquire a robust understanding of environmental dynamics. We analyze empowerment-based pre-training for various existing RL algorithms and empirically demonstrate its potential as a general-purpose initialization strategy: empowerment-maximizing policies with long horizons are data-efficient and effective, leading to improved adaptability in downstream tasks. Our findings pave the way for future research to scale this framework to high-dimensional and complex tasks, further advancing the field of RL.
☆ Coordinate-Consistent Localization via Continuous-Time Calibration and Fusion of UWB and SLAM Observations
Onboard simultaneous localization and mapping (SLAM) methods are commonly used to provide accurate localization information for autonomous robots. However, the coordinate origin of SLAM estimate often resets for each run. On the other hand, UWB-based localization with fixed anchors can ensure a consistent coordinate reference across sessions; however, it requires an accurate assignment of the anchor nodes' coordinates. To this end, we propose a two-stage approach that calibrates and fuses UWB data and SLAM data to achieve coordinate-wise consistent and accurate localization in the same environment. In the first stage, we solve a continuous-time batch optimization problem by using the range and odometry data from one full run, incorporating height priors and anchor-to-anchor distance factors to recover the anchors' 3D positions. For the subsequent runs in the second stage, a sliding-window optimization scheme fuses the UWB and SLAM data, which facilitates accurate localization in the same coordinate system. Experiments are carried out on the NTU VIRAL dataset with six scenarios of UAV flight, and we show that calibration using data in one run is sufficient to enable accurate localization in the remaining runs. We release our source code to benefit the community at https://github.com/ntdathp/slam-uwb-calibration.
☆ AI-Enabled Capabilities to Facilitate Next-Generation Rover Surface Operations
Current planetary rovers operate at traverse speeds of approximately 10 cm/s, fundamentally limiting exploration efficiency. This work presents integrated AI systems which significantly improve autonomy through three components: (i) the FASTNAV Far Obstacle Detector (FOD), capable of facilitating sustained 1.0 m/s speeds via computer vision-based obstacle detection; (ii) CISRU, a multi-robot coordination framework enabling human-robot collaboration for in-situ resource utilisation; and (iii) the ViBEKO and AIAXR deep learning-based terrain classification studies. Field validation in Mars analogue environments demonstrated these systems at Technology Readiness Level 4, providing measurable improvements in traverse speed, classification accuracy, and operational safety for next-generation planetary missions.
comment: Paper for 18th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), presented on October 7th at Leiden, Netherlands
☆ The DISTANT Design for Remote Transmission and Steering Systems for Planetary Robotics
Planetary exploration missions require robust locomotion systems capable of operating in extreme environments over extended periods. This paper presents the DISTANT (Distant Transmission and Steering Systems) design, a novel approach for relocating rover traction and steering actuators from wheel-mounted positions to a thermally protected warm box within the rover body. The design addresses critical challenges in long-distance traversal missions by protecting sensitive components from thermal cycling, dust contamination, and mechanical wear. A double wishbone suspension configuration with cardan joints and capstan drive steering has been selected as the optimal architecture following comprehensive trade-off analysis. The system enables independent wheel traction, steering control, and suspension management whilst maintaining all motorisation within the protected environment. The design meets a 50 km traverse requirement without performance degradation, with integrated dust protection mechanisms and thermal management solutions. Testing and validation activities are planned for Q1 2026 following breadboard manufacturing at 1:3 scale.
comment: Paper for 18th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), presented on October 7th at Leiden, Netherlands
☆ Learning to Crawl: Latent Model-Based Reinforcement Learning for Soft Robotic Adaptive Locomotion
Soft robotic crawlers are mobile robots that utilize soft body deformability and compliance to achieve locomotion through surface contact. Designing control strategies for such systems is challenging due to model inaccuracies, sensor noise, and the need to discover locomotor gaits. In this work, we present a model-based reinforcement learning (MB-RL) framework in which latent dynamics inferred from onboard sensors serve as a predictive model that guides an actor-critic algorithm to optimize locomotor policies. We evaluate the framework on a minimal crawler model in simulation using inertial measurement units and time-of-flight sensors as observations. The learned latent dynamics enable short-horizon motion prediction while the actor-critic discovers effective locomotor policies. This approach highlights the potential of latent-dynamics MB-RL for enabling embodied soft robotic adaptive locomotion based solely on noisy sensor feedback.
☆ A Co-Design Framework for Energy-Aware Monoped Jumping with Detailed Actuator Modeling
A monoped's jump height and energy consumption depend on both, its mechanical design and control strategy. Existing co-design frameworks typically optimize for either maximum height or minimum energy, neglecting their trade-off. They also often omit gearbox parameter optimization and use oversimplified actuator mass models, producing designs difficult to replicate in practice. In this work, we introduce a novel three-stage co-design optimization framework that jointly maximizes jump height while minimizing mechanical energy consumption of a monoped. The proposed method explicitly incorporates realistic actuator mass models and optimizes mechanical design (including gearbox) and control parameters within a unified framework. The resulting design outputs are then used to automatically generate a parameterized CAD model suitable for direct fabrication, significantly reducing manual design iterations. Our experimental evaluations demonstrate a 50 percent reduction in mechanical energy consumption compared to the baseline design, while achieving a jump height of 0.8m. Video presentation is available at http://y2u.be/XW8IFRCcPgM
comment: 7 pages, 8 figures, 1 table, Accepted at IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids) 2025, Aman Singh, Aastha Mishra - Authors contributed equally
The Safety Challenge of World Models for Embodied AI Agents: A Review
The rapid progress in embodied artificial intelligence has highlighted the necessity for more advanced and integrated models that can perceive, interpret, and predict environmental dynamics. In this context, World Models (WMs) have been introduced to provide embodied agents with the abilities to anticipate future environmental states and fill in knowledge gaps, thereby enhancing agents' ability to plan and execute actions. However, when dealing with embodied agents it is fundamental to ensure that predictions are safe for both the agent and the environment. In this article, we conduct a comprehensive literature review of World Models in the domains of autonomous driving and robotics, with a specific focus on the safety implications of scene and control generation tasks. Our review is complemented by an empirical analysis, wherein we collect and examine predictions from state-of-the-art models, identify and categorize common faults (herein referred to as pathologies), and provide a quantitative evaluation of the results.
☆ VCoT-Grasp: Grasp Foundation Models with Visual Chain-of-Thought Reasoning for Language-driven Grasp Generation
Robotic grasping is one of the most fundamental tasks in robotic manipulation, and grasp detection/generation has long been the subject of extensive research. Recently, language-driven grasp generation has emerged as a promising direction due to its practical interaction capabilities. However, most existing approaches either lack sufficient reasoning and generalization capabilities or depend on complex modular pipelines. Moreover, current grasp foundation models tend to overemphasize dialog and object semantics, resulting in inferior performance and restriction to single-object grasping. To maintain strong reasoning ability and generalization in cluttered environments, we propose VCoT-Grasp, an end-to-end grasp foundation model that incorporates visual chain-of-thought reasoning to enhance visual understanding for grasp generation. VCoT-Grasp adopts a multi-turn processing paradigm that dynamically focuses on visual inputs while providing interpretable reasoning traces. For training, we refine and introduce a large-scale dataset, VCoT-GraspSet, comprising 167K synthetic images with over 1.36M grasps, as well as 400+ real-world images with more than 1.2K grasps, annotated with intermediate bounding boxes. Extensive experiments on both VCoT-GraspSet and real robot demonstrate that our method significantly improves grasp success rates and generalizes effectively to unseen objects, backgrounds, and distractors. More details can be found at https://zhanghr2001.github.io/VCoT-Grasp.github.io.
☆ Human-in-the-loop Optimisation in Robot-assisted Gait Training
Wearable robots offer a promising solution for quantitatively monitoring gait and providing systematic, adaptive assistance to promote patient independence and improve gait. However, due to significant interpersonal and intrapersonal variability in walking patterns, it is important to design robot controllers that can adapt to the unique characteristics of each individual. This paper investigates the potential of human-in-the-loop optimisation (HILO) to deliver personalised assistance in gait training. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) was employed to continuously optimise an assist-as-needed controller of a lower-limb exoskeleton. Six healthy individuals participated over a two-day experiment. Our results suggest that while the CMA-ES appears to converge to a unique set of stiffnesses for each individual, no measurable impact on the subjects' performance was observed during the validation trials. These findings highlight the impact of human-robot co-adaptation and human behaviour variability, whose effect may be greater than potential benefits of personalising rule-based assistive controllers. Our work contributes to understanding the limitations of current personalisation approaches in exoskeleton-assisted gait rehabilitation and identifies key challenges for effective implementation of human-in-the-loop optimisation in this domain.
☆ Precise and Efficient Collision Prediction under Uncertainty in Autonomous Driving ICRA 2026
This research introduces two efficient methods to estimate the collision risk of planned trajectories in autonomous driving under uncertain driving conditions. Deterministic collision checks of planned trajectories are often inaccurate or overly conservative, as noisy perception, localization errors, and uncertain predictions of other traffic participants introduce significant uncertainty into the planning process. This paper presents two semi-analytic methods to compute the collision probability of planned trajectories with arbitrary convex obstacles. The first approach evaluates the probability of spatial overlap between an autonomous vehicle and surrounding obstacles, while the second estimates the collision probability based on stochastic boundary crossings. Both formulations incorporate full state uncertainties, including position, orientation, and velocity, and achieve high accuracy at computational costs suitable for real-time planning. Simulation studies verify that the proposed methods closely match Monte Carlo results while providing significant runtime advantages, enabling their use in risk-aware trajectory planning. The collision estimation methods are available as open-source software: https://github.com/TUM-AVS/Collision-Probability-Estimation
comment: 8 pages, submitted to the IEEE ICRA 2026, Vienna, Austria
☆ Federated Split Learning for Resource-Constrained Robots in Industrial IoT: Framework Comparison, Optimization Strategies, and Future Directions
Federated split learning (FedSL) has emerged as a promising paradigm for enabling collaborative intelligence in industrial Internet of Things (IoT) systems, particularly in smart factories where data privacy, communication efficiency, and device heterogeneity are critical concerns. In this article, we present a comprehensive study of FedSL frameworks tailored for resource-constrained robots in industrial scenarios. We compare synchronous, asynchronous, hierarchical, and heterogeneous FedSL frameworks in terms of workflow, scalability, adaptability, and limitations under dynamic industrial conditions. Furthermore, we systematically categorize token fusion strategies into three paradigms: input-level (pre-fusion), intermediate-level (intra-fusion), and output-level (post-fusion), and summarize their respective strengths in industrial applications. We also provide adaptive optimization techniques to enhance the efficiency and feasibility of FedSL implementation, including model compression, split layer selection, computing frequency allocation, and wireless resource management. Simulation results validate the performance of these frameworks under industrial detection scenarios. Finally, we outline open issues and research directions of FedSL in future smart manufacturing systems.
comment: 9 pages, 5 figures, submitted to the IEEE magazine
☆ Stable Robot Motions on Manifolds: Learning Lyapunov-Constrained Neural Manifold ODEs
Learning stable dynamical systems from data is crucial for safe and reliable robot motion planning and control. However, extending stability guarantees to trajectories defined on Riemannian manifolds poses significant challenges due to the manifold's geometric constraints. To address this, we propose a general framework for learning stable dynamical systems on Riemannian manifolds using neural ordinary differential equations. Our method guarantees stability by projecting the neural vector field evolving on the manifold so that it strictly satisfies the Lyapunov stability criterion, ensuring stability at every system state. By leveraging a flexible neural parameterisation for both the base vector field and the Lyapunov function, our framework can accurately represent complex trajectories while respecting manifold constraints by evolving solutions directly on the manifold. We provide an efficient training strategy for applying our framework and demonstrate its utility by solving Riemannian LASA datasets on the unit quaternion (S^3) and symmetric positive-definite matrix manifolds, as well as robotic motions evolving on \mathbb{R}^3 \times S^3. We demonstrate the performance, scalability, and practical applicability of our approach through extensive simulations and by learning robot motions in a real-world experiment.
comment: 12 pages, 6 figures
☆ Oracle-Guided Masked Contrastive Reinforcement Learning for Visuomotor Policies
A prevailing approach for learning visuomotor policies is to employ reinforcement learning to map high-dimensional visual observations directly to action commands. However, the combination of high-dimensional visual inputs and agile maneuver outputs leads to long-standing challenges, including low sample efficiency and significant sim-to-real gaps. To address these issues, we propose Oracle-Guided Masked Contrastive Reinforcement Learning (OMC-RL), a novel framework designed to improve the sample efficiency and asymptotic performance of visuomotor policy learning. OMC-RL explicitly decouples the learning process into two stages: an upstream representation learning stage and a downstream policy learning stage. In the upstream stage, a masked Transformer module is trained with temporal modeling and contrastive learning to extract temporally-aware and task-relevant representations from sequential visual inputs. After training, the learned encoder is frozen and used to extract visual representations from consecutive frames, while the Transformer module is discarded. In the downstream stage, an oracle teacher policy with privileged access to global state information supervises the agent during early training to provide informative guidance and accelerate early policy learning. This guidance is gradually reduced to allow independent exploration as training progresses. Extensive experiments in simulated and real-world environments demonstrate that OMC-RL achieves superior sample efficiency and asymptotic policy performance, while also improving generalization across diverse and perceptually complex scenarios.
☆ D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/
☆ Verifier-free Test-Time Sampling for Vision Language Action Models
Vision-Language-Action models (VLAs) have demonstrated remarkable performance in robot control. However, they remain fundamentally limited in tasks that require high precision due to their single-inference paradigm. While test-time scaling approaches using external verifiers have shown promise, they require additional training and fail to generalize to unseen conditions. We propose Masking Distribution Guided Selection (MG-Select), a novel test-time scaling framework for VLAs that leverages the model's internal properties without requiring additional training or external modules. Our approach utilizes KL divergence from a reference action token distribution as a confidence metric for selecting the optimal action from multiple candidates. We introduce a reference distribution generated by the same VLA but with randomly masked states and language conditions as inputs, ensuring maximum uncertainty while remaining aligned with the target task distribution. Additionally, we propose a joint training strategy that enables the model to learn both conditional and unconditional distributions by applying dropout to state and language conditions, thereby further improving the quality of the reference distribution. Our experiments demonstrate that MG-Select achieves significant performance improvements, including a 28%/35% improvement in real-world in-distribution/out-of-distribution tasks, along with a 168% relative gain on RoboCasa pick-and-place tasks trained with 30 demonstrations.
comment: 14 pages; 3 figures
☆ DeLTa: Demonstration and Language-Guided Novel Transparent Object Manipulation
Despite the prevalence of transparent object interactions in human everyday life, transparent robotic manipulation research remains limited to short-horizon tasks and basic grasping capabilities.Although some methods have partially addressed these issues, most of them have limitations in generalizability to novel objects and are insufficient for precise long-horizon robot manipulation. To address this limitation, we propose DeLTa (Demonstration and Language-Guided Novel Transparent Object Manipulation), a novel framework that integrates depth estimation, 6D pose estimation, and vision-language planning for precise long-horizon manipulation of transparent objects guided by natural task instructions. A key advantage of our method is its single-demonstration approach, which generalizes 6D trajectories to novel transparent objects without requiring category-level priors or additional training. Additionally, we present a task planner that refines the VLM-generated plan to account for the constraints of a single-arm, eye-in-hand robot for long-horizon object manipulation tasks. Through comprehensive evaluation, we demonstrate that our method significantly outperforms existing transparent object manipulation approaches, particularly in long-horizon scenarios requiring precise manipulation capabilities. Project page: https://sites.google.com/view/DeLTa25/
comment: Project page: https://sites.google.com/view/DeLTa25/
☆ MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
☆ GO-Flock: Goal-Oriented Flocking in 3D Unknown Environments with Depth Maps
Artificial Potential Field (APF) methods are widely used for reactive flocking control, but they often suffer from challenges such as deadlocks and local minima, especially in the presence of obstacles. Existing solutions to address these issues are typically passive, leading to slow and inefficient collective navigation. As a result, many APF approaches have only been validated in obstacle-free environments or simplified, pseudo 3D simulations. This paper presents GO-Flock, a hybrid flocking framework that integrates planning with reactive APF-based control. GO-Flock consists of an upstream Perception Module, which processes depth maps to extract waypoints and virtual agents for obstacle avoidance, and a downstream Collective Navigation Module, which applies a novel APF strategy to achieve effective flocking behavior in cluttered environments. We evaluate GO-Flock against passive APF-based approaches to demonstrate their respective merits, such as their flocking behavior and the ability to overcome local minima. Finally, we validate GO-Flock through obstacle-filled environment and also hardware-in-the-loop experiments where we successfully flocked a team of nine drones, six physical and three virtual, in a forest environment.
☆ ARRC: Advanced Reasoning Robot Control - Knowledge-Driven Autonomous Manipulation Using Retrieval-Augmented Generation
We present ARRC (Advanced Reasoning Robot Control), a practical system that connects natural-language instructions to safe local robotic control by combining Retrieval-Augmented Generation (RAG) with RGB-D perception and guarded execution on an affordable robot arm. The system indexes curated robot knowledge (movement patterns, task templates, and safety heuristics) in a vector database, retrieves task-relevant context for each instruction, and conditions a large language model (LLM) to produce JSON-structured action plans. Plans are executed on a UFactory xArm 850 fitted with a Dynamixel-driven parallel gripper and an Intel RealSense D435 camera. Perception uses AprilTag detections fused with depth to produce object-centric metric poses. Execution is enforced via software safety gates: workspace bounds, speed and force caps, timeouts, and bounded retries. We describe the architecture, knowledge design, integration choices, and a reproducible evaluation protocol for tabletop scan, approach, and pick-place tasks. Experimental results demonstrate the efficacy of the proposed approach. Our design shows that RAG-based planning can substantially improve plan validity and adaptability while keeping perception and low-level control local to the robot.
☆ Correlation-Aware Dual-View Pose and Velocity Estimation for Dynamic Robotic Manipulation
Accurate pose and velocity estimation is essential for effective spatial task planning in robotic manipulators. While centralized sensor fusion has traditionally been used to improve pose estimation accuracy, this paper presents a novel decentralized fusion approach to estimate both pose and velocity. We use dual-view measurements from an eye-in-hand and an eye-to-hand vision sensor configuration mounted on a manipulator to track a target object whose motion is modeled as random walk (stochastic acceleration model). The robot runs two independent adaptive extended Kalman filters formulated on a matrix Lie group, developed as part of this work. These filters predict poses and velocities on the manifold $\mathbb{SE}(3) \times \mathbb{R}^3 \times \mathbb{R}^3$ and update the state on the manifold $\mathbb{SE}(3)$. The final fused state comprising the fused pose and velocities of the target is obtained using a correlation-aware fusion rule on Lie groups. The proposed method is evaluated on a UFactory xArm 850 equipped with Intel RealSense cameras, tracking a moving target. Experimental results validate the effectiveness and robustness of the proposed decentralized dual-view estimation framework, showing consistent improvements over state-of-the-art methods.
♻ ☆ pRRTC: GPU-Parallel RRT-Connect for Fast, Consistent, and Low-Cost Motion Planning
Sampling-based motion planning algorithms, like the Rapidly-Exploring Random Tree (RRT) and its widely used variant, RRT-Connect, provide efficient solutions for high-dimensional planning problems faced by real-world robots. However, these methods remain computationally intensive, particularly in complex environments that require many collision checks. To improve performance, recent efforts have explored parallelizing specific components of RRT such as collision checking, or running multiple planners independently. However, little has been done to develop an integrated parallelism approach, co-designed for large-scale parallelism. In this work we present pRRTC, a RRT-Connect based planner co-designed for GPU acceleration across the entire algorithm through parallel expansion and SIMT-optimized collision checking. We evaluate the effectiveness of pRRTC on the MotionBenchMaker dataset using robots with 7, 8, and 14 degrees of freedom (DoF). Compared to the state-of-the-art, pRRTC achieves as much as a 10x speedup on constrained reaching tasks with a 5.4x reduction in standard deviation. pRRTC also achieves a 1.4x reduction in average initial path cost. Finally, we deploy pRRTC on a 14-DoF dual Franka Panda arm setup and demonstrate real-time, collision-free motion planning with dynamic obstacles. We open-source our planner to support the wider community.
comment: 7 pages, 7 figures, 1 table. Submitted to IEEE International Conference on Robotics and Automation 2026
♻ ☆ BC-ADMM: An Efficient Non-convex Constrained Optimizer with Robotic Applications
Non-convex constrained optimizations are ubiquitous in robotic applications such as multi-agent navigation, UAV trajectory optimization, and soft robot simulation. For this problem class, conventional optimizers suffer from small step sizes and slow convergence. We propose BC-ADMM, a variant of Alternating Direction Method of Multiplier (ADMM), that can solve a class of non-convex constrained optimizations with biconvex constraint relaxation. Our algorithm allows larger step sizes by breaking the problem into small-scale sub-problems that can be easily solved in parallel. We show that our method has both theoretical convergence speed guarantees and practical convergence guarantees in the asymptotic sense. Through numerical experiments in a row of four robotic applications, we show that BC-ADMM has faster convergence than conventional gradient descent and Newton's method in terms of wall clock time.
♻ ☆ Toward Dynamic Control of Tendon-driven Continuum Robots using Clarke Transform IROS 2025
In this paper, we propose a dynamic model and control framework for tendon-driven continuum robots (TDCRs) with multiple segments and an arbitrary number of tendons per segment. Our approach leverages the Clarke transform, the Euler-Lagrange formalism, and the piecewise constant curvature assumption to formulate a dynamic model on a two-dimensional manifold embedded in the joint space that inherently satisfies tendon constraints. We present linear and constraint-informed controllers that operate directly on this manifold, along with practical methods for preventing negative tendon forces without compromising control fidelity. This opens up new design possibilities for overactuated TDCRs with improved force distribution and stiffness without increasing controller complexity. We validate these approaches in simulation and on a physical prototype with one segment and five tendons, demonstrating accurate dynamic behavior and robust trajectory tracking under real-time conditions.
comment: Accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025), 8 pages, and 8 figures
♻ ☆ CottonSim: A vision-guided autonomous robotic system for cotton harvesting in Gazebo simulation
Cotton is a major cash crop in the United States, with the country being a leading global producer and exporter. Nearly all U.S. cotton is grown in the Cotton Belt, spanning 17 states in the southern region. Harvesting remains a critical yet challenging stage, impacted by the use of costly, environmentally harmful defoliants and heavy, expensive cotton pickers. These factors contribute to yield loss, reduced fiber quality, and soil compaction, which collectively threaten long-term sustainability. To address these issues, this study proposes a lightweight, small-scale, vision-guided autonomous robotic cotton picker as an alternative. An autonomous system, built on Clearpath's Husky platform and integrated with the CottonEye perception system, was developed and tested in the Gazebo simulation environment. A virtual cotton field was designed to facilitate autonomous navigation testing. The navigation system used Global Positioning System (GPS) and map-based guidance, assisted by an RGBdepth camera and a YOLOv8nseg instance segmentation model. The model achieved a mean Average Precision (mAP) of 85.2%, a recall of 88.9%, and a precision of 93.0%. The GPS-based approach reached a 100% completion rate (CR) within a $(5e-6)^{\circ}$ threshold, while the map-based method achieved a 96.7% CR within a 0.25 m threshold. The developed Robot Operating System (ROS) packages enable robust simulation of autonomous cotton picking, offering a scalable baseline for future agricultural robotics. CottonSim code and datasets are publicly available on GitHub: https://github.com/imtheva/CottonSim
comment: 16 pages, 15 figures, 4 tables
♻ ☆ Capturing a Moving Target by Two Robots in the F2F Model
We study a search problem on capturing a moving target on an infinite real line. Two autonomous mobile robots (which can move with a maximum speed of 1) are initially placed at the origin, while an oblivious moving target is initially placed at a distance $d$ away from the origin. The robots can move along the line in any direction, but the target is oblivious, cannot change direction, and moves either away from or toward the origin at a constant speed $v$. Our aim is to design efficient algorithms for the two robots to capture the target. The target is captured only when both robots are co-located with it. The robots communicate with each other only face-to-face (F2F), meaning they can exchange information only when co-located, while the target remains oblivious and has no communication capabilities. We design algorithms under various knowledge scenarios, which take into account the prior knowledge the robots have about the starting distance $d$, the direction of movement (either toward or away from the origin), and the speed $v$ of the target. As a measure of the efficiency of the algorithms, we use the competitive ratio, which is the ratio of the capture time of an algorithm with limited knowledge to the capture time in the full-knowledge model. In our analysis, we are mindful of the cost of changing direction of movement, and show how to accomplish the capture of the target with at most three direction changes (turns).
♻ ☆ Emergent interactions lead to collective frustration in robotic matter
Current artificial intelligence systems show near-human-level capabilities when deployed in isolation. Systems of a few collaborating intelligent agents are being engineered to perform tasks collectively. This raises the question of whether robotic matter, where many learning and intelligent agents interact, shows emergence of collective behaviour. And if so, which kind of phenomena would such systems exhibit? Here, we study a paradigmatic model for robotic matter: a stochastic many-particle system in which each particle is endowed with a deep neural network that predicts its transitions based on the particles' environments. For a one-dimensional model, we show that robotic matter exhibits complex emergent phenomena, including transitions between long-lived learning regimes, the emergence of particle species, and frustration. We also find a density-dependent phase transition with signatures of criticality. Using active matter theory, we show that this phase transition is a consequence of self-organisation mediated by emergent inter-particle interactions. Our simple model captures key features of more complex forms of robotic systems.
♻ ☆ mindmap: Spatial Memory in Deep Feature Maps for 3D Action Policies
End-to-end learning of robot control policies, structured as neural networks, has emerged as a promising approach to robotic manipulation. To complete many common tasks, relevant objects are required to pass in and out of a robot's field of view. In these settings, spatial memory - the ability to remember the spatial composition of the scene - is an important competency. However, building such mechanisms into robot learning systems remains an open research problem. We introduce mindmap (Spatial Memory in Deep Feature Maps for 3D Action Policies), a 3D diffusion policy that generates robot trajectories based on a semantic 3D reconstruction of the environment. We show in simulation experiments that our approach is effective at solving tasks where state-of-the-art approaches without memory mechanisms struggle. We release our reconstruction system, training code, and evaluation tasks to spur research in this direction.
comment: Accepted to CoRL 2025 Workshop RemembeRL
FlowVLA: Visual Chain of Thought-based Motion Reasoning for Vision-Language-Action Models
Many Vision-Language-Action (VLA) models are built upon an internal world model trained via next-frame prediction ``$v_t \rightarrow v_{t+1}$''. However, this paradigm attempts to predict the future frame's appearance directly, without explicitly reasoning about the underlying dynamics. \textbf{This lack of an explicit motion reasoning step} often leads to physically implausible visual forecasts and inefficient policy learning. To address this limitation, we introduce the \textbf{Visual Chain of Thought (Visual CoT)}, a paradigm that compels the model to first reason about \textbf{motion dynamics} before generating the future frame. We instantiate this paradigm by proposing \textbf{FlowVLA}, an autoregressive Transformer that explicitly materializes this reasoning process as ``$v_t \rightarrow f_t \rightarrow v_{t+1}$'', where $f_t$ is an intermediate optical flow prediction that inherently encodes motion. By forcing the model to first follow the motion plan encoded by $f_t$, this process inherently \textbf{aligns the pre-training objective of dynamics prediction with the downstream task of action generation.} We conduct experiments on challenging robotics manipulation benchmarks, as well as real-robot evaluations. Our FlowVLA not only generates \textbf{more coherent and physically plausible visual predictions}, but also achieves state-of-the-art policy performance with \textbf{substantially improved sample efficiency}, pointing toward a more principled foundation for world modeling in VLAs. Project page: https://irpn-lab.github.io/FlowVLA/
♻ ☆ Equivariant Filter for Relative Attitude and Target's Angular Velocity Estimation
Accurate estimation of the relative attitude and angular velocity between two rigid bodies is fundamental in aerospace applications such as spacecraft rendezvous and docking. In these scenarios, a chaser vehicle must determine the orientation and angular velocity of a target object using onboard sensors. This work addresses the challenge of designing an Equivariant Filter (EqF) that can reliably estimate both the relative attitude and the target angular velocity using noisy observations of two known, non-collinear vectors fixed in the target frame. To derive the EqF, a symmetry for the system is proposed and an equivariant lift onto the symmetry group is calculated. Observability and convergence properties are analyzed. Simulations demonstrate the filter's performance, with Monte Carlo runs yielding statistically significant results. The impact of low-rate measurements is also examined and a strategy to mitigate this effect is proposed. Experimental results, using fiducial markers and both conventional and event cameras for measurement acquisition, further validate the approach, confirming its effectiveness in a realistic setting.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Identifying Uncertainty in Self-Adaptive Robotics with Large Language Models
Future self-adaptive robots are expected to operate in highly dynamic environments while effectively managing uncertainties. However, identifying the sources and impacts of uncertainties in such robotic systems and defining appropriate mitigation strategies is challenging due to the inherent complexity of self-adaptive robots and the lack of comprehensive knowledge about the various factors influencing uncertainty. Hence, practitioners often rely on intuition and past experiences from similar systems to address uncertainties. In this article, we evaluate the potential of large language models (LLMs) in enabling a systematic and automated approach to identify uncertainties in self-adaptive robotics throughout the software engineering lifecycle. For this evaluation, we analyzed 10 advanced LLMs with varying capabilities across four industrial-sized robotics case studies, gathering the practitioners' perspectives on the LLM-generated responses related to uncertainties. Results showed that practitioners agreed with 63-88% of the LLM responses and expressed strong interest in the practicality of LLMs for this purpose.
♻ ☆ Image-Based Visual Servoing for Enhanced Cooperation of Dual-Arm Manipulation
The cooperation of a pair of robot manipulators is required to manipulate a target object without any fixtures. The conventional control methods coordinate the end-effector pose of each manipulator with that of the other using their kinematics and joint coordinate measurements. Yet, the manipulators' inaccurate kinematics and joint coordinate measurements can cause significant pose synchronization errors in practice. This paper thus proposes an image-based visual servoing approach for enhancing the cooperation of a dual-arm manipulation system. On top of the classical control, the visual servoing controller lets each manipulator use its carried camera to measure the image features of the other's marker and adapt its end-effector pose with the counterpart on the move. Because visual measurements are robust to kinematic errors, the proposed control can reduce the end-effector pose synchronization errors and the fluctuations of the interaction forces of the pair of manipulators on the move. Theoretical analyses have rigorously proven the stability of the closed-loop system. Comparative experiments on real robots have substantiated the effectiveness of the proposed control.
comment: 8 pages, 7 figures. Project website: https://zizhe.io/ral-ibvs-enhanced/. This work has been accepted to the IEEE Robotics and Automation Letters in Feb 2025
♻ ☆ Interpreting Behaviors and Geometric Constraints as Knowledge Graphs for Robot Manipulation Control
In this paper, we investigate the feasibility of using knowledge graphs to interpret actions and behaviors for robot manipulation control. Equipped with an uncalibrated visual servoing controller, we propose to use robot knowledge graphs to unify behavior trees and geometric constraints, conceptualizing robot manipulation control as semantic events. The robot knowledge graphs not only preserve the advantages of behavior trees in scripting actions and behaviors, but also offer additional benefits of mapping natural interactions between concepts and events, which enable knowledgeable explanations of the manipulation contexts. Through real-world evaluations, we demonstrate the flexibility of the robot knowledge graphs to support explainable robot manipulation control.
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Interactive Environmental Learning in Physical Embodied Systems
Embodied agents face persistent challenges in real-world environments, including partial observability, limited spatial reasoning, and high-latency multi-memory integration. We present RoboMemory, a brain-inspired framework that unifies Spatial, Temporal, Episodic, and Semantic memory under a parallelized architecture for efficient long-horizon planning and interactive environmental learning. A dynamic spatial knowledge graph (KG) ensures scalable and consistent memory updates, while a closed-loop planner with a critic module supports adaptive decision-making in dynamic settings. Experiments on EmbodiedBench show that RoboMemory, built on Qwen2.5-VL-72B-Ins, improves average success rates by 25% over its baseline and exceeds the closed-source state-of-the-art (SOTA) Gemini-1.5-Pro by 3%. Real-world trials further confirm its capacity for cumulative learning, with performance improving across repeated tasks. These results highlight RoboMemory as a scalable foundation for memory-augmented embodied intelligence, bridging the gap between cognitive neuroscience and robotic autonomy.
♻ ☆ Self-Supervised Representation Learning with Joint Embedding Predictive Architecture for Automotive LiDAR Object Detection
Recently, self-supervised representation learning relying on vast amounts of unlabeled data has been explored as a pre-training method for autonomous driving. However, directly applying popular contrastive or generative methods to this problem is insufficient and may even lead to negative transfer. In this paper, we present AD-L-JEPA, a novel self-supervised pre-training framework with a joint embedding predictive architecture (JEPA) for automotive LiDAR object detection. Unlike existing methods, AD-L-JEPA is neither generative nor contrastive. Instead of explicitly generating masked regions, our method predicts Bird's-Eye-View embeddings to capture the diverse nature of driving scenes. Furthermore, our approach eliminates the need to manually form contrastive pairs by employing explicit variance regularization to avoid representation collapse. Experimental results demonstrate consistent improvements on the LiDAR 3D object detection downstream task across the KITTI3D, Waymo, and ONCE datasets, while reducing GPU hours by 1.9x-2.7x and GPU memory by 2.8x-4x compared with the state-of-the-art method Occupancy-MAE. Notably, on the largest ONCE dataset, pre-training on 100K frames yields a 1.61 mAP gain, better than all other methods pre-trained on either 100K or 500K frames, and pre-training on 500K frames yields a 2.98 mAP gain, better than all other methods pre-trained on either 500K or 1M frames. AD-L-JEPA constitutes the first JEPA-based pre-training method for autonomous driving. It offers better quality, faster, and more GPU-memory-efficient self-supervised representation learning. The source code of AD-L-JEPA is ready to be released.
Systems and Control 19
Multi-Segment Photonic Power Converters for Energy Harvesting and High-Speed Optical Wireless Communication
The demand for energy-efficient high-speed wireless communication, coupled with the rapid rise of IoT devices, requires systems that integrate power harvesting with optical data reception to eliminate the need for charging or battery replacements. Recent advances have explored the use of solar cells as optical receivers for high-speed data detection alongside power harvesting. \acs{GaAs}-based \acp{PPC} provide six times greater electron mobility than silicon- or cadmium telluride-based cells, enabling faster data detection and improved power efficiency. However, their bandwidth is constrained by junction capacitance, which increases with active area, creating a trade-off between power output and data rate. To address this, we propose and test multi-segment \acs{GaAs}-based \Acp{PPC} that serve as both energy harvesters and data detectors. By segmenting the active area into 2, 4, or 6 subcells, forming circular areas with diameters of 1, 1.5, or 2.08~mm, we reduce capacitance and boost bandwidth while preserving light collection. Fabricated on a semi-insulating \ac{GaAs} substrate with etched trenches for electrical isolation, the series-connected subcells optimize absorption and minimize parasitic effects. The \Acp{PPC} were used for an eye-safe 1.5~m optical wireless link, employing \ac{OFDM} with adaptive bit and power loading. The system achieved a world record data rate of 3.8~Gbps, which is four times higher than prior works. The system converts 39.7\% of optical power from a beam of 2.3~mW, although the segmentation increases the sensitivity of the alignment. These findings provide new solutions for off-grid backhaul for future communication networks, such as 6th generation (6G) cellular.
☆ Differentiable Model Predictive Control on the GPU
Differentiable model predictive control (MPC) offers a powerful framework for combining learning and control. However, its adoption has been limited by the inherently sequential nature of traditional optimization algorithms, which are challenging to parallelize on modern computing hardware like GPUs. In this work, we tackle this bottleneck by introducing a GPU-accelerated differentiable optimization tool for MPC. This solver leverages sequential quadratic programming and a custom preconditioned conjugate gradient (PCG) routine with tridiagonal preconditioning to exploit the problem's structure and enable efficient parallelization. We demonstrate substantial speedups over CPU- and GPU-based baselines, significantly improving upon state-of-the-art training times on benchmark reinforcement learning and imitation learning tasks. Finally, we showcase the method on the challenging task of reinforcement learning for driving at the limits of handling, where it enables robust drifting of a Toyota Supra through water puddles.
☆ Learning Mixtures of Linear Dynamical Systems (MoLDS) via Hybrid Tensor-EM Method
Mixtures of linear dynamical systems (MoLDS) provide a path to model time-series data that exhibit diverse temporal dynamics across trajectories. However, its application remains challenging in complex and noisy settings, limiting its effectiveness for neural data analysis. Tensor-based moment methods can provide global identifiability guarantees for MoLDS, but their performance degrades under noise and complexity. Commonly used expectation-maximization (EM) methods offer flexibility in fitting latent models but are highly sensitive to initialization and prone to poor local minima. Here, we propose a tensor-based method that provides identifiability guarantees for learning MoLDS, which is followed by EM updates to combine the strengths of both approaches. The novelty in our approach lies in the construction of moment tensors using the input-output data to recover globally consistent estimates of mixture weights and system parameters. These estimates can then be refined through a Kalman EM algorithm, with closed-form updates for all LDS parameters. We validate our framework on synthetic benchmarks and real-world datasets. On synthetic data, the proposed Tensor-EM method achieves more reliable recovery and improved robustness compared to either pure tensor or randomly initialized EM methods. We then analyze neural recordings from the primate somatosensory cortex while a non-human primate performs reaches in different directions. Our method successfully models and clusters different conditions as separate subsystems, consistent with supervised single-LDS fits for each condition. Finally, we apply this approach to another neural dataset where monkeys perform a sequential reaching task. These results demonstrate that MoLDS provides an effective framework for modeling complex neural data, and that Tensor-EM is a reliable approach to MoLDS learning for these applications.
comment: 20 pages, 7 figures
☆ Toward Model Matching for Remotely Controlled Differential Drive Robotic Vehicles
The problem of regulation of the orientation angle of a remotely controlled differential-drive mobile robot with actuator dynamics and network-induced delays is studied. Using a preinstalled two-layer nonlinear control scheme that decouples linear and angular velocities and regulates heading, a third, delay-dependent layer that achieves exact model matching from the orientation angle command to the orientation angle is introduced. The proposed outer loop controller is a delay dependent dynamic measurable output-feedback controller with dynamic proper precompensator. Parameterization yields a simple characteristic quasi-polynomial with coefficients constrained to satisfy stability for all delays up to a computable bound. Computational experiments confirm accurate tracking, fast settling and bounded internal signals and control voltages. The approach offers an analytic design alternative to AI-based tuning for delayed robotic systems.
☆ Optimal Batched Scheduling of Stochastic Processing Networks Using Atomic Action Decomposition
Stochastic processing networks (SPNs) have broad applications in healthcare, transportation, and communication networks. The control of SPN is to dynamically assign servers in batches under uncertainty to optimize long-run performance. This problem is challenging as the policy dimension grows exponentially with the number of servers, making standard reinforcement learning and policy optimization methods intractable at scale. We propose an atomic action decomposition framework that addresses this scalability challenge by breaking joint assignments into sequential single-server assignments. This yields policies with constant dimension, independent of the number of servers. We study two classes of atomic policies, the step-dependent and step-independent atomic policies, and prove that both achieve the same optimal long-run average reward as the original joint policies. These results establish that computing the optimal SPN control can be made scalable without loss of optimality using the atomic framework. Our results offer theoretical justification for the strong empirical success of the atomic framework in large-scale applications reported in previous articles.
☆ Hybrid Quantum-Classical Policy Gradient for Adaptive Control of Cyber-Physical Systems: A Comparative Study of VQC vs. MLP
The comparative evaluation between classical and quantum reinforcement learning (QRL) paradigms was conducted to investigate their convergence behavior, robustness under observational noise, and computational efficiency in a benchmark control environment. The study employed a multilayer perceptron (MLP) agent as a classical baseline and a parameterized variational quantum circuit (VQC) as a quantum counterpart, both trained on the CartPole-v1 environment over 500 episodes. Empirical results demonstrated that the classical MLP achieved near-optimal policy convergence with a mean return of 498.7 +/- 3.2, maintaining stable equilibrium throughout training. In contrast, the VQC exhibited limited learning capability, with an average return of 14.6 +/- 4.8, primarily constrained by circuit depth and qubit connectivity. Noise robustness analysis further revealed that the MLP policy deteriorated gracefully under Gaussian perturbations, while the VQC displayed higher sensitivity at equivalent noise levels. Despite the lower asymptotic performance, the VQC exhibited significantly lower parameter count and marginally increased training time, highlighting its potential scalability for low-resource quantum processors. The results suggest that while classical neural policies remain dominant in current control benchmarks, quantum-enhanced architectures could offer promising efficiency advantages once hardware noise and expressivity limitations are mitigated.
comment: 6 pages, 5 figures, 2 tables, 17 equations, 1 algorithm
Distributed Platoon Control Under Quantization: Stability Analysis and Privacy Preservation
Distributed control of connected and automated vehicles has attracted considerable interest for its potential to improve traffic efficiency and safety. However, such control schemes require sharing privacy-sensitive vehicle data, which introduces risks of information leakage and potential malicious activities. This paper investigates the stability and privacy-preserving properties of distributed platoon control under two types of quantizers: deterministic and probabilistic. For deterministic quantization, we show that the resulting control strategy ensures the system errors remain uniformly ultimately bounded. Moreover, in the absence of auxiliary information, an eavesdropper cannot uniquely infer sensitive vehicle states. In contrast, the use of probabilistic quantization enables asymptotic convergence of the vehicle platoon in expectation with bounded variance. Importantly, probabilistic quantizers can satisfy differential privacy guarantees, thereby preserving privacy even when the eavesdropper possesses arbitrary auxiliary information. We further analyze the trade-off between control performance and privacy by formulating an optimization problem that characterizes the impact of the quantization step on both metrics. Numerical simulations are provided to illustrate the performance differences between the two quantization strategies.
comment: 12 pages, 6 figures
☆ Safe Landing on Small Celestial Bodies with Gravitational Uncertainty Using Disturbance Estimation and Control Barrier Functions
Soft landing on small celestial bodies (SCBs) poses unique challenges, as uncertainties in gravitational models and poorly characterized, dynamic environments require a high level of autonomy. Existing control approaches lack formal guarantees for safety constraint satisfaction, necessary to ensure the safe execution of the maneuvers. This paper introduces a control that addresses this limitation by integrating trajectory tracking, disturbance estimation, and safety enforcement. An extended high-gain observer is employed to estimate disturbances resulting from gravitational model uncertainties. We then apply a feedback-linearizing and disturbance-canceling controller that achieves exponential tracking of reference trajectories. Finally, we use a control barrier function based minimum-intervention controller to enforce state and input constraints through out the maneuver execution. This control combines trajectory tracking of offline generated reference trajectories with formal guarantees of safety, which follows common guidance and control architectures for spacecraft and allows aggressive maneuvers to be executed without compromising safety. Numerical simulations using fuel-optimal trajectories demonstrate the effectiveness of the controller in achieving precise and safe soft-landing, highlighting its potential for autonomous SCB missions.
☆ Human-in-the-loop Optimisation in Robot-assisted Gait Training
Wearable robots offer a promising solution for quantitatively monitoring gait and providing systematic, adaptive assistance to promote patient independence and improve gait. However, due to significant interpersonal and intrapersonal variability in walking patterns, it is important to design robot controllers that can adapt to the unique characteristics of each individual. This paper investigates the potential of human-in-the-loop optimisation (HILO) to deliver personalised assistance in gait training. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) was employed to continuously optimise an assist-as-needed controller of a lower-limb exoskeleton. Six healthy individuals participated over a two-day experiment. Our results suggest that while the CMA-ES appears to converge to a unique set of stiffnesses for each individual, no measurable impact on the subjects' performance was observed during the validation trials. These findings highlight the impact of human-robot co-adaptation and human behaviour variability, whose effect may be greater than potential benefits of personalising rule-based assistive controllers. Our work contributes to understanding the limitations of current personalisation approaches in exoskeleton-assisted gait rehabilitation and identifies key challenges for effective implementation of human-in-the-loop optimisation in this domain.
☆ Federated Split Learning for Resource-Constrained Robots in Industrial IoT: Framework Comparison, Optimization Strategies, and Future Directions
Federated split learning (FedSL) has emerged as a promising paradigm for enabling collaborative intelligence in industrial Internet of Things (IoT) systems, particularly in smart factories where data privacy, communication efficiency, and device heterogeneity are critical concerns. In this article, we present a comprehensive study of FedSL frameworks tailored for resource-constrained robots in industrial scenarios. We compare synchronous, asynchronous, hierarchical, and heterogeneous FedSL frameworks in terms of workflow, scalability, adaptability, and limitations under dynamic industrial conditions. Furthermore, we systematically categorize token fusion strategies into three paradigms: input-level (pre-fusion), intermediate-level (intra-fusion), and output-level (post-fusion), and summarize their respective strengths in industrial applications. We also provide adaptive optimization techniques to enhance the efficiency and feasibility of FedSL implementation, including model compression, split layer selection, computing frequency allocation, and wireless resource management. Simulation results validate the performance of these frameworks under industrial detection scenarios. Finally, we outline open issues and research directions of FedSL in future smart manufacturing systems.
comment: 9 pages, 5 figures, submitted to the IEEE magazine
☆ Sample-Efficient and Smooth Cross-Entropy Method Model Predictive Control Using Deterministic Samples
Cross-entropy method model predictive control (CEM--MPC) is a powerful gradient-free technique for nonlinear optimal control, but its performance is often limited by the reliance on random sampling. This conventional approach can lead to inefficient exploration of the solution space and non-smooth control inputs, requiring a large number of samples to achieve satisfactory results. To address these limitations, we propose deterministic sampling CEM (dsCEM), a novel framework that replaces the random sampling step with deterministic samples derived from localized cumulative distributions (LCDs). Our approach introduces modular schemes to generate and adapt these sample sets, incorporating temporal correlations to ensure smooth control trajectories. This method can be used as a drop-in replacement for the sampling step in existing CEM-based controllers. Experimental evaluations on two nonlinear control tasks demonstrate that dsCEM consistently outperforms state-of-the-art iCEM in terms of cumulative cost and control input smoothness, particularly in the critical low-sample regime.
☆ Generative AI-Driven Hierarchical Multi-Agent Framework for Zero-Touch Optical Networks
The rapid development of Generative Artificial Intelligence (GenAI) has catalyzed a transformative technological revolution across all walks of life. As the backbone of wideband communication, optical networks are expecting high-level autonomous operation and zero-touch management to accommodate their expanding network scales and escalating transmission bandwidth. The integration of GenAI is deemed as the pivotal solution for realizing zero-touch optical networks. However, the lifecycle management of optical networks involves a multitude of tasks and necessitates seamless collaboration across multiple layers, which poses significant challenges to the existing single-agent GenAI systems. In this paper, we propose a GenAI-driven hierarchical multi-agent framework designed to streamline multi-task autonomous execution for zero-touch optical networks. We present the architecture, implementation, and applications of this framework. A field-deployed mesh network is utilized to demonstrate three typical scenarios throughout the lifecycle of optical network: quality of transmission estimation in the planning stage, dynamic channel adding/dropping in the operation stage, and system capacity increase in the upgrade stage. The case studies, illustrate the capabilities of multi-agent framework in multi-task allocation, coordination, execution, evaluation, and summarization. This work provides a promising approach for the future development of intelligent, efficient, and collaborative network management solutions, paving the way for more specialized and adaptive zero-touch optical networks.
comment: 7 pages,6 figures, Accepted by lEEE Communications Magazine, Open call
☆ GO-Flock: Goal-Oriented Flocking in 3D Unknown Environments with Depth Maps
Artificial Potential Field (APF) methods are widely used for reactive flocking control, but they often suffer from challenges such as deadlocks and local minima, especially in the presence of obstacles. Existing solutions to address these issues are typically passive, leading to slow and inefficient collective navigation. As a result, many APF approaches have only been validated in obstacle-free environments or simplified, pseudo 3D simulations. This paper presents GO-Flock, a hybrid flocking framework that integrates planning with reactive APF-based control. GO-Flock consists of an upstream Perception Module, which processes depth maps to extract waypoints and virtual agents for obstacle avoidance, and a downstream Collective Navigation Module, which applies a novel APF strategy to achieve effective flocking behavior in cluttered environments. We evaluate GO-Flock against passive APF-based approaches to demonstrate their respective merits, such as their flocking behavior and the ability to overcome local minima. Finally, we validate GO-Flock through obstacle-filled environment and also hardware-in-the-loop experiments where we successfully flocked a team of nine drones, six physical and three virtual, in a forest environment.
♻ ☆ Efficient MPC-Based Energy Management System for Secure and Cost-Effective Microgrid Operations
Model predictive control (MPC)-based energy management systems (EMS) are essential for ensuring optimal, secure, and stable operation in microgrids with high penetrations of distributed energy resources. However, due to the high computational cost for the decision-making, the conventional MPC-based EMS typically adopts a simplified integrated-bus power balance model. While this simplification is effective for small networks, large-scale systems require a more detailed branch flow model to account for the increased impact of grid power losses and security constraints. This work proposes an efficient and reliable MPC-based EMS that incorporates power-loss effects and grid-security constraints. %, while adaptively shaping the battery power profile in response to online renewable inputs, achieving reduced operational costs. It enhances system reliability, reduces operational costs, and shows strong potential for online implementation due to its reduced computational effort. Specifically, a second-order cone program (SOCP) branch flow relaxation is integrated into the constraint set, yielding a convex formulation that guarantees globally optimal solutions with high computational efficiency. Owing to the radial topology of the microgrid, this relaxation is practically tight, ensuring equivalence to the original problem. Building on this foundation, an online demand response (DR) module is designed to further reduce the operation cost through peak shaving. To the best of our knowledge, no prior MPC-EMS framework has simultaneously modeled losses and security constraints while coordinating flexible loads within a unified architecture. The developed framework enables secure operation with effective peak shaving and reduced total cost. The effectiveness of the proposed method is validated on 10-bus, 18-bus, and 33-bus systems.
♻ ☆ Neural Network-based Co-design of Output-Feedback Control Barrier Function and Observer
Control Barrier Functions (CBFs) provide a powerful framework for ensuring safety in dynamical systems. However, their application typically relies on full state information, which is often violated in real-world scenarios due to the availability of partial state information. In this work, we propose a neural network-based framework for the co-design of a safety controller, observer, and CBF for partially observed continuous-time systems. By formulating barrier conditions over an augmented state space, our approach ensures safety without requiring bounded estimation errors or handcrafted barrier functions. All components are jointly trained by formulating appropriate loss functions, and we introduce a validity condition to provide formal safety guarantees beyond the training data. Finally, we demonstrate the effectiveness of the proposed approach through several case studies.
comment: There were errors in paper (introduction section and notations)
♻ ☆ Equivariant Filter for Relative Attitude and Target's Angular Velocity Estimation
Accurate estimation of the relative attitude and angular velocity between two rigid bodies is fundamental in aerospace applications such as spacecraft rendezvous and docking. In these scenarios, a chaser vehicle must determine the orientation and angular velocity of a target object using onboard sensors. This work addresses the challenge of designing an Equivariant Filter (EqF) that can reliably estimate both the relative attitude and the target angular velocity using noisy observations of two known, non-collinear vectors fixed in the target frame. To derive the EqF, a symmetry for the system is proposed and an equivariant lift onto the symmetry group is calculated. Observability and convergence properties are analyzed. Simulations demonstrate the filter's performance, with Monte Carlo runs yielding statistically significant results. The impact of low-rate measurements is also examined and a strategy to mitigate this effect is proposed. Experimental results, using fiducial markers and both conventional and event cameras for measurement acquisition, further validate the approach, confirming its effectiveness in a realistic setting.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Optimal Duration of Reserve Capacity Ancillary Services for Distributed Energy Resources
The increasing integration of distributed energy resources (DERs) into power systems presents opportunities and challenges for ancillary services (AS) provision. Technical requirements of existing AS (i.e., duration, reliability, ramp rate, and lead time) have been designed for traditional generating units, making their provision by DER aggregates particularly challenging. This paper proposes a method to design the duration of reserve capacity AS products considering the operational constraints of DERs and the temporal dynamics of system imbalances. The optimal product duration is determined by maximizing product availability and aligning the supply profile with the system's balancing needs. We apply the methodology to a realistic Swiss low-voltage network with a diverse DER portfolio. The results reveal that (i) shorter product durations maximize average availability and (ii) long product durations improve the alignment with system balancing needs. This paper offers valuable insights for system operators to design AS products tailored for DER participation.
♻ ☆ Image-Based Visual Servoing for Enhanced Cooperation of Dual-Arm Manipulation
The cooperation of a pair of robot manipulators is required to manipulate a target object without any fixtures. The conventional control methods coordinate the end-effector pose of each manipulator with that of the other using their kinematics and joint coordinate measurements. Yet, the manipulators' inaccurate kinematics and joint coordinate measurements can cause significant pose synchronization errors in practice. This paper thus proposes an image-based visual servoing approach for enhancing the cooperation of a dual-arm manipulation system. On top of the classical control, the visual servoing controller lets each manipulator use its carried camera to measure the image features of the other's marker and adapt its end-effector pose with the counterpart on the move. Because visual measurements are robust to kinematic errors, the proposed control can reduce the end-effector pose synchronization errors and the fluctuations of the interaction forces of the pair of manipulators on the move. Theoretical analyses have rigorously proven the stability of the closed-loop system. Comparative experiments on real robots have substantiated the effectiveness of the proposed control.
comment: 8 pages, 7 figures. Project website: https://zizhe.io/ral-ibvs-enhanced/. This work has been accepted to the IEEE Robotics and Automation Letters in Feb 2025
♻ ☆ Electrical System Architecture for Aviation Electrification
The electrification of aircraft is reshaping the foundations of aerospace design by positioning electrical systems at the center of propulsion, control, and onboard functionality. This chapter provides an overview of electrical system architectures for electric and hybrid electric aircraft, highlighting both established principles and emerging design strategies. The discussion begins with the motivations for electrification, including reducing environmental impact, improving operational efficiency, and replacing complex pneumatic and hydraulic subsystems with lighter and more reliable electrical alternatives. Aircraft electrical architectures are classified into four major categories: conventional, more electric, all electric, and hybrid electric. A range of system topologies is examined, including direct current (DC), alternating current (AC), hybrid, and distributed configurations. Each is considered in terms of its effectiveness in delivering power, enabling redundancy, supporting fault isolation, and managing thermal performance. Real world examples are presented to demonstrate practical applications, with case studies drawn from the Boeing 787 Dreamliner, the Eviation Alice commuter aircraft, and NASA X57 Maxwell demonstrator. These examples illustrate the ongoing transition from incremental subsystem electrification toward fully integrated architectures that promise higher efficiency and greater sustainability.
Computational Geometry 2
☆ Minimal Unimodal Decomposition is NP-Hard on Graphs
A function on a topological space is called unimodal if all of its super-level sets are contractible. A minimal unimodal decomposition of a function $f$ is the smallest number of unimodal functions that sum up to $f$. The problem of decomposing a given density function into its minimal unimodal components is fundamental in topological statistics. We show that finding a minimal unimodal decomposition of an edge-linear function on a graph is NP-hard. Given any $k \geq 2$, we establish the NP-hardness of finding a unimodal decomposition consisting of $k$ unimodal functions. We also extend the NP-hardness result to related variants of the problem, including restriction to planar graphs, inapproximability results, and generalizations to higher dimensions.
☆ Algorithms and Lower Bounds for the Maximum Overlap of Two Polygons Under Translation
A fundamental problem in shape matching and geometric similarity is computing the maximum area overlap between two polygons under translation. For general simple polygons, the best-known algorithm runs in $O((nm)^2 \log(nm))$ time [Mount, Silverman, Wu 96], where $n$ and $m$ are the complexities of the input polygons. In a recent breakthrough, Chan and Hair gave a linear-time algorithm for the special case when both polygons are convex. A key challenge in computational geometry is to design improved algorithms for other natural classes of polygons. We address this by presenting an $O((nm)^{3/2} \log(nm))$-time algorithm for the case when both polygons are orthogonal. This is the first algorithm for polygon overlap on orthogonal polygons that is faster than the almost 30 years old algorithm for simple polygons. Complementing our algorithmic contribution, we provide $k$-SUM lower bounds for problems on simple polygons with only orthogonal and diagonal edges. First, we establish that there is no algorithm for polygon overlap with running time $O(\max(n^2,nm^2)^{1-\varepsilon})$, where $m\leq n$, unless the $k$-SUM hypothesis fails. This matches the running time of our algorithm when $n=m$. We use part of the above construction to also show a lower bound for the polygon containment problem, a popular special case of the overlap problem. Concretely, there is no algorithm for polygon containment with running time $O(n^{2-\varepsilon})$ under the $3$-SUM hypothesis, even when the polygon to be contained has $m=O(1)$ vertices. Our lower bound shows that polygon containment for these types of polygons (i.e., with diagonal edges) is strictly harder than for orthogonal polygons, and also strengthens the previously known lower bounds for polygon containment. Furthermore, our lower bounds show tightness of the algorithm of [Mount, Silverman, Wu 96] when $m=O(1)$.
Optimization and Control 38
☆ Differentiable Model Predictive Control on the GPU
Differentiable model predictive control (MPC) offers a powerful framework for combining learning and control. However, its adoption has been limited by the inherently sequential nature of traditional optimization algorithms, which are challenging to parallelize on modern computing hardware like GPUs. In this work, we tackle this bottleneck by introducing a GPU-accelerated differentiable optimization tool for MPC. This solver leverages sequential quadratic programming and a custom preconditioned conjugate gradient (PCG) routine with tridiagonal preconditioning to exploit the problem's structure and enable efficient parallelization. We demonstrate substantial speedups over CPU- and GPU-based baselines, significantly improving upon state-of-the-art training times on benchmark reinforcement learning and imitation learning tasks. Finally, we showcase the method on the challenging task of reinforcement learning for driving at the limits of handling, where it enables robust drifting of a Toyota Supra through water puddles.
Robust Data-Driven Receding Horizon Control
This paper presents a data-driven receding horizon control framework for discrete-time linear systems that guarantees robust performance in the presence of bounded disturbances. Unlike the majority of existing data-driven predictive control methods, which rely on Willem's fundamental lemma, the proposed method enforces set-membership constraints for data-driven control and utilizes execution data to iteratively refine a set of compatible systems online. Numerical results demonstrate that the proposed receding horizon framework achieves better contractivity for the unknown system compared with regular data-driven control approaches.
comment: This work has been accepted to IFAC ROCOND 2025 for publication under a Creative Commons Licence CC-BY-NC-ND
☆ Improved High-probability Convergence Guarantees of Decentralized SGD
Convergence in high-probability (HP) has been receiving increasing interest, due to its attractive properties, such as exponentially decaying tail bounds and strong guarantees for each individual run of an algorithm. While HP guarantees are extensively studied in centralized settings, much less is understood in the decentralized, networked setup. Existing HP studies in decentralized settings impose strong assumptions, like uniformly bounded gradients, or asymptotically vanishing noise, resulting in a significant gap between assumptions used to establish convergence in the HP and the mean-squared error (MSE) sense, even for vanilla Decentralized Stochastic Gradient Descent ($\mathtt{DSGD}$) algorithm. This is contrary to centralized settings, where it is known that $\mathtt{SGD}$ converges in HP under the same conditions on the cost function as needed to guarantee MSE convergence. Motivated by this observation, we revisit HP guarantees for $\mathtt{DSGD}$ in the presence of light-tailed noise. We show that $\mathtt{DSGD}$ converges in HP under the same conditions on the cost as in the MSE sense, removing uniformly bounded gradients and other restrictive assumptions, while simultaneously achieving order-optimal rates for both non-convex and strongly convex costs. Moreover, our improved analysis yields linear speed-up in the number of users, demonstrating that $\mathtt{DSGD}$ maintains strong performance in the HP sense and matches existing MSE guarantees. Our improved results stem from a careful analysis of the MGF of quantities of interest (norm-squared of gradient or optimality gap) and the MGF of the consensus gap between users' models. To achieve linear speed-up, we provide a novel result on the variance-reduction effect of decentralized methods in the HP sense and more fine-grained bounds on the MGF for strongly convex costs, which are both of independent interest.
comment: 39 pages
Robust Data-Driven Receding-Horizon Control for LQR with Input Constraints
This letter presents a robust data-driven receding-horizon control framework for the discrete time linear quadratic regulator (LQR) with input constraints. Unlike existing data-driven approaches that design a controller from initial data and apply it unchanged throughout the trajectory, our method exploits all available execution data in a receding-horizon manner, thereby capturing additional information about the unknown system and enabling less conservative performance. Prior data-driven LQR and model predictive control methods largely rely on Willem's fundamental lemma, which requires noise-free data, or use regularization to address disturbances, offering only practical stability guarantees. In contrast, the proposed approach extends semidefinite program formulations for the data-driven LQR to incorporate input constraints and leverages duality to provide formal robust stability guarantees. Simulation results demonstrate the effectiveness of the method.
comment: This work has been submitted to IEEE L-CSS for possible publication
☆ Self-concordant Schrödinger operators: spectral gaps and optimization without condition numbers
Spectral gaps play a fundamental role in many areas of mathematics, computer science, and physics. In quantum mechanics, the spectral gap of Schr\"odinger operators has a long history of study due to its physical relevance, while in quantum computing spectral gaps are an important proxy for efficiency, such as in the quantum adiabatic algorithm. Motivated by convex optimization, we study Schr\"odinger operators associated with self-concordant barriers over convex domains and prove non-asymptotic lower bounds on the spectral gap for this class of operators. Significantly, we find that the spectral gap does not display any condition-number dependence when the usual Laplacian is replaced by the Laplace--Beltrami operator, which uses second-order information of the barrier and hence can take the curvature of the barrier into account. As an algorithmic application, we construct a novel quantum interior point method that applies to arbitrary self-concordant barriers and shows no condition-number dependence. To achieve this we combine techniques from semiclassical analysis, convex optimization, and quantum annealing.
comment: 43 pages
☆ Lagrangian Dual Sections: A Topological Perspective on Hidden Convexity
Hidden convexity is a powerful idea in optimization: under the right transformations, nonconvex problems that are seemingly intractable can be solved efficiently using convex optimization. We introduce the notion of a Lagrangian dual section of a nonlinear program defined over a topological space, and we use it to give a sufficient condition for a nonconvex optimization problem to have a natural convex reformulation. We emphasize the topological nature of our framework, using only continuity and connectedness properties of a certain Lagrangian formulation of the problem to prove our results. We demonstrate the practical consequences of our framework in a range of applications and by developing new algorithmic methodology. First, we present families of nonconvex problem instances that can be transformed to convex programs in the context of spectral inverse problems -- which include quadratically constrained quadratic optimization and Stiefel manifold optimization as special cases -- as well as unbalanced Procrustes problems. In each of these applications, we both generalize prior results on hidden convexity and provide unifying proofs. For the case of the spectral inverse problems, we also present a Lie-theoretic approach that illustrates connections with the Kostant convexity theorem. Second, we introduce new algorithmic ideas that can be used to find globally optimal solutions to both Lagrangian forms of an optimization problem as well as constrained optimization problems when the underlying topological space is a Riemannian manifold.
☆ A Simple Adaptive Proximal Gradient Method for Nonconvex Optimization
Consider composite nonconvex optimization problems where the objective function consists of a smooth nonconvex term (with Lipschitz-continuous gradient) and a convex (possibly nonsmooth) term. Existing parameter-free methods for such problems often rely on complex multi-loop structures, require line searches, or depend on restrictive assumptions (e.g., bounded iterates). To address these limitations, we introduce a novel adaptive proximal gradient method (referred to as AdaPGNC) that features a simple single-loop structure, eliminates the need for line searches, and only requires the gradient's Lipschitz continuity to ensure convergence. Furthermore, AdaPGNC achieves the theoretically optimal iteration/gradient evaluation complexity of $\mathcal{O}(\varepsilon^{-2})$ for finding an $\varepsilon$-stationary point. Our core innovation lies in designing an adaptive step size strategy that leverages upper and lower curvature estimates. A key technical contribution is the development of a novel Lyapunov function that effectively balances the function value gap and the norm-squared of consecutive iterate differences, serving as a central component in our convergence analysis. Preliminary experimental results indicate that AdaPGNC demonstrates competitive performance on several benchmark nonconvex (and convex) problems against state-of-the-art parameter-free methods.
☆ Safe Landing on Small Celestial Bodies with Gravitational Uncertainty Using Disturbance Estimation and Control Barrier Functions
Soft landing on small celestial bodies (SCBs) poses unique challenges, as uncertainties in gravitational models and poorly characterized, dynamic environments require a high level of autonomy. Existing control approaches lack formal guarantees for safety constraint satisfaction, necessary to ensure the safe execution of the maneuvers. This paper introduces a control that addresses this limitation by integrating trajectory tracking, disturbance estimation, and safety enforcement. An extended high-gain observer is employed to estimate disturbances resulting from gravitational model uncertainties. We then apply a feedback-linearizing and disturbance-canceling controller that achieves exponential tracking of reference trajectories. Finally, we use a control barrier function based minimum-intervention controller to enforce state and input constraints through out the maneuver execution. This control combines trajectory tracking of offline generated reference trajectories with formal guarantees of safety, which follows common guidance and control architectures for spacecraft and allows aggressive maneuvers to be executed without compromising safety. Numerical simulations using fuel-optimal trajectories demonstrate the effectiveness of the controller in achieving precise and safe soft-landing, highlighting its potential for autonomous SCB missions.
☆ MadNCL: A GPU Implementation of Algorithm NCL for Large-Scale, Degenerate Nonlinear Programs
We present a GPU implementation of Algorithm NCL, an augmented Lagrangian method for solving large-scale and degenerate nonlinear programs. Although interior-point methods and sequential quadratic programming are widely used for solving nonlinear programs, the augmented Lagrangian method is known to offer superior robustness against constraint degeneracies and can rapidly detect infeasibility. We introduce several enhancements to Algorithm NCL, including fusion of the inner and outer loops and use of extrapolation steps, which improve both efficiency and convergence stability. Further, NCL has the key advantage of being well-suited for GPU architectures because of the regularity of the KKT systems provided by quadratic penalty terms. In particular, the NCL subproblem formulation allows the KKT systems to be naturally expressed as either stabilized or condensed KKT systems, whereas the interior-point approach requires aggressive reformulations or relaxations to make it suitable for GPUs. Both systems can be efficiently solved on GPUs using sparse \ldlt factorization with static pivoting, as implemented in NVIDIA cuDSS. Building on these advantages, we examine the KKT systems arising from NCL subproblems. We present an optimized GPU implementation of Algorithm NCL by leveraging MadNLP as an interior-point subproblem solver and utilizing the stabilized and condensed formulations of the KKT systems for computing Newton steps. Numerical experiments on various large-scale and degenerate NLPs, including optimal power flow, COPS benchmarks, and security-constrained optimal power flow, demonstrate that MadNCL operates efficiently on GPUs while effectively managing problem degeneracy, including MPCC constraints.
☆ The Golden Ratio Proximal ADMM with Norm Independent Step-Sizes for Separable Convex Optimization
In this work, we propose two step-size strategies for the Golden-ratio proximal ADMM (GrpADMM) to solve linearly constrained separable convex optimization problems. Both strategies eliminate explicit operator-norm estimates by relying solely on inexpensive local information computed at the current iterate without involving backtracking. However, the key difference is that the second step-size rule allows for recovery from poor initial steps and can increase from iteration to iteration. Under standard assumptions, we prove global iterate convergence and derive sublinear rates for both the objective gap and feasibility residuals. Several numerical experiments confirm the adaptability of the approaches, where accurately computing such parameters can be costly or even infeasible.
comment: 25 Pages and 30 Figures
☆ Duality for Non Convex Composite Functions via the Fenchel Rockafellar Perturbation Framework
We examine the duality theory for a class of non-convex functions obtained by composing a convex function with a continuous one. Using Fenchel duality, we derive a dual problem that satisfies weak duality under general assumptions. To better understand this duality, we compare it with classical Lagrange duality by analyzing a related, yet more complex, constrained problem. We demonstrate that the newly derived stationarity conditions are equivalent to the classical Lagrange stationarity conditions for the constrained problem, as expected by the close relationship between Fenchel and Lagrange dualities. We introduce two non-convex optimization problems and prove strong duality results with their respective duals. The second problem is a constrained optimization problem whose dual is obtained through the concurrent use of the duality theory introduced in this paper and classical Lagrange duality for constrained optimization. We also report numerical tests where we solve randomly generated instances of the presented problems using an ad-hoc primal-dual potential reduction interior point method that directly exploits the global optimality conditions established in this paper. The results include a comparison with a well-known conic programming solver applied to the convex duals of the analyzed problems. The interior point method successfully reduces the duality gap close to zero, validating the proposed duality framework. The theory presented in this paper can be applied to various non-convex problems and serves as a valuable tool in the field of hidden convex optimization.
comment: 38 pages, 3 figures
☆ Stable Robot Motions on Manifolds: Learning Lyapunov-Constrained Neural Manifold ODEs
Learning stable dynamical systems from data is crucial for safe and reliable robot motion planning and control. However, extending stability guarantees to trajectories defined on Riemannian manifolds poses significant challenges due to the manifold's geometric constraints. To address this, we propose a general framework for learning stable dynamical systems on Riemannian manifolds using neural ordinary differential equations. Our method guarantees stability by projecting the neural vector field evolving on the manifold so that it strictly satisfies the Lyapunov stability criterion, ensuring stability at every system state. By leveraging a flexible neural parameterisation for both the base vector field and the Lyapunov function, our framework can accurately represent complex trajectories while respecting manifold constraints by evolving solutions directly on the manifold. We provide an efficient training strategy for applying our framework and demonstrate its utility by solving Riemannian LASA datasets on the unit quaternion (S^3) and symmetric positive-definite matrix manifolds, as well as robotic motions evolving on \mathbb{R}^3 \times S^3. We demonstrate the performance, scalability, and practical applicability of our approach through extensive simulations and by learning robot motions in a real-world experiment.
comment: 12 pages, 6 figures
☆ On Implicit Concave Structures in Half-Quadratic Methods for Signal Reconstruction
In this work, we introduce a new class of non-convex functions, called implicit concave functions, which are compositions of a concave function with a continuously differentiable mapping. We analyze the properties of their minimization by leveraging Fenchel conjugate theory to construct an augmented optimization problem. This reformulation yields a one-to-one correspondence between the stationary points and local minima of the original and augmented problems. Crucially, the augmented problem admits a natural variable splitting that reveals convexity with respect to at least one block, and, in some cases, leading to a biconvex structure that is more amenable to optimization. This enables the use of efficient block coordinate descent algorithms for solving otherwise non-convex problems. As a representative application, we show how this framework applies to half-quadratic regularization in signal reconstruction and image processing. We demonstrate that common edge-preserving regularizers fall within the proposed class, and that their corresponding augmented problems are biconvex and bounded from below. Our results offer both a theoretical foundation and a practical pathway for solving a broad class of structured non-convex problems.
comment: 12 pages, conference proceeding
☆ Strategic Inference in Stackelberg Games: Optimal Control for Revealing Adversary Intent
We study a continuous-time stochastic Stackelberg game in which a leader seeks to accomplish a primary objective while inferring a hidden parameter of a rational follower. The follower solves an entropy-regularized tracking problem and responds to the leader's trajectory with a randomized policy. Anticipating this response, the leader designs informative controls to maximize the estimation efficiency for the follower's latent intent, through maximum likelihood estimation. Unlike prior work on discrete-time or finite-candidate inverse learning, our framework enables continuous parameter inference without prior assumptions and endogenizes the information source through the follower's strategic feedback. We derive semi-explicit solutions, prove well-posedness, and develop recurrent neural network algorithms to approximate the leader's path-dependent control. Numerical experiments demonstrate how the leader balances task performance and information gain, highlighting the practical value of our approach for adversarial strategic inference.
☆ Nonlinear constrained optimization of Schur test functions
We apply the iterative nonlinear programming method, previously proposed in our earlier work, to optimize Schur test functions and thereby provide refined upper bounds for the norms of integral operators. As an illustration, we derive such bounds for transfer operators associated with twofold additive compound operators that arise in the study of delay equations. This is related to the verification of frequency inequalities that guarantee the global stability of nonlinear delay equations through the generalized Bendixson criterion.
☆ Unbiased Extremum Seeking for MPPT in Photovoltaic Systems
This paper presents novel extremum seeking (ES) strategies for maximum power point tracking (MPPT) in photovoltaic (PV) systems that ensure unbiased convergence and prescribed-time performance. Conventional ES methods suffer from steady-state bias due to persistent dither signal. We introduce two novel ES algorithms: the exponential unbiased ES (uES), which guarantees exponential convergence to the maximum power point (MPP) without steady-state oscillation bias, and the unbiased prescribed-time ES (uPT-ES), which ensures convergence within a user-defined time horizon. Both methods leverage time-varying perturbation amplitudes and demodulation gains, with uPT-ES additionally utilizing chirp signals to enhance excitation over finite-time intervals. Experimental results on a hardware-in-the-loop testbed validate the proposed algorithms, demonstrating improved convergence speed and tracking accuracy compared to classical ES, under both static and time-varying environmental conditions.
☆ On the equivalence of $c$-potentiability and $c$-path boundedness in the sense of Artstein-Avidan, Sadovsky, and Wyczesany
A cornerstone of convex analysis, established by Rockafellar in 1966, asserts that a set has a potential if and only if it is cyclically monotone. This characterization was generalized to hold for any real-valued cost function $c$ and lies at the core structure of optimal transport plans. However, this equivalence fails to hold for costs that attain infinite values. In this paper, we explore potentiability for an infinite-valued cost $c$ under the assumption of $c$-path boundedness, a condition that was first introduced by Artstein-Avidan, Sadovsky and Wyczesany. This condition is necessary for potentiability and is more restrictive than $c$-cyclic monotonicity. We provide general settings and other conditions under which $c$-path boundedness is sufficient for potentability, and therefore equivalent. We provide a general theorem for potentiability, requiring no topological assumptions on the spaces or the cost. We then provide sufficiency in separable metric spaces and costs that are continuous in their domain. Finally, we introduce the notion of a $c$-path bounded extension and use it to prove the existence of potentials for a special class of costs on $\mathbb{R}^2$. We illustrate our discussion and results with several examples.
comment: 35 pages, 1 figure
☆ Revisiting Invex Functions: Explicit Kernel Constructions and Applications
An invex function generalizes a convex function in the sense that every stationary point is a global minimizer. Recently, invex functions and related concepts have attracted attention in signal processing and machine learning. However, proving that a function is invex is not straightforward, because the definition involves an unknown function called a kernel function. This paper develops several methods for constructing explicit kernel functions, which have been missing from the literature. These methods support proving invexity of new functions, and they would also be useful in the development of optimization algorithms for invex problems. We also clarify connections to pseudoconvex functions and present examples of nonsmooth, non-pseudoconvex invex functions that arise in signal processing.
☆ NeST-BO: Fast Local Bayesian Optimization via Newton-Step Targeting of Gradient and Hessian Information
Bayesian optimization (BO) is effective for expensive black-box problems but remains challenging in high dimensions. We propose NeST-BO, a local BO method that targets the Newton step by jointly learning gradient and Hessian information with Gaussian process surrogates, and selecting evaluations via a one-step lookahead bound on Newton-step error. We show that this bound (and hence the step error) contracts with batch size, so NeST-BO directly inherits inexact-Newton convergence: global progress under mild stability assumptions and quadratic local rates once steps are sufficiently accurate. To scale, we optimize the acquisition in low-dimensional subspaces (e.g., random embeddings or learned sparse subspaces), reducing the dominant cost of learning curvature from $O(d^2)$ to $O(m^2)$ with $m \ll d$ while preserving step targeting. Across high-dimensional synthetic and real-world problems, including cases with thousands of variables and unknown active subspaces, NeST-BO consistently yields faster convergence and lower regret than state-of-the-art local and high-dimensional BO baselines.
☆ The Method of Infinite Descent
Training - the optimisation of complex models - is traditionally performed through small, local, iterative updates [D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 323, 533-536 (1986)]. Approximating solutions through truncated gradients is a paradigm dating back to Cauchy [A.-L. Cauchy, Comptes Rendus Math\'ematique 25, 536-538 (1847)] and Newton [I. Newton, The Method of Fluxions and Infinite Series (Henry Woodfall, London, 1736)]. This work introduces the Method of Infinite Descent, a semi-analytic optimisation paradigm that reformulates training as the direct solution to the first-order optimality condition. By analytical resummation of its Taylor expansion, this method yields an exact, algebraic equation for the update step. Realisation of the infinite Taylor tower's cascading resummation is formally derived, and an exploitative algorithm for the direct solve step is proposed. This principle is demonstrated with the herein-introduced AION (Analytic, Infinitely-Optimisable Network) architecture. AION is a model designed expressly to satisfy the algebraic closure required by Infinite Descent. In a simple test problem, AION reaches the optimum in a single descent step. Together, this optimiser-model pair exemplify how analytic structure enables exact, non-iterative convergence. Infinite Descent extends beyond this example, applying to any appropriately closed architecture. This suggests a new class of semi-analytically optimisable models: the \emph{Infinity Class}; sufficient conditions for class membership are discussed. This offers a pathway toward non-iterative learning.
♻ ☆ BC-ADMM: An Efficient Non-convex Constrained Optimizer with Robotic Applications
Non-convex constrained optimizations are ubiquitous in robotic applications such as multi-agent navigation, UAV trajectory optimization, and soft robot simulation. For this problem class, conventional optimizers suffer from small step sizes and slow convergence. We propose BC-ADMM, a variant of Alternating Direction Method of Multiplier (ADMM), that can solve a class of non-convex constrained optimizations with biconvex constraint relaxation. Our algorithm allows larger step sizes by breaking the problem into small-scale sub-problems that can be easily solved in parallel. We show that our method has both theoretical convergence speed guarantees and practical convergence guarantees in the asymptotic sense. Through numerical experiments in a row of four robotic applications, we show that BC-ADMM has faster convergence than conventional gradient descent and Newton's method in terms of wall clock time.
♻ ☆ Constrained Dikin-Langevin diffusion for polyhedra
Interior-point geometry offers a straightforward approach to constrained sampling and optimization on polyhedra, eliminating reflections and ad hoc projections. We exploit the Dikin log-barrier to define a Dikin--Langevin diffusion whose drift and noise are modulated by the inverse barrier Hessian. In continuous time, we establish a boundary no-flux property; trajectories started in the interior remain in $U$ almost surely, so feasibility is maintained by construction. For computation, we adopt a discretize-then-correct design: an Euler--Maruyama proposal with state-dependent covariance, followed by a Metropolis--Hastings correction that targets the exact constrained law and reduces to a Dikin random walk when $f$ is constant. Numerically, the unadjusted diffusion exhibits the expected first-order step size bias, while the MH-adjusted variant delivers strong convergence diagnostics on anisotropic, box-constrained Gaussians (rank-normalized split-$\hat{R}$ concentrated near $1$) and higher inter-well transition counts on a bimodal target, indicating superior cross-well mobility. Taken together, these results demonstrate that coupling calibrated stochasticity with interior-point preconditioning provides a practical, reflection-free approach to sampling and optimization over polyhedral domains, offering clear advantages near faces, corners, and in nonconvex landscapes.
♻ ☆ From Halpern's Fixed-Point Iterations to Nesterov's Accelerated Interpretations for Root-Finding Problems
We derive an equivalent form of Halpern's fixed-point iteration scheme for solving a co-coercive equation (also called a root-finding problem), which can be viewed as a Nesterov's accelerated interpretation. We show that one method is equivalent to another via a simple transformation, leading to a straightforward convergence proof for Nesterov's accelerated scheme. Alternatively, we directly establish convergence rates of Nesterov's accelerated variant, and as a consequence, we obtain a new convergence rate of Halpern's fixed-point iteration. Next, we apply our results to different methods to solve monotone inclusions, where our convergence guarantees are applied. Since the gradient/forward scheme requires the co-coerciveness of the underlying operator, we derive new Nesterov's accelerated variants for both recent extra-anchored gradient and past-extra anchored gradient methods in the literature. These variants alleviate the co-coerciveness condition by only assuming the monotonicity and Lipschitz continuity of the underlying operator. Interestingly, our new Nesterov's accelerated interpretation of the past-extra anchored gradient method involves two past-iterate correction terms. This formulation is expected to guide us developing new Nesterov's accelerated methods for minimax problems and their continuous views without co-coericiveness. We test our theoretical results on two numerical examples, where the actual convergence rates match well the theoretical ones up to a constant factor.
comment: 32 pages, 2 figures
♻ ☆ An alternative definition for c-convex functions and another synthetic statement of MTW condition
The main theorem of this paper states that the c-convexity and the alternative c-convexity are equivalent if and only if the cost function c satisfies MTW condition. The alternative c-convex function is an analogy of the definition of the convex function that is using the inequality phi(t x1 + (1 - t) x0) <= t phi(x1) + (1 - t) phi(x0). We study properties of the alternative c-convex functions and MTW condition, then prove the main theorem.
comment: The previous version contained a few errors, and they are revised in this version
♻ ☆ Oblivious Stochastic Composite Optimization
In stochastic convex optimization problems, most existing adaptive methods rely on prior knowledge about the diameter bound $D$ when the smoothness or the Lipschitz constant is unknown. This often significantly affects performance as only a rough approximation of $D$ is usually known in practice. Here, we bypass this limitation by combining mirror descent with dual averaging techniques and we show that, under oblivious step-sizes regime, our algorithms converge without any prior knowledge on the parameters of the problem. We introduce three oblivious stochastic algorithms to address different settings. The first algorithm is designed for objectives in relative scale, the second one is an accelerated version tailored for smooth objectives, whereas the last one is for relatively-smooth objectives. All three algorithms work without prior knowledge of the diameter of the feasible set, the Lipschitz constant or smoothness of the objective function. We use these results to revisit the problem of solving large-scale semidefinite programs using randomized first-order methods and stochastic smoothing. We extend our framework to relative scale and demonstrate the efficiency and robustness of our methods on large-scale semidefinite programs.
♻ ☆ Stochastic exit-time control on the half-line over a finite horizon
We consider a finite-time stochastic drift control problem with the assumption that the control is bounded and the system is controlled until the state process leaves the half-line. Assuming general conditions, it is proved that the resulting parabolic Hamilton-Jacobi-Bellman equation has a classical solution. In fact, we consider an even more general family of semilinear equations, which might be helpful in solving other control or game problems. Not only is the existence result proved, but also a recursive procedure for finding a solution resulting from a fixed-point argument is provided. An application to the dividend optimization problem is presented.
comment: This paper supersedes arXiv:1703.07339, [v2] - major revision, 26 pages
♻ ☆ Fast Policy Learning for Linear Quadratic Control with Entropy Regularization
This paper proposes and analyzes two new policy learning methods: regularized policy gradient (RPG) and iterative policy optimization (IPO), for a class of discounted linear-quadratic control (LQC) problems over an infinite time horizon with entropy regularization. Assuming access to the exact policy evaluation, both proposed approaches are proven to converge linearly in finding optimal policies of the regularized LQC. Moreover, the IPO method can achieve a super-linear convergence rate once it enters a local region around the optimal policy. Finally, when the optimal policy for an RL problem with a known environment is appropriately transferred as the initial policy to an RL problem with an unknown environment, the IPO method is shown to enable a super-linear convergence rate if the two environments are sufficiently close. Performances of these proposed algorithms are supported by numerical examples.
comment: 31 pages, 3 figures
♻ ☆ Minimizing the Weighted Number of Tardy Jobs: Data-Driven Heuristic for Single-Machine Scheduling
Existing research on single-machine scheduling is largely focused on exact algorithms, which perform well on typical instances but can significantly deteriorate on certain regions of the problem space. In contrast, data-driven approaches provide strong and scalable performance when tailored to the structure of specific datasets. Leveraging this idea, we focus on a single-machine scheduling problem where each job is defined by its weight, duration, due date, and deadline, aiming to minimize the total weight of tardy jobs. We introduce a novel data-driven scheduling heuristic that combines machine learning with problem-specific characteristics, ensuring feasible solutions, which is a common challenge for ML-based algorithms. Experimental results demonstrate that our approach significantly outperforms the state-of-the-art in terms of optimality gap, number of optimal solutions, and adaptability across varied data scenarios, highlighting its flexibility for practical applications. In addition, we conduct a systematic exploration of ML models, addressing a common gap in similar studies by offering a detailed model selection process and providing insights into why the chosen model is the best fit.
comment: Published version: Computers & Operations Research, https://doi.org/10.1016/j.cor.2025.107281. Data are publicly available at https://doi.org/10.5281/zenodo.17233362
♻ ☆ Strong Lyapunov functions for rough systems
We introduce the concept of {\it strong Lyapunov functions} to investigate the long term behavior of autonomous ordinary differential equations under a multiplicative noise of H\"older continuity, using rough path calculus and the framework of random dynamical systems. We conclude that if such a function exists for the drift then the perturbed system admits the global random pullback attractor which is upper semi-continuous w.r.t. the noise intensity coefficient and the dyadic approximation of the noise. Moreover, in case the drift is globally Lipschitz continuous, then there exists also a numerical attractor for the discritization which is also upper semi-continuous w.r.t. the noise intensity and also converges to the continuous attractor as the step size tends to zero. Several applications are studied, including dissipative systems, the pendulum, Fitzhugh-Nagumo neuro-system and Lorenz system. We also prove that strong Lyapunov functions could be approximated in practice by Lyapunov neural networks.
♻ ☆ Constrained free energy minimization for the design of thermal states and stabilizer thermodynamic systems
A quantum thermodynamic system is described by a Hamiltonian and a list of conserved, non-commuting charges, and a fundamental goal is to determine the minimum energy of the system subject to constraints on the charges. Recently, [Liu et al., arXiv:2505.04514] proposed first- and second-order classical and hybrid quantum-classical algorithms for solving a dual chemical potential maximization problem, and they proved that these algorithms converge to global optima by means of gradient-ascent approaches. In this paper, we benchmark these algorithms on several problems of interest in thermodynamics, including one- and two-dimensional quantum Heisenberg models with nearest and next-to-nearest neighbor interactions and with the charges set to the total x, y, and z magnetizations. We also offer an alternative compelling interpretation of these algorithms as methods for designing ground and thermal states of controllable Hamiltonians, with potential applications in molecular and material design. Furthermore, we introduce stabilizer thermodynamic systems as thermodynamic systems based on stabilizer codes, with the Hamiltonian constructed from a given code's stabilizer operators and the charges constructed from the code's logical operators. We benchmark the aforementioned algorithms on several examples of stabilizer thermodynamic systems, including those constructed from the one-to-three-qubit repetition code, the perfect one-to-five-qubit code, and the two-to-four-qubit error-detecting code. Finally, we observe that the aforementioned hybrid quantum-classical algorithms, when applied to stabilizer thermodynamic systems, can serve as alternative methods for encoding qubits into stabilizer codes at a fixed temperature, and we provide an effective method for warm-starting these encoding algorithms whenever a single qubit is encoded into multiple physical qubits.
comment: v2: 35 pages, 12 figures, updated simulations
♻ ☆ Learning to Price Bundles: A GCN Approach for Mixed Bundling
Bundle pricing refers to designing several product combinations (i.e., bundles) and determining their prices in order to maximize the expected profit. It is a classic problem in revenue management and arises in many industries, such as e-commerce, tourism, and video games. However, the problem is typically intractable due to the exponential number of candidate bundles. In this paper, we explore the usage of graph convolutional networks (GCNs) in solving the bundle pricing problem. Specifically, we first develop a graph representation of the mixed bundling model (where every possible bundle is assigned with a specific price) and then train a GCN to learn the latent patterns of optimal bundles. Based on the trained GCN, we propose two inference strategies to derive high-quality feasible solutions. A local-search technique is further proposed to improve the solution quality. Numerical experiments validate the effectiveness and efficiency of our proposed GCN-based framework. Using a GCN trained on instances with 5 products, our methods consistently achieve near-optimal solutions (better than 97%) with only a fraction of computational time for problems of small to medium size. It also achieves superior solutions for larger size of problems compared with other heuristic methods such as bundle size pricing (BSP). The method can also provide high quality solutions for instances with more than 30 products even for the challenging cases where product utilities are non-additive.
♻ ☆ Convergence of the majorized PAM method with subspace correction for low-rank composite factorization model
This paper focuses on the convergence certificates of the majorized proximal alternating minimization (PAM) method with subspace correction, proposed in \cite{TaoQianPan22} for the column $\ell_{2,0}$-norm regularized factorization model and now extended to a class of low-rank composite factorization models from matrix completion. The convergence analysis of this PAM method becomes extremely challenging because a subspace correction step is introduced to every proximal subproblem to ensure a closed-form solution. We establish the full convergence of the iterate sequence and column subspace sequences of factor pairs generated by the PAM, under the KL property of the objective function and a condition that holds automatically for the column $\ell_{2,0}$-norm function. Numerical comparison with the popular proximal alternating linearized minimization (PALM) method is conducted on one-bit matrix completion problems, which indicates that the PAM with subspace correction has an advantage in seeking lower relative error within less time.
comment: 34 pages
♻ ☆ An inexact LPA for DC composite optimization and application to matrix completions with outliers
This paper concerns a class of DC composite optimization problems which, as an extension of convex composite optimization problems and DC programs with nonsmooth components, often arises in robust factorization models of low-rank matrix recovery. For this class of nonconvex and nonsmooth problems, we propose an inexact linearized proximal algorithm (iLPA) by computing at each step an inexact minimizer of a strongly convex majorization constructed with a partial linearization of their objective functions at the current iterate. We establish the full convergence of the generated iterate sequence under the Kurdyka-\L\"ojasiewicz (KL) property of a potential function, and employ the composite structure to provide a verifiable condition for the potential function to satisfy the KL property of exponent $1/2$ at the limit point, so for the iterate sequence to have a local R-linear convergence rate. This condition is weaker than the one provided in \cite[Theorem 3.2]{LiPong18} for identifying the KL property of exponent $p\in[0,1)$ for a general composite function. The proposed iLPA is applied to a robust factorization model for matrix completion with outliers and non-uniform sampling, and numerical comparisons with the Polyak subgradient method and a proximal alternating minimization (PAM) method validate its efficiency.
♻ ☆ SAMCIRT: A Simultaneous Reconstruction and Affine Motion Compensation Technique for Four Dimensional Computed Tomography (4DCT)
The majority of the recent iterative approaches in 4DCT not only rely on nested iterations, thereby increasing computational complexity and constraining potential acceleration, but also fail to provide a theoretical proof of convergence for their proposed iterative schemes. On the other hand, the latest MATLAB and Python image processing toolboxes lack the implementation of analytic adjoints of affine motion operators for 3D object volumes, which does not allow gradient methods using exact derivatives towards affine motion parameters. In this work, we propose the Simultaneous Affine Motion-Compensated Image Reconstruction Technique (SAMCIRT)- an efficient iterative reconstruction scheme that combines image reconstruction and affine motion estimation in a single update step, based on the analytic adjoints of the motion operators then exact partial derivatives with respect to both the reconstruction and the affine motion parameters. Moreover, we prove the separated Lipschitz continuity of the objective function and its associated functions, including the gradient, which supports the convergence of our proposed iterative scheme, despite the non-convexity of the objective function with respect to the affine motion parameters. Results from simulation and real experiments show that our method outperforms the state-of-the-art CT reconstruction with affine motion correction methods in computational feasibility and projection distance. In particular, this allows accurate reconstruction for a real, nonstationary diamond, showing a novel application of 4DCT.
comment: 25 pages, revised version submitted to the SIAM Journal on Imaging Sciences (SIIMS)
♻ ☆ Measurement of Trustworthiness of the Online Reviews
In electronic commerce (e-commerce)markets, a decision-maker faces a sequential choice problem. Third-party intervention is essential in making purchase decisions in this choice process. For instance, while purchasing products/services online, a buyer's choice or behavior is often affected by the overall reviewers' ratings, feedback, etc. Moreover, the reviewer is also a decision-maker. The question that arises is how trustworthy these review reports and ratings are. The trustworthiness of these review reports and ratings is based on whether the reviewer is rational or irrational. Indexing the reviewer's rationality could be a way to quantify a reviewer's rationality, but it needs to communicate the history of their behavior. In this article, the researcher aims to derive a rationality pattern function formally and, thereby, the degree of rationality of the decision-maker or the reviewer in the sequential choice problem in the e-commerce markets. Applying such a rationality pattern function could make quantifying the rational behavior of an agent participating in the digital markets easier. This, in turn, is expected to minimize the information asymmetry within the decision-making process and identify the paid reviewers or manipulative reviews.
comment: This is a minor revision version and considers some intuitions related to applications. Moreover, a detailed algorithm has been added to facilitate a better understanding
♻ ☆ Modeling and Optimization of Control Problems on GPUs
We present a fully Julia-based, GPU-accelerated workflow for solving large-scale sparse nonlinear optimal control problems. Continuous-time dynamics are modeled and then discretized via direct transcription with \texttt{OptimalControl.jl} into structured sparse nonlinear programs. These programs are compiled into GPU kernels using \texttt{ExaModels.jl}, leveraging SIMD parallelism for fast evaluation of objectives, constraints, gradients, Jacobians and Hessians. The resulting sparse problems are solved entirely on GPU using the interior-point solver \texttt{MadNLP.jl} and the GPU sparse linear solver cuDSS, yielding significant speed-ups over CPU-based approaches.
♻ ☆ Error Bounds for Rank-one Double Nonnegative Reformulations of QAP and Exact Penalties
This paper focuses on the error bounds for several equivalent rank-one doubly nonnegative (DNN) conic reformulations of the quadratic assignment problem (QAP), a class of challenging combinatorial optimization problems. We provide three equivalent rank-one DNN reformulations of the QAP, including the one proposed in \cite{Jiang21}, and establish the locally and globally Lipschitzian error bounds for their feasible sets. Then, these error bounds are employed to prove that the penalty problems induced by the difference-of-convexity (DC) reformulation of the rank-one constraint are global exact penalties, and so are the penalty problems for their Burer-Monteiro (BM) factorizations. As a byproduct, the penalty problem for the rank-one DNN reformulation in \cite{Jiang21} is shown to be a global exact penalty without the calmness assumption. Finally, we illustrate the application of these exact penalties by proposing a relaxation approach with one of them to seek a rank-one approximate feasible solution. This relaxation approach is validated to be superior to the commercial solver Gurobi for \textbf{132} benchmark instances in terms of the relative gap between the generated objective value and the known best one and the number of instances with better objective values.
♻ ☆ End-to-End Training of High-Dimensional Optimal Control with Implicit Hamiltonians via Jacobian-Free Backpropagation
Neural network approaches that parameterize value functions have succeeded in approximating high-dimensional optimal feedback controllers when the Hamiltonian admits explicit formulas. However, many practical problems, such as the space shuttle reentry problem and bicycle dynamics, among others, may involve implicit Hamiltonians that do not admit explicit formulas, limiting the applicability of existing methods. Rather than directly parameterizing controls, which does not leverage the Hamiltonian's underlying structure, we propose an end-to-end implicit deep learning approach that directly parameterizes the value function to learn optimal control laws. Our method enforces physical principles by ensuring trained networks adhere to the control laws by exploiting the fundamental relationship between the optimal control and the value function's gradient; this is a direct consequence of the connection between Pontryagin's Maximum Principle and dynamic programming. Using Jacobian-Free Backpropagation (JFB), we achieve efficient training despite temporal coupling in trajectory optimization. We show that JFB produces descent directions for the optimal control objective and experimentally demonstrate that our approach effectively learns high-dimensional feedback controllers across multiple scenarios involving implicit Hamiltonians, which existing methods cannot address.
Computer Vision and Pattern Recognition 146
☆ Human3R: Everyone Everywhere All at Once
We present Human3R, a unified, feed-forward framework for online 4D human-scene reconstruction, in the world frame, from casually captured monocular videos. Unlike previous approaches that rely on multi-stage pipelines, iterative contact-aware refinement between humans and scenes, and heavy dependencies, e.g., human detection, depth estimation, and SLAM pre-processing, Human3R jointly recovers global multi-person SMPL-X bodies ("everyone"), dense 3D scene ("everywhere"), and camera trajectories in a single forward pass ("all-at-once"). Our method builds upon the 4D online reconstruction model CUT3R, and uses parameter-efficient visual prompt tuning, to strive to preserve CUT3R's rich spatiotemporal priors, while enabling direct readout of multiple SMPL-X bodies. Human3R is a unified model that eliminates heavy dependencies and iterative refinement. After being trained on the relatively small-scale synthetic dataset BEDLAM for just one day on one GPU, it achieves superior performance with remarkable efficiency: it reconstructs multiple humans in a one-shot manner, along with 3D scenes, in one stage, at real-time speed (15 FPS) with a low memory footprint (8 GB). Extensive experiments demonstrate that Human3R delivers state-of-the-art or competitive performance across tasks, including global human motion estimation, local human mesh recovery, video depth estimation, and camera pose estimation, with a single unified model. We hope that Human3R will serve as a simple yet strong baseline, be easily extended for downstream applications.Code available in https://fanegg.github.io/Human3R
comment: Page: https://fanegg.github.io/Human3R Code: https://github.com/fanegg/Human3R
EgoNight: Towards Egocentric Vision Understanding at Night with a Challenging Benchmark
Most existing benchmarks for egocentric vision understanding focus primarily on daytime scenarios, overlooking the low-light conditions that are inevitable in real-world applications. To investigate this gap, we present EgoNight, the first comprehensive benchmark for nighttime egocentric vision, with visual question answering (VQA) as the core task. A key feature of EgoNight is the introduction of day-night aligned videos, which enhance night annotation quality using the daytime data and reveal clear performance gaps between lighting conditions. To achieve this, we collect both synthetic videos rendered by Blender and real-world recordings, ensuring that scenes and actions are visually and temporally aligned. Leveraging these paired videos, we construct EgoNight-VQA, supported by a novel day-augmented night auto-labeling engine and refinement through extensive human verification. Each QA pair is double-checked by annotators for reliability. In total, EgoNight-VQA contains 3658 QA pairs across 90 videos, spanning 12 diverse QA types, with more than 300 hours of human work. Evaluations of state-of-the-art multimodal large language models (MLLMs) reveal substantial performance drops when transferring from day to night, underscoring the challenges of reasoning under low-light conditions. Beyond VQA, EgoNight also introduces two auxiliary tasks, day-night correspondence retrieval and egocentric depth estimation at night, that further explore the boundaries of existing models. We believe EgoNight-VQA provides a strong foundation for advancing application-driven egocentric vision research and for developing models that generalize across illumination domains. All the data and code will be made available upon acceptance.
☆ Dropping the D: RGB-D SLAM Without the Depth Sensor
We present DropD-SLAM, a real-time monocular SLAM system that achieves RGB-D-level accuracy without relying on depth sensors. The system replaces active depth input with three pretrained vision modules: a monocular metric depth estimator, a learned keypoint detector, and an instance segmentation network. Dynamic objects are suppressed using dilated instance masks, while static keypoints are assigned predicted depth values and backprojected into 3D to form metrically scaled features. These are processed by an unmodified RGB-D SLAM back end for tracking and mapping. On the TUM RGB-D benchmark, DropD-SLAM attains 7.4 cm mean ATE on static sequences and 1.8 cm on dynamic sequences, matching or surpassing state-of-the-art RGB-D methods while operating at 22 FPS on a single GPU. These results suggest that modern pretrained vision models can replace active depth sensors as reliable, real-time sources of metric scale, marking a step toward simpler and more cost-effective SLAM systems.
☆ Fine-grained Defocus Blur Control for Generative Image Models
Current text-to-image diffusion models excel at generating diverse, high-quality images, yet they struggle to incorporate fine-grained camera metadata such as precise aperture settings. In this work, we introduce a novel text-to-image diffusion framework that leverages camera metadata, or EXIF data, which is often embedded in image files, with an emphasis on generating controllable lens blur. Our method mimics the physical image formation process by first generating an all-in-focus image, estimating its monocular depth, predicting a plausible focus distance with a novel focus distance transformer, and then forming a defocused image with an existing differentiable lens blur model. Gradients flow backwards through this whole process, allowing us to learn without explicit supervision to generate defocus effects based on content elements and the provided EXIF data. At inference time, this enables precise interactive user control over defocus effects while preserving scene contents, which is not achievable with existing diffusion models. Experimental results demonstrate that our model enables superior fine-grained control without altering the depicted scene.
comment: Project link: https://www.ayshrv.com/defocus-blur-gen
☆ Drive&Gen: Co-Evaluating End-to-End Driving and Video Generation Models IROS 2025
Recent advances in generative models have sparked exciting new possibilities in the field of autonomous vehicles. Specifically, video generation models are now being explored as controllable virtual testing environments. Simultaneously, end-to-end (E2E) driving models have emerged as a streamlined alternative to conventional modular autonomous driving systems, gaining popularity for their simplicity and scalability. However, the application of these techniques to simulation and planning raises important questions. First, while video generation models can generate increasingly realistic videos, can these videos faithfully adhere to the specified conditions and be realistic enough for E2E autonomous planner evaluation? Second, given that data is crucial for understanding and controlling E2E planners, how can we gain deeper insights into their biases and improve their ability to generalize to out-of-distribution scenarios? In this work, we bridge the gap between the driving models and generative world models (Drive&Gen) to address these questions. We propose novel statistical measures leveraging E2E drivers to evaluate the realism of generated videos. By exploiting the controllability of the video generation model, we conduct targeted experiments to investigate distribution gaps affecting E2E planner performance. Finally, we show that synthetic data produced by the video generation model offers a cost-effective alternative to real-world data collection. This synthetic data effectively improves E2E model generalization beyond existing Operational Design Domains, facilitating the expansion of autonomous vehicle services into new operational contexts.
comment: Accepted by IROS 2025
☆ ShapeGen4D: Towards High Quality 4D Shape Generation from Videos
Video-conditioned 4D shape generation aims to recover time-varying 3D geometry and view-consistent appearance directly from an input video. In this work, we introduce a native video-to-4D shape generation framework that synthesizes a single dynamic 3D representation end-to-end from the video. Our framework introduces three key components based on large-scale pre-trained 3D models: (i) a temporal attention that conditions generation on all frames while producing a time-indexed dynamic representation; (ii) a time-aware point sampling and 4D latent anchoring that promote temporally consistent geometry and texture; and (iii) noise sharing across frames to enhance temporal stability. Our method accurately captures non-rigid motion, volume changes, and even topological transitions without per-frame optimization. Across diverse in-the-wild videos, our method improves robustness and perceptual fidelity and reduces failure modes compared with the baselines.
comment: Project page: https://shapegen4d.github.io/
☆ Overlap-aware segmentation for topological reconstruction of obscured objects
The separation of overlapping objects presents a significant challenge in scientific imaging. While deep learning segmentation-regression algorithms can predict pixel-wise intensities, they typically treat all regions equally rather than prioritizing overlap regions where attribution is most ambiguous. Recent advances in instance segmentation show that weighting regions of pixel overlap in training can improve segmentation boundary predictions in regions of overlap, but this idea has not yet been extended to segmentation regression. We address this with Overlap-Aware Segmentation of ImageS (OASIS): a new segmentation-regression framework with a weighted loss function designed to prioritize regions of object-overlap during training, enabling extraction of pixel intensities and topological features from heavily obscured objects. We demonstrate OASIS in the context of the MIGDAL experiment, which aims to directly image the Migdal effect--a rare process where electron emission is induced by nuclear scattering--in a low-pressure optical time projection chamber. This setting poses an extreme test case, as the target for reconstruction is a faint electron recoil track which is often heavily-buried within the orders-of-magnitude brighter nuclear recoil track. Compared to unweighted training, OASIS improves median intensity reconstruction errors from -32% to -14% for low-energy electron tracks (4-5 keV) and improves topological intersection-over-union scores from 0.828 to 0.855. These performance gains demonstrate OASIS's ability to recover obscured signals in overlap-dominated regions. The framework provides a generalizable methodology for scientific imaging where pixels represent physical quantities and overlap obscures features of interest. All code is openly available to facilitate cross-domain adoption.
☆ Smartphone-based iris recognition through high-quality visible-spectrum iris image capture.V2
Smartphone-based iris recognition in the visible spectrum (VIS) remains difficult due to illumination variability, pigmentation differences, and the absence of standardized capture controls. This work presents a compact end-to-end pipeline that enforces ISO/IEC 29794-6 quality compliance at acquisition and demonstrates that accurate VIS iris recognition is feasible on commodity devices. Using a custom Android application performing real-time framing, sharpness evaluation, and feedback, we introduce the CUVIRIS dataset of 752 compliant images from 47 subjects. A lightweight MobileNetV3-based multi-task segmentation network (LightIrisNet) is developed for efficient on-device processing, and a transformer matcher (IrisFormer) is adapted to the VIS domain. Under a standardized protocol and comparative benchmarking against prior CNN baselines, OSIRIS attains a TAR of 97.9% at FAR=0.01 (EER=0.76%), while IrisFormer, trained only on UBIRIS.v2, achieves an EER of 0.057% on CUVIRIS. The acquisition app, trained models, and a public subset of the dataset are released to support reproducibility. These results confirm that standardized capture and VIS-adapted lightweight models enable accurate and practical iris recognition on smartphones.
comment: We build upon our earlier work, arXiv:2412.13063
☆ Bimanual 3D Hand Motion and Articulation Forecasting in Everyday Images
We tackle the problem of forecasting bimanual 3D hand motion & articulation from a single image in everyday settings. To address the lack of 3D hand annotations in diverse settings, we design an annotation pipeline consisting of a diffusion model to lift 2D hand keypoint sequences to 4D hand motion. For the forecasting model, we adopt a diffusion loss to account for the multimodality in hand motion distribution. Extensive experiments across 6 datasets show the benefits of training on diverse data with imputed labels (14% improvement) and effectiveness of our lifting (42% better) & forecasting (16.4% gain) models, over the best baselines, especially in zero-shot generalization to everyday images.
comment: Project page: https://ap229997.github.io/projects/forehand4d
☆ Deforming Videos to Masks: Flow Matching for Referring Video Segmentation
Referring Video Object Segmentation (RVOS) requires segmenting specific objects in a video guided by a natural language description. The core challenge of RVOS is to anchor abstract linguistic concepts onto a specific set of pixels and continuously segment them through the complex dynamics of a video. Faced with this difficulty, prior work has often decomposed the task into a pragmatic `locate-then-segment' pipeline. However, this cascaded design creates an information bottleneck by simplifying semantics into coarse geometric prompts (e.g, point), and struggles to maintain temporal consistency as the segmenting process is often decoupled from the initial language grounding. To overcome these fundamental limitations, we propose FlowRVS, a novel framework that reconceptualizes RVOS as a conditional continuous flow problem. This allows us to harness the inherent strengths of pretrained T2V models, fine-grained pixel control, text-video semantic alignment, and temporal coherence. Instead of conventional generating from noise to mask or directly predicting mask, we reformulate the task by learning a direct, language-guided deformation from a video's holistic representation to its target mask. Our one-stage, generative approach achieves new state-of-the-art results across all major RVOS benchmarks. Specifically, achieving a $\mathcal{J}\&\mathcal{F}$ of 51.1 in MeViS (+1.6 over prior SOTA) and 73.3 in the zero shot Ref-DAVIS17 (+2.7), demonstrating the significant potential of modeling video understanding tasks as continuous deformation processes.
Discrete Diffusion Models with MLLMs for Unified Medical Multimodal Generation
Recent advances in generative medical models are constrained by modality-specific scenarios that hinder the integration of complementary evidence from imaging, pathology, and clinical notes. This fragmentation limits their evolution into foundation models that can learn and reason across the full spectrum of biomedical data. We propose MeDiM, the first medical discrete diffusion model that learns shared distributions across modalities without modality-specific components. MeDiM unifies multiple generative tasks: translating between images and text, and jointly producing image-report pairs across domains in response to prompts. Built on a discrete diffusion framework, MeDiM bridges vision and language representations through a shared probabilistic space. To enable unified and flexible medical generation, we employ a multimodal large language model (MLLM) as the diffusion backbone, leveraging its prior knowledge and cross-modal reasoning. Two key designs are introduced: (1) removing the causal attention mask for bidirectional context, and (2) injecting continuous timestep embeddings for diffusion awareness. Experiments demonstrate high-fidelity medical generation (FID 16.60 on MIMIC-CXR and FID 24.19 on PathGen) and accurate report generation (METEOR 0.2650 and 0.2580). Jointly generated image-report pairs further enhance downstream performance (plus6.43 percent BLEU-1, plus18.57 percent BLEU-2, plus31.58 percent BLEU-3, plus4.80 percent METEOR), showing that MeDiM supports coherent and clinically grounded multimodal outputs.
comment: 16 pages,6 figures
☆ Towards Data-Efficient Medical Imaging: A Generative and Semi-Supervised Framework BMVC2025
Deep learning in medical imaging is often limited by scarce and imbalanced annotated data. We present SSGNet, a unified framework that combines class specific generative modeling with iterative semisupervised pseudo labeling to enhance both classification and segmentation. Rather than functioning as a standalone model, SSGNet augments existing baselines by expanding training data with StyleGAN3 generated images and refining labels through iterative pseudo labeling. Experiments across multiple medical imaging benchmarks demonstrate consistent gains in classification and segmentation performance, while Frechet Inception Distance analysis confirms the high quality of generated samples. These results highlight SSGNet as a practical strategy to mitigate annotation bottlenecks and improve robustness in medical image analysis.
comment: Accepted at BMVC2025
Multimodal Feature Prototype Learning for Interpretable and Discriminative Cancer Survival Prediction
Survival analysis plays a vital role in making clinical decisions. However, the models currently in use are often difficult to interpret, which reduces their usefulness in clinical settings. Prototype learning presents a potential solution, yet traditional methods focus on local similarities and static matching, neglecting the broader tumor context and lacking strong semantic alignment with genomic data. To overcome these issues, we introduce an innovative prototype-based multimodal framework, FeatProto, aimed at enhancing cancer survival prediction by addressing significant limitations in current prototype learning methodologies within pathology. Our framework establishes a unified feature prototype space that integrates both global and local features of whole slide images (WSI) with genomic profiles. This integration facilitates traceable and interpretable decision-making processes. Our approach includes three main innovations: (1) A robust phenotype representation that merges critical patches with global context, harmonized with genomic data to minimize local bias. (2) An Exponential Prototype Update Strategy (EMA ProtoUp) that sustains stable cross-modal associations and employs a wandering mechanism to adapt prototypes flexibly to tumor heterogeneity. (3) A hierarchical prototype matching scheme designed to capture global centrality, local typicality, and cohort-level trends, thereby refining prototype inference. Comprehensive evaluations on four publicly available cancer datasets indicate that our method surpasses current leading unimodal and multimodal survival prediction techniques in both accuracy and interoperability, providing a new perspective on prototype learning for critical medical applications. Our source code is available at https://github.com/JSLiam94/FeatProto.
comment: 12 pages, 10 figures
☆ Compact Multi-level-prior Tensor Representation for Hyperspectral Image Super-resolution
Fusing a hyperspectral image with a multispectral image acquired over the same scene, \textit{i.e.}, hyperspectral image super-resolution, has become a popular computational way to access the latent high-spatial-spectral-resolution image. To date, a variety of fusion methods have been proposed, among which the tensor-based ones have testified that multiple priors, such as multidimensional low-rankness and spatial total variation at multiple levels, effectively drive the fusion process. However, existing tensor-based models can only effectively leverage one or two priors at one or two levels, since simultaneously incorporating multi-level priors inevitably increases model complexity. This introduces challenges in both balancing the weights of different priors and optimizing multi-block structures. Concerning this, we present a novel hyperspectral super-resolution model compactly characterizing these multi-level priors of hyperspectral images within the tensor framework. Firstly, the proposed model decouples the spectral low-rankness and spatial priors by casting the latent high-spatial-spectral-resolution image into spectral subspace and spatial maps via block term decomposition. Secondly, these spatial maps are stacked as the spatial tensor encoding the high-order spatial low-rankness and smoothness priors, which are co-modeled via the proposed non-convex mode-shuffled tensor correlated total variation. Finally, we draw inspiration from the linearized alternating direction method of multipliers to design an efficient algorithm to optimize the resulting model, theoretically proving its Karush-Kuhn-Tucker convergence under mild conditions. Experiments on multiple datasets demonstrate the effectiveness of the proposed algorithm. The code implementation will be available from https://github.com/WongYinJ.
☆ A public cardiac CT dataset featuring the left atrial appendage
Despite the success of advanced segmentation frameworks such as TotalSegmentator (TS), accurate segmentations of the left atrial appendage (LAA), coronary arteries (CAs), and pulmonary veins (PVs) remain a significant challenge in medical imaging. In this work, we present the first open-source, anatomically coherent dataset of curated, high-resolution segmentations for these structures, supplemented with whole-heart labels produced by TS on the publicly available ImageCAS dataset consisting of 1000 cardiac computed tomography angiography (CCTA) scans. One purpose of the data set is to foster novel approaches to the analysis of LAA morphology. LAA segmentations on ImageCAS were generated using a state-of-the-art segmentation framework developed specifically for high resolution LAA segmentation. We trained the network on a large private dataset with manual annotations provided by medical readers guided by a trained cardiologist and transferred the model to ImageCAS data. CA labels were improved from the original ImageCAS annotations, while PV segmentations were refined from TS outputs. In addition, we provide a list of scans from ImageCAS that contains common data flaws such as step artefacts, LAAs extending beyond the scanner's field of view, and other types of data defects.
comment: 8 pages, 5 figures, published at STACOM2025
☆ When Thinking Drifts: Evidential Grounding for Robust Video Reasoning NeurIPS 2025
Video reasoning, the task of enabling machines to infer from dynamic visual content through multi-step logic, is crucial for advanced AI. While the Chain-of-Thought (CoT) mechanism has enhanced reasoning in text-based tasks, its application to video understanding remains underexplored. This paper presents a systematic analysis revealing that CoT often degrades performance in video reasoning, generating verbose but misleading internal monologues, and leading to hallucinated visual details and overridden correct intuitions - a phenomenon we term "visual thinking drift". We explain this drift through a Bayesian lens, positing that CoT traces often diverge from actual visual evidence, instead amplifying internal biases or language priors, causing models to storytell rather than engage in grounded reasoning. To counteract this, we introduce Visual Evidence Reward (VER), a novel reinforcement learning framework that explicitly rewards the generation of reasoning traces that are verifiably grounded in visual evidence. Comprehensive evaluation across 10 diverse video understanding benchmarks demonstrates that our Video-VER consistently achieves top performance. Our work sheds light on the distinct challenges of video-centric reasoning and encourages the development of AI that robustly grounds its inferences in visual evidence - for large multimodal models that not only "think before answering", but also "see while thinking".
comment: Accepted by NeurIPS 2025, Project page: https://vision.cs.utexas.edu/projects/video-ver/
☆ There is More to Attention: Statistical Filtering Enhances Explanations in Vision Transformers
Explainable AI (XAI) has become increasingly important with the rise of large transformer models, yet many explanation methods designed for CNNs transfer poorly to Vision Transformers (ViTs). Existing ViT explanations often rely on attention weights, which tend to yield noisy maps as they capture token-to-token interactions within each layer.While attribution methods incorporating MLP blocks have been proposed, we argue that attention remains a valuable and interpretable signal when properly filtered. We propose a method that combines attention maps with a statistical filtering, initially proposed for CNNs, to remove noisy or uninformative patterns and produce more faithful explanations. We further extend our approach with a class-specific variant that yields discriminative explanations. Evaluation against popular state-of-the-art methods demonstrates that our approach produces sharper and more interpretable maps. In addition to perturbation-based faithfulness metrics, we incorporate human gaze data to assess alignment with human perception, arguing that human interpretability remains essential for XAI. Across multiple datasets, our approach consistently outperforms or is comparable to the SOTA methods while remaining efficient and human plausible.
☆ Reasoning under Vision: Understanding Visual-Spatial Cognition in Vision-Language Models for CAPTCHA
CAPTCHA, originally designed to distinguish humans from robots, has evolved into a real-world benchmark for assessing the spatial reasoning capabilities of vision-language models. In this work, we first show that step-by-step reasoning is crucial for vision-language models (VLMs) to solve CAPTCHAs, which represent high-difficulty spatial reasoning tasks, and that current commercial vision-language models still struggle with such reasoning. In particular, we observe that most commercial VLMs (e.g., Gemini, Claude, GPT, etc.) fail to effectively solve CAPTCHAs and thus achieve low accuracy (around 21.9 percent). However, our findings indicate that requiring the model to perform step-by-step reasoning before generating the final coordinates can significantly enhance its solving accuracy, underscoring the severity of the gap. To systematically study this issue, we introduce CAPTCHA-X, the first real-world CAPTCHA benchmark with reasoning, covering seven categories of CAPTCHAs (such as Gobang, hCaptcha, etc.) with step-by-step action solutions and grounding annotations. We further define five reasoning-oriented metrics that enable a comprehensive evaluation of models reasoning capabilities. To validate the effectiveness of reasoning, we also propose a general agentic VLM-based framework that incorporates the models inherent reasoning abilities. Our method achieves state-of-the-art performance across five high-difficulty CAPTCHA types, with an average solving accuracy of 83.9 percent, substantially surpassing existing baselines. These results reveal the limitations of current models and highlight the importance of reasoning in advancing visual-spatial challenges in the future.
comment: 14pages, 11figures
☆ Medical Vision Language Models as Policies for Robotic Surgery
Vision-based Proximal Policy Optimization (PPO) struggles with visual observation-based robotic laparoscopic surgical tasks due to the high-dimensional nature of visual input, the sparsity of rewards in surgical environments, and the difficulty of extracting task-relevant features from raw visual data. We introduce a simple approach integrating MedFlamingo, a medical domain-specific Vision-Language Model, with PPO. Our method is evaluated on five diverse laparoscopic surgery task environments in LapGym, using only endoscopic visual observations. MedFlamingo PPO outperforms and converges faster compared to both standard vision-based PPO and OpenFlamingo PPO baselines, achieving task success rates exceeding 70% across all environments, with improvements ranging from 66.67% to 1114.29% compared to baseline. By processing task observations and instructions once per episode to generate high-level planning tokens, our method efficiently combines medical expertise with real-time visual feedback. Our results highlight the value of specialized medical knowledge in robotic surgical planning and decision-making.
comment: IEEE CAI 2025
Controllable Audio-Visual Viewpoint Generation from 360° Spatial Information
The generation of sounding videos has seen significant advancements with the advent of diffusion models. However, existing methods often lack the fine-grained control needed to generate viewpoint-specific content from larger, immersive 360-degree environments. This limitation restricts the creation of audio-visual experiences that are aware of off-camera events. To the best of our knowledge, this is the first work to introduce a framework for controllable audio-visual generation, addressing this unexplored gap. Specifically, we propose a diffusion model by introducing a set of powerful conditioning signals derived from the full 360-degree space: a panoramic saliency map to identify regions of interest, a bounding-box-aware signed distance map to define the target viewpoint, and a descriptive caption of the entire scene. By integrating these controls, our model generates spatially-aware viewpoint videos and audios that are coherently influenced by the broader, unseen environmental context, introducing a strong controllability that is essential for realistic and immersive audio-visual generation. We show audiovisual examples proving the effectiveness of our framework.
☆ GLVD: Guided Learned Vertex Descent
Existing 3D face modeling methods usually depend on 3D Morphable Models, which inherently constrain the representation capacity to fixed shape priors. Optimization-based approaches offer high-quality reconstructions but tend to be computationally expensive. In this work, we introduce GLVD, a hybrid method for 3D face reconstruction from few-shot images that extends Learned Vertex Descent (LVD) by integrating per-vertex neural field optimization with global structural guidance from dynamically predicted 3D keypoints. By incorporating relative spatial encoding, GLVD iteratively refines mesh vertices without requiring dense 3D supervision. This enables expressive and adaptable geometry reconstruction while maintaining computational efficiency. GLVD achieves state-of-the-art performance in single-view settings and remains highly competitive in multi-view scenarios, all while substantially reducing inference time.
☆ VideoMiner: Iteratively Grounding Key Frames of Hour-Long Videos via Tree-based Group Relative Policy Optimization ICCV 2025
Understanding hour-long videos with multi-modal large language models (MM-LLMs) enriches the landscape of human-centered AI applications. However, for end-to-end video understanding with LLMs, uniformly sampling video frames results in LLMs being overwhelmed by a vast amount of irrelevant information as video length increases. Existing hierarchical key frame extraction methods improve the accuracy of video understanding but still face two critical challenges. 1) How can the interference of extensive redundant information in long videos be mitigated? 2) How can a model dynamically adapt to complex hierarchical structures while accurately identifying key frames? To address these issues, we propose VideoMiner, which iteratively segments, captions, and clusters long videos, forming a hierarchical tree structure. The proposed VideoMiner progresses from long videos to events to frames while preserving temporal coherence, effectively addressing the first challenge. To precisely locate key frames, we introduce T-GRPO, a tree-based group relative policy optimization in reinforcement learning method that guides the exploration of the VideoMiner. The proposed T-GRPO is specifically designed for tree structures, integrating spatiotemporal information at the event level while being guided by the question, thus solving the second challenge. We achieve superior performance in all long-video understanding tasks and uncover several interesting insights. Our proposed T-GRPO surprisingly incentivizes the model to spontaneously generate a reasoning chain. Additionally, the designed tree growth auxin dynamically adjusts the expansion depth, obtaining accuracy and efficiency gains. The code is publicly available at https://github.com/caoxinye/VideoMiner.
comment: Accepted by ICCV 2025
☆ Universal Neural Architecture Space: Covering ConvNets, Transformers and Everything in Between
We introduce Universal Neural Architecture Space (UniNAS), a generic search space for neural architecture search (NAS) which unifies convolutional networks, transformers, and their hybrid architectures under a single, flexible framework. Our approach enables discovery of novel architectures as well as analyzing existing architectures in a common framework. We also propose a new search algorithm that allows traversing the proposed search space, and demonstrate that the space contains interesting architectures, which, when using identical training setup, outperform state-of-the-art hand-crafted architectures. Finally, a unified toolkit including a standardized training and evaluation protocol is introduced to foster reproducibility and enable fair comparison in NAS research. Overall, this work opens a pathway towards systematically exploring the full spectrum of neural architectures with a unified graph-based NAS perspective.
☆ Emergent AI Surveillance: Overlearned Person Re-Identification and Its Mitigation in Law Enforcement Context
Generic instance search models can dramatically reduce the manual effort required to analyze vast surveillance footage during criminal investigations by retrieving specific objects of interest to law enforcement. However, our research reveals an unintended emergent capability: through overlearning, these models can single out specific individuals even when trained on datasets without human subjects. This capability raises concerns regarding identification and profiling of individuals based on their personal data, while there is currently no clear standard on how de-identification can be achieved. We evaluate two technical safeguards to curtail a model's person re-identification capacity: index exclusion and confusion loss. Our experiments demonstrate that combining these approaches can reduce person re-identification accuracy to below 2% while maintaining 82% of retrieval performance for non-person objects. However, we identify critical vulnerabilities in these mitigations, including potential circumvention using partial person images. These findings highlight urgent regulatory questions at the intersection of AI governance and data protection: How should we classify and regulate systems with emergent identification capabilities? And what technical standards should be required to prevent identification capabilities from developing in seemingly benign applications?
comment: 10 pages, accepted to AIES 2025
☆ Continual Learning for Image Captioning through Improved Image-Text Alignment
Generating accurate and coherent image captions in a continual learning setting remains a major challenge due to catastrophic forgetting and the difficulty of aligning evolving visual concepts with language over time. In this work, we propose a novel multi-loss framework for continual image captioning that integrates semantic guidance through prompt-based continual learning and contrastive alignment. Built upon a pretrained ViT-GPT-2 backbone, our approach combines standard cross-entropy loss with three additional components: (1) a prompt-based cosine similarity loss that aligns image embeddings with synthetically constructed prompts encoding objects, attributes, and actions; (2) a CLIP-style loss that promotes alignment between image embeddings and target caption embedding; and (3) a language-guided contrastive loss that employs a triplet loss to enhance class-level discriminability between tasks. Notably, our approach introduces no additional overhead at inference time and requires no prompts during caption generation. We find that this approach mitigates catastrophic forgetting, while achieving better semantic caption alignment compared to state-of-the-art methods. The code can be found via the following link https://github.com/ Gepardius/Taetz_Bordelius_Continual_ImageCaptioning.
comment: 11 pages, 3 figures
Detection and Measurement of Hailstones with Multimodal Large Language Models
This study examines the use of social media and news images to detect and measure hailstones, utilizing pre-trained multimodal large language models. The dataset for this study comprises 474 crowdsourced images of hailstones from documented hail events in Austria, which occurred between January 2022 and September 2024. These hailstones have maximum diameters ranging from 2 to 11cm. We estimate the hail diameters and compare four different models utilizing one-stage and two-stage prompting strategies. The latter utilizes additional size cues from reference objects, such as human hands, within the image. Our results show that pretrained models already have the potential to measure hailstone diameters from images with an average mean absolute error of 1.12cm for the best model. In comparison to a single-stage prompt, two-stage prompting improves the reliability of most models. Our study suggests that these off-the-shelf models, even without fine-tuning, can complement traditional hail sensors by extracting meaningful and spatially dense information from social media imagery, enabling faster and more detailed assessments of severe weather events. The automated real-time image harvesting from social media and other sources remains an open task, but it will make our approach directly applicable to future hail events.
comment: 6 pages, 5 figures, accepted at The 2nd International Conference on Electrical and Computer Engineering Researches
☆ Diffusion-Based Image Editing for Breaking Robust Watermarks
Robust invisible watermarking aims to embed hidden information into images such that the watermark can survive various image manipulations. However, the rise of powerful diffusion-based image generation and editing techniques poses a new threat to these watermarking schemes. In this paper, we present a theoretical study and method demonstrating that diffusion models can effectively break robust image watermarks that were designed to resist conventional perturbations. We show that a diffusion-driven ``image regeneration'' process can erase embedded watermarks while preserving perceptual image content. We further introduce a novel guided diffusion attack that explicitly targets the watermark signal during generation, significantly degrading watermark detectability. Theoretically, we prove that as an image undergoes sufficient diffusion-based transformation, the mutual information between the watermarked image and the embedded watermark payload vanishes, resulting in decoding failure. Experimentally, we evaluate our approach on multiple state-of-the-art watermarking schemes (including the deep learning-based methods StegaStamp, TrustMark, and VINE) and demonstrate near-zero watermark recovery rates after attack, while maintaining high visual fidelity of the regenerated images. Our findings highlight a fundamental vulnerability in current robust watermarking techniques against generative model-based attacks, underscoring the need for new watermarking strategies in the era of generative AI.
comment: Preprint
☆ A Dynamic Mode Decomposition Approach to Morphological Component Analysis
This paper introduces a novel methodology of adapting the representation of videos based on the dynamics of their scene content variation. In particular, we demonstrate how the clustering of dynamic mode decomposition eigenvalues can be leveraged to learn an adaptive video representation for separating structurally distinct morphologies of a video. We extend the morphological component analysis (MCA) algorithm, which uses multiple predefined incoherent dictionaries and a sparsity prior to separate distinct sources in signals, by introducing our novel eigenspace clustering technique to obtain data-driven MCA dictionaries, which we call dynamic morphological component analysis (DMCA). After deriving our novel algorithm, we offer a motivational example of DMCA applied to a still image, then demonstrate DMCA's effectiveness in denoising applications on videos from the Adobe 240fps dataset. Afterwards, we provide an example of DMCA enhancing the signal-to-noise ratio of a faint target summed with a sea state, and conclude the paper by applying DMCA to separate a bicycle from wind clutter in inverse synthetic aperture radar images.
☆ Diffusion Models for Low-Light Image Enhancement: A Multi-Perspective Taxonomy and Performance Analysis
Low-light image enhancement (LLIE) is vital for safety-critical applications such as surveillance, autonomous navigation, and medical imaging, where visibility degradation can impair downstream task performance. Recently, diffusion models have emerged as a promising generative paradigm for LLIE due to their capacity to model complex image distributions via iterative denoising. This survey provides an up-to-date critical analysis of diffusion models for LLIE, distinctively featuring an in-depth comparative performance evaluation against Generative Adversarial Network and Transformer-based state-of-the-art methods, a thorough examination of practical deployment challenges, and a forward-looking perspective on the role of emerging paradigms like foundation models. We propose a multi-perspective taxonomy encompassing six categories: Intrinsic Decomposition, Spectral & Latent, Accelerated, Guided, Multimodal, and Autonomous; that map enhancement methods across physical priors, conditioning schemes, and computational efficiency. Our taxonomy is grounded in a hybrid view of both the model mechanism and the conditioning signals. We evaluate qualitative failure modes, benchmark inconsistencies, and trade-offs between interpretability, generalization, and inference efficiency. We also discuss real-world deployment constraints (e.g., memory, energy use) and ethical considerations. This survey aims to guide the next generation of diffusion-based LLIE research by highlighting trends and surfacing open research questions, including novel conditioning, real-time adaptation, and the potential of foundation models.
☆ Shaken or Stirred? An Analysis of MetaFormer's Token Mixing for Medical Imaging
The generalization of the Transformer architecture via MetaFormer has reshaped our understanding of its success in computer vision. By replacing self-attention with simpler token mixers, MetaFormer provides strong baselines for vision tasks. However, while extensively studied on natural image datasets, its use in medical imaging remains scarce, and existing works rarely compare different token mixers, potentially overlooking more suitable designs choices. In this work, we present the first comprehensive study of token mixers for medical imaging. We systematically analyze pooling-, convolution-, and attention-based token mixers within the MetaFormer architecture on image classification (global prediction task) and semantic segmentation (dense prediction task). Our evaluation spans eight datasets covering diverse modalities and common challenges in the medical domain. Given the prevalence of pretraining from natural images to mitigate medical data scarcity, we also examine transferring pretrained weights to new token mixers. Our results show that, for classification, low-complexity token mixers (e.g. grouped convolution or pooling) are sufficient, aligning with findings on natural images. Pretrained weights remain useful despite the domain gap introduced by the new token mixer. For segmentation, we find that the local inductive bias of convolutional token mixers is essential. Grouped convolutions emerge as the preferred choice, as they reduce runtime and parameter count compared to standard convolutions, while the MetaFormer's channel-MLPs already provide the necessary cross-channel interactions. Our code is available on GitHub.
comment: Code and data: https://github.com/multimodallearning/MetaFormerMedImaging/tree/clean_code
☆ Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Joint Embedding Predictive Architectures (JEPAs) learn representations able to solve numerous downstream tasks out-of-the-box. JEPAs combine two objectives: (i) a latent-space prediction term, i.e., the representation of a slightly perturbed sample must be predictable from the original sample's representation, and (ii) an anti-collapse term, i.e., not all samples should have the same representation. While (ii) is often considered as an obvious remedy to representation collapse, we uncover that JEPAs' anti-collapse term does much more--it provably estimates the data density. In short, any successfully trained JEPA can be used to get sample probabilities, e.g., for data curation, outlier detection, or simply for density estimation. Our theoretical finding is agnostic of the dataset and architecture used--in any case one can compute the learned probabilities of sample $x$ efficiently and in closed-form using the model's Jacobian matrix at $x$. Our findings are empirically validated across datasets (synthetic, controlled, and Imagenet) and across different Self Supervised Learning methods falling under the JEPA family (I-JEPA and DINOv2) and on multimodal models, such as MetaCLIP. We denote the method extracting the JEPA learned density as {\bf JEPA-SCORE}.
☆ A Warm-basis Method for Bridging Learning and Iteration: a Case Study in Fluorescence Molecular Tomography
Fluorescence Molecular Tomography (FMT) is a widely used non-invasive optical imaging technology in biomedical research. It usually faces significant accuracy challenges in depth reconstruction, and conventional iterative methods struggle with poor $z$-resolution even with advanced regularization. Supervised learning approaches can improve recovery accuracy but rely on large, high-quality paired training dataset that is often impractical to acquire in practice. This naturally raises the question of how learning-based approaches can be effectively combined with iterative schemes to yield more accurate and stable algorithms. In this work, we present a novel warm-basis iterative projection method (WB-IPM) and establish its theoretical underpinnings. The method is able to achieve significantly more accurate reconstructions than the learning-based and iterative-based methods. In addition, it allows a weaker loss function depending solely on the directional component of the difference between ground truth and neural network output, thereby substantially reducing the training effort. These features are justified by our error analysis as well as simulated and real-data experiments.
☆ Kaputt: A Large-Scale Dataset for Visual Defect Detection ICCV 2025
We present a novel large-scale dataset for defect detection in a logistics setting. Recent work on industrial anomaly detection has primarily focused on manufacturing scenarios with highly controlled poses and a limited number of object categories. Existing benchmarks like MVTec-AD [6] and VisA [33] have reached saturation, with state-of-the-art methods achieving up to 99.9% AUROC scores. In contrast to manufacturing, anomaly detection in retail logistics faces new challenges, particularly in the diversity and variability of object pose and appearance. Leading anomaly detection methods fall short when applied to this new setting. To bridge this gap, we introduce a new benchmark that overcomes the current limitations of existing datasets. With over 230,000 images (and more than 29,000 defective instances), it is 40 times larger than MVTec-AD and contains more than 48,000 distinct objects. To validate the difficulty of the problem, we conduct an extensive evaluation of multiple state-of-the-art anomaly detection methods, demonstrating that they do not surpass 56.96% AUROC on our dataset. Further qualitative analysis confirms that existing methods struggle to leverage normal samples under heavy pose and appearance variation. With our large-scale dataset, we set a new benchmark and encourage future research towards solving this challenging problem in retail logistics anomaly detection. The dataset is available for download under https://www.kaputt-dataset.com.
comment: Accepted to ICCV 2025
☆ Efficient Universal Models for Medical Image Segmentation via Weakly Supervised In-Context Learning
Universal models for medical image segmentation, such as interactive and in-context learning (ICL) models, offer strong generalization but require extensive annotations. Interactive models need repeated user prompts for each image, while ICL relies on dense, pixel-level labels. To address this, we propose Weakly Supervised In-Context Learning (WS-ICL), a new ICL paradigm that leverages weak prompts (e.g., bounding boxes or points) instead of dense labels for context. This approach significantly reduces annotation effort by eliminating the need for fine-grained masks and repeated user prompting for all images. We evaluated the proposed WS-ICL model on three held-out benchmarks. Experimental results demonstrate that WS-ICL achieves performance comparable to regular ICL models at a significantly lower annotation cost. In addition, WS-ICL is highly competitive even under the interactive paradigm. These findings establish WS-ICL as a promising step toward more efficient and unified universal models for medical image segmentation. Our code and model are publicly available at https://github.com/jiesihu/Weak-ICL.
☆ $\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection ICCV2025
The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D$^3$QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D$^3$QE across different AR models, with robustness to real-world perturbations. Code is available at \href{https://github.com/Zhangyr2022/D3QE}{https://github.com/Zhangyr2022/D3QE}.
comment: 10 pages, 5 figures, published to ICCV2025
☆ BioAutoML-NAS: An End-to-End AutoML Framework for Multimodal Insect Classification via Neural Architecture Search on Large-Scale Biodiversity Data
Insect classification is important for agricultural management and ecological research, as it directly affects crop health and production. However, this task remains challenging due to the complex characteristics of insects, class imbalance, and large-scale datasets. To address these issues, we propose BioAutoML-NAS, the first BioAutoML model using multimodal data, including images, and metadata, which applies neural architecture search (NAS) for images to automatically learn the best operations for each connection within each cell. Multiple cells are stacked to form the full network, each extracting detailed image feature representations. A multimodal fusion module combines image embeddings with metadata, allowing the model to use both visual and categorical biological information to classify insects. An alternating bi-level optimization training strategy jointly updates network weights and architecture parameters, while zero operations remove less important connections, producing sparse, efficient, and high-performing architectures. Extensive evaluation on the BIOSCAN-5M dataset demonstrates that BioAutoML-NAS achieves 96.81% accuracy, 97.46% precision, 96.81% recall, and a 97.05% F1 score, outperforming state-of-the-art transfer learning, transformer, AutoML, and NAS methods by approximately 16%, 10%, and 8% respectively. Further validation on the Insects-1M dataset obtains 93.25% accuracy, 93.71% precision, 92.74% recall, and a 93.22% F1 score. These results demonstrate that BioAutoML-NAS provides accurate, confident insect classification that supports modern sustainable farming.
☆ acia-workflows: Automated Single-cell Imaging Analysis for Scalable and Deep Learning-based Live-cell Imaging Analysis Workflows
Live-cell imaging (LCI) technology enables the detailed spatio-temporal characterization of living cells at the single-cell level, which is critical for advancing research in the life sciences, from biomedical applications to bioprocessing. High-throughput setups with tens to hundreds of parallel cell cultivations offer the potential for robust and reproducible insights. However, these insights are obscured by the large amount of LCI data recorded per experiment. Recent advances in state-of-the-art deep learning methods for cell segmentation and tracking now enable the automated analysis of such large data volumes, offering unprecedented opportunities to systematically study single-cell dynamics. The next key challenge lies in integrating these powerful tools into accessible, flexible, and user-friendly workflows that support routine application in biological research. In this work, we present acia-workflows, a platform that combines three key components: (1) the Automated live-Cell Imaging Analysis (acia) Python library, which supports the modular design of image analysis pipelines offering eight deep learning segmentation and tracking approaches; (2) workflows that assemble the image analysis pipeline, its software dependencies, documentation, and visualizations into a single Jupyter Notebook, leading to accessible, reproducible and scalable analysis workflows; and (3) a collection of application workflows showcasing the analysis and customization capabilities in real-world applications. Specifically, we present three workflows to investigate various types of microfluidic LCI experiments ranging from growth rate comparisons to precise, minute-resolution quantitative analyses of individual dynamic cells responses to changing oxygen conditions. Our collection of more than ten application workflows is open source and publicly available at https://github.com/JuBiotech/acia-workflows.
The Safety Challenge of World Models for Embodied AI Agents: A Review
The rapid progress in embodied artificial intelligence has highlighted the necessity for more advanced and integrated models that can perceive, interpret, and predict environmental dynamics. In this context, World Models (WMs) have been introduced to provide embodied agents with the abilities to anticipate future environmental states and fill in knowledge gaps, thereby enhancing agents' ability to plan and execute actions. However, when dealing with embodied agents it is fundamental to ensure that predictions are safe for both the agent and the environment. In this article, we conduct a comprehensive literature review of World Models in the domains of autonomous driving and robotics, with a specific focus on the safety implications of scene and control generation tasks. Our review is complemented by an empirical analysis, wherein we collect and examine predictions from state-of-the-art models, identify and categorize common faults (herein referred to as pathologies), and provide a quantitative evaluation of the results.
☆ Towards Robust and Realible Multimodal Fake News Detection with Incomplete Modality
Multimodal fake news detection (MFND) has become an urgent task with the emergence of huge multimodal fake content on social media platforms. Previous studies mainly focus on complex feature extraction and fusion to learn discriminative information from multimodal content. However, in real-world applications, multimedia news may naturally lose some information during dissemination, resulting in modality incompleteness, which is detrimental to the generalization and robustness of existing models. To this end, we propose a novel generic and robust multimodal fusion strategy, termed Multi-expert Modality-incomplete Learning Network (MMLNet), which is simple yet effective. It consists of three key steps: (1) Multi-Expert Collaborative Reasoning to compensate for missing modalities by dynamically leveraging complementary information through multiple experts. (2) Incomplete Modality Adapters compensates for the missing information by leveraging the new feature distribution. (3) Modality Missing Learning leveraging an label-aware adaptive weighting strategy to learn a robust representation with contrastive learning. We evaluate MMLNet on three real-world benchmarks across two languages, demonstrating superior performance compared to state-of-the-art methods while maintaining relative simplicity. By ensuring the accuracy of fake news detection in incomplete modality scenarios caused by information propagation, MMLNet effectively curbs the spread of malicious misinformation. Code is publicly available at https://github.com/zhyhome/MMLNet.
☆ Flow4Agent: Long-form Video Understanding via Motion Prior from Optical Flow ICCV' 2025
Long-form video understanding has always been a challenging problem due to the significant redundancy in both temporal and spatial contents. This challenge is further exacerbated by the limited context length of Multimodal Large Language Models (MLLMs). To address this issue, many previous works have attempted to extract key video information, where the "key" is typically semantic-aware and heavily dependent on the CLIP model as prior. In this paper, we propose Flow4Agent, a novel framework that pioneeringly incorporates motion priors from optical flow to facilitate LLM-based long video understanding. Flow4Agent mitigates the redundancy in long videos at both temporal and spatial levels through two core modules: Temporal Granularity Optimization (TGO) adaptively refines framelevel hierarchies, which first leverages coarse flow priors to group similar visual contents and then applies semantic priors to filter out highly irrelevant scene information. Motion Token Pruning (MTP) further refines the intra-frame visual representations, pruning high-redundancy video tokens using fine-grained optical flow information. Extensive experiments demonstrate that our Flow4Agent outperforms existing methods across a wide range of video MLLM benchmarks, especially for hour-level video understanding tasks, achieving 64.7% on Video-MME, 71.4% on MLVU and 60.4% on LongVideoBench.
comment: Accepted to ICCV' 2025
☆ FoleyGRAM: Video-to-Audio Generation with GRAM-Aligned Multimodal Encoders IJCNN 2025
In this work, we present FoleyGRAM, a novel approach to video-to-audio generation that emphasizes semantic conditioning through the use of aligned multimodal encoders. Building on prior advancements in video-to-audio generation, FoleyGRAM leverages the Gramian Representation Alignment Measure (GRAM) to align embeddings across video, text, and audio modalities, enabling precise semantic control over the audio generation process. The core of FoleyGRAM is a diffusion-based audio synthesis model conditioned on GRAM-aligned embeddings and waveform envelopes, ensuring both semantic richness and temporal alignment with the corresponding input video. We evaluate FoleyGRAM on the Greatest Hits dataset, a standard benchmark for video-to-audio models. Our experiments demonstrate that aligning multimodal encoders using GRAM enhances the system's ability to semantically align generated audio with video content, advancing the state of the art in video-to-audio synthesis.
comment: Acepted at IJCNN 2025
☆ StereoSync: Spatially-Aware Stereo Audio Generation from Video IJCNN 2025
Although audio generation has been widely studied over recent years, video-aligned audio generation still remains a relatively unexplored frontier. To address this gap, we introduce StereoSync, a novel and efficient model designed to generate audio that is both temporally synchronized with a reference video and spatially aligned with its visual context. Moreover, StereoSync also achieves efficiency by leveraging pretrained foundation models, reducing the need for extensive training while maintaining high-quality synthesis. Unlike existing methods that primarily focus on temporal synchronization, StereoSync introduces a significant advancement by incorporating spatial awareness into video-aligned audio generation. Indeed, given an input video, our approach extracts spatial cues from depth maps and bounding boxes, using them as cross-attention conditioning in a diffusion-based audio generation model. Such an approach allows StereoSync to go beyond simple synchronization, producing stereo audio that dynamically adapts to the spatial structure and movement of a video scene. We evaluate StereoSync on Walking The Maps, a curated dataset comprising videos from video games that feature animated characters walking through diverse environments. Experimental results demonstrate the ability of StereoSync to achieve both temporal and spatial alignment, advancing the state of the art in video-to-audio generation and resulting in a significantly more immersive and realistic audio experience.
comment: Accepted at IJCNN 2025
☆ Leveraging Vision Transformers for Enhanced Classification of Emotions using ECG Signals
Biomedical signals provide insights into various conditions affecting the human body. Beyond diagnostic capabilities, these signals offer a deeper understanding of how specific organs respond to an individual's emotions and feelings. For instance, ECG data can reveal changes in heart rate variability linked to emotional arousal, stress levels, and autonomic nervous system activity. This data offers a window into the physiological basis of our emotional states. Recent advancements in the field diverge from conventional approaches by leveraging the power of advanced transformer architectures, which surpass traditional machine learning and deep learning methods. We begin by assessing the effectiveness of the Vision Transformer (ViT), a forefront model in image classification, for identifying emotions in imaged ECGs. Following this, we present and evaluate an improved version of ViT, integrating both CNN and SE blocks, aiming to bolster performance on imaged ECGs associated with emotion detection. Our method unfolds in two critical phases: first, we apply advanced preprocessing techniques for signal purification and converting signals into interpretable images using continuous wavelet transform and power spectral density analysis; second, we unveil a performance-boosted vision transformer architecture, cleverly enhanced with convolutional neural network components, to adeptly tackle the challenges of emotion recognition. Our methodology's robustness and innovation were thoroughly tested using ECG data from the YAAD and DREAMER datasets, leading to remarkable outcomes. For the YAAD dataset, our approach outperformed existing state-of-the-art methods in classifying seven unique emotional states, as well as in valence and arousal classification. Similarly, in the DREAMER dataset, our method excelled in distinguishing between valence, arousal and dominance, surpassing current leading techniques.
comment: 14pages, 2 figures
Deformable Image Registration for Self-supervised Cardiac Phase Detection in Multi-View Multi-Disease Cardiac Magnetic Resonance Images
Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac function, but individual cardiac cycles complicate automatic temporal comparison or sub-phase analysis. Accurate cardiac keyframe detection can eliminate this problem. However, automatic methods solely derive end-systole (ES) and end-diastole (ED) frames from left ventricular volume curves, which do not provide a deeper insight into myocardial motion. We propose a self-supervised deep learning method detecting five keyframes in short-axis (SAX) and four-chamber long-axis (4CH) cine CMR. Initially, dense deformable registration fields are derived from the images and used to compute a 1D motion descriptor, which provides valuable insights into global cardiac contraction and relaxation patterns. From these characteristic curves, keyframes are determined using a simple set of rules. The method was independently evaluated for both views using three public, multicentre, multidisease datasets. M&Ms-2 (n=360) dataset was used for training and evaluation, and M&Ms (n=345) and ACDC (n=100) datasets for repeatability control. Furthermore, generalisability to patients with rare congenital heart defects was tested using the German Competence Network (GCN) dataset. Our self-supervised approach achieved improved detection accuracy by 30% - 51% for SAX and 11% - 47% for 4CH in ED and ES, as measured by cyclic frame difference (cFD), compared with the volume-based approach. We can detect ED and ES, as well as three additional keyframes throughout the cardiac cycle with a mean cFD below 1.31 frames for SAX and 1.73 for LAX. Our approach enables temporally aligned inter- and intra-patient analysis of cardiac dynamics, irrespective of cycle or phase lengths. GitHub repository: https://github.com/Cardio-AI/cmr-multi-view-phase-detection.git
comment: Main 30 pages, 6 figures
☆ Rasterized Steered Mixture of Experts for Efficient 2D Image Regression
The Steered Mixture of Experts regression framework has demonstrated strong performance in image reconstruction, compression, denoising, and super-resolution. However, its high computational cost limits practical applications. This work introduces a rasterization-based optimization strategy that combines the efficiency of rasterized Gaussian kernel rendering with the edge-aware gating mechanism of the Steered Mixture of Experts. The proposed method is designed to accelerate two-dimensional image regression while maintaining the model's inherent sparsity and reconstruction quality. By replacing global iterative optimization with a rasterized formulation, the method achieves significantly faster parameter updates and more memory-efficient model representations. In addition, the proposed framework supports applications such as native super-resolution and image denoising, which are not directly achievable with standard rasterized Gaussian kernel approaches. The combination of fast rasterized optimization with the edge-aware structure of the Steered Mixture of Experts provides a new balance between computational efficiency and reconstruction fidelity for two-dimensional image processing tasks.
☆ Improving Clinical Dataset Condensation with Mode Connectivity-based Trajectory Surrogates AISTATS 2026
Dataset condensation (DC) enables the creation of compact, privacy-preserving synthetic datasets that can match the utility of real patient records, supporting democratised access to highly regulated clinical data for developing downstream clinical models. State-of-the-art DC methods supervise synthetic data by aligning the training dynamics of models trained on real and those trained on synthetic data, typically using full stochastic gradient descent (SGD) trajectories as alignment targets; however, these trajectories are often noisy, high-curvature, and storage-intensive, leading to unstable gradients, slow convergence, and substantial memory overhead. We address these limitations by replacing full SGD trajectories with smooth, low-loss parametric surrogates, specifically quadratic B\'ezier curves that connect the initial and final model states from real training trajectories. These mode-connected paths provide noise-free, low-curvature supervision signals that stabilise gradients, accelerate convergence, and eliminate the need for dense trajectory storage. We theoretically justify B\'ezier-mode connections as effective surrogates for SGD paths and empirically show that the proposed method outperforms state-of-the-art condensation approaches across five clinical datasets, yielding condensed datasets that enable clinically effective model development.
comment: 20 pages, 4 figures, Submitted to AISTATS 2026
☆ Mysteries of the Deep: Role of Intermediate Representations in Out of Distribution Detection
Out-of-distribution (OOD) detection is essential for reliably deploying machine learning models in the wild. Yet, most methods treat large pre-trained models as monolithic encoders and rely solely on their final-layer representations for detection. We challenge this wisdom. We reveal the \textit{intermediate layers} of pre-trained models, shaped by residual connections that subtly transform input projections, \textit{can} encode \textit{surprisingly rich and diverse signals} for detecting distributional shifts. Importantly, to exploit latent representation diversity across layers, we introduce an entropy-based criterion to \textit{automatically} identify layers offering the most complementary information in a training-free setting -- \textit{without access to OOD data}. We show that selectively incorporating these intermediate representations can increase the accuracy of OOD detection by up to \textbf{$10\%$} in far-OOD and over \textbf{$7\%$} in near-OOD benchmarks compared to state-of-the-art training-free methods across various model architectures and training objectives. Our findings reveal a new avenue for OOD detection research and uncover the impact of various training objectives and model architectures on confidence-based OOD detection methods.
comment: 28
☆ A Novel Technique for Robust Training of Deep Networks With Multisource Weak Labeled Remote Sensing Data
Deep learning has gained broad interest in remote sensing image scene classification thanks to the effectiveness of deep neural networks in extracting the semantics from complex data. However, deep networks require large amounts of training samples to obtain good generalization capabilities and are sensitive to errors in the training labels. This is a problem in remote sensing since highly reliable labels can be obtained at high costs and in limited amount. However, many sources of less reliable labeled data are available, e.g., obsolete digital maps. In order to train deep networks with larger datasets, we propose both the combination of single or multiple weak sources of labeled data with a small but reliable dataset to generate multisource labeled datasets and a novel training strategy where the reliability of each source is taken in consideration. This is done by exploiting the transition matrices describing the statistics of the errors of each source. The transition matrices are embedded into the labels and used during the training process to weigh each label according to the related source. The proposed method acts as a weighting scheme at gradient level, where each instance contributes with different weights to the optimization of different classes. The effectiveness of the proposed method is validated by experiments on different datasets. The results proved the robustness and capability of leveraging on unreliable source of labels of the proposed method.
comment: 16 pages, 9 figures, accepted article
☆ OneVision: An End-to-End Generative Framework for Multi-view E-commerce Vision Search
Traditional vision search, similar to search and recommendation systems, follows the multi-stage cascading architecture (MCA) paradigm to balance efficiency and conversion. Specifically, the query image undergoes feature extraction, recall, pre-ranking, and ranking stages, ultimately presenting the user with semantically similar products that meet their preferences. This multi-view representation discrepancy of the same object in the query and the optimization objective collide across these stages, making it difficult to achieve Pareto optimality in both user experience and conversion. In this paper, an end-to-end generative framework, OneVision, is proposed to address these problems. OneVision builds on VRQ, a vision-aligned residual quantization encoding, which can align the vastly different representations of an object across multiple viewpoints while preserving the distinctive features of each product as much as possible. Then a multi-stage semantic alignment scheme is adopted to maintain strong visual similarity priors while effectively incorporating user-specific information for personalized preference generation. In offline evaluations, OneVision performs on par with online MCA, while improving inference efficiency by 21% through dynamic pruning. In A/B tests, it achieves significant online improvements: +2.15% item CTR, +2.27% CVR, and +3.12% order volume. These results demonstrate that a semantic ID centric, generative architecture can unify retrieval and personalization while simplifying the serving pathway.
☆ ALISE: Annotation-Free LiDAR Instance Segmentation for Autonomous Driving
The manual annotation of outdoor LiDAR point clouds for instance segmentation is extremely costly and time-consuming. Current methods attempt to reduce this burden but still rely on some form of human labeling. To completely eliminate this dependency, we introduce ALISE, a novel framework that performs LiDAR instance segmentation without any annotations. The central challenge is to generate high-quality pseudo-labels in a fully unsupervised manner. Our approach starts by employing Vision Foundation Models (VFMs), guided by text and images, to produce initial pseudo-labels. We then refine these labels through a dedicated spatio-temporal voting module, which combines 2D and 3D semantics for both offline and online optimization. To achieve superior feature learning, we further introduce two forms of semantic supervision: a set of 2D prior-based losses that inject visual knowledge into the 3D network, and a novel prototype-based contrastive loss that builds a discriminative feature space by exploiting 3D semantic consistency. This comprehensive design results in significant performance gains, establishing a new state-of-the-art for unsupervised 3D instance segmentation. Remarkably, our approach even outperforms MWSIS, a method that operates with supervision from ground-truth (GT) 2D bounding boxes by a margin of 2.53% in mAP (50.95% vs. 48.42%).
☆ Redefining Generalization in Visual Domains: A Two-Axis Framework for Fake Image Detection with FusionDetect
The rapid development of generative models has made it increasingly crucial to develop detectors that can reliably detect synthetic images. Although most of the work has now focused on cross-generator generalization, we argue that this viewpoint is too limited. Detecting synthetic images involves another equally important challenge: generalization across visual domains. To bridge this gap,we present the OmniGen Benchmark. This comprehensive evaluation dataset incorporates 12 state-of-the-art generators, providing a more realistic way of evaluating detector performance under realistic conditions. In addition, we introduce a new method, FusionDetect, aimed at addressing both vectors of generalization. FusionDetect draws on the benefits of two frozen foundation models: CLIP & Dinov2. By deriving features from both complementary models,we develop a cohesive feature space that naturally adapts to changes in both thecontent and design of the generator. Our extensive experiments demonstrate that FusionDetect delivers not only a new state-of-the-art, which is 3.87% more accurate than its closest competitor and 6.13% more precise on average on established benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,along with exceptional robustness to common image perturbations. We introduce not only a top-performing detector, but also a new benchmark and framework for furthering universal AI image detection. The code and dataset are available at http://github.com/amir-aman/FusionDetect
comment: Project code: http://github.com/amir-aman/FusionDetect
☆ Data Factory with Minimal Human Effort Using VLMs
Generating enough and diverse data through augmentation offers an efficient solution to the time-consuming and labour-intensive process of collecting and annotating pixel-wise images. Traditional data augmentation techniques often face challenges in manipulating high-level semantic attributes, such as materials and textures. In contrast, diffusion models offer a robust alternative, by effectively utilizing text-to-image or image-to-image transformation. However, existing diffusion-based methods are either computationally expensive or compromise on performance. To address this issue, we introduce a novel training-free pipeline that integrates pretrained ControlNet and Vision-Language Models (VLMs) to generate synthetic images paired with pixel-level labels. This approach eliminates the need for manual annotations and significantly improves downstream tasks. To improve the fidelity and diversity, we add a Multi-way Prompt Generator, Mask Generator and High-quality Image Selection module. Our results on PASCAL-5i and COCO-20i present promising performance and outperform concurrent work for one-shot semantic segmentation.
comment: Tech report
☆ Neighborhood-Adaptive Generalized Linear Graph Embedding with Latent Pattern Mining
Graph embedding has been widely applied in areas such as network analysis, social network mining, recommendation systems, and bioinformatics. However, current graph construction methods often require the prior definition of neighborhood size, limiting the effective revelation of potential structural correlations in the data. Additionally, graph embedding methods using linear projection heavily rely on a singular pattern mining approach, resulting in relative weaknesses in adapting to different scenarios. To address these challenges, we propose a novel model, Neighborhood-Adaptive Generalized Linear Graph Embedding (NGLGE), grounded in latent pattern mining. This model introduces an adaptive graph learning method tailored to the neighborhood, effectively revealing intrinsic data correlations. Simultaneously, leveraging a reconstructed low-rank representation and imposing $\ell_{2,0}$ norm constraint on the projection matrix allows for flexible exploration of additional pattern information. Besides, an efficient iterative solving algorithm is derived for the proposed model. Comparative evaluations on datasets from diverse scenarios demonstrate the superior performance of our model compared to state-of-the-art methods.
☆ AgeBooth: Controllable Facial Aging and Rejuvenation via Diffusion Models
Recent diffusion model research focuses on generating identity-consistent images from a reference photo, but they struggle to accurately control age while preserving identity, and fine-tuning such models often requires costly paired images across ages. In this paper, we propose AgeBooth, a novel age-specific finetuning approach that can effectively enhance the age control capability of adapterbased identity personalization models without the need for expensive age-varied datasets. To reduce dependence on a large amount of age-labeled data, we exploit the linear nature of aging by introducing age-conditioned prompt blending and an age-specific LoRA fusion strategy that leverages SVDMix, a matrix fusion technique. These techniques enable high-quality generation of intermediate-age portraits. Our AgeBooth produces realistic and identity-consistent face images across different ages from a single reference image. Experiments show that AgeBooth achieves superior age control and visual quality compared to previous state-of-the-art editing-based methods.
☆ D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/
☆ Context Matters: Learning Global Semantics for Visual Reasoning and Comprehension
Recent advances in language modeling have witnessed the rise of highly desirable emergent capabilities, such as reasoning and in-context learning. However, vision models have yet to exhibit comparable progress in these areas. In this paper, we argue that this gap could stem from the lack of semantic and contextual guidance in current vision transformer (ViT) training schemes, and such a gap can be narrowed through the design of a semantic-grounded objective. Specifically, we notice that individual words in natural language are inherently semantic, and modeling directly on word tokens naturally learns a realistic distribution. In contrast, ViTs rely on spatial patchification, which inevitably lacks semantic information. To bridge this gap, we propose to directly model "object" as the visual equivalence of "word," pushing the model to learn the global context and semantics among visual elements. We investigate our hypotheses via masked image modeling (MIM), a framework where our approach can be readily tested by applying masks to visual objects rather than random patches. Considerable evidence from qualitative and quantitative evaluations reveals a key finding: object-level representation alone helps to learn a real-world distribution, whereas pixel-averaging shortcuts are often learned without it. Moreover, further evaluations with multimodal LLMs (MLLM) on visual question answering (VQA, GQA, ScienceQA) tasks demonstrate the strong reasoning and contextual understanding gained with this simple objective. We hope our study highlights the effectiveness of object-level encoding and provides a plausible direction for developing stronger vision encoders and tokenizers. Code and model will be publicly released. Keywords: Semantic Visual Tokenizer, Vision Reasoning, In-context Learning, Multimodal Reasoning
☆ Development and Validation of a Low-Cost Imaging System for Seedling Germination Kinetics through Time-Cumulative Analysis
The study investigates the effects of R. solani inoculation on the germination and early development of Lactuca sativa L. seeds using a low-cost, image-based monitoring system. Multiple cameras were deployed to continuously capture images of the germination process in both infected and control groups. The objective was to assess the impact of the pathogen by analyzing germination dynamics and growth over time. To achieve this, a novel image analysis pipeline was developed. The algorithm integrates both morphological and spatial features to identify and quantify individual seedlings, even under complex conditions where traditional image analyses fails. A key innovation of the method lies in its temporal integration: each analysis step considers not only the current status but also their developmental across prior time points. This approach enables robust discrimination of individual seedlings, especially when overlapping leaves significantly hinder object separation. The method demonstrated high accuracy in seedling counting and vigor assessment, even in challenging scenarios characterized by dense and intertwined growth. Results confirm that R. solani infection significantly reduces germination rates and early seedling vigor. The study also validates the feasibility of combining low-cost imaging hardware with advanced computational tools to obtain phenotyping data in a non-destructive and scalable manner. The temporal integration enabled accurate quantification of germinated seeds and precise determination of seedling emergence timing. This approach proved particularly effective in later stages of the experiment, where conventional segmentation techniques failed due to overlapping or intertwined seedlings, making accurate counting. The method achieved a coefficient of determination of 0.98 and a root mean square error (RMSE) of 1.12, demonstrating its robustness and reliability.
☆ DeLTa: Demonstration and Language-Guided Novel Transparent Object Manipulation
Despite the prevalence of transparent object interactions in human everyday life, transparent robotic manipulation research remains limited to short-horizon tasks and basic grasping capabilities.Although some methods have partially addressed these issues, most of them have limitations in generalizability to novel objects and are insufficient for precise long-horizon robot manipulation. To address this limitation, we propose DeLTa (Demonstration and Language-Guided Novel Transparent Object Manipulation), a novel framework that integrates depth estimation, 6D pose estimation, and vision-language planning for precise long-horizon manipulation of transparent objects guided by natural task instructions. A key advantage of our method is its single-demonstration approach, which generalizes 6D trajectories to novel transparent objects without requiring category-level priors or additional training. Additionally, we present a task planner that refines the VLM-generated plan to account for the constraints of a single-arm, eye-in-hand robot for long-horizon object manipulation tasks. Through comprehensive evaluation, we demonstrate that our method significantly outperforms existing transparent object manipulation approaches, particularly in long-horizon scenarios requiring precise manipulation capabilities. Project page: https://sites.google.com/view/DeLTa25/
comment: Project page: https://sites.google.com/view/DeLTa25/
☆ When and How to Cut Classical Concerts? A Multimodal Automated Video Editing Approach
Automated video editing remains an underexplored task in the computer vision and multimedia domains, especially when contrasted with the growing interest in video generation and scene understanding. In this work, we address the specific challenge of editing multicamera recordings of classical music concerts by decomposing the problem into two key sub-tasks: when to cut and how to cut. Building on recent literature, we propose a novel multimodal architecture for the temporal segmentation task (when to cut), which integrates log-mel spectrograms from the audio signals, plus an optional image embedding, and scalar temporal features through a lightweight convolutional-transformer pipeline. For the spatial selection task (how to cut), we improve the literature by updating from old backbones, e.g. ResNet, with a CLIP-based encoder and constraining distractor selection to segments from the same concert. Our dataset was constructed following a pseudo-labeling approach, in which raw video data was automatically clustered into coherent shot segments. We show that our models outperformed previous baselines in detecting cut points and provide competitive visual shot selection, advancing the state of the art in multimodal automated video editing.
☆ Teleportraits: Training-Free People Insertion into Any Scene
The task of realistically inserting a human from a reference image into a background scene is highly challenging, requiring the model to (1) determine the correct location and poses of the person and (2) perform high-quality personalization conditioned on the background. Previous approaches often treat them as separate problems, overlooking their interconnections, and typically rely on training to achieve high performance. In this work, we introduce a unified training-free pipeline that leverages pre-trained text-to-image diffusion models. We show that diffusion models inherently possess the knowledge to place people in complex scenes without requiring task-specific training. By combining inversion techniques with classifier-free guidance, our method achieves affordance-aware global editing, seamlessly inserting people into scenes. Furthermore, our proposed mask-guided self-attention mechanism ensures high-quality personalization, preserving the subject's identity, clothing, and body features from just a single reference image. To the best of our knowledge, we are the first to perform realistic human insertions into scenes in a training-free manner and achieve state-of-the-art results in diverse composite scene images with excellent identity preservation in backgrounds and subjects.
☆ A Hierarchical Geometry-guided Transformer for Histological Subtyping of Primary Liver Cancer
Primary liver malignancies are widely recognized as the most heterogeneous and prognostically diverse cancers of the digestive system. Among these, hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) emerge as the two principal histological subtypes, demonstrating significantly greater complexity in tissue morphology and cellular architecture than other common tumors. The intricate representation of features in Whole Slide Images (WSIs) encompasses abundant crucial information for liver cancer histological subtyping, regarding hierarchical pyramid structure, tumor microenvironment (TME), and geometric representation. However, recent approaches have not adequately exploited these indispensable effective descriptors, resulting in a limited understanding of histological representation and suboptimal subtyping performance. To mitigate these limitations, ARGUS is proposed to advance histological subtyping in liver cancer by capturing the macro-meso-micro hierarchical information within the TME. Specifically, we first construct a micro-geometry feature to represent fine-grained cell-level pattern via a geometric structure across nuclei, thereby providing a more refined and precise perspective for delineating pathological images. Then, a Hierarchical Field-of-Views (FoVs) Alignment module is designed to model macro- and meso-level hierarchical interactions inherent in WSIs. Finally, the augmented micro-geometry and FoVs features are fused into a joint representation via present Geometry Prior Guided Fusion strategy for modeling holistic phenotype interactions. Extensive experiments on public and private cohorts demonstrate that our ARGUS achieves state-of-the-art (SOTA) performance in histological subtyping of liver cancer, which provide an effective diagnostic tool for primary liver malignancies in clinical practice.
comment: 7 pages, 2 figures, accepted by IEEE BIBM 2025
☆ SD-MVSum: Script-Driven Multimodal Video Summarization Method and Datasets
In this work, we extend a recent method for script-driven video summarization, originally considering just the visual content of the video, to take into account the relevance of the user-provided script also with the video's spoken content. In the proposed method, SD-MVSum, the dependence between each considered pair of data modalities, i.e., script-video and script-transcript, is modeled using a new weighted cross-modal attention mechanism. This explicitly exploits the semantic similarity between the paired modalities in order to promote the parts of the full-length video with the highest relevance to the user-provided script. Furthermore, we extend two large-scale datasets for video summarization (S-VideoXum, MrHiSum), to make them suitable for training and evaluation of script-driven multimodal video summarization methods. Experimental comparisons document the competitiveness of our SD-MVSum method against other SOTA approaches for script-driven and generic video summarization. Our new method and extended datasets are available at: https://github.com/IDT-ITI/SD-MVSum.
comment: Under review
☆ EduVerse: A User-Defined Multi-Agent Simulation Space for Education Scenario
Reproducing cognitive development, group interaction, and long-term evolution in virtual classrooms remains a core challenge for educational AI, as real classrooms integrate open-ended cognition, dynamic social interaction, affective factors, and multi-session development rarely captured together. Existing approaches mostly focus on short-term or single-agent settings, limiting systematic study of classroom complexity and cross-task reuse. We present EduVerse, the first user-defined multi-agent simulation space that supports environment, agent, and session customization. A distinctive human-in-the-loop interface further allows real users to join the space. Built on a layered CIE (Cognition-Interaction-Evolution) architecture, EduVerse ensures individual consistency, authentic interaction, and longitudinal adaptation in cognition, emotion, and behavior-reproducing realistic classroom dynamics with seamless human-agent integration. We validate EduVerse in middle-school Chinese classes across three text genres, environments, and multiple sessions. Results show: (1) Instructional alignment: simulated IRF rates (0.28-0.64) closely match real classrooms (0.37-0.49), indicating pedagogical realism; (2) Group interaction and role differentiation: network density (0.27-0.40) with about one-third of peer links realized, while human-agent tasks indicate a balance between individual variability and instructional stability; (3) Cross-session evolution: the positive transition rate R+ increase by 11.7% on average, capturing longitudinal shifts in behavior, emotion, and cognition and revealing structured learning trajectories. Overall, EduVerse balances realism, reproducibility, and interpretability, providing a scalable platform for educational AI. The system will be open-sourced to foster cross-disciplinary research.
comment: Preprint, Under review
☆ Ocular-Induced Abnormal Head Posture: Diagnosis and Missing Data Imputation
Ocular-induced abnormal head posture (AHP) is a compensatory mechanism that arises from ocular misalignment conditions, such as strabismus, enabling patients to reduce diplopia and preserve binocular vision. Early diagnosis minimizes morbidity and secondary complications such as facial asymmetry; however, current clinical assessments remain largely subjective and are further complicated by incomplete medical records. This study addresses both challenges through two complementary deep learning frameworks. First, AHP-CADNet is a multi-level attention fusion framework for automated diagnosis that integrates ocular landmarks, head pose features, and structured clinical attributes to generate interpretable predictions. Second, a curriculum learning-based imputation framework is designed to mitigate missing data by progressively leveraging structured variables and unstructured clinical notes to enhance diagnostic robustness under realistic data conditions. Evaluation on the PoseGaze-AHP dataset demonstrates robust diagnostic performance. AHP-CADNet achieves 96.9-99.0 percent accuracy across classification tasks and low prediction errors for continuous variables, with MAE ranging from 0.103 to 0.199 and R2 exceeding 0.93. The imputation framework maintains high accuracy across all clinical variables (93.46-99.78 percent with PubMedBERT), with clinical dependency modeling yielding significant improvements (p < 0.001). These findings confirm the effectiveness of both frameworks for automated diagnosis and recovery from missing data in clinical settings.
☆ Combined Hyperbolic and Euclidean Soft Triple Loss Beyond the Single Space Deep Metric Learning
Deep metric learning (DML) aims to learn a neural network mapping data to an embedding space, which can represent semantic similarity between data points. Hyperbolic space is attractive for DML since it can represent richer structures, such as tree structures. DML in hyperbolic space is based on pair-based loss or unsupervised regularization loss. On the other hand, supervised proxy-based losses in hyperbolic space have not been reported yet due to some issues in applying proxy-based losses in a hyperbolic space. However, proxy-based losses are attractive for large-scale datasets since they have less training complexity. To address these, this paper proposes the Combined Hyperbolic and Euclidean Soft Triple (CHEST) loss. CHEST loss is composed of the proxy-based losses in hyperbolic and Euclidean spaces and the regularization loss based on hyperbolic hierarchical clustering. We find that the combination of hyperbolic and Euclidean spaces improves DML accuracy and learning stability for both spaces. Finally, we evaluate the CHEST loss on four benchmark datasets, achieving a new state-of-the-art performance.
comment: 12 pages, 4 figures
☆ From Neural Activity to Computation: Biological Reservoirs for Pattern Recognition in Digit Classification ICCV2025
In this paper, we present a biologically grounded approach to reservoir computing (RC), in which a network of cultured biological neurons serves as the reservoir substrate. This system, referred to as biological reservoir computing (BRC), replaces artificial recurrent units with the spontaneous and evoked activity of living neurons. A multi-electrode array (MEA) enables simultaneous stimulation and readout across multiple sites: inputs are delivered through a subset of electrodes, while the remaining ones capture the resulting neural responses, mapping input patterns into a high-dimensional biological feature space. We evaluate the system through a case study on digit classification using a custom dataset. Input images are encoded and delivered to the biological reservoir via electrical stimulation, and the corresponding neural activity is used to train a simple linear classifier. To contextualize the performance of the biological system, we also include a comparison with a standard artificial reservoir trained on the same task. The results indicate that the biological reservoir can effectively support classification, highlighting its potential as a viable and interpretable computational substrate. We believe this work contributes to the broader effort of integrating biological principles into machine learning and aligns with the goals of human-inspired vision by exploring how living neural systems can inform the design of efficient and biologically plausible models.
comment: Accepted at HiCV@ICCV2025
☆ NEO: No-Optimization Test-Time Adaptation through Latent Re-Centering
Test-Time Adaptation (TTA) methods are often computationally expensive, require a large amount of data for effective adaptation, or are brittle to hyperparameters. Based on a theoretical foundation of the geometry of the latent space, we are able to significantly improve the alignment between source and distribution-shifted samples by re-centering target data embeddings at the origin. This insight motivates NEO -- a hyperparameter-free fully TTA method, that adds no significant compute compared to vanilla inference. NEO is able to improve the classification accuracy of ViT-Base on ImageNet-C from 55.6% to 59.2% after adapting on just one batch of 64 samples. When adapting on 512 samples NEO beats all 7 TTA methods we compare against on ImageNet-C, ImageNet-R and ImageNet-S and beats 6/7 on CIFAR-10-C, while using the least amount of compute. NEO performs well on model calibration metrics and additionally is able to adapt from 1 class to improve accuracy on 999 other classes in ImageNet-C. On Raspberry Pi and Jetson Orin Nano devices, NEO reduces inference time by 63% and memory usage by 9% compared to baselines. Our results based on 3 ViT architectures and 4 datasets show that NEO can be used efficiently and effectively for TTA.
☆ Beyond Spectral Peaks: Interpreting the Cues Behind Synthetic Image Detection
Over the years, the forensics community has proposed several deep learning-based detectors to mitigate the risks of generative AI. Recently, frequency-domain artifacts (particularly periodic peaks in the magnitude spectrum), have received significant attention, as they have been often considered a strong indicator of synthetic image generation. However, state-of-the-art detectors are typically used as black-boxes, and it still remains unclear whether they truly rely on these peaks. This limits their interpretability and trust. In this work, we conduct a systematic study to address this question. We propose a strategy to remove spectral peaks from images and analyze the impact of this operation on several detectors. In addition, we introduce a simple linear detector that relies exclusively on frequency peaks, providing a fully interpretable baseline free from the confounding influence of deep learning. Our findings reveal that most detectors are not fundamentally dependent on spectral peaks, challenging a widespread assumption in the field and paving the way for more transparent and reliable forensic tools.
☆ InstaGeo: Compute-Efficient Geospatial Machine Learning from Data to Deployment
Open-access multispectral imagery from missions like Landsat 8-9 and Sentinel-2 has fueled the development of geospatial foundation models (GFMs) for humanitarian and environmental applications. Yet, their deployment remains limited by (i) the absence of automated geospatial data pipelines and (ii) the large size of fine-tuned models. Existing GFMs lack workflows for processing raw satellite imagery, and downstream adaptations often retain the full complexity of the original encoder. We present InstaGeo, an open-source, end-to-end framework that addresses these challenges by integrating: (1) automated data curation to transform raw imagery into model-ready datasets; (2) task-specific model distillation to derive compact, compute-efficient models; and (3) seamless deployment as interactive web-map applications. Using InstaGeo, we reproduced datasets from three published studies and trained models with marginal mIoU differences of -0.73 pp for flood mapping, -0.20 pp for crop segmentation, and +1.79 pp for desert locust prediction. The distilled models are up to 8x smaller than standard fine-tuned counterparts, reducing FLOPs and CO2 emissions with minimal accuracy loss. Leveraging InstaGeo's streamlined data pipeline, we also curated a larger crop segmentation dataset, achieving a state-of-the-art mIoU of 60.65%, a 12 pp improvement over prior baselines. Moreover, InstaGeo enables users to progress from raw data to model deployment within a single working day. By unifying data preparation, model compression, and deployment, InstaGeo transforms research-grade GFMs into practical, low-carbon tools for real-time, large-scale Earth observation. This approach shifts geospatial AI toward data quality and application-driven innovation. Source code, datasets, and model checkpoints are available at: https://github.com/instadeepai/InstaGeo-E2E-Geospatial-ML.git
☆ TFM Dataset: A Novel Multi-task Dataset and Integrated Pipeline for Automated Tear Film Break-Up Segmentation
Tear film break-up (TFBU) analysis is critical for diagnosing dry eye syndrome, but automated TFBU segmentation remains challenging due to the lack of annotated datasets and integrated solutions. This paper introduces the Tear Film Multi-task (TFM) Dataset, the first comprehensive dataset for multi-task tear film analysis, comprising 15 high-resolution videos (totaling 6,247 frames) annotated with three vision tasks: frame-level classification ('clear', 'closed', 'broken', 'blur'), Placido Ring detection, and pixel-wise TFBU area segmentation. Leveraging this dataset, we first propose TF-Net, a novel and efficient baseline segmentation model. TF-Net incorporates a MobileOne-mini backbone with re-parameterization techniques and an enhanced feature pyramid network to achieve a favorable balance between accuracy and computational efficiency for real-time clinical applications. We further establish benchmark performance on the TFM segmentation subset by comparing TF-Net against several state-of-the-art medical image segmentation models. Furthermore, we design TF-Collab, a novel integrated real-time pipeline that synergistically leverages models trained on all three tasks of the TFM dataset. By sequentially orchestrating frame classification for BUT determination, pupil region localization for input standardization, and TFBU segmentation, TF-Collab fully automates the analysis. Experimental results demonstrate the effectiveness of the proposed TF-Net and TF-Collab, providing a foundation for future research in ocular surface diagnostics. Our code and the TFM datasets are available at https://github.com/glory-wan/TF-Net
☆ PointNSP: Autoregressive 3D Point Cloud Generation with Next-Scale Level-of-Detail Prediction
Autoregressive point cloud generation has long lagged behind diffusion-based approaches in quality. The performance gap stems from the fact that autoregressive models impose an artificial ordering on inherently unordered point sets, forcing shape generation to proceed as a sequence of local predictions. This sequential bias emphasizes short-range continuity but undermines the model's capacity to capture long-range dependencies, hindering its ability to enforce global structural properties such as symmetry, consistent topology, and large-scale geometric regularities. Inspired by the level-of-detail (LOD) principle in shape modeling, we propose PointNSP, a coarse-to-fine generative framework that preserves global shape structure at low resolutions and progressively refines fine-grained geometry at higher scales through a next-scale prediction paradigm. This multi-scale factorization aligns the autoregressive objective with the permutation-invariant nature of point sets, enabling rich intra-scale interactions while avoiding brittle fixed orderings. Experiments on ShapeNet show that PointNSP establishes state-of-the-art (SOTA) generation quality for the first time within the autoregressive paradigm. In addition, it surpasses strong diffusion-based baselines in parameter, training, and inference efficiency. Finally, in dense generation with 8,192 points, PointNSP's advantages become even more pronounced, underscoring its scalability potential.
☆ Efficient Conditional Generation on Scale-based Visual Autoregressive Models
Recent advances in autoregressive (AR) models have demonstrated their potential to rival diffusion models in image synthesis. However, for complex spatially-conditioned generation, current AR approaches rely on fine-tuning the pre-trained model, leading to significant training costs. In this paper, we propose the Efficient Control Model (ECM), a plug-and-play framework featuring a lightweight control module that introduces control signals via a distributed architecture. This architecture consists of context-aware attention layers that refine conditional features using real-time generated tokens, and a shared gated feed-forward network (FFN) designed to maximize the utilization of its limited capacity and ensure coherent control feature learning. Furthermore, recognizing the critical role of early-stage generation in determining semantic structure, we introduce an early-centric sampling strategy that prioritizes learning early control sequences. This approach reduces computational cost by lowering the number of training tokens per iteration, while a complementary temperature scheduling during inference compensates for the resulting insufficient training of late-stage tokens. Extensive experiments on scale-based AR models validate that our method achieves high-fidelity and diverse control over image generation, surpassing existing baselines while significantly improving both training and inference efficiency.
☆ HOI-R1: Exploring the Potential of Multimodal Large Language Models for Human-Object Interaction Detection
Recent Human-object interaction detection (HOID) methods highly require prior knowledge from VLMs to enhance the interaction recognition capabilities. The training strategies and model architectures for connecting the knowledge from VLMs to the HOI instance representations from the object detector are challenging, and the whole framework is complex for further development or application. On the other hand, the inherent reasoning abilities of MLLMs on human-object interaction detection are under-explored. Inspired by the recent success of training MLLMs with reinforcement learning (RL) methods, we propose HOI-R1 and first explore the potential of the language model on the HOID task without any additional detection modules. We introduce an HOI reasoning process and HOID reward functions to solve the HOID task by pure text. The results on the HICO-DET dataset show that HOI-R1 achieves 2x the accuracy of the baseline with great generalization ability. The source code is available at https://github.com/cjw2021/HOI-R1.
☆ Improving Chain-of-Thought Efficiency for Autoregressive Image Generation
Autoregressive multimodal large language models have recently gained popularity for image generation, driven by advances in foundation models. To enhance alignment and detail, newer approaches employ chain-of-thought (CoT) reasoning, expanding user inputs into elaborated prompts prior to image synthesis. However, this strategy can introduce unnecessary redundancy -- a phenomenon we call visual overthinking -- which increases computational costs and can introduce details that contradict the original prompt. In this work, we explore how to generate more concise CoT sequences for more efficient image generation. We introduce ShortCoTI, a lightweight optimization framework that encourages more concise CoT while preserving output image quality. ShortCoTI rewards more concise prompts with an adaptive function that scales according to an estimated difficulty for each task. Incorporating this reward into a reinforcement learning paradigm reduces prompt reasoning length by 54% while maintaining or slightly improving quality metrics across multiple benchmarks (T2I-CompBench, GenEval). Qualitative analysis shows that our method eliminates verbose explanations and repetitive refinements, producing reasoning prompts that are both concise and semantically rich. As a result, ShortCoTI improves computational efficiency without compromising the fidelity or visual appeal of generated images.
☆ CalibCLIP: Contextual Calibration of Dominant Semantics for Text-Driven Image Retrieval
Existing Visual Language Models (VLMs) suffer structural limitations where a few low contribution tokens may excessively capture global semantics, dominating the information aggregation process and suppressing the discriminative features in text-driven image retrieval tasks. To address this, we introduce \textbf{CalibCLIP}, a training-free method designed to calibrate the suppressive effect of dominant tokens. Specifically, in the visual space, we propose the Contrastive Visual Enhancer (CVE), which decouples visual features into target and low information regions. Subsequently, it identifies dominant tokens and dynamically suppresses their representations.In the textual space, we introduce the Discriminative Concept Calibrator (DCC), which aims to differentiate between general and discriminative concepts within the text query. By mitigating the challenges posed by generic concepts and improving the representations of discriminative concepts, DCC strengthens the differentiation among similar samples. Finally, extensive experiments demonstrate consistent improvements across seven benchmarks spanning three image retrieval tasks, underscoring the effectiveness of CalibCLIP. Code is available at: https://github.com/kangbin98/CalibCLIP
comment: ACMMM2025(oral)
☆ HoloScene: Simulation-Ready Interactive 3D Worlds from a Single Video
Digitizing the physical world into accurate simulation-ready virtual environments offers significant opportunities in a variety of fields such as augmented and virtual reality, gaming, and robotics. However, current 3D reconstruction and scene-understanding methods commonly fall short in one or more critical aspects, such as geometry completeness, object interactivity, physical plausibility, photorealistic rendering, or realistic physical properties for reliable dynamic simulation. To address these limitations, we introduce HoloScene, a novel interactive 3D reconstruction framework that simultaneously achieves these requirements. HoloScene leverages a comprehensive interactive scene-graph representation, encoding object geometry, appearance, and physical properties alongside hierarchical and inter-object relationships. Reconstruction is formulated as an energy-based optimization problem, integrating observational data, physical constraints, and generative priors into a unified, coherent objective. Optimization is efficiently performed via a hybrid approach combining sampling-based exploration with gradient-based refinement. The resulting digital twins exhibit complete and precise geometry, physical stability, and realistic rendering from novel viewpoints. Evaluations conducted on multiple benchmark datasets demonstrate superior performance, while practical use-cases in interactive gaming and real-time digital-twin manipulation illustrate HoloScene's broad applicability and effectiveness. Project page: https://xiahongchi.github.io/HoloScene.
comment: Project page: https://xiahongchi.github.io/HoloScene
☆ Midway Network: Learning Representations for Recognition and Motion from Latent Dynamics
Object recognition and motion understanding are key components of perception that complement each other. While self-supervised learning methods have shown promise in their ability to learn from unlabeled data, they have primarily focused on obtaining rich representations for either recognition or motion rather than both in tandem. On the other hand, latent dynamics modeling has been used in decision making to learn latent representations of observations and their transformations over time for control and planning tasks. In this work, we present Midway Network, a new self-supervised learning architecture that is the first to learn strong visual representations for both object recognition and motion understanding solely from natural videos, by extending latent dynamics modeling to this domain. Midway Network leverages a midway top-down path to infer motion latents between video frames, as well as a dense forward prediction objective and hierarchical structure to tackle the complex, multi-object scenes of natural videos. We demonstrate that after pretraining on two large-scale natural video datasets, Midway Network achieves strong performance on both semantic segmentation and optical flow tasks relative to prior self-supervised learning methods. We also show that Midway Network's learned dynamics can capture high-level correspondence via a novel analysis method based on forward feature perturbation.
comment: Project page: https://agenticlearning.ai/midway-network/
☆ nnSAM2: nnUNet-Enhanced One-Prompt SAM2 for Few-shot Multi-Modality Segmentation and Composition Analysis of Lumbar Paraspinal Muscles
Purpose: To develop and validate No-New SAM2 (nnsam2) for few-shot segmentation of lumbar paraspinal muscles using only a single annotated slice per dataset, and to assess its statistical comparability with expert measurements across multi-sequence MRI and multi-protocol CT. Methods: We retrospectively analyzed 1,219 scans (19,439 slices) from 762 participants across six datasets. Six slices (one per dataset) served as labeled examples, while the remaining 19,433 slices were used for testing. In this minimal-supervision setting, nnsam2 used single-slice SAM2 prompts to generate pseudo-labels, which were pooled across datasets and refined through three sequential, independent nnU-Net models. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), and automated measurements-including muscle volume, fat ratio, and CT attenuation-were assessed with two one-sided tests (TOST) and intraclass correlation coefficients (ICC). Results: nnsam2 outperformed vanilla SAM2, its medical variants, TotalSegmentator, and the leading few-shot method, achieving DSCs of 0.94-0.96 on MR images and 0.92-0.93 on CT. Automated and expert measurements were statistically equivalent for muscle volume (MRI/CT), CT attenuation, and Dixon fat ratio (TOST, P < 0.05), with consistently high ICCs (0.86-1.00). Conclusion: We developed nnsam2, a state-of-the-art few-shot framework for multi-modality LPM segmentation, producing muscle volume (MRI/CT), attenuation (CT), and fat ratio (Dixon MRI) measurements that were statistically comparable to expert references. Validated across multimodal, multicenter, and multinational cohorts, and released with open code and data, nnsam2 demonstrated high annotation efficiency, robust generalizability, and reproducibility.
☆ Seeing the Big Picture: Evaluating Multimodal LLMs' Ability to Interpret and Grade Handwritten Student Work
Recent advances in multimodal large language models (MLLMs) raise the question of their potential for grading, analyzing, and offering feedback on handwritten student classwork. This capability would be particularly beneficial in elementary and middle-school mathematics education, where most work remains handwritten, because seeing students' full working of a problem provides valuable insights into their learning processes, but is extremely time-consuming to grade. We present two experiments investigating MLLM performance on handwritten student mathematics classwork. Experiment A examines 288 handwritten responses from Ghanaian middle school students solving arithmetic problems with objective answers. In this context, models achieved near-human accuracy (95%, k = 0.90) but exhibited occasional errors that human educators would be unlikely to make. Experiment B evaluates 150 mathematical illustrations from American elementary students, where the drawings are the answer to the question. These tasks lack single objective answers and require sophisticated visual interpretation as well as pedagogical judgment in order to analyze and evaluate them. We attempted to separate MLLMs' visual capabilities from their pedagogical abilities by first asking them to grade the student illustrations directly, and then by augmenting the image with a detailed human description of the illustration. We found that when the models had to analyze the student illustrations directly, they struggled, achieving only k = 0.20 with ground truth scores, but when given human descriptions, their agreement levels improved dramatically to k = 0.47, which was in line with human-to-human agreement levels. This gap suggests MLLMs can "see" and interpret arithmetic work relatively well, but still struggle to "see" student mathematical illustrations.
☆ Teamwork: Collaborative Diffusion with Low-rank Coordination and Adaptation
Large pretrained diffusion models can provide strong priors beneficial for many graphics applications. However, generative applications such as neural rendering and inverse methods such as SVBRDF estimation and intrinsic image decomposition require additional input or output channels. Current solutions for channel expansion are often application specific and these solutions can be difficult to adapt to different diffusion models or new tasks. This paper introduces Teamwork: a flexible and efficient unified solution for jointly increasing the number of input and output channels as well as adapting a pretrained diffusion model to new tasks. Teamwork achieves channel expansion without altering the pretrained diffusion model architecture by coordinating and adapting multiple instances of the base diffusion model (\ie, teammates). We employ a novel variation of Low Rank-Adaptation (LoRA) to jointly address both adaptation and coordination between the different teammates. Furthermore Teamwork supports dynamic (de)activation of teammates. We demonstrate the flexibility and efficiency of Teamwork on a variety of generative and inverse graphics tasks such as inpainting, single image SVBRDF estimation, intrinsic decomposition, neural shading, and intrinsic image synthesis.
☆ Be Tangential to Manifold: Discovering Riemannian Metric for Diffusion Models
Diffusion models are powerful deep generative models (DGMs) that generate high-fidelity, diverse content. However, unlike classical DGMs, they lack an explicit, tractable low-dimensional latent space that parameterizes the data manifold. This absence limits manifold-aware analysis and operations, such as interpolation and editing. Existing interpolation methods for diffusion models typically follow paths through high-density regions, which are not necessarily aligned with the data manifold and can yield perceptually unnatural transitions. To exploit the data manifold learned by diffusion models, we propose a novel Riemannian metric on the noise space, inspired by recent findings that the Jacobian of the score function captures the tangent spaces to the local data manifold. This metric encourages geodesics in the noise space to stay within or run parallel to the learned data manifold. Experiments on image interpolation show that our metric produces perceptually more natural and faithful transitions than existing density-based and naive baselines.
☆ Human Action Recognition from Point Clouds over Time
Recent research into human action recognition (HAR) has focused predominantly on skeletal action recognition and video-based methods. With the increasing availability of consumer-grade depth sensors and Lidar instruments, there is a growing opportunity to leverage dense 3D data for action recognition, to develop a third way. This paper presents a novel approach for recognizing actions from 3D videos by introducing a pipeline that segments human point clouds from the background of a scene, tracks individuals over time, and performs body part segmentation. The method supports point clouds from both depth sensors and monocular depth estimation. At the core of the proposed HAR framework is a novel backbone for 3D action recognition, which combines point-based techniques with sparse convolutional networks applied to voxel-mapped point cloud sequences. Experiments incorporate auxiliary point features including surface normals, color, infrared intensity, and body part parsing labels, to enhance recognition accuracy. Evaluation on the NTU RGB- D 120 dataset demonstrates that the method is competitive with existing skeletal action recognition algorithms. Moreover, combining both sensor-based and estimated depth inputs in an ensemble setup, this approach achieves 89.3% accuracy when different human subjects are considered for training and testing, outperforming previous point cloud action recognition methods.
☆ ArchitectHead: Continuous Level of Detail Control for 3D Gaussian Head Avatars
3D Gaussian Splatting (3DGS) has enabled photorealistic and real-time rendering of 3D head avatars. Existing 3DGS-based avatars typically rely on tens of thousands of 3D Gaussian points (Gaussians), with the number of Gaussians fixed after training. However, many practical applications require adjustable levels of detail (LOD) to balance rendering efficiency and visual quality. In this work, we propose "ArchitectHead", the first framework for creating 3D Gaussian head avatars that support continuous control over LOD. Our key idea is to parameterize the Gaussians in a 2D UV feature space and propose a UV feature field composed of multi-level learnable feature maps to encode their latent features. A lightweight neural network-based decoder then transforms these latent features into 3D Gaussian attributes for rendering. ArchitectHead controls the number of Gaussians by dynamically resampling feature maps from the UV feature field at the desired resolutions. This method enables efficient and continuous control of LOD without retraining. Experimental results show that ArchitectHead achieves state-of-the-art (SOTA) quality in self and cross-identity reenactment tasks at the highest LOD, while maintaining near SOTA performance at lower LODs. At the lowest LOD, our method uses only 6.2\% of the Gaussians while the quality degrades moderately (L1 Loss +7.9\%, PSNR --0.97\%, SSIM --0.6\%, LPIPS Loss +24.1\%), and the rendering speed nearly doubles.
♻ ☆ Video-in-the-Loop: Span-Grounded Long Video QA with Interleaved Reasoning
We present \emph{Video-in-the-Loop} (ViTL), a two-stage long-video QA framework that preserves a fixed token budget by first \emph{localizing} question-relevant interval(s) with a low-fps skim and then \emph{answering} via span-aware reallocation of visual tokens at higher effective frame rate, emitting an interleaved output with both spans and the final option for direct attribution. We also introduce \dataname{}, which converts description based event graphs into \emph{span-grounded} multiple-choice QA by pairing each question with \emph{ground-truth} time span(s) and related reasoning. ViTL is trained end-to-end with an interleaved group-relative objective that couples temporal IoU for localization with answer correctness, allowing credit to flow from answers back to spans without increasing compute. Under fixed token budgets, ViTL attains up to 8.6% with 50% less frame input on long-video QA and temporal grounding (e.g., Charades-STA, ActivityNet-Captions) and ablations show that span-aware token reallocation consistently surpasses uniform sampling. Together, \dataname{} and ViTL provide an interpretable, compute-efficient recipe for scalable long-video QA.
♻ ☆ Noise2Score3D: Tweedie's Approach for Unsupervised Point Cloud Denoising
Building on recent advances in Bayesian statistics and image denoising, we propose Noise2Score3D, a fully unsupervised framework for point cloud denoising. Noise2Score3D learns the score function of the underlying point cloud distribution directly from noisy data, eliminating the need for clean data during training. Using Tweedie's formula, our method performs denoising in a single step, avoiding the iterative processes used in existing unsupervised methods, thus improving both accuracy and efficiency. Additionally, we introduce Total Variation for Point Clouds as a denoising quality metric, which allows for the estimation of unknown noise parameters. Experimental results demonstrate that Noise2Score3D achieves state-of-the-art performance on standard benchmarks among unsupervised learning methods in Chamfer distance and point-to-mesh metrics. Noise2Score3D also demonstrates strong generalization ability beyond training datasets. Our method, by addressing the generalization issue and challenge of the absence of clean data in learning-based methods, paves the way for learning-based point cloud denoising methods in real-world applications.
comment: arXiv admin note: substantial text overlap with arXiv:2502.16826
♻ ☆ Electromagnetic Inverse Scattering from a Single Transmitter
Solving Electromagnetic Inverse Scattering Problems (EISP) is fundamental in applications such as medical imaging, where the goal is to reconstruct the relative permittivity from scattered electromagnetic field. This inverse process is inherently ill-posed and highly nonlinear, making it particularly challenging, especially under sparse transmitter setups, e.g., with only one transmitter. A recent machine learning-based approach, Img-Interiors, shows promising results by leveraging continuous implicit functions. However, it requires time-consuming case-specific optimization and fails under sparse transmitter setups. To address these limitations, we revisit EISP from a data-driven perspective. The scarcity of transmitters leads to an insufficient amount of measured data, which fails to capture adequate physical information for stable inversion. Built on this insight, we propose a fully end-to-end and data-driven framework that predicts the relative permittivity of scatterers from measured fields, leveraging data distribution priors to compensate for the lack of physical information. This design enables data-driven training and feed-forward prediction of relative permittivity while maintaining strong robustness to transmitter sparsity. Extensive experiments show that our method outperforms state-of-the-art approaches in reconstruction accuracy and robustness. Notably, it achieves high-quality results even with a single transmitter, a setting where previous methods consistently fail. This work offers a fundamentally new perspective on electromagnetic inverse scattering and represents a major step toward cost-effective practical solutions for electromagnetic imaging.
♻ ☆ Sparse VideoGen2: Accelerate Video Generation with Sparse Attention via Semantic-Aware Permutation
Diffusion Transformers (DiTs) are essential for video generation but suffer from significant latency due to the quadratic complexity of attention. By computing only critical tokens, sparse attention reduces computational costs and offers a promising acceleration approach. However, we identify that existing methods fail to approach optimal generation quality under the same computation budget for two reasons: (1) Inaccurate critical token identification: current methods cluster tokens based on position rather than semantics, leading to imprecise aggregated representations. (2) Excessive computation waste: critical tokens are scattered among non-critical ones, leading to wasted computation on GPUs, which are optimized for processing contiguous tokens. In this paper, we propose SVG2, a training-free framework that maximizes identification accuracy and minimizes computation waste, achieving a Pareto frontier trade-off between generation quality and efficiency. The core of SVG2 is semantic-aware permutation, which clusters and reorders tokens based on semantic similarity using k-means. This approach ensures both a precise cluster representation, improving identification accuracy, and a densified layout of critical tokens, enabling efficient computation without padding. Additionally, SVG2 integrates top-p dynamic budget control and customized kernel implementations, achieving up to 2.30x and 1.89x speedup while maintaining a PSNR of up to 30 and 26 on HunyuanVideo and Wan 2.1, respectively. Our code is open-sourced at \href{https://github.com/svg-project/Sparse-VideoGen}{https://github.com/svg-project/Sparse-VideoGen}.
♻ ☆ OneCAT: Decoder-Only Auto-Regressive Model for Unified Understanding and Generation
We introduce OneCAT, a unified multimodal model that seamlessly integrates understanding, generation, and editing within a novel, pure decoder-only transformer architecture. Our framework uniquely eliminates the need for external components such as Vision Transformers (ViT) or vision tokenizer during inference, leading to significant efficiency gains, especially for high-resolution inputs. This is achieved through a modality-specific Mixture-of-Experts (MoE) structure trained with a single autoregressive (AR) objective, which also natively supports dynamic resolutions. Furthermore, we pioneer a multi-scale visual autoregressive mechanism within the Large Language Model (LLM) that drastically reduces decoding steps compared to diffusion-based methods while maintaining state-of-the-art performance. Our findings demonstrate the powerful potential of pure autoregressive modeling as a sufficient and elegant foundation for unified multimodal intelligence. As a result, OneCAT sets a new performance standard, outperforming existing open-source unified multimodal models across benchmarks for multimodal generation, editing, and understanding.
comment: technical report, project url:https://onecat-ai.github.io/
♻ ☆ Trajectory Prediction Meets Large Language Models: A Survey
Recent advances in large language models (LLMs) have sparked growing interest in integrating language-driven techniques into trajectory prediction. By leveraging their semantic and reasoning capabilities, LLMs are reshaping how autonomous systems perceive, model, and predict trajectories. This survey provides a comprehensive overview of this emerging field, categorizing recent work into five directions: (1) Trajectory prediction via language modeling paradigms, (2) Direct trajectory prediction with pretrained language models, (3) Language-guided scene understanding for trajectory prediction, (4) Language-driven data generation for trajectory prediction, (5) Language-based reasoning and interpretability for trajectory prediction. For each, we analyze representative methods, highlight core design choices, and identify open challenges. This survey bridges natural language processing and trajectory prediction, offering a unified perspective on how language can enrich trajectory prediction.
comment: 16 pages, GitHub: https://github.com/colorfulfuture/Awesome-Trajectory-Motion-Prediction-Papers
♻ ☆ HBSplat: Robust Sparse-View Gaussian Reconstruction with Hybrid-Loss Guided Depth and Bidirectional Warping
Novel View Synthesis (NVS) from sparse views presents a formidable challenge in 3D reconstruction, where limited multi-view constraints lead to severe overfitting, geometric distortion, and fragmented scenes. While 3D Gaussian Splatting (3DGS) delivers real-time, high-fidelity rendering, its performance drastically deteriorates under sparse inputs, plagued by floating artifacts and structural failures. To address these challenges, we introduce HBSplat, a unified framework that elevates 3DGS by seamlessly integrating robust structural cues, virtual view constraints, and occluded region completion. Our core contributions are threefold: a Hybrid-Loss Depth Estimation module that ensures multi-view consistency by leveraging dense matching priors and integrating reprojection, point propagation, and smoothness constraints; a Bidirectional Warping Virtual View Synthesis method that enforces substantially stronger constraints by creating high-fidelity virtual views through bidirectional depth-image warping and multi-view fusion; and an Occlusion-Aware Reconstruction component that recovers occluded areas using a depth-difference mask and a learning-based inpainting model. Extensive evaluations on LLFF, Blender, and DTU benchmarks validate that HBSplat sets a new state-of-the-art, achieving up to 21.13 dB PSNR and 0.189 LPIPS, while maintaining real-time inference. Code is available at: https://github.com/eternalland/HBSplat.
comment: 14 pages, 21 figures
♻ ☆ Unified Cross-Modal Medical Image Synthesis with Hierarchical Mixture of Product-of-Experts
We propose a deep mixture of multimodal hierarchical variational auto-encoders called MMHVAE that synthesizes missing images from observed images in different modalities. MMHVAE's design focuses on tackling four challenges: (i) creating a complex latent representation of multimodal data to generate high-resolution images; (ii) encouraging the variational distributions to estimate the missing information needed for cross-modal image synthesis; (iii) learning to fuse multimodal information in the context of missing data; (iv) leveraging dataset-level information to handle incomplete data sets at training time. Extensive experiments are performed on the challenging problem of pre-operative brain multi-parametric magnetic resonance and intra-operative ultrasound imaging.
comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction
In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, $f$-distill, etc, inside a theory-driven framework which we name the \textbf{\emph{Uni-Instruct}}. Uni-Instruct is motivated by our proposed diffusion expansion theory of the $f$-divergence family. Then we introduce key theories that overcome the intractability issue of the original expanded $f$-divergence, resulting in an equivalent yet tractable loss that effectively trains one-step diffusion models by minimizing the expanded $f$-divergence family. The novel unification introduced by Uni-Instruct not only offers new theoretical contributions that help understand existing approaches from a high-level perspective but also leads to state-of-the-art one-step diffusion generation performances. On the CIFAR10 generation benchmark, Uni-Instruct achieves record-breaking Frechet Inception Distance (FID) values of \textbf{\emph{1.46}} for unconditional generation and \textbf{\emph{1.38}} for conditional generation. On the ImageNet-$64\times 64$ generation benchmark, Uni-Instruct achieves a new SoTA one-step generation FID of \textbf{\emph{1.02}}, which outperforms its 79-step teacher diffusion with a significant improvement margin of 1.33 (1.02 vs 2.35). We also apply Uni-Instruct on broader tasks like text-to-3D generation. For text-to-3D generation, Uni-Instruct gives decent results, which slightly outperforms previous methods, such as SDS and VSD, in terms of both generation quality and diversity. Both the solid theoretical and empirical contributions of Uni-Instruct will potentially help future studies on one-step diffusion distillation and knowledge transferring of diffusion models.
MoSA: Motion-Coherent Human Video Generation via Structure-Appearance Decoupling
Existing video generation models predominantly emphasize appearance fidelity while exhibiting limited ability to synthesize complex human motions, such as whole-body movements, long-range dynamics, and fine-grained human-environment interactions. This often leads to unrealistic or physically implausible movements with inadequate structural coherence. To conquer these challenges, we propose MoSA, which decouples the process of human video generation into two components, i.e., structure generation and appearance generation. MoSA first employs a 3D structure transformer to generate a human motion sequence from the text prompt. The remaining video appearance is then synthesized under the guidance of this structural sequence. We achieve fine-grained control over the sparse human structures by introducing Human-Aware Dynamic Control modules with a dense tracking constraint during training. The modeling of human-environment interactions is improved through the proposed contact constraint. Those two components work comprehensively to ensure the structural and appearance fidelity across the generated videos. This paper also contributes a large-scale human video dataset, which features more complex and diverse motions than existing human video datasets. We conduct comprehensive comparisons between MoSA and a variety of approaches, including general video generation models, human video generation models, and human animation models. Experiments demonstrate that MoSA substantially outperforms existing approaches across the majority of evaluation metrics.
comment: Project: https://hywang2002.github.io/MoSA
♻ ☆ Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search NeurIPS2025
The remarkable progress in text-to-video diffusion models enables the generation of photorealistic videos, although the content of these generated videos often includes unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some measure of the content's goodness. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward at inference time. We then point out that improving perceptual video quality with respect to alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with the evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline: we should prioritize the inference-time compute allocation into enabling the lookahead estimator and increasing the search budget, rather than expanding the denoising steps.
comment: Accepted to NeurIPS2025. Website: https://sites.google.com/view/t2v-dlbs and Code: https://github.com/shim0114/T2V-Diffusion-Search
♻ ☆ VisioMath: Benchmarking Figure-based Mathematical Reasoning in LMMs
Large Multimodal Models have achieved remarkable progress in integrating vision and language, enabling strong performance across perception, reasoning, and domain-specific tasks. However, their capacity to reason over multiple, visually similar inputs remains insufficiently explored. Such fine-grained comparative reasoning is central to real-world tasks, especially in mathematics and education, where learners must often distinguish between nearly identical diagrams to identify correct solutions. To address this gap, we present VisioMath, a curated benchmark of 1,800 high-quality K-12 mathematics problems in which all candidate answers are diagrams with subtle visual similarities. A comprehensive evaluation of state-of-the-art LMMs, covering both leading closed-source systems and widely adopted open-source models, reveals a consistent decline in accuracy as inter-image similarity increases. Analysis indicates that the dominant failure mode stems from image-text misalignment: rather than grounding reasoning in textual cues, models often resort to shallow positional heuristics, resulting in systematic errors. We further explore three alignment-oriented strategies, spanning training-free approaches and finetuning, and achieve substantial accuracy gains. We hope that VisioMath will serve as a rigorous benchmark and catalyst for developing LMMs toward deeper diagram understanding, precise comparative reasoning, and grounded multi-image-text integration.
♻ ☆ Teaching Metric Distance to Discrete Autoregressive Language Models
As large language models expand beyond natural language to domains such as mathematics, multimodal understanding, and embodied agents, tokens increasingly reflect metric relationships rather than purely linguistic meaning. We introduce DIST2Loss, a distance-aware framework designed to train autoregressive discrete models by leveraging predefined distance relationships among output tokens. At its core, DIST2Loss transforms continuous exponential family distributions derived from inherent distance metrics into discrete, categorical optimization targets compatible with the models' architectures. This approach enables the models to learn and preserve meaningful distance relationships during token generation while maintaining compatibility with existing architectures. Empirical evaluations show consistent performance gains in diverse multimodal applications, including visual grounding, robotic manipulation, generative reward modeling, and image generation using vector-quantized features. These improvements are most notable in low-data regimes, demonstrating DIST2Loss's strength under resource constraints.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual information repeatedly during reasoning. However, existing models typically process images only once and thereafter generate reasoning entirely in text, lacking mechanisms to re-access or ground inference in visual representations. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. In response, we introduce v1, a lightweight extension that enables active visual referencing through a simple point-and-copy approach. This allows the model to identify relevant image patches and copy their embeddings back into the reasoning stream, ensuring that evolving hypotheses remain grounded in perceptual evidence. Crucially, our pointing strategy lets the MLLM directly select image patches using their semantic representations as keys, keeping perceptual evidence embedded in the same space as the model's reasoning. To train this capability, we construct v1g, a dataset of 300K multimodal reasoning traces with interleaved visual grounding annotations. Across various multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines, establishing point-and-copy as a practical mechanism for grounded reasoning. The model checkpoint and dataset are available at github.com/jun297/v1.
♻ ☆ A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond
Mamba, a special case of the State Space Model, is gaining popularity as an alternative to template-based deep learning approaches in medical image analysis. While transformers are powerful architectures, they have drawbacks, including quadratic computational complexity and an inability to address long-range dependencies efficiently. This limitation affects the analysis of large and complex datasets in medical imaging, where there are many spatial and temporal relationships. In contrast, Mamba offers benefits that make it well-suited for medical image analysis. It has linear time complexity, which is a significant improvement over transformers. Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory. Mamba also demonstrates strong performance in merging multimodal data, improving diagnosis accuracy and patient outcomes. The organization of this paper allows readers to appreciate the capabilities of Mamba in medical imaging step by step. We begin by defining core concepts of SSMs and models, including S4, S5, and S6, followed by an exploration of Mamba architectures such as pure Mamba, U-Net variants, and hybrid models with convolutional neural networks, transformers, and Graph Neural Networks. We also cover Mamba optimizations, techniques and adaptations, scanning, datasets, applications, experimental results, and conclude with its challenges and future directions in medical imaging. This review aims to demonstrate the transformative potential of Mamba in overcoming existing barriers within medical imaging while paving the way for innovative advancements in the field. A comprehensive list of Mamba architectures applied in the medical field, reviewed in this work, is available at Github.
♻ ☆ AutoEdit: Automatic Hyperparameter Tuning for Image Editing
Recent advances in diffusion models have revolutionized text-guided image editing, yet existing editing methods face critical challenges in hyperparameter identification. To get the reasonable editing performance, these methods often require the user to brute-force tune multiple interdependent hyperparameters, such as inversion timesteps and attention modification. This process incurs high computational costs due to the huge hyperparameter search space. We consider searching optimal editing's hyperparameters as a sequential decision-making task within the diffusion denoising process. Specifically, we propose a reinforcement learning framework, which establishes a Markov Decision Process that dynamically adjusts hyperparameters across denoising steps, integrating editing objectives into a reward function. The method achieves time efficiency through proximal policy optimization while maintaining optimal hyperparameter configurations. Experiments demonstrate significant reduction in search time and computational overhead compared to existing brute-force approaches, advancing the practical deployment of a diffusion-based image editing framework in the real world. Codes can be found at https://github.com/chaupham1709/AutoEdit.git.
comment: Provided code link
♻ ☆ Low-Rank Tensor Recovery via Variational Schatten-p Quasi-Norm and Jacobian Regularization
Higher-order tensors are well-suited for representing multi-dimensional data, such as images and videos, which typically characterize low-rank structures. Low-rank tensor decomposition has become essential in machine learning and computer vision, but existing methods like Tucker decomposition offer flexibility at the expense of interpretability. The CANDECOMP/PARAFAC (CP) decomposition provides a natural and interpretable structure, while obtaining a sparse solutions remains challenging. Leveraging the rich properties of CP decomposition, we propose a CP-based low-rank tensor function parameterized by neural networks (NN) for implicit neural representation. This approach can model the tensor both on-grid and beyond grid, fully utilizing the non-linearity of NN with theoretical guarantees on excess risk bounds. To achieve sparser CP decomposition, we introduce a variational Schatten-p quasi-norm to prune redundant rank-1 components and prove that it serves as a common upper bound for the Schatten-p quasi-norms of arbitrary unfolding matrices. For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator. The proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations. It can serve as an alternative to Total Variation (TV) regularization in image denoising tasks and is naturally applicable to implicit neural representation. Extensive experiments on multi-dimensional data recovery tasks, including image inpainting, denoising, and point cloud upsampling, demonstrate the superiority and versatility of our method compared to state-of-the-art approaches. The code is available at https://github.com/CZY-Code/CP-Pruner.
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ RimSet: Quantitatively Identifying and Characterizing Chronic Active Multiple Sclerosis Lesion on Quantitative Susceptibility Maps
Background: Rim+ lesions in multiple sclerosis (MS), detectable via Quantitative Susceptibility Mapping (QSM), correlate with increased disability. Existing literature lacks quantitative analysis of these lesions. We introduce RimSet for quantitative identification and characterization of rim+ lesions on QSM. Methods: RimSet combines RimSeg, an unsupervised segmentation method using level-set methodology, and radiomic measurements with Local Binary Pattern texture descriptors. We validated RimSet using simulated QSM images and an in vivo dataset of 172 MS subjects with 177 rim+ and 3986 rim-lesions. Results: RimSeg achieved a 78.7% Dice score against the ground truth, with challenges in partial rim lesions. RimSet detected rim+ lesions with a partial ROC AUC of 0.808 and PR AUC of 0.737, surpassing existing methods. QSMRim-Net showed the lowest mean square error (0.85) and high correlation (0.91; 95% CI: 0.88, 0.93) with expert annotations at the subject level.
comment: 13 pages, 7 figures, 4 tables
♻ ☆ Enhancing Fitness Movement Recognition with Attention Mechanism and Pre-Trained Feature Extractors
Fitness movement recognition, a focused subdomain of human activity recognition (HAR), plays a vital role in health monitoring, rehabilitation, and personalized fitness training by enabling automated exercise classification from video data. However, many existing deep learning approaches rely on computationally intensive 3D models, limiting their feasibility in real-time or resource-constrained settings. In this paper, we present a lightweight and effective framework that integrates pre-trained 2D Convolutional Neural Networks (CNNs) such as ResNet50, EfficientNet, and Vision Transformers (ViT) with a Long Short-Term Memory (LSTM) network enhanced by spatial attention. These models efficiently extract spatial features while the LSTM captures temporal dependencies, and the attention mechanism emphasizes informative segments. We evaluate the framework on a curated subset of the UCF101 dataset, achieving a peak accuracy of 93.34\% with the ResNet50-based configuration. Comparative results demonstrate the superiority of our approach over several state-of-the-art HAR systems. The proposed method offers a scalable and real-time-capable solution for fitness activity recognition with broader applications in vision-based health and activity monitoring.
comment: 6 pages,9 figures, 2025 28th International Conference on Computer and Information Technology (ICCIT)
♻ ☆ A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localises and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-centre WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score of 0.67 for whole skeletal delineation, 0.76 when excluding ribcage, 0.83 for internal organs, and 0.86 for spinal canal, with average surface distances below 3mm. Relative median ADC differences between automated and manual full-body delineations were below 10%. The model was 12x faster than the atlas-based registration algorithm (25 sec vs. 5 min). Two experienced radiologists rated the model's outputs as either "good" or "excellent" on test scans, with inter-reader agreement from fair to substantial (Gwet's AC1 = 0.27-0.72). Conclusion: The model offers fast, reproducible probability maps for localising and delineating body regions on WB-DWI, potentially enabling non-invasive imaging biomarker quantification to support disease staging and treatment response assessment.
♻ ☆ When Semantics Mislead Vision: Mitigating Large Multimodal Models Hallucinations in Scene Text Spotting and Understanding NeurIPS 2025
Large Multimodal Models (LMMs) have achieved impressive progress in visual perception and reasoning. However, when confronted with visually ambiguous or non-semantic scene text, they often struggle to accurately spot and understand the content, frequently generating semantically plausible yet visually incorrect answers, which we refer to as semantic hallucination. In this work, we investigate the underlying causes of semantic hallucination and identify a key finding: Transformer layers in LLM with stronger attention focus on scene text regions are less prone to producing semantic hallucinations. Thus, we propose a training-free semantic hallucination mitigation framework comprising two key components: (1) ZoomText, a coarse-to-fine strategy that identifies potential text regions without external detectors; and (2) Grounded Layer Correction, which adaptively leverages the internal representations from layers less prone to hallucination to guide decoding, correcting hallucinated outputs for non-semantic samples while preserving the semantics of meaningful ones. To enable rigorous evaluation, we introduce TextHalu-Bench, a benchmark of 1,740 samples spanning both semantic and non-semantic cases, with manually curated question answer pairs designed to probe model hallucinations. Extensive experiments demonstrate that our method not only effectively mitigates semantic hallucination but also achieves strong performance on public benchmarks for scene text spotting and understanding.
comment: Accepted by NeurIPS 2025
♻ ☆ A discussion about violin reduction: geometric analysis of contour lines and channel of minima
Some early violins have been reduced during their history to fit imposed morphological standards, while more recent ones have been built directly to these standards. We can observe differences between reduced and unreduced instruments, particularly in their contour lines and channel of minima. In a recent preliminary work, we computed and highlighted those two features for two instruments using triangular 3D meshes acquired by photogrammetry, whose fidelity has been assessed and validated with sub-millimetre accuracy. We propose here an extension to a corpus of 38 violins, violas and cellos, and introduce improved procedures, leading to a stronger discussion of the geometric analysis. We first recall the material we are working with. We then discuss how to derive the best reference plane for the violin alignment, which is crucial for the computation of contour lines and channel of minima. Finally, we show how to compute efficiently both characteristics and we illustrate our results with a few examples.
comment: Paper accepted for the Florence Heri-Tech 2024 Conference
♻ ☆ AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection
Omni-domain infrared small target detection (Omni-IRSTD) poses formidable challenges, as a single model must seamlessly adapt to diverse imaging systems, varying resolutions, and multiple spectral bands simultaneously. Current approaches predominantly rely on visual-only modeling paradigms that not only struggle with complex background interference and inherently scarce target features, but also exhibit limited generalization capabilities across complex omni-scene environments where significant domain shifts and appearance variations occur. In this work, we reveal a critical oversight in existing paradigms: the neglect of readily available auxiliary metadata describing imaging parameters and acquisition conditions, such as spectral bands, sensor platforms, resolution, and observation perspectives. To address this limitation, we propose the Auxiliary Metadata Driven Infrared Small Target Detector (AuxDet), a novel multimodal framework that is the first to incorporate metadata into the IRSTD paradigm for scene-aware optimization. Through a high-dimensional fusion module based on multi-layer perceptrons (MLPs), AuxDet dynamically integrates metadata semantics with visual features, guiding adaptive representation learning for each individual sample. Additionally, we design a lightweight prior-initialized enhancement module using 1D convolutional blocks to further refine fused features and recover fine-grained target cues. Extensive experiments on the challenging WideIRSTD-Full benchmark demonstrate that AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy in omni-domain IRSTD tasks. Code is available at https://github.com/GrokCV/AuxDet.
♻ ☆ Robust Concept Erasure in Diffusion Models: A Theoretical Perspective on Security and Robustness
Diffusion models have achieved unprecedented success in image generation but pose increasing risks in terms of privacy, fairness, and security. A growing demand exists to \emph{erase} sensitive or harmful concepts (e.g., NSFW content, private individuals, artistic styles) from these models while preserving their overall generative capabilities. We introduce \textbf{SCORE} (Secure and Concept-Oriented Robust Erasure), a novel framework for robust concept removal in diffusion models. SCORE formulates concept erasure as an \emph{adversarial independence} problem, theoretically guaranteeing that the model's outputs become statistically independent of the erased concept. Unlike prior heuristic methods, SCORE minimizes the mutual information between a target concept and generated outputs, yielding provable erasure guarantees. We provide formal proofs establishing convergence properties and derive upper bounds on residual concept leakage. Empirically, we evaluate SCORE on Stable Diffusion and FLUX across four challenging benchmarks: object erasure, NSFW removal, celebrity face suppression, and artistic style unlearning. SCORE consistently outperforms state-of-the-art methods including EraseAnything, ANT, MACE, ESD, and UCE, achieving up to \textbf{12.5\%} higher erasure efficacy while maintaining comparable or superior image quality. By integrating adversarial optimization, trajectory consistency, and saliency-driven fine-tuning, SCORE sets a new standard for secure and robust concept erasure in diffusion models.
comment: updated version
♻ ☆ Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both $\ell_\infty$ and $\ell_2$ threat models (binary and multiclass), the certified radius grows as the dual norms of $W^\top u$ shrink, where $W$ is the projection and $u$ the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.
comment: Killian Steunou is the main contributor and corresponding author of this work
Incremental Object Detection with Prompt-based Methods ICCV
Visual prompt-based methods have seen growing interest in incremental learning (IL) for image classification. These approaches learn additional embedding vectors while keeping the model frozen, making them efficient to train. However, no prior work has applied such methods to incremental object detection (IOD), leaving their generalizability unclear. In this paper, we analyze three different prompt-based methods under a complex domain-incremental learning setting. We additionally provide a wide range of reference baselines for comparison. Empirically, we show that the prompt-based approaches we tested underperform in this setting. However, a strong yet practical method, combining visual prompts with replaying a small portion of previous data, achieves the best results. Together with additional experiments on prompt length and initialization, our findings offer valuable insights for advancing prompt-based IL in IOD.
comment: Accepted to ICCV Workshops 2025: v2 update affiliation
RICO: Two Realistic Benchmarks and an In-Depth Analysis for Incremental Learning in Object Detection ICCV
Incremental Learning (IL) trains models sequentially on new data without full retraining, offering privacy, efficiency, and scalability. IL must balance adaptability to new data with retention of old knowledge. However, evaluations often rely on synthetic, simplified benchmarks, obscuring real-world IL performance. To address this, we introduce two Realistic Incremental Object Detection Benchmarks (RICO): Domain RICO (D-RICO) features domain shifts with a fixed class set, and Expanding-Classes RICO (EC-RICO) integrates new domains and classes per IL step. Built from 14 diverse datasets covering real and synthetic domains, varying conditions (e.g., weather, time of day), camera sensors, perspectives, and labeling policies, both benchmarks capture challenges absent in existing evaluations. Our experiments show that all IL methods underperform in adaptability and retention, while replaying a small amount of previous data already outperforms all methods. However, individual training on the data remains superior. We heuristically attribute this gap to weak teachers in distillation, single models' inability to manage diverse tasks, and insufficient plasticity. Our code will be made publicly available.
comment: Accepted to ICCV Workshops 2025; v2: add GitHub link and update affiliation
♻ ☆ Bridging Semantic Logic Gaps: A Cognition Inspired Multimodal Boundary Preserving Network for Image Manipulation Localization
The existing image manipulation localization (IML) models mainly relies on visual cues, but ignores the semantic logical relationships between content features. In fact, the content semantics conveyed by real images often conform to human cognitive laws. However, image manipulation technology usually destroys the internal relationship between content features, thus leaving semantic clues for IML. In this paper, we propose a cognition inspired multimodal boundary preserving network (CMB-Net). Specifically, CMB-Net utilizes large language models (LLMs) to analyze manipulated regions within images and generate prompt-based textual information to compensate for the lack of semantic relationships in the visual information. Considering that the erroneous texts induced by hallucination from LLMs will damage the accuracy of IML, we propose an image-text central ambiguity module (ITCAM). It assigns weights to the text features by quantifying the ambiguity between text and image features, thereby ensuring the beneficial impact of textual information. We also propose an image-text interaction module (ITIM) that aligns visual and text features using a correlation matrix for fine-grained interaction. Finally, inspired by invertible neural networks, we propose a restoration edge decoder (RED) that mutually generates input and output features to preserve boundary information in manipulated regions without loss. Extensive experiments show that CMB-Net outperforms most existing IML models. Our code is available on https://github.com/vpsg-research/CMB-Net.
♻ ☆ Evaluation of Deformable Image Registration under Alignment-Regularity Trade-of
Evaluating deformable image registration (DIR) is challenging due to the inherent trade-off between achieving high alignment accuracy and maintaining deformation regularity. However, most existing DIR works either address this trade-off inadequately or overlook it altogether. In this paper, we highlight the issues with existing practices and propose an evaluation scheme that captures the trade-off continuously to holistically evaluate DIR methods. We first introduce the alignment regularity characteristic (ARC) curves, which describe the performance of a given registration method as a spectrum under various degrees of regularity. We demonstrate that the ARC curves reveal unique insights that are not evident from existing evaluation practices, using experiments on representative deep learning DIR methods with various network architectures and transformation models. We further adopt a HyperNetwork based approach that learns to continuously interpolate across the full regularization range, accelerating the construction and improving the sample density of ARC curves. Finally, we provide general guidelines for a nuanced model evaluation and selection using our evaluation scheme for both practitioners and registration researchers.
♻ ☆ Background Semantics Matter: Cross-Task Feature Exchange Network for Clustered Infrared Small Target Detection
Infrared small target detection presents significant challenges due to the limited intrinsic features of the target and the overwhelming presence of visually similar background distractors. We contend that background semantics are critical for distinguishing between objects that appear visually similar in this context. To address this challenge, we propose a task, clustered infrared small target detection, and introduce DenseSIRST, a benchmark dataset that provides per-pixel semantic annotations for background regions. This dataset facilitates the shift from sparse to dense target detection. This dataset facilitates the shift from sparse to dense target detection. Building on this resource, we propose the Background-Aware Feature Exchange Network (BAFE-Net), a multi-task architecture that jointly tackles target detection and background semantic segmentation. BAFE-Net incorporates a dynamic cross-task feature hard-exchange mechanism, enabling the effective exchange of target and background semantics between the two tasks. Comprehensive experiments demonstrate that BAFE-Net significantly enhances target detection accuracy while mitigating false alarms. The DenseSIRST dataset, along with the code and trained models, is publicly available at https://github.com/GrokCV/BAFE-Net.
♻ ☆ Towards Unified Image Deblurring using a Mixture-of-Experts Decoder
Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also shows promising generalization to unseen blur scenarios, particularly when leveraging appropriate expert selection. Code available at https://github.com/cidautai/DeMoE.
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Mitigate Object Hallucinations in MLLMs?
Contrastive decoding strategies are widely used to reduce object hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ Cat: Post-Training Quantization Error Reduction via Cluster-based Affine Transformation
Post-Training Quantization (PTQ) reduces the memory footprint and computational overhead of deep neural networks by converting full-precision (FP) values into quantized and compressed data types. While PTQ is more cost-efficient than Quantization-Aware Training (QAT), it is highly susceptible to accuracy degradation under a low-bit quantization (LQ) regime (e.g., 2-bit). Affine transformation is a classical technique used to reduce the discrepancy between the information processed by a quantized model and that processed by its full-precision counterpart; however, we find that using plain affine transformation, which applies a uniform affine parameter set for all outputs, worsens the results in low-bit PTQ. To address this, we propose Cluster-based Affine Transformation (CAT), an error-reduction framework that employs cluster-specific parameters to align LQ outputs with FP counterparts. CAT refines LQ outputs with only a negligible number of additional parameters, without requiring fine-tuning of the model or quantization parameters. We further introduce a novel PTQ framework integrated with CAT. Experiments on ImageNet-1K show that this framework consistently outperforms prior PTQ methods across diverse architectures and LQ settings, achieving up to 53.18% Top-1 accuracy on W2A2 ResNet-18. Moreover, CAT enhances existing PTQ baselines by more than 3% when used as a plug-in. We plan to release our implementation alongside the publication of this paper.
comment: 29 pages, 20 figures
♻ ☆ Adapting Large Language Models to Mitigate Skin Tone Biases in Clinical Dermatology Tasks: A Mixed-Methods Study
SkinGPT-4, a large vision-language model, leverages annotated skin disease images to augment clinical workflows in underserved communities. However, its training dataset predominantly represents lighter skin tones, limiting diagnostic accuracy for darker tones. Here, we evaluated performance biases in SkinGPT-4 across skin tones on common skin diseases, including eczema, allergic-contact dermatitis, and psoriasis using the open-sourced SCIN dataset. We leveraged the SkinGPT-4 backbone to develop finetuned models for custom skin disease classification tasks and explored bias mitigation strategies. Clinical evaluation by board-certified dermatologists on six relevant skin diseases from 300 SCIN cases assessed images for diagnostic accuracy, informativity, physician utility, and patient utility. Model fairness metrics, including demographic parity and equalized odds, were calculated across skin tones. SkinGPT-4 achieved an average demographic parity of 0.10 across Fitzpatrick types, with notable differences of 0.10-0.15 between lightest and darkest tones across evaluation metrics. Model hallucinations in artifacts and anatomy occurred at a rate of 17.8. Our customized models achieved average F1, precision, and AUROC of 0.75, 0.78, and 0.78 across visually similar disease pairs. Fairness analysis showed an average demographic parity of 0.75, with a maximum disparity of 0.21 across skin tones. The best model achieved parity scores of 0.83, 0.83, 0.76, 0.89, 0.90, and 0.90 for Fitzpatrick I-VI, indicating robust fairness. Large language models such as SkinGPT-4 showed weaker performance on darker tones. Model biases exist across evaluation criteria, and hallucinations may affect diagnostic efficacy. These findings demonstrate the efficacy of training accurate, fair models using existing backbones for custom skin disease classification.
comment: Accepted to EADV (European Academy of Dermatology) and SID (Society for Investigative Dermatology)
♻ ☆ Imagining the Unseen: Generative Location Modeling for Object Placement ICCV 2025
Location modeling, or determining where non-existing objects could feasibly appear in a scene, has the potential to benefit numerous computer vision tasks, from automatic object insertion to scene creation in virtual reality. Yet, this capability remains largely unexplored to date. In this paper, we develop a generative location model that, given an object class and an image, learns to predict plausible bounding boxes for such an object. Our approach first tokenizes the image and target object class, then decodes bounding box coordinates through an autoregressive transformer. This formulation effectively addresses two core challenges in locatio modeling: the inherent one-to-many nature of plausible locations, and the sparsity of existing location modeling datasets, where fewer than 1% of valid placements are labeled. Furthermore, we incorporate Direct Preference Optimization to leverage negative labels, refining the spatial predictions. Empirical evaluations reveal that our generative location model achieves superior placement accuracy on the OPA dataset as compared to discriminative baselines and image composition approaches. We further test our model in the context of object insertion, where it proposes locations for an off-the-shelf inpainting model to render objects. In this respect, our proposal exhibits improved visual coherence relative to state-of-the-art instruction-tuned editing methods, demonstrating a high-performing location model's utility in a downstream application.
comment: Accepted by ICCV 2025 DRL4Real Workshop
♻ ☆ Submillimeter-Accurate 3D Lumbar Spine Reconstruction from Biplanar X-Ray Images: Incorporating a Multi-Task Network and Landmark-Weighted Loss
To meet the clinical demand for accurate 3D lumbar spine assessment in a weight-bearing position, this study presents a novel, fully automatic framework for high-precision 3D reconstruction from biplanar X-ray images, overcoming the limitations of existing methods. The core of this method involves a novel multi-task deep learning network that simultaneously performs lumbar decomposition and landmark detection on the original biplanar radiographs. The decomposition effectively eliminates interference from surrounding tissues, simplifying subsequent image registration, while the landmark detection provides an initial pose estimation for the Statistical Shape Model (SSM), enhancing the efficiency and robustness of the registration process. Building on this, we introduce a landmark-weighted 2D-3D registration strategy. By assigning higher weights to complex posterior structures like the transverse and spinous processes during optimization, this strategy significantly enhances the reconstruction accuracy of the posterior arch. Our method was validated against a gold standard derived from registering CT segmentations to the biplanar X-rays. It sets a new benchmark by achieving sub-millimeter accuracy and completes the full reconstruction and measurement workflow in under 20 seconds, establishing a state-of-the-art combination of precision and speed. This fast and low-dose pipeline provides a powerful automated tool for diagnosing lumbar conditions such as spondylolisthesis and scoliosis in their functional, weight-bearing state.
comment: 27 pages, 16 figures, 9 tables
♻ ☆ MoME: Estimating Psychological Traits from Gait with Multi-Stage Mixture of Movement Experts
Gait encodes rich biometric and behavioural information, yet leveraging the manner of walking to infer psychological traits remains a challenging and underexplored problem. We introduce a hierarchical Multi-Stage Mixture of Movement Experts (MoME) architecture for multi-task prediction of psychological attributes from gait sequences represented as 2D poses. MoME processes the walking cycle in four stages of movement complexity, employing lightweight expert models to extract spatio-temporal features and task-specific gating modules to adaptively weight experts across traits and stages. Evaluated on the PsyMo benchmark covering 17 psychological traits, our method outperforms state-of-the-art gait analysis models, achieving a 37.47% weighted F1 score at the run level and 44.6% at the subject level. Our experiments show that integrating auxiliary tasks such as identity recognition, gender prediction, and BMI estimation further improves psychological trait estimation. Our findings demonstrate the viability of multi-task gait-based learning for psychological trait estimation and provide a foundation for future research on movement-informed psychological inference.
comment: 4 Figures, 4 Tables
♻ ☆ Deep Reinforcement Learning for Urban Air Quality Management: Multi-Objective Optimization of Pollution Mitigation Booth Placement in Metropolitan Environments
This is the preprint version of the article published in IEEE Access vol. 13, pp. 146503--146526, 2025, doi:10.1109/ACCESS.2025.3599541. Please cite the published version. Urban air pollution remains a pressing global concern, particularly in densely populated and traffic-intensive metropolitan areas like Delhi, where exposure to harmful pollutants severely impacts public health. Delhi, being one of the most polluted cities globally, experiences chronic air quality issues due to vehicular emissions, industrial activities, and construction dust, which exacerbate its already fragile atmospheric conditions. Traditional pollution mitigation strategies, such as static air purifying installations, often fail to maximize their impact due to suboptimal placement and limited adaptability to dynamic urban environments. This study presents a novel deep reinforcement learning (DRL) framework to optimize the placement of air purification booths to improve the air quality index (AQI) in the city of Delhi. We employ Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm, to iteratively learn and identify high-impact locations based on multiple spatial and environmental factors, including population density, traffic patterns, industrial influence, and green space constraints. Our approach is benchmarked against conventional placement strategies, including random and greedy AQI-based methods, using multi-dimensional performance evaluation metrics such as AQI improvement, spatial coverage, population and traffic impact, and spatial entropy.
comment: This is the preprint version of the article published in IEEE Access vol. 13, pp. 146503--146526, 2025, doi:10.1109/ACCESS.2025.3599541. Please cite the published version
♻ ☆ PartSDF: Part-Based Implicit Neural Representation for Composite 3D Shape Parametrization and Optimization
Accurate 3D shape representation is essential in engineering applications such as design, optimization, and simulation. In practice, engineering workflows require structured, part-based representations, as objects are inherently designed as assemblies of distinct components. However, most existing methods either model shapes holistically or decompose them without predefined part structures, limiting their applicability in real-world design tasks. We propose PartSDF, a supervised implicit representation framework that explicitly models composite shapes with independent, controllable parts while maintaining shape consistency. Thanks to its simple but innovative architecture, PartSDF outperforms both supervised and unsupervised baselines in reconstruction and generation tasks. We further demonstrate its effectiveness as a structured shape prior for engineering applications, enabling precise control over individual components while preserving overall coherence. Code available at https://github.com/cvlab-epfl/PartSDF.
comment: Accepted to TMLR (27 pages, 14 figures)
♻ ☆ VisRet: Visualization Improves Knowledge-Intensive Text-to-Image Retrieval
Text-to-image retrieval (T2I retrieval) remains challenging because cross-modal embeddings often behave as bags of concepts and underrepresent structured visual relationships such as pose and viewpoint. We propose Visualize-then-Retrieve (VisRet), a new paradigm for T2I retrieval that mitigates this limitation of cross-modal similarity alignment. VisRet first projects textual queries into the image modality via T2I generation. Then, it performs retrieval within the image modality to bypass the weaknesses of cross-modal retrievers in recognizing subtle visual-spatial features. Across four benchmarks (Visual-RAG, INQUIRE-Rerank, Microsoft COCO, and our new Visual-RAG-ME featuring multi-entity comparisons), VisRet substantially outperforms cross-modal similarity matching and baselines that recast T2I retrieval as text-to-text similarity matching, improving nDCG@30 by 0.125 on average with CLIP as the retriever and by 0.121 with E5-V. For downstream question answering, VisRet increases accuracy on Visual-RAG and Visual-RAG-ME by 3.8% and 15.7% in top-1 retrieval, and by 3.9% and 11.1% in top-10 retrieval. Ablation studies show compatibility with different T2I instruction LLMs, T2I generation models, and downstream LLMs. VisRet provides a practical and principled path that energizes further advances in vision-language retrieval. Our code and the Visual-RAG-ME benchmark will be publicly released.
♻ ☆ Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning NeurIPS 2025
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97\%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.
comment: The paper is accepted by NeurIPS 2025
♻ ☆ Think Before You Diffuse: Infusing Physical Rules into Video Diffusion
Recent video diffusion models have demonstrated their great capability in generating visually-pleasing results, while synthesizing the correct physical effects in generated videos remains challenging. The complexity of real-world motions, interactions, and dynamics introduce great difficulties when learning physics from data. In this work, we propose DiffPhy, a generic framework that enables physically-correct and photo-realistic video generation by fine-tuning a pre-trained video diffusion model. Our method leverages large language models (LLMs) to infer rich physical context from the text prompt. To incorporate this context into the video diffusion model, we use a multimodal large language model (MLLM) to verify intermediate latent variables against the inferred physical rules, guiding the gradient updates of model accordingly. Textual output of LLM is transformed into continuous signals. We then formulate a set of training objectives that jointly ensure physical accuracy and semantic alignment with the input text. Additionally, failure facts of physical phenomena are corrected via attention injection. We also establish a high-quality physical video dataset containing diverse phyiscal actions and events to facilitate effective finetuning. Extensive experiments on public benchmarks demonstrate that DiffPhy is able to produce state-of-the-art results across diverse physics-related scenarios. Our project page is available at https://bwgzk-keke.github.io/DiffPhy/.
comment: 19 pages, 8 figures
♻ ☆ SAMCIRT: A Simultaneous Reconstruction and Affine Motion Compensation Technique for Four Dimensional Computed Tomography (4DCT)
The majority of the recent iterative approaches in 4DCT not only rely on nested iterations, thereby increasing computational complexity and constraining potential acceleration, but also fail to provide a theoretical proof of convergence for their proposed iterative schemes. On the other hand, the latest MATLAB and Python image processing toolboxes lack the implementation of analytic adjoints of affine motion operators for 3D object volumes, which does not allow gradient methods using exact derivatives towards affine motion parameters. In this work, we propose the Simultaneous Affine Motion-Compensated Image Reconstruction Technique (SAMCIRT)- an efficient iterative reconstruction scheme that combines image reconstruction and affine motion estimation in a single update step, based on the analytic adjoints of the motion operators then exact partial derivatives with respect to both the reconstruction and the affine motion parameters. Moreover, we prove the separated Lipschitz continuity of the objective function and its associated functions, including the gradient, which supports the convergence of our proposed iterative scheme, despite the non-convexity of the objective function with respect to the affine motion parameters. Results from simulation and real experiments show that our method outperforms the state-of-the-art CT reconstruction with affine motion correction methods in computational feasibility and projection distance. In particular, this allows accurate reconstruction for a real, nonstationary diamond, showing a novel application of 4DCT.
comment: 25 pages, revised version submitted to the SIAM Journal on Imaging Sciences (SIIMS)
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a step-by-step video-to-audio (V2A) generation method for finer controllability over the generation process and more realistic audio synthesis. Inspired by traditional Foley workflows, our approach aims to comprehensively capture all sound events induced by a video through the incremental generation of missing sound events. To avoid the need for costly multi-reference video-audio datasets, each generation step is formulated as a negatively guided V2A process that discourages duplication of existing sounds. The guidance model is trained by finetuning a pre-trained V2A model on audio pairs from adjacent segments of the same video, allowing training with standard single-reference audiovisual datasets that are easily accessible. Objective and subjective evaluations demonstrate that our method enhances the separability of generated sounds at each step and improves the overall quality of the final composite audio, outperforming existing baselines.
♻ ☆ LV-MAE: Learning Long Video Representations through Masked-Embedding Autoencoders ICCV 2025
In this work, we introduce long-video masked-embedding autoencoders (LV-MAE), a self-supervised learning framework for long video representation. Our approach treats short- and long-span dependencies as two separate tasks. Such decoupling allows for a more intuitive video processing where short-span spatiotemporal primitives are first encoded and are then used to capture long-range dependencies across consecutive video segments. To achieve this, we leverage advanced off-the-shelf multimodal encoders to extract representations from short segments within the long video, followed by pre-training a masked-embedding autoencoder capturing high-level interactions across segments. LV-MAE is highly efficient to train and enables the processing of much longer videos by alleviating the constraint on the number of input frames. Furthermore, unlike existing methods that typically pre-train on short-video datasets, our approach offers self-supervised pre-training using long video samples (e.g., 20+ minutes video clips) at scale. Using LV-MAE representations, we achieve state-of-the-art results on three long-video benchmarks -- LVU, COIN, and Breakfast -- employing only a simple classification head for either attentive or linear probing. Finally, to assess LV-MAE pre-training and visualize its reconstruction quality, we leverage the video-language aligned space of short video representations to monitor LV-MAE through video-text retrieval. Code is available at https://github.com/amazon-science/lv-mae.
comment: Accepted to the International Conference on Computer Vision, ICCV 2025
♻ ☆ MediSyn: A Generalist Text-Guided Latent Diffusion Model For Diverse Medical Image Synthesis
Deep learning algorithms require extensive data to achieve robust performance. However, data availability is often restricted in the medical domain due to patient privacy concerns. Synthetic data presents a possible solution to these challenges. Recently, image generative models have found increasing use for medical applications but are often designed for singular medical specialties and imaging modalities, thus limiting their broader utility. To address this, we introduce MediSyn: a text-guided, latent diffusion model capable of generating synthetic images from 6 medical specialties and 10 image types. Through extensive experimentation, we first demonstrate that MediSyn quantitatively matches or surpasses the performance of specialist models. Second, we show that our synthetic images are realistic and exhibit strong alignment with their corresponding text prompts, as validated by a team of expert physicians. Third, we provide empirical evidence that our synthetic images are visually distinct from their corresponding real patient images. Finally, we demonstrate that in data-limited settings, classifiers trained solely on synthetic data or real data supplemented with synthetic data can outperform those trained solely on real data. Our findings highlight the immense potential of generalist image generative models to accelerate algorithmic research and development in medicine.
♻ ☆ Robust Neural Rendering in the Wild with Asymmetric Dual 3D Gaussian Splatting NeurIPS 2025
3D reconstruction from in-the-wild images remains a challenging task due to inconsistent lighting conditions and transient distractors. Existing methods typically rely on heuristic strategies to handle the low-quality training data, which often struggle to produce stable and consistent reconstructions, frequently resulting in visual artifacts.In this work, we propose \modelname{}, a novel framework that leverages the stochastic nature of these artifacts: they tend to vary across different training runs due to minor randomness. Specifically, our method trains two 3D Gaussian Splatting (3DGS) models in parallel, enforcing a consistency constraint that encourages convergence on reliable scene geometry while suppressing inconsistent artifacts. To prevent the two models from collapsing into similar failure modes due to confirmation bias, we introduce a divergent masking strategy that applies two complementary masks: a multi-cue adaptive mask and a self-supervised soft mask, which leads to an asymmetric training process of the two models, reducing shared error modes. In addition, to improve the efficiency of model training, we introduce a lightweight variant called Dynamic EMA Proxy, which replaces one of the two models with a dynamically updated Exponential Moving Average (EMA) proxy, and employs an alternating masking strategy to preserve divergence. Extensive experiments on challenging real-world datasets demonstrate that our method consistently outperforms existing approaches while achieving high efficiency. See the project website at https://steveli88.github.io/AsymGS.
comment: NeurIPS 2025 Spotlight; Project page: https://steveli88.github.io/AsymGS/
♻ ☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
♻ ☆ ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality. We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings. To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering. Our code repository will be released at: https://github.com/chenttt2001/ExGS
♻ ☆ Ouroboros: Single-step Diffusion Models for Cycle-consistent Forward and Inverse Rendering ICCV 2025
While multi-step diffusion models have advanced both forward and inverse rendering, existing approaches often treat these problems independently, leading to cycle inconsistency and slow inference speed. In this work, we present Ouroboros, a framework composed of two single-step diffusion models that handle forward and inverse rendering with mutual reinforcement. Our approach extends intrinsic decomposition to both indoor and outdoor scenes and introduces a cycle consistency mechanism that ensures coherence between forward and inverse rendering outputs. Experimental results demonstrate state-of-the-art performance across diverse scenes while achieving substantially faster inference speed compared to other diffusion-based methods. We also demonstrate that Ouroboros can transfer to video decomposition in a training-free manner, reducing temporal inconsistency in video sequences while maintaining high-quality per-frame inverse rendering.
comment: Accepted by ICCV 2025
♻ ☆ Robust Object Detection for Autonomous Driving via Curriculum-Guided Group Relative Policy Optimization
Multimodal Large Language Models (MLLMs) excel in vision-language reasoning but often struggle with structured perception tasks requiring precise localization and robustness. We propose a reinforcement learning framework that augments Group Relative Policy Optimization (GRPO) with curriculum-based data scheduling and difficulty-aware filtering. This approach stabilizes optimization under sparse, noisy rewards and enables progressive adaptation to complex samples. Evaluations on autonomous driving benchmarks demonstrate substantial improvements in detection accuracy and robustness. Ablation studies confirm the importance of reward design, KL regularization, and curriculum pacing for convergence stability and generalization. Our findings highlight reinforcement-driven optimization with structured data curricula as a scalable path toward robust and interpretable multimodal detection.
♻ ☆ ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
Edge computing enables data processing closer to the source, significantly reducing latency, an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource-constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies, including a novel estimation-based techniques and an innovative greedy selection algorithm, to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our framework through extensive experiments on real-world datasets, comparing against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 35% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
♻ ☆ Self-Evolving Vision-Language Models for Image Quality Assessment via Voting and Ranking
Improving vision-language models (VLMs) in the post-training stage typically relies on supervised fine-tuning or reinforcement learning, methods that necessitate costly, human-annotated data. While self-supervised techniques such as self-consistency have proven effective for enhancing reasoning capabilities, their application to perceptual domains such as image quality assessment (IQA) remains largely unexplored. In this work, we introduce EvoQuality, a novel framework that enables a VLM to autonomously refine its quality perception capabilities without any ground-truth labels. EvoQuality adapts the principle of self-consistency to the ranking-based nature of IQA. It generates pseudo-labels by performing pairwise majority voting on the VLM's own outputs to establish a consensus on relative quality. These pseudo-rankings are then formulated into a fidelity reward that guides the model's iterative evolution through group relative policy optimization (GRPO). By iteratively leveraging its own predictions, EvoQuality progressively refines the VLM's perceptual capability. Extensive experiments show that EvoQuality boosts the base VLM's zero-shot performance by 31.8\% on PLCC across diverse IQA benchmarks. Remarkably, despite being entirely self-supervised, EvoQuality achieves performance that is competitive with, or even surpasses, state-of-the-art supervised VLM-based IQA models, outperforming these models on 5 out of 7 IQA benchmarks.
comment: Technical Report
♻ ☆ High-pass filtered fidelity-imposed network edit (HP-FINE) for robust quantitative susceptibility mapping from high-pass filtered phase
Purpose: To improve the generalization ability of deep learning based predictions of quantitative susceptibility mapping (QSM) from high-pass filtered phase (HPFP) data. Methods: A network fine-tuning step called HP-FINE is proposed, which is based on the high-pass filtering forward model with low-frequency preservation regularization. Several comparisons were conducted: 1. HP-FINE with and without low-frequency regularization, 2. three 3D network architectures (Unet, Progressive Unet, and Big Unet), 3. two types of network output (recovered field and susceptibility), and 4. pre-training with and without the filtering augmentation. HPFP datasets with diverse high-pass filters, another acquisition voxel size, and prospective acquisition were used to assess the accuracy of QSM predictions. In the retrospective datasets, quantitative metrics (PSNR, SSIM, RMSE and HFEN) were used for evaluation. In the prospective dataset, statistics of ROI linear regression and Bland-Altman analysis were used for evaluation. Results: In the retrospective datasets, adding low-frequency regularization in HP-FINE substantially improved prediction accuracy compared to the pre-trained results, especially when combined with the filtering augmentation and recovered field output. In the prospective datasets, HP-FINE with low-frequency regularization and recovered field output demonstrated the preservation of ROI values, a result that was not achieved when using susceptibility as the output. Furthermore, Progressive Unet pre-trained with a combination of multiple losses outperformed both Unet and Progressive Unet pre-trained with a single loss in terms of preserving ROI values.
♻ ☆ Training Vision-Language Process Reward Models for Test-Time Scaling in Multimodal Reasoning: Key Insights and Lessons Learned
Process Reward Models (PRMs) provide step-level supervision that improves the reliability of reasoning in large language models. While PRMs have been extensively studied in text-based domains, their extension to Vision Language Models (VLMs) remains limited. Existing Vision-Language PRMs (VL-PRMs) rely on Monte Carlo Tree Search (MCTS) for data construction, which can often produce noisy supervision signals and limit generalization across tasks. In this work, we aim to elucidate the design space of VL-PRMs by exploring diverse strategies for dataset construction, training, and test-time scaling. First, we introduce a hybrid data synthesis framework that combines MCTS with judgments from a strong VLM, producing more accurate step-level labels. Second, we propose perception-focused supervision, enabling our PRM to explicitly detect errors at the visual grounding stage of reasoning. Third, we systematically evaluate multiple test-time scaling strategies, showing that our PRMs can reliably guide VLMs toward more accurate solutions. Our experiments covering five diverse multimodal benchmarks (MMMU, PuzzleVQA, AlgoPuzzleVQA, MathVista, and MathVision) reveal several key insights: (i) VL-PRMs when used as Outcome Reward Models (ORMs) during test-time scaling (TTS) can outperform VL-PRM guided process step selection, (ii) smaller VL-PRMs can match or even surpass larger ones in detecting process errors, (iii) VL-PRMs uncover latent reasoning abilities in stronger VLM backbones, (iv) perception-level supervision leads to significant gains in test-time scaling, and (v) TTS performance of different policies improve on advanced math reasoning datasets despite not training VL-PRMs on such datasets. We hope our work will motivate further research and support the advancement of VLMs.
♻ ☆ GeoRemover: Removing Objects and Their Causal Visual Artifacts NeurIPS 2025
Towards intelligent image editing, object removal should eliminate both the target object and its causal visual artifacts, such as shadows and reflections. However, existing image appearance-based methods either follow strictly mask-aligned training and fail to remove these causal effects which are not explicitly masked, or adopt loosely mask-aligned strategies that lack controllability and may unintentionally over-erase other objects. We identify that these limitations stem from ignoring the causal relationship between an object's geometry presence and its visual effects. To address this limitation, we propose a geometry-aware two-stage framework that decouples object removal into (1) geometry removal and (2) appearance rendering. In the first stage, we remove the object directly from the geometry (e.g., depth) using strictly mask-aligned supervision, enabling structure-aware editing with strong geometric constraints. In the second stage, we render a photorealistic RGB image conditioned on the updated geometry, where causal visual effects are considered implicitly as a result of the modified 3D geometry. To guide learning in the geometry removal stage, we introduce a preference-driven objective based on positive and negative sample pairs, encouraging the model to remove objects as well as their causal visual artifacts while avoiding new structural insertions. Extensive experiments demonstrate that our method achieves state-of-the-art performance in removing both objects and their associated artifacts on two popular benchmarks. The code is available at https://github.com/buxiangzhiren/GeoRemover.
comment: Accepted as Spotlight at NeurIPS 2025
♻ ☆ Self-Supervised Representation Learning with Joint Embedding Predictive Architecture for Automotive LiDAR Object Detection
Recently, self-supervised representation learning relying on vast amounts of unlabeled data has been explored as a pre-training method for autonomous driving. However, directly applying popular contrastive or generative methods to this problem is insufficient and may even lead to negative transfer. In this paper, we present AD-L-JEPA, a novel self-supervised pre-training framework with a joint embedding predictive architecture (JEPA) for automotive LiDAR object detection. Unlike existing methods, AD-L-JEPA is neither generative nor contrastive. Instead of explicitly generating masked regions, our method predicts Bird's-Eye-View embeddings to capture the diverse nature of driving scenes. Furthermore, our approach eliminates the need to manually form contrastive pairs by employing explicit variance regularization to avoid representation collapse. Experimental results demonstrate consistent improvements on the LiDAR 3D object detection downstream task across the KITTI3D, Waymo, and ONCE datasets, while reducing GPU hours by 1.9x-2.7x and GPU memory by 2.8x-4x compared with the state-of-the-art method Occupancy-MAE. Notably, on the largest ONCE dataset, pre-training on 100K frames yields a 1.61 mAP gain, better than all other methods pre-trained on either 100K or 500K frames, and pre-training on 500K frames yields a 2.98 mAP gain, better than all other methods pre-trained on either 500K or 1M frames. AD-L-JEPA constitutes the first JEPA-based pre-training method for autonomous driving. It offers better quality, faster, and more GPU-memory-efficient self-supervised representation learning. The source code of AD-L-JEPA is ready to be released.
♻ ☆ HiMat: DiT-based Ultra-High Resolution SVBRDF Generation
Creating ultra-high-resolution spatially varying bidirectional reflectance functions (SVBRDFs) is critical for photorealistic 3D content creation, to faithfully represent fine-scale surface details required for close-up rendering. However, achieving 4K generation faces two key challenges: (1) the need to synthesize multiple reflectance maps at full resolution, which multiplies the pixel budget and imposes prohibitive memory and computational cost, and (2) the requirement to maintain strong pixel-level alignment across maps at 4K, which is particularly difficult when adapting pretrained models designed for the RGB image domain. We introduce HiMat, a diffusion-based framework tailored for efficient and diverse 4K SVBRDF generation. To address the first challenge, HiMat performs generation in a high-compression latent space via DC-AE, and employs a pretrained diffusion transformer with linear attention to improve per-map efficiency. To address the second challenge, we propose CrossStitch, a lightweight convolutional module that enforces cross-map consistency without incurring the cost of global attention. Our experiments show that HiMat achieves high-fidelity 4K SVBRDF generation with superior efficiency, structural consistency, and diversity compared to prior methods. Beyond materials, our framework also generalizes to related applications such as intrinsic decomposition.
♻ ☆ Integrating Feature Selection and Machine Learning for Nitrogen Assessment in Grapevine Leaves using In-Field Hyperspectral Imaging
Nitrogen (N) is one of the most crucial nutrients in vineyards, affecting plant growth and subsequent products such as wine and juice. Because soil N has high spatial and temporal variability, it is desirable to accurately estimate the N concentration of grapevine leaves and manage fertilization at the individual plant level to optimally meet plant needs. In this study, we used in-field hyperspectral images with wavelengths ranging from $400 to 1000nm of four different grapevine cultivars collected from distinct vineyards and over two growth stages during two growing seasons to develop models for predicting N concentration at the leaf-level and canopy-level. After image processing, two feature selection methods were employed to identify the optimal set of spectral bands that were responsive to leaf N concentrations. The selected spectral bands were used to train and test two different Machine Learning (ML) models, Gradient Boosting and XGBoost, for predicting nitrogen concentrations. The comparison of selected bands for both leaf-level and canopy-level datasets showed that most of the spectral regions identified by the feature selection methods were across both methods and the dataset types (leaf- and canopy-level datasets), particularly in the key regions, 500-525nm, 650-690nm, 750-800nm, and 900-950nm. These findings indicated the robustness of these spectral regions for predicting nitrogen content. The results for N prediction demonstrated that the ML model achieved an R square of 0.49 for canopy-level data and an R square of 0.57 for leaf-level data, despite using different sets of selected spectral bands for each analysis level. The study demonstrated the potential of using in-field hyperspectral imaging and the use of spectral data in integrated feature selection and ML techniques to monitor N status in vineyards.
comment: Major Revision
♻ ☆ DiffCom: Decoupled Sparse Priors Guided Diffusion Compression for Point Clouds
Lossy compression relies on an autoencoder to transform a point cloud into latent points for storage, leaving the inherent redundancy of latent representations unexplored. To reduce redundancy in latent points, we propose a diffusion-based framework guided by sparse priors that achieves high reconstruction quality, especially at low bitrates. Our approach features an efficient dual-density data flow that relaxes size constraints on latent points. It hybridizes a probabilistic conditional diffusion model to encapsulate essential details for reconstruction within sparse priors, which are decoupled hierarchically into intra- and inter-point priors. Specifically, our DiffCom encodes the original point cloud into latent points and decoupled sparse priors through separate encoders. To dynamically attend to geometric and semantic cues from the priors at each encoding and decoding layer, we employ an attention-guided latent denoiser conditioned on the decoupled priors. Additionally, we integrate the local distribution into the arithmetic encoder and decoder to enhance local context modeling of the sparse points. The original point cloud is reconstructed through a point decoder. Compared to state-of-the-art methods, our approach achieves a superior rate-distortion trade-off, as evidenced by extensive evaluations on the ShapeNet dataset and standard test datasets from the MPEG PCC Group.
♻ ☆ SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple spatial capabilities, even for handling simple and normal tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs.
♻ ☆ SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes toward Intelligent Vehicle Suspension Systems
Speed bumps and potholes are the most common road anomalies, significantly affecting ride comfort and vehicle stability. Preview-based suspension control mitigates their impact by detecting such irregularities in advance and adjusting suspension parameters proactively. Accurate and real-time detection is essential, but embedded deployment is constrained by limited computational resources and the small size of targets in input images.To address these challenges, this paper proposes SBP-YOLO, an efficient detection framework for speed bumps and potholes in embedded systems. Built upon YOLOv11n, it integrates GhostConv and VoVGSCSPC modules in the backbone and neck to reduce computation while enhancing multi-scale semantic features. A P2-level branch improves small-object detection, and a lightweight and efficient detection head (LEDH) maintains accuracy with minimal overhead. A hybrid training strategy further enhances robustness under varying road and environmental conditions, combining NWD loss, BCKD knowledge distillation, and Albumentations-based augmentation. Experiments show that SBP-YOLO achieves 87.0% mAP, outperforming the YOLOv11n baseline by 5.8%. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, yielding a 12.4% speedup over the P2-enhanced YOLOv11. These results demonstrate the framework's suitability for fast, low-latency road condition perception in embedded suspension control systems.
comment: 14pages,11figures
Artificial Intelligence 216
EgoNight: Towards Egocentric Vision Understanding at Night with a Challenging Benchmark
Most existing benchmarks for egocentric vision understanding focus primarily on daytime scenarios, overlooking the low-light conditions that are inevitable in real-world applications. To investigate this gap, we present EgoNight, the first comprehensive benchmark for nighttime egocentric vision, with visual question answering (VQA) as the core task. A key feature of EgoNight is the introduction of day-night aligned videos, which enhance night annotation quality using the daytime data and reveal clear performance gaps between lighting conditions. To achieve this, we collect both synthetic videos rendered by Blender and real-world recordings, ensuring that scenes and actions are visually and temporally aligned. Leveraging these paired videos, we construct EgoNight-VQA, supported by a novel day-augmented night auto-labeling engine and refinement through extensive human verification. Each QA pair is double-checked by annotators for reliability. In total, EgoNight-VQA contains 3658 QA pairs across 90 videos, spanning 12 diverse QA types, with more than 300 hours of human work. Evaluations of state-of-the-art multimodal large language models (MLLMs) reveal substantial performance drops when transferring from day to night, underscoring the challenges of reasoning under low-light conditions. Beyond VQA, EgoNight also introduces two auxiliary tasks, day-night correspondence retrieval and egocentric depth estimation at night, that further explore the boundaries of existing models. We believe EgoNight-VQA provides a strong foundation for advancing application-driven egocentric vision research and for developing models that generalize across illumination domains. All the data and code will be made available upon acceptance.
☆ TaTToo: Tool-Grounded Thinking PRM for Test-Time Scaling in Tabular Reasoning
Process Reward Models (PRMs) have recently emerged as a powerful framework for enhancing the reasoning capabilities of large reasoning models (LRMs), particularly in the context of test-time scaling (TTS). However, their potential for supervising LRMs on tabular reasoning domains remains underexplored. Through detailed empirical analyses, we identify that existing PRMs, though widely adopted for supervising text-only reasoning steps, struggle with table-specific operations such as sub-table retrieval and schema interaction, leading to critical performance bottlenecks. To address this limitation, we propose TaTToo, a novel table-grounded PRM framework that (i) reasons explicitly over tabular reasoning steps and (ii) integrates tool-based verification to provide precise reward supervision. Concretely, we first design a scalable data curation pipeline that constructs over 60k high-quality step-level annotations by integrating table verification rationales with tool-based executions. Building on the collected data, we train TaTToo with a dual-stage paradigm: cold-start supervised fine-tuning to capture tool-use reasoning patterns, followed by reinforcement learning with tool-grounded reward shaping to align our model with table-based verification. We provide a comprehensive evaluation of the policy improvement induced by our newly designed PRM. Across 5 challenging tabular reasoning benchmarks covering numerical reasoning, fact-checking, and data analysis, TaTToo improves downstream policy LRMs by 30.9% at inference, surpasses strong PRM baselines such as Qwen-2.5-Math-PRM-72B with only 8B parameters, and demonstrates strong generalizability across diverse TTS strategies.
☆ Stratified GRPO: Handling Structural Heterogeneity in Reinforcement Learning of LLM Search Agents
Large language model (LLM) agents increasingly rely on external tools such as search engines to solve complex, multi-step problems, and reinforcement learning (RL) has become a key paradigm for training them. However, the trajectories of search agents are structurally heterogeneous, where variations in the number, placement, and outcomes of search calls lead to fundamentally different answer directions and reward distributions. Standard policy gradient methods, which use a single global baseline, suffer from what we identify and formalize as cross-stratum bias-an "apples-to-oranges" comparison of heterogeneous trajectories. This cross-stratum bias distorts credit assignment and hinders exploration of complex, multi-step search strategies. To address this, we propose Stratified GRPO, whose central component, Stratified Advantage Normalization (SAN), partitions trajectories into homogeneous strata based on their structural properties and computes advantages locally within each stratum. This ensures that trajectories are evaluated only against their true peers. Our analysis proves that SAN eliminates cross-stratum bias, yields conditionally unbiased unit-variance estimates inside each stratum, and retains the global unbiasedness and unit-variance properties enjoyed by standard normalization, resulting in a more pure and scale-stable learning signal. To improve practical stability under finite-sample regimes, we further linearly blend SAN with the global estimator. Extensive experiments on diverse single-hop and multi-hop question-answering benchmarks demonstrate that Stratified GRPO consistently and substantially outperforms GRPO by up to 11.3 points, achieving higher training rewards, greater training stability, and more effective search policies. These results establish stratification as a principled remedy for structural heterogeneity in RL for LLM search agents.
☆ Reference Grounded Skill Discovery
Scaling unsupervised skill discovery algorithms to high-DoF agents remains challenging. As dimensionality increases, the exploration space grows exponentially, while the manifold of meaningful skills remains limited. Therefore, semantic meaningfulness becomes essential to effectively guide exploration in high-dimensional spaces. In this work, we present Reference-Grounded Skill Discovery (RGSD), a novel algorithm that grounds skill discovery in a semantically meaningful latent space using reference data. RGSD first performs contrastive pretraining to embed motions on a unit hypersphere, clustering each reference trajectory into a distinct direction. This grounding enables skill discovery to simultaneously involve both imitation of reference behaviors and the discovery of semantically related diverse behaviors. On a simulated SMPL humanoid with 359-D observations and 69-D actions, RGSD learns structured skills including walking, running, punching, and side stepping, and also discovers related novel behaviors. In downstream control tasks, RGSD outperforms imitation-based skill acquisition baselines. Our results suggest that lightweight reference-guided grounding offers a practical path to discovering semantically rich and structured skills in high-DoF systems.
☆ TokenChain: A Discrete Speech Chain via Semantic Token Modeling ICASSP
Machine Speech Chain, simulating the human perception-production loop, proves effective in jointly improving ASR and TTS. We propose TokenChain, a fully discrete speech chain coupling semantic-token ASR with a two-stage TTS: an autoregressive text-to-semantic model co-trained with ASR and a masked-generative semantic-to-acoustic model for synthesis only. End-to-end feedback across the text interface is enabled with straight-through argmax/Gumbel-Softmax and balanced with supervised ASR via dynamic weight averaging. Ablations examine optimal temperature schedules for in- and cross-domain transfer. Evaluation reveals TokenChain surpasses baseline accuracy 2-6 epochs earlier and yields 5-13% lower equal-epoch error with stable T2S on LibriSpeech, and reduces relative ASR WER by 56% and T2S WER by 31% on TED-LIUM with minimal forgetting, showing that chain learning remains effective with token interfaces and models.
comment: 5 pages, 3 figures. Submitted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ StarEmbed: Benchmarking Time Series Foundation Models on Astronomical Observations of Variable Stars
Time series foundation models (TSFMs) are increasingly being adopted as highly-capable general-purpose time series representation learners. Although their training corpora are vast, they exclude astronomical time series data. Observations of stars produce peta-scale time series with unique challenges including irregular sampling and heteroskedasticity. We introduce StarEmbed, the first public benchmark for rigorous and standardized evaluation of state-of-the-art TSFMs on stellar time series observations (``light curves''). We benchmark on three scientifically-motivated downstream tasks: unsupervised clustering, supervised classification, and out-of-distribution source detection. StarEmbed integrates a catalog of expert-vetted labels with multi-variate light curves from the Zwicky Transient Facility, yielding ~40k hand-labeled light curves spread across seven astrophysical classes. We evaluate the zero-shot representation capabilities of three TSFMs (MOIRAI, Chronos, Chronos-Bolt) and a domain-specific transformer (Astromer) against handcrafted feature extraction, the long-standing baseline in the astrophysics literature. Our results demonstrate that these TSFMs, especially the Chronos models, which are trained on data completely unlike the astronomical observations, can outperform established astrophysics-specific baselines in some tasks and effectively generalize to entirely new data. In particular, TSFMs deliver state-of-the-art performance on our out-of-distribution source detection benchmark. With the first benchmark of TSFMs on astronomical time series data, we test the limits of their generalization and motivate a paradigm shift in time-domain astronomy from using task-specific, fully supervised pipelines toward adopting generic foundation model representations for the analysis of peta-scale datasets from forthcoming observatories.
☆ Latent Speech-Text Transformer
Auto-regressive speech-text models are typically pre-trained on a large number of interleaved sequences of text tokens and raw speech encoded as speech tokens using vector quantization. These models have demonstrated state-of-the-art performance in speech-to-speech understanding and generation benchmarks, together with promising scaling laws, primarily enabled by the representational alignment between text and speech. Nevertheless, they suffer from shortcomings, partly owing to the disproportionately longer sequences of speech tokens in contrast to textual tokens. This results in a large compute imbalance between modalities during pre-training as well as during inference, and a potential hindrance to effectively aligning speech and text, ultimately translating to several orders of magnitude slower scaling laws. We introduce the Latent Speech-Text Transformer (LST), which makes pre-training speech-text models more data-efficient by dynamically and inexpensively aggregating speech tokens into latent speech patches. These patches serve as higher-level units that can either align with corresponding textual units to aid capability transfer or even encapsulate common speech sequences like silences to be more compute-efficient. We show that LST outperforms vanilla approaches on speech-to-speech as well as text-to-text benchmarks in both data- and compute-controlled settings, the former indicating more effective representational alignment and the latter indicating steeper scaling laws for speech-text models. On HellaSwag story completion, LST achieves 6.5% absolute gain in speech accuracy under compute-controlled training and 5.3% under data-controlled training, while also improving text performance. We will release our models, code, and the evaluation data to facilitate further research.
comment: 16 pages, 13 figures
☆ Barbarians at the Gate: How AI is Upending Systems Research
Artificial Intelligence (AI) is starting to transform the research process as we know it by automating the discovery of new solutions. Given a task, the typical AI-driven approach is (i) to generate a set of diverse solutions, and then (ii) to verify these solutions and select one that solves the problem. Crucially, this approach assumes the existence of a reliable verifier, i.e., one that can accurately determine whether a solution solves the given problem. We argue that systems research, long focused on designing and evaluating new performance-oriented algorithms, is particularly well-suited for AI-driven solution discovery. This is because system performance problems naturally admit reliable verifiers: solutions are typically implemented in real systems or simulators, and verification reduces to running these software artifacts against predefined workloads and measuring performance. We term this approach as AI-Driven Research for Systems (ADRS), which iteratively generates, evaluates, and refines solutions. Using penEvolve, an existing open-source ADRS instance, we present case studies across diverse domains, including load balancing for multi-region cloud scheduling, Mixture-of-Experts inference, LLM-based SQL queries, and transaction scheduling. In multiple instances, ADRS discovers algorithms that outperform state-of-the-art human designs (e.g., achieving up to 5.0x runtime improvements or 50% cost reductions). We distill best practices for guiding algorithm evolution, from prompt design to evaluator construction, for existing frameworks. We then discuss the broader implications for the systems community: as AI assumes a central role in algorithm design, we argue that human researchers will increasingly focus on problem formulation and strategic guidance. Our results highlight both the disruptive potential and the urgent need to adapt systems research practices in the age of AI.
☆ BanglaTalk: Towards Real-Time Speech Assistance for Bengali Regional Dialects
Real-time speech assistants are becoming increasingly popular for ensuring improved accessibility to information. Bengali, being a low-resource language with a high regional dialectal diversity, has seen limited progress in developing such systems. Existing systems are not optimized for real-time use and focus only on standard Bengali. In this work, we present BanglaTalk, the first real-time speech assistance system for Bengali regional dialects. BanglaTalk follows the client-server architecture and uses the Real-time Transport Protocol (RTP) to ensure low-latency communication. To address dialectal variation, we introduce a dialect-aware ASR system, BRDialect, developed by fine-tuning the IndicWav2Vec model in ten Bengali regional dialects. It outperforms the baseline ASR models by 12.41-33.98% on the RegSpeech12 dataset. Furthermore, BanglaTalk can operate at a low bandwidth of 24 kbps while maintaining an average end-to-end delay of 4.9 seconds. Low bandwidth usage and minimal end-to-end delay make the system both cost-effective and interactive for real-time use cases, enabling inclusive and accessible speech technology for the diverse community of Bengali speakers.
☆ Automated Program Repair of Uncompilable Student Code
A significant portion of student programming submissions in CS1 learning environments are uncompilable, limiting their use in student modeling and downstream knowledge tracing. Traditional modeling pipelines often exclude these cases, discarding observations of student learning. This study investigates automated program repair as a strategy to recover uncompilable code while preserving students' structural intent for use in student modeling. Within this framework, we assess large language models (LLMs) as repair agents, including GPT-5 (OpenAI), Claude 3.5 Haiku (Anthropic), and Gemini 2.5 Flash (Google), under high- and low-context prompting conditions. Repairs were evaluated for compilability, edit distance, and preservation of students' original structure and logic. We find that while all three LLMs are capable of producing compilable repairs, their behavior diverges in how well they preserve students' control flow and code structure, which affects their pedagogical utility. By recovering uncompilable submissions, this work enables richer and more comprehensive analyses of learners' coding processes and development over time.
☆ RECODE-H: A Benchmark for Research Code Development with Interactive Human Feedback
Large language models (LLMs) show the promise in supporting scientific research implementation, yet their ability to generate correct and executable code remains limited. Existing works largely adopt one-shot settings, ignoring the iterative and feedback-driven nature of realistic workflows of scientific research development. To address this gap, we present RECODE-H, a benchmark of 102 tasks from research papers and repositories that evaluates LLM agents through multi-turn interactions with LLM-simulated human feedback. It includes structured instructions,unit tests, and a five-level feedback hierarchy to reflect realistic researcher-agent collaboration. We further present ReCodeAgent, a framework that integrates feedback into iterative code generation. Experiments with leading LLMs, including GPT-5, Claude-Sonnet-4, DeepSeek-V3.1, and Gemini 2.5, show substantial performance gains with richer feedback, while also highlighting ongoing challenges in the generation of complex research code. RECODE-H establishes a foundation for developing adaptive, feedback-driven LLM agents in scientific research implementation
comment: Code and dataset are available at github.com/ChunyuMiao98/RECODE
☆ Smartphone-based iris recognition through high-quality visible-spectrum iris image capture.V2
Smartphone-based iris recognition in the visible spectrum (VIS) remains difficult due to illumination variability, pigmentation differences, and the absence of standardized capture controls. This work presents a compact end-to-end pipeline that enforces ISO/IEC 29794-6 quality compliance at acquisition and demonstrates that accurate VIS iris recognition is feasible on commodity devices. Using a custom Android application performing real-time framing, sharpness evaluation, and feedback, we introduce the CUVIRIS dataset of 752 compliant images from 47 subjects. A lightweight MobileNetV3-based multi-task segmentation network (LightIrisNet) is developed for efficient on-device processing, and a transformer matcher (IrisFormer) is adapted to the VIS domain. Under a standardized protocol and comparative benchmarking against prior CNN baselines, OSIRIS attains a TAR of 97.9% at FAR=0.01 (EER=0.76%), while IrisFormer, trained only on UBIRIS.v2, achieves an EER of 0.057% on CUVIRIS. The acquisition app, trained models, and a public subset of the dataset are released to support reproducibility. These results confirm that standardized capture and VIS-adapted lightweight models enable accurate and practical iris recognition on smartphones.
comment: We build upon our earlier work, arXiv:2412.13063
☆ LLMs as Policy-Agnostic Teammates: A Case Study in Human Proxy Design for Heterogeneous Agent Teams ECAI 2025
A critical challenge in modelling Heterogeneous-Agent Teams is training agents to collaborate with teammates whose policies are inaccessible or non-stationary, such as humans. Traditional approaches rely on expensive human-in-the-loop data, which limits scalability. We propose using Large Language Models (LLMs) as policy-agnostic human proxies to generate synthetic data that mimics human decision-making. To evaluate this, we conduct three experiments in a grid-world capture game inspired by Stag Hunt, a game theory paradigm that balances risk and reward. In Experiment 1, we compare decisions from 30 human participants and 2 expert judges with outputs from LLaMA 3.1 and Mixtral 8x22B models. LLMs, prompted with game-state observations and reward structures, align more closely with experts than participants, demonstrating consistency in applying underlying decision criteria. Experiment 2 modifies prompts to induce risk-sensitive strategies (e.g. "be risk averse"). LLM outputs mirror human participants' variability, shifting between risk-averse and risk-seeking behaviours. Finally, Experiment 3 tests LLMs in a dynamic grid-world where the LLM agents generate movement actions. LLMs produce trajectories resembling human participants' paths. While LLMs cannot yet fully replicate human adaptability, their prompt-guided diversity offers a scalable foundation for simulating policy-agnostic teammates.
comment: This is a preprint of a paper presented at the \textit{European Conference on Artificial Intelligence (ECAI 2025)}. It is made publicly available for the benefit of the research community and should be regarded as a preprint rather than a formally reviewed publication
☆ Bimanual 3D Hand Motion and Articulation Forecasting in Everyday Images
We tackle the problem of forecasting bimanual 3D hand motion & articulation from a single image in everyday settings. To address the lack of 3D hand annotations in diverse settings, we design an annotation pipeline consisting of a diffusion model to lift 2D hand keypoint sequences to 4D hand motion. For the forecasting model, we adopt a diffusion loss to account for the multimodality in hand motion distribution. Extensive experiments across 6 datasets show the benefits of training on diverse data with imputed labels (14% improvement) and effectiveness of our lifting (42% better) & forecasting (16.4% gain) models, over the best baselines, especially in zero-shot generalization to everyday images.
comment: Project page: https://ap229997.github.io/projects/forehand4d
Multi-Task Reinforcement Learning with Language-Encoded Gated Policy Networks
Multi-task reinforcement learning often relies on task metadata -- such as brief natural-language descriptions -- to guide behavior across diverse objectives. We present Lexical Policy Networks (LEXPOL), a language-conditioned mixture-of-policies architecture for multi-task RL. LEXPOL encodes task metadata with a text encoder and uses a learned gating module to select or blend among multiple sub-policies, enabling end-to-end training across tasks. On MetaWorld benchmarks, LEXPOL matches or exceeds strong multi-task baselines in success rate and sample efficiency, without task-specific retraining. To analyze the mechanism, we further study settings with fixed expert policies obtained independently of the gate and show that the learned language gate composes these experts to produce behaviors appropriate to novel task descriptions and unseen task combinations. These results indicate that natural-language metadata can effectively index and recombine reusable skills within a single policy.
comment: 14 pages, 3 figures, 12 tables, 2 appendices. Currently under review
☆ Pushing Test-Time Scaling Limits of Deep Search with Asymmetric Verification
Test-time compute can be scaled both sequentially and in parallel. Sequential scaling involves lengthening the generation process, while parallel scaling involves verifying and selecting among multiple candidate outputs. Combining these two strategies has led to the most powerful AI systems, such as Grok 4 Heavy and GPT-5 Pro. In certain contexts (e.g., solving Sudoku puzzles), verifying responses can be substantially easier than generating them. This property, referred to as \emph{asymmetric verification}, highlights the strong potential of test-time scaling (TTS). In this work, we study both sequential and parallel TTS of deep search agents, motivated by the intuition that verification in this setting is often much easier than generation. In experiments, we first show that sequential scaling methods, such as budget forcing, can be effective initially but soon degrade performance. Leveraging asymmetric verification, however, we are able to achieve substantial improvements by allocating only a modest amount of compute to the verifier. We conduct experiments with flagship open-source models and extend them to their ``Heavy'' variants through TTS. These deep research agents achieve gains of up to 27 absolute points on benchmarks such as BrowseComp. Remarkably, as an open-source alternative, GLM-4.5 Heavy reaches accuracy of {\bf 54.0\%} on BrowseComp and {\bf 66.0\%} on GAIA, placing it comparable to the best proprietary choices such as OpenAI Deep Research. Tongyi-DeepResearch Heavy further achieves {\bf 69.0\%} accuracy on BrowseComp, greatly surpassing the best proprietary results.
CreditDecoding: Accelerating Parallel Decoding in Diffusion Large Language Models with Trace Credits
Diffusion large language models (dLLMs) generate text through iterative denoising steps, achieving parallel decoding by denoising only high-confidence positions at each step. However, existing approaches often repetitively remask tokens due to initially low confidence scores, leading to redundant iterations and limiting overall acceleration. Through the analysis of dLLM decoding traces, we observe that the model often determines the final prediction for a token several steps before the decoding step. To leverage this historical information and avoid redundant steps, we introduce the concept of Trace Credit, which quantifies each token's convergence potential by accumulating historical logits. Furthermore, we propose CreditDecoding, a training-free parallel decoding algorithm that accelerates the confidence convergence of correct but underconfident tokens by fusing current logits with Trace Credit. This process significantly reduces redundant iterations and enhances decoding robustness. On eight benchmarks, CreditDecoding achieves a 5.48 times speedup and a 0.48 performance improvement over LLaDA-8B-Instruct, and a 4.11 times speedup with a 0.15 performance improvement over LLaDA-MoE-Instruct. Importantly, CreditDecoding scales effectively to long sequences and is orthogonal to mainstream inference optimizations, making it a readily integrable and versatile solution.
comment: 18 pages,8 figures,4 tables
Discrete Diffusion Models with MLLMs for Unified Medical Multimodal Generation
Recent advances in generative medical models are constrained by modality-specific scenarios that hinder the integration of complementary evidence from imaging, pathology, and clinical notes. This fragmentation limits their evolution into foundation models that can learn and reason across the full spectrum of biomedical data. We propose MeDiM, the first medical discrete diffusion model that learns shared distributions across modalities without modality-specific components. MeDiM unifies multiple generative tasks: translating between images and text, and jointly producing image-report pairs across domains in response to prompts. Built on a discrete diffusion framework, MeDiM bridges vision and language representations through a shared probabilistic space. To enable unified and flexible medical generation, we employ a multimodal large language model (MLLM) as the diffusion backbone, leveraging its prior knowledge and cross-modal reasoning. Two key designs are introduced: (1) removing the causal attention mask for bidirectional context, and (2) injecting continuous timestep embeddings for diffusion awareness. Experiments demonstrate high-fidelity medical generation (FID 16.60 on MIMIC-CXR and FID 24.19 on PathGen) and accurate report generation (METEOR 0.2650 and 0.2580). Jointly generated image-report pairs further enhance downstream performance (plus6.43 percent BLEU-1, plus18.57 percent BLEU-2, plus31.58 percent BLEU-3, plus4.80 percent METEOR), showing that MeDiM supports coherent and clinically grounded multimodal outputs.
comment: 16 pages,6 figures
☆ Distributional Semantics Tracing: A Framework for Explaining Hallucinations in Large Language Models
Large Language Models (LLMs) are prone to hallucination, the generation of plausible yet factually incorrect statements. This work investigates the intrinsic, architectural origins of this failure mode through three primary contributions.First, to enable the reliable tracing of internal semantic failures, we propose \textbf{Distributional Semantics Tracing (DST)}, a unified framework that integrates established interpretability techniques to produce a causal map of a model's reasoning, treating meaning as a function of context (distributional semantics). Second, we pinpoint the model's layer at which a hallucination becomes inevitable, identifying a specific \textbf{commitment layer} where a model's internal representations irreversibly diverge from factuality. Third, we identify the underlying mechanism for these failures. We observe a conflict between distinct computational pathways, which we interpret using the lens of dual-process theory: a fast, heuristic \textbf{associative pathway} (akin to System 1) and a slow, deliberate \textbf{contextual pathway} (akin to System 2), leading to predictable failure modes such as \textit{Reasoning Shortcut Hijacks}. Our framework's ability to quantify the coherence of the contextual pathway reveals a strong negative correlation ($\rho = -0.863$) with hallucination rates, implying that these failures are predictable consequences of internal semantic weakness. The result is a mechanistic account of how, when, and why hallucinations occur within the Transformer architecture.
☆ Moloch's Bargain: Emergent Misalignment When LLMs Compete for Audiences
Large language models (LLMs) are increasingly shaping how information is created and disseminated, from companies using them to craft persuasive advertisements, to election campaigns optimizing messaging to gain votes, to social media influencers boosting engagement. These settings are inherently competitive, with sellers, candidates, and influencers vying for audience approval, yet it remains poorly understood how competitive feedback loops influence LLM behavior. We show that optimizing LLMs for competitive success can inadvertently drive misalignment. Using simulated environments across these scenarios, we find that, 6.3% increase in sales is accompanied by a 14.0% rise in deceptive marketing; in elections, a 4.9% gain in vote share coincides with 22.3% more disinformation and 12.5% more populist rhetoric; and on social media, a 7.5% engagement boost comes with 188.6% more disinformation and a 16.3% increase in promotion of harmful behaviors. We call this phenomenon Moloch's Bargain for AI--competitive success achieved at the cost of alignment. These misaligned behaviors emerge even when models are explicitly instructed to remain truthful and grounded, revealing the fragility of current alignment safeguards. Our findings highlight how market-driven optimization pressures can systematically erode alignment, creating a race to the bottom, and suggest that safe deployment of AI systems will require stronger governance and carefully designed incentives to prevent competitive dynamics from undermining societal trust.
☆ Classical AI vs. LLMs for Decision-Maker Alignment in Health Insurance Choices
As algorithmic decision-makers are increasingly applied to high-stakes domains, AI alignment research has evolved from a focus on universal value alignment to context-specific approaches that account for decision-maker attributes. Prior work on Decision-Maker Alignment (DMA) has explored two primary strategies: (1) classical AI methods integrating case-based reasoning, Bayesian reasoning, and naturalistic decision-making, and (2) large language model (LLM)-based methods leveraging prompt engineering. While both approaches have shown promise in limited domains such as medical triage, their generalizability to novel contexts remains underexplored. In this work, we implement a prior classical AI model and develop an LLM-based algorithmic decision-maker evaluated using a large reasoning model (GPT-5) and a non-reasoning model (GPT-4) with weighted self-consistency under a zero-shot prompting framework, as proposed in recent literature. We evaluate both approaches on a health insurance decision-making dataset annotated for three target decision-makers with varying levels of risk tolerance (0.0, 0.5, 1.0). In the experiments reported herein, classical AI and LLM-based models achieved comparable alignment with attribute-based targets, with classical AI exhibiting slightly better alignment for a moderate risk profile. The dataset and open-source implementation are publicly available at: https://github.com/TeX-Base/ClassicalAIvsLLMsforDMAlignment and https://github.com/Parallax-Advanced-Research/ITM/tree/feature_insurance.
comment: 15 pages, 3 figures. Accepted at the Twelfth Annual Conference on Advances in Cognitive Systems (ACS 2025)
☆ A public cardiac CT dataset featuring the left atrial appendage
Despite the success of advanced segmentation frameworks such as TotalSegmentator (TS), accurate segmentations of the left atrial appendage (LAA), coronary arteries (CAs), and pulmonary veins (PVs) remain a significant challenge in medical imaging. In this work, we present the first open-source, anatomically coherent dataset of curated, high-resolution segmentations for these structures, supplemented with whole-heart labels produced by TS on the publicly available ImageCAS dataset consisting of 1000 cardiac computed tomography angiography (CCTA) scans. One purpose of the data set is to foster novel approaches to the analysis of LAA morphology. LAA segmentations on ImageCAS were generated using a state-of-the-art segmentation framework developed specifically for high resolution LAA segmentation. We trained the network on a large private dataset with manual annotations provided by medical readers guided by a trained cardiologist and transferred the model to ImageCAS data. CA labels were improved from the original ImageCAS annotations, while PV segmentations were refined from TS outputs. In addition, we provide a list of scans from ImageCAS that contains common data flaws such as step artefacts, LAAs extending beyond the scanner's field of view, and other types of data defects.
comment: 8 pages, 5 figures, published at STACOM2025
☆ Spectrum Tuning: Post-Training for Distributional Coverage and In-Context Steerability
Language model post-training has enhanced instruction-following and performance on many downstream tasks, but also comes with an often-overlooked cost on tasks with many possible valid answers. We characterize three desiderata for conditional distributional modeling: in-context steerability, valid output space coverage, and distributional alignment, and document across three model families how current post-training can reduce these properties. In particular, we disambiguate between two kinds of in-context learning: ICL for eliciting existing underlying knowledge or capabilities, and in-context steerability, where a model must use in-context information to override its priors and steer to a novel data generating distribution. To better evaluate and improve these desiderata, we introduce Spectrum Suite, a large-scale resource compiled from >40 data sources and spanning >90 tasks requiring models to steer to and match diverse distributions ranging from varied human preferences to numerical distributions and more. We find that while current post-training techniques help elicit underlying capabilities and knowledge, they hurt models' ability to flexibly steer in-context. To mitigate these issues, we propose Spectrum Tuning, a post-training method using Spectrum Suite to improve steerability and distributional coverage. We find that Spectrum Tuning often improves over pretrained models and their instruction-tuned counterparts, enhancing steerability, spanning more of the output space, and improving distributional alignment on held-out datasets.
☆ Constraint-Aware Route Recommendation from Natural Language via Hierarchical LLM Agents
Route recommendation aims to provide users with optimal travel plans that satisfy diverse and complex requirements. Classical routing algorithms (e.g., shortest-path and constraint-aware search) are efficient but assume structured inputs and fixed objectives, limiting adaptability to natural-language queries. Recent LLM-based approaches enhance flexibility but struggle with spatial reasoning and the joint modeling of route-level and POI-level preferences. To address these limitations, we propose RouteLLM, a hierarchical multi-agent framework that grounds natural-language intents into constraint-aware routes. It first parses user queries into structured intents including POIs, paths, and constraints. A manager agent then coordinates specialized sub-agents: a constraint agent that resolves and formally check constraints, a POI agent that retrieves and ranks candidate POIs, and a path refinement agent that refines routes via a routing engine with preference-conditioned costs. A final verifier agent ensures constraint satisfaction and produces the final route with an interpretable rationale. This design bridges linguistic flexibility and spatial structure, enabling reasoning over route feasibility and user preferences. Experiments show that our method reliably grounds textual preferences into constraint-aware routes, improving route quality and preference satisfaction over classical methods.
☆ When Thinking Drifts: Evidential Grounding for Robust Video Reasoning NeurIPS 2025
Video reasoning, the task of enabling machines to infer from dynamic visual content through multi-step logic, is crucial for advanced AI. While the Chain-of-Thought (CoT) mechanism has enhanced reasoning in text-based tasks, its application to video understanding remains underexplored. This paper presents a systematic analysis revealing that CoT often degrades performance in video reasoning, generating verbose but misleading internal monologues, and leading to hallucinated visual details and overridden correct intuitions - a phenomenon we term "visual thinking drift". We explain this drift through a Bayesian lens, positing that CoT traces often diverge from actual visual evidence, instead amplifying internal biases or language priors, causing models to storytell rather than engage in grounded reasoning. To counteract this, we introduce Visual Evidence Reward (VER), a novel reinforcement learning framework that explicitly rewards the generation of reasoning traces that are verifiably grounded in visual evidence. Comprehensive evaluation across 10 diverse video understanding benchmarks demonstrates that our Video-VER consistently achieves top performance. Our work sheds light on the distinct challenges of video-centric reasoning and encourages the development of AI that robustly grounds its inferences in visual evidence - for large multimodal models that not only "think before answering", but also "see while thinking".
comment: Accepted by NeurIPS 2025, Project page: https://vision.cs.utexas.edu/projects/video-ver/
Benchmark It Yourself (BIY): Preparing a Dataset and Benchmarking AI Models for Scatterplot-Related Tasks IEEE VIS 2025
AI models are increasingly used for data analysis and visualization, yet benchmarks rarely address scatterplot-specific tasks, limiting insight into performance. To address this gap for one of the most common chart types, we introduce a synthetic, annotated dataset of over 18,000 scatterplots from six data generators and 17 chart designs, and a benchmark based on it. We evaluate proprietary models from OpenAI and Google using N-shot prompting on five distinct tasks derived from annotations of cluster bounding boxes, their center coordinates, and outlier coordinates. OpenAI models and Gemini 2.5 Flash, especially when prompted with examples, are viable options for counting clusters and, in Flash's case, outliers (90%+ Accuracy). However, the results for localization-related tasks are unsatisfactory: Precision and Recall are near or below 50%, except for Flash in outlier identification (65.01%). Furthermore, the impact of chart design on performance appears to be a secondary factor, but it is advisable to avoid scatterplots with wide aspect ratios (16:9 and 21:9) or those colored randomly. Supplementary materials are available at https://github.com/feedzai/biy-paper.
comment: 9 pages, 3 figures, short paper accepted at VISxGenAI: 1st Workshop on GenAI, Agents, and the Future of VIS (IEEE VIS 2025)
☆ Cross-Embodiment Dexterous Hand Articulation Generation via Morphology-Aware Learning
Dexterous grasping with multi-fingered hands remains challenging due to high-dimensional articulations and the cost of optimization-based pipelines. Existing end-to-end methods require training on large-scale datasets for specific hands, limiting their ability to generalize across different embodiments. We propose an eigengrasp-based, end-to-end framework for cross-embodiment grasp generation. From a hand's morphology description, we derive a morphology embedding and an eigengrasp set. Conditioned on these, together with the object point cloud and wrist pose, an amplitude predictor regresses articulation coefficients in a low-dimensional space, which are decoded into full joint articulations. Articulation learning is supervised with a Kinematic-Aware Articulation Loss (KAL) that emphasizes fingertip-relevant motions and injects morphology-specific structure. In simulation on unseen objects across three dexterous hands, our model attains a 91.9% average grasp success rate with less than 0.4 seconds inference per grasp. With few-shot adaptation to an unseen hand, it achieves 85.6% success on unseen objects in simulation, and real-world experiments on this few-shot generalized hand achieve an 87% success rate. The code and additional materials will be made available upon publication on our project website https://connor-zh.github.io/cross_embodiment_dexterous_grasping.
☆ Reasoning under Vision: Understanding Visual-Spatial Cognition in Vision-Language Models for CAPTCHA
CAPTCHA, originally designed to distinguish humans from robots, has evolved into a real-world benchmark for assessing the spatial reasoning capabilities of vision-language models. In this work, we first show that step-by-step reasoning is crucial for vision-language models (VLMs) to solve CAPTCHAs, which represent high-difficulty spatial reasoning tasks, and that current commercial vision-language models still struggle with such reasoning. In particular, we observe that most commercial VLMs (e.g., Gemini, Claude, GPT, etc.) fail to effectively solve CAPTCHAs and thus achieve low accuracy (around 21.9 percent). However, our findings indicate that requiring the model to perform step-by-step reasoning before generating the final coordinates can significantly enhance its solving accuracy, underscoring the severity of the gap. To systematically study this issue, we introduce CAPTCHA-X, the first real-world CAPTCHA benchmark with reasoning, covering seven categories of CAPTCHAs (such as Gobang, hCaptcha, etc.) with step-by-step action solutions and grounding annotations. We further define five reasoning-oriented metrics that enable a comprehensive evaluation of models reasoning capabilities. To validate the effectiveness of reasoning, we also propose a general agentic VLM-based framework that incorporates the models inherent reasoning abilities. Our method achieves state-of-the-art performance across five high-difficulty CAPTCHA types, with an average solving accuracy of 83.9 percent, substantially surpassing existing baselines. These results reveal the limitations of current models and highlight the importance of reasoning in advancing visual-spatial challenges in the future.
comment: 14pages, 11figures
☆ TelecomTS: A Multi-Modal Observability Dataset for Time Series and Language Analysis
Modern enterprises generate vast streams of time series metrics when monitoring complex systems, known as observability data. Unlike conventional time series from domains such as weather, observability data are zero-inflated, highly stochastic, and exhibit minimal temporal structure. Despite their importance, observability datasets are underrepresented in public benchmarks due to proprietary restrictions. Existing datasets are often anonymized and normalized, removing scale information and limiting their use for tasks beyond forecasting, such as anomaly detection, root-cause analysis, and multi-modal reasoning. To address this gap, we introduce TelecomTS, a large-scale observability dataset derived from a 5G telecommunications network. TelecomTS features heterogeneous, de-anonymized covariates with explicit scale information and supports a suite of downstream tasks, including anomaly detection, root-cause analysis, and a question-answering benchmark requiring multi-modal reasoning. Benchmarking state-of-the-art time series, language, and reasoning models reveals that existing approaches struggle with the abrupt, noisy, and high-variance dynamics of observability data. Our experiments also underscore the importance of preserving covariates' absolute scale, emphasizing the need for foundation time series models that natively leverage scale information for practical observability applications.
Controllable Audio-Visual Viewpoint Generation from 360° Spatial Information
The generation of sounding videos has seen significant advancements with the advent of diffusion models. However, existing methods often lack the fine-grained control needed to generate viewpoint-specific content from larger, immersive 360-degree environments. This limitation restricts the creation of audio-visual experiences that are aware of off-camera events. To the best of our knowledge, this is the first work to introduce a framework for controllable audio-visual generation, addressing this unexplored gap. Specifically, we propose a diffusion model by introducing a set of powerful conditioning signals derived from the full 360-degree space: a panoramic saliency map to identify regions of interest, a bounding-box-aware signed distance map to define the target viewpoint, and a descriptive caption of the entire scene. By integrating these controls, our model generates spatially-aware viewpoint videos and audios that are coherently influenced by the broader, unseen environmental context, introducing a strong controllability that is essential for realistic and immersive audio-visual generation. We show audiovisual examples proving the effectiveness of our framework.
☆ Scientific Algorithm Discovery by Augmenting AlphaEvolve with Deep Research
Large language models hold promise as scientific assistants, yet existing agents either rely solely on algorithm evolution or on deep research in isolation, both of which face critical limitations. Pure algorithm evolution, as in AlphaEvolve, depends only on the internal knowledge of LLMs and quickly plateaus in complex domains, while pure deep research proposes ideas without validation, resulting in unrealistic or unimplementable solutions. We present DeepEvolve, an agent that integrates deep research with algorithm evolution, uniting external knowledge retrieval, cross-file code editing, and systematic debugging under a feedback-driven iterative loop. Each iteration not only proposes new hypotheses but also refines, implements, and tests them, avoiding both shallow improvements and unproductive over-refinements. Across nine benchmarks in chemistry, mathematics, biology, materials, and patents, DeepEvolve consistently improves the initial algorithm, producing executable new algorithms with sustained gains. By bridging the gap between unguided evolution and research without grounding, DeepEvolve provides a reliable framework for advancing scientific algorithm discovery. Our code is available at https://github.com/liugangcode/deepevolve.
comment: 25 pages, 17 figures, 4 tables
☆ MixReasoning: Switching Modes to Think
Reasoning models enhance performance by tackling problems in a step-by-step manner, decomposing them into sub-problems and exploring long chains of thought before producing an answer. However, applying extended reasoning to every step introduces substantial redundancy, as sub-problems vary widely in difficulty and complexity: a small number of pivotal steps are genuinely challenging and decisive for the final answer, while many others only involve straightforward revisions or simple computations. Therefore, a natural idea is to endow reasoning models with the ability to adaptively respond to this variation, rather than treating all steps with the same level of elaboration. To this end, we propose MixReasoning, a framework that dynamically adjusts the depth of reasoning within a single response. The resulting chain of thought then becomes a mixture of detailed reasoning on difficult steps and concise inference on simpler ones. Experiments on GSM8K, MATH-500, and AIME show that MixReasoning shortens reasoning length and substantially improves efficiency without compromising accuracy.
☆ GLVD: Guided Learned Vertex Descent
Existing 3D face modeling methods usually depend on 3D Morphable Models, which inherently constrain the representation capacity to fixed shape priors. Optimization-based approaches offer high-quality reconstructions but tend to be computationally expensive. In this work, we introduce GLVD, a hybrid method for 3D face reconstruction from few-shot images that extends Learned Vertex Descent (LVD) by integrating per-vertex neural field optimization with global structural guidance from dynamically predicted 3D keypoints. By incorporating relative spatial encoding, GLVD iteratively refines mesh vertices without requiring dense 3D supervision. This enables expressive and adaptable geometry reconstruction while maintaining computational efficiency. GLVD achieves state-of-the-art performance in single-view settings and remains highly competitive in multi-view scenarios, all while substantially reducing inference time.
☆ VideoMiner: Iteratively Grounding Key Frames of Hour-Long Videos via Tree-based Group Relative Policy Optimization ICCV 2025
Understanding hour-long videos with multi-modal large language models (MM-LLMs) enriches the landscape of human-centered AI applications. However, for end-to-end video understanding with LLMs, uniformly sampling video frames results in LLMs being overwhelmed by a vast amount of irrelevant information as video length increases. Existing hierarchical key frame extraction methods improve the accuracy of video understanding but still face two critical challenges. 1) How can the interference of extensive redundant information in long videos be mitigated? 2) How can a model dynamically adapt to complex hierarchical structures while accurately identifying key frames? To address these issues, we propose VideoMiner, which iteratively segments, captions, and clusters long videos, forming a hierarchical tree structure. The proposed VideoMiner progresses from long videos to events to frames while preserving temporal coherence, effectively addressing the first challenge. To precisely locate key frames, we introduce T-GRPO, a tree-based group relative policy optimization in reinforcement learning method that guides the exploration of the VideoMiner. The proposed T-GRPO is specifically designed for tree structures, integrating spatiotemporal information at the event level while being guided by the question, thus solving the second challenge. We achieve superior performance in all long-video understanding tasks and uncover several interesting insights. Our proposed T-GRPO surprisingly incentivizes the model to spontaneously generate a reasoning chain. Additionally, the designed tree growth auxin dynamically adjusts the expansion depth, obtaining accuracy and efficiency gains. The code is publicly available at https://github.com/caoxinye/VideoMiner.
comment: Accepted by ICCV 2025
☆ CDTP: A Large-Scale Chinese Data-Text Pair Dataset for Comprehensive Evaluation of Chinese LLMs
Large Language Models (LLMs) have achieved remarkable success across a wide range of natural language processing tasks. However, Chinese LLMs face unique challenges, primarily due to the dominance of unstructured free text and the lack of structured representations in Chinese corpora. While existing benchmarks for LLMs partially assess Chinese LLMs, they are still predominantly English-centric and fail to address the unique linguistic characteristics of Chinese, lacking structured datasets essential for robust evaluation. To address these challenges, we present a Comprehensive Benchmark for Evaluating Chinese Large Language Models (CB-ECLLM) based on the newly constructed Chinese Data-Text Pair (CDTP) dataset. Specifically, CDTP comprises over 7 million aligned text pairs, each consisting of unstructured text coupled with one or more corresponding triples, alongside a total of 15 million triples spanning four critical domains. The core contributions of CDTP are threefold: (i) enriching Chinese corpora with high-quality structured information; (ii) enabling fine-grained evaluation tailored to knowledge-driven tasks; and (iii) supporting multi-task fine-tuning to assess generalization and robustness across scenarios, including Knowledge Graph Completion, Triple-to-Text generation, and Question Answering. Furthermore, we conduct rigorous evaluations through extensive experiments and ablation studies to assess the effectiveness, Supervised Fine-Tuning (SFT), and robustness of the benchmark. To support reproducible research, we offer an open-source codebase and outline potential directions for future investigations based on our insights.
☆ From Learning to Mastery: Achieving Safe and Efficient Real-World Autonomous Driving with Human-In-The-Loop Reinforcement Learning
Autonomous driving with reinforcement learning (RL) has significant potential. However, applying RL in real-world settings remains challenging due to the need for safe, efficient, and robust learning. Incorporating human expertise into the learning process can help overcome these challenges by reducing risky exploration and improving sample efficiency. In this work, we propose a reward-free, active human-in-the-loop learning method called Human-Guided Distributional Soft Actor-Critic (H-DSAC). Our method combines Proxy Value Propagation (PVP) and Distributional Soft Actor-Critic (DSAC) to enable efficient and safe training in real-world environments. The key innovation is the construction of a distributed proxy value function within the DSAC framework. This function encodes human intent by assigning higher expected returns to expert demonstrations and penalizing actions that require human intervention. By extrapolating these labels to unlabeled states, the policy is effectively guided toward expert-like behavior. With a well-designed state space, our method achieves real-world driving policy learning within practical training times. Results from both simulation and real-world experiments demonstrate that our framework enables safe, robust, and sample-efficient learning for autonomous driving.
☆ Refusal Falls off a Cliff: How Safety Alignment Fails in Reasoning?
Large reasoning models (LRMs) with multi-step reasoning capabilities have shown remarkable problem-solving abilities, yet they exhibit concerning safety vulnerabilities that remain poorly understood. In this work, we investigate why safety alignment fails in reasoning models through a mechanistic interpretability lens. Using a linear probing approach to trace refusal intentions across token positions, we discover a striking phenomenon termed as \textbf{refusal cliff}: many poorly-aligned reasoning models correctly identify harmful prompts and maintain strong refusal intentions during their thinking process, but experience a sharp drop in refusal scores at the final tokens before output generation. This suggests that these models are not inherently unsafe; rather, their refusal intentions are systematically suppressed. Through causal intervention analysis, we identify a sparse set of attention heads that negatively contribute to refusal behavior. Ablating just 3\% of these heads can reduce attack success rates below 10\%. Building on these mechanistic insights, we propose \textbf{Cliff-as-a-Judge}, a novel data selection method that identifies training examples exhibiting the largest refusal cliff to efficiently repair reasoning models' safety alignment. This approach achieves comparable safety improvements using only 1.7\% of the vanilla safety training data, demonstrating a less-is-more effect in safety alignment.
☆ Fast Leave-One-Out Approximation from Fragment-Target Prevalence Vectors (molFTP) : From Dummy Masking to Key-LOO for Leakage-Free Feature Construction
We introduce molFTP (molecular fragment-target prevalence), a compact representation that delivers strong predictive performance. To prevent feature leakage across cross-validation folds, we implement a dummy-masking procedure that removes information about fragments present in the held-out molecules. We further show that key leave-one-out (key-loo) closely approximates true molecule-level leave-one-out (LOO), with deviation below 8% on our datasets. This enables near full data training while preserving unbiased cross-validation estimates of model performance. Overall, molFTP provides a fast, leakage-resistant fragment-target prevalence vectorization with practical safeguards (dummy masking or key-LOO) that approximate LOO at a fraction of its cost.
comment: 28 pages, 21 figures, 3 tables
☆ Emergent AI Surveillance: Overlearned Person Re-Identification and Its Mitigation in Law Enforcement Context
Generic instance search models can dramatically reduce the manual effort required to analyze vast surveillance footage during criminal investigations by retrieving specific objects of interest to law enforcement. However, our research reveals an unintended emergent capability: through overlearning, these models can single out specific individuals even when trained on datasets without human subjects. This capability raises concerns regarding identification and profiling of individuals based on their personal data, while there is currently no clear standard on how de-identification can be achieved. We evaluate two technical safeguards to curtail a model's person re-identification capacity: index exclusion and confusion loss. Our experiments demonstrate that combining these approaches can reduce person re-identification accuracy to below 2% while maintaining 82% of retrieval performance for non-person objects. However, we identify critical vulnerabilities in these mitigations, including potential circumvention using partial person images. These findings highlight urgent regulatory questions at the intersection of AI governance and data protection: How should we classify and regulate systems with emergent identification capabilities? And what technical standards should be required to prevent identification capabilities from developing in seemingly benign applications?
comment: 10 pages, accepted to AIES 2025
☆ ARISE: An Adaptive Resolution-Aware Metric for Test-Time Scaling Evaluation in Large Reasoning Models
Test-time scaling has emerged as a transformative paradigm for enhancing the performance of large reasoning models, enabling dynamic allocation of computational resources during inference. However, as the landscape of reasoning models rapidly expands, a critical question remains: how can we systematically compare and evaluate the test-time scaling capabilities across different models? In this paper, we introduce ARISE (Adaptive Resolution-aware Scaling Evaluation), a novel metric specifically designed to assess the test-time scaling effectiveness of large reasoning models. Unlike existing evaluation approaches, ARISE incorporates two key innovations: (1) sample-level awareness that effectively penalizes negative scaling behaviors where increased computation leads to performance degradation, and (2) a dynamic sampling mechanism that mitigates the impact of accuracy fluctuations and token count instability on the final assessment. We conduct comprehensive experiments evaluating state-of-the-art reasoning models across diverse domains including mathematical reasoning, code generation, and agentic tasks. Our results demonstrate that ARISE provides a reliable and fine-grained measurement of test-time scaling capabilities, revealing significant variations in scaling efficiency across models. Notably, our evaluation identifies Claude Opus as exhibiting superior scaling characteristics compared to other contemporary reasoning models.
comment: 19 pages, 7 figures
☆ Hybrid Quantum-Classical Policy Gradient for Adaptive Control of Cyber-Physical Systems: A Comparative Study of VQC vs. MLP
The comparative evaluation between classical and quantum reinforcement learning (QRL) paradigms was conducted to investigate their convergence behavior, robustness under observational noise, and computational efficiency in a benchmark control environment. The study employed a multilayer perceptron (MLP) agent as a classical baseline and a parameterized variational quantum circuit (VQC) as a quantum counterpart, both trained on the CartPole-v1 environment over 500 episodes. Empirical results demonstrated that the classical MLP achieved near-optimal policy convergence with a mean return of 498.7 +/- 3.2, maintaining stable equilibrium throughout training. In contrast, the VQC exhibited limited learning capability, with an average return of 14.6 +/- 4.8, primarily constrained by circuit depth and qubit connectivity. Noise robustness analysis further revealed that the MLP policy deteriorated gracefully under Gaussian perturbations, while the VQC displayed higher sensitivity at equivalent noise levels. Despite the lower asymptotic performance, the VQC exhibited significantly lower parameter count and marginally increased training time, highlighting its potential scalability for low-resource quantum processors. The results suggest that while classical neural policies remain dominant in current control benchmarks, quantum-enhanced architectures could offer promising efficiency advantages once hardware noise and expressivity limitations are mitigated.
comment: 6 pages, 5 figures, 2 tables, 17 equations, 1 algorithm
Detection and Measurement of Hailstones with Multimodal Large Language Models
This study examines the use of social media and news images to detect and measure hailstones, utilizing pre-trained multimodal large language models. The dataset for this study comprises 474 crowdsourced images of hailstones from documented hail events in Austria, which occurred between January 2022 and September 2024. These hailstones have maximum diameters ranging from 2 to 11cm. We estimate the hail diameters and compare four different models utilizing one-stage and two-stage prompting strategies. The latter utilizes additional size cues from reference objects, such as human hands, within the image. Our results show that pretrained models already have the potential to measure hailstone diameters from images with an average mean absolute error of 1.12cm for the best model. In comparison to a single-stage prompt, two-stage prompting improves the reliability of most models. Our study suggests that these off-the-shelf models, even without fine-tuning, can complement traditional hail sensors by extracting meaningful and spatially dense information from social media imagery, enabling faster and more detailed assessments of severe weather events. The automated real-time image harvesting from social media and other sources remains an open task, but it will make our approach directly applicable to future hail events.
comment: 6 pages, 5 figures, accepted at The 2nd International Conference on Electrical and Computer Engineering Researches
☆ Deterministic Legal Retrieval: An Action API for Querying the SAT-Graph RAG
The Structure-Aware Temporal Graph RAG (SAT-Graph RAG) addresses core limitations of standard Retrieval-Augmented Generation in the legal domain by providing a verifiable knowledge graph that models hierarchical structure, temporal evolution, and causal events of legal norms. However, a critical gap remains: how to reliably query this structured knowledge without sacrificing its deterministic properties. This paper introduces the SAT-Graph API, a formal query execution layer centered on canonical actions-atomic, composable, and auditable primitives that isolate probabilistic discovery from deterministic retrieval. These actions enable: (i) high-precision hybrid search; (ii) robust reference resolution; (iii) point-in-time version retrieval; and (iv) auditable causal tracing. We demonstrate how planner-guided agents can decompose complex queries into Directed Acyclic Graphs (DAGs) of these actions. This two-layer architecture transforms retrieval from an opaque black box to a transparent, auditable process, directly addressing Explainable AI (XAI) requirements for high-stakes domains.
☆ Information-Theoretic Policy Pre-Training with Empowerment
Empowerment, an information-theoretic measure of an agent's potential influence on its environment, has emerged as a powerful intrinsic motivation and exploration framework for reinforcement learning (RL). Besides for unsupervised RL and skill learning algorithms, the specific use of empowerment as a pre-training signal has received limited attention in the literature. We show that empowerment can be used as a pre-training signal for data-efficient downstream task adaptation. For this we extend the traditional notion of empowerment by introducing discounted empowerment, which balances the agent's control over the environment across short- and long-term horizons. Leveraging this formulation, we propose a novel pre-training paradigm that initializes policies to maximize discounted empowerment, enabling agents to acquire a robust understanding of environmental dynamics. We analyze empowerment-based pre-training for various existing RL algorithms and empirically demonstrate its potential as a general-purpose initialization strategy: empowerment-maximizing policies with long horizons are data-efficient and effective, leading to improved adaptability in downstream tasks. Our findings pave the way for future research to scale this framework to high-dimensional and complex tasks, further advancing the field of RL.
☆ ECTSpeech: Enhancing Efficient Speech Synthesis via Easy Consistency Tuning
Diffusion models have demonstrated remarkable performance in speech synthesis, but typically require multi-step sampling, resulting in low inference efficiency. Recent studies address this issue by distilling diffusion models into consistency models, enabling efficient one-step generation. However, these approaches introduce additional training costs and rely heavily on the performance of pre-trained teacher models. In this paper, we propose ECTSpeech, a simple and effective one-step speech synthesis framework that, for the first time, incorporates the Easy Consistency Tuning (ECT) strategy into speech synthesis. By progressively tightening consistency constraints on a pre-trained diffusion model, ECTSpeech achieves high-quality one-step generation while significantly reducing training complexity. In addition, we design a multi-scale gate module (MSGate) to enhance the denoiser's ability to fuse features at different scales. Experimental results on the LJSpeech dataset demonstrate that ECTSpeech achieves audio quality comparable to state-of-the-art methods under single-step sampling, while substantially reducing the model's training cost and complexity.
comment: Accepted for publication by Proceedings of the 2025 ACM Multimedia Asia Conference(MMAsia '25)
☆ Diffusion Models for Low-Light Image Enhancement: A Multi-Perspective Taxonomy and Performance Analysis
Low-light image enhancement (LLIE) is vital for safety-critical applications such as surveillance, autonomous navigation, and medical imaging, where visibility degradation can impair downstream task performance. Recently, diffusion models have emerged as a promising generative paradigm for LLIE due to their capacity to model complex image distributions via iterative denoising. This survey provides an up-to-date critical analysis of diffusion models for LLIE, distinctively featuring an in-depth comparative performance evaluation against Generative Adversarial Network and Transformer-based state-of-the-art methods, a thorough examination of practical deployment challenges, and a forward-looking perspective on the role of emerging paradigms like foundation models. We propose a multi-perspective taxonomy encompassing six categories: Intrinsic Decomposition, Spectral & Latent, Accelerated, Guided, Multimodal, and Autonomous; that map enhancement methods across physical priors, conditioning schemes, and computational efficiency. Our taxonomy is grounded in a hybrid view of both the model mechanism and the conditioning signals. We evaluate qualitative failure modes, benchmark inconsistencies, and trade-offs between interpretability, generalization, and inference efficiency. We also discuss real-world deployment constraints (e.g., memory, energy use) and ethical considerations. This survey aims to guide the next generation of diffusion-based LLIE research by highlighting trends and surfacing open research questions, including novel conditioning, real-time adaptation, and the potential of foundation models.
☆ LexiCon: a Benchmark for Planning under Temporal Constraints in Natural Language
Owing to their reasoning capabilities, large language models (LLMs) have been evaluated on planning tasks described in natural language. However, LLMs have largely been tested on planning domains without constraints. In order to deploy them in real-world settings where adherence to constraints, in particular safety constraints, is critical, we need to evaluate their performance on constrained planning tasks. We introduce LexiCon -- a natural language-based (Lexi) constrained (Con) planning benchmark, consisting of a suite of environments, that can be used to evaluate the planning capabilities of LLMs in a principled fashion. The core idea behind LexiCon is to take existing planning environments and impose temporal constraints on the states. These constrained problems are then translated into natural language and given to an LLM to solve. A key feature of LexiCon is its extensibility. That is, the set of supported environments can be extended with new (unconstrained) environment generators, for which temporal constraints are constructed automatically. This renders LexiCon future-proof: the hardness of the generated planning problems can be increased as the planning capabilities of LLMs improve. Our experiments reveal that the performance of state-of-the-art LLMs, including reasoning models like GPT-5, o3, and R1, deteriorates as the degree of constrainedness of the planning tasks increases.
☆ Probing the Difficulty Perception Mechanism of Large Language Models
Large language models (LLMs) are increasingly deployed on complex reasoning tasks, yet little is known about their ability to internally evaluate problem difficulty, which is an essential capability for adaptive reasoning and efficient resource allocation. In this work, we investigate whether LLMs implicitly encode problem difficulty in their internal representations. Using a linear probe on the final-token representations of LLMs, we demonstrate that the difficulty level of math problems can be linearly modeled. We further locate the specific attention heads of the final Transformer layer: these attention heads have opposite activation patterns for simple and difficult problems, thus achieving perception of difficulty. Our ablation experiments prove the accuracy of the location. Crucially, our experiments provide practical support for using LLMs as automatic difficulty annotators, potentially substantially reducing reliance on costly human labeling in benchmark construction and curriculum learning. We also uncover that there is a significant difference in entropy and difficulty perception at the token level. Our study reveals that difficulty perception in LLMs is not only present but also structurally organized, offering new theoretical insights and practical directions for future research.
☆ MatheMagic: Generating Dynamic Mathematics Benchmarks Robust to Memorization
Conducting contamination-free evaluation of mathematical capabilities can be difficult for two reasons: models may memorize a test set once it is made public, and current mathematical benchmarks are prone to overfitting due to having limited diversity of symbols and rules, coupled with closed-ended answers. This paper proposes a method to leverage these shortcomings as useful features to a construct dynamic, counterfactual benchmark, which can be used to both reveal overfitting and measure true reasoning. We demonstrate this via MatheMagic, which generates math test instances with the interpretations of numbers and operators altered, yet has automatically verifiable answers. Test instances are randomly seeded and constructed at test time to evaluate a model's induction or deduction capability, offering stability, extensibility, comparability, and robustness to overfitting. Our experiments find that models solve deduction more easily than induction, but they revert to standard math. Further analysis reveals that math-adapted models fail to exhibit a general "skill" of reasoning, and fine-tuning on induction tasks generalizes poorly.
☆ Training-Free Time Series Classification via In-Context Reasoning with LLM Agents
Time series classification (TSC) spans diverse application scenarios, yet labeled data are often scarce, making task-specific training costly and inflexible. Recent reasoning-oriented large language models (LLMs) show promise in understanding temporal patterns, but purely zero-shot usage remains suboptimal. We propose FETA, a multi-agent framework for training-free TSC via exemplar-based in-context reasoning. FETA decomposes a multivariate series into channel-wise subproblems, retrieves a few structurally similar labeled examples for each channel, and leverages a reasoning LLM to compare the query against these exemplars, producing channel-level labels with self-assessed confidences; a confidence-weighted aggregator then fuses all channel decisions. This design eliminates the need for pretraining or fine-tuning, improves efficiency by pruning irrelevant channels and controlling input length, and enhances interpretability through exemplar grounding and confidence estimation. On nine challenging UEA datasets, FETA achieves strong accuracy under a fully training-free setting, surpassing multiple trained baselines. These results demonstrate that a multi-agent in-context reasoning framework can transform LLMs into competitive, plug-and-play TSC solvers without any parameter training. The code is available at https://github.com/SongyuanSui/FETATSC.
comment: 8 pages main content, 12 pages total including appendix, 1 figure
☆ Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Joint Embedding Predictive Architectures (JEPAs) learn representations able to solve numerous downstream tasks out-of-the-box. JEPAs combine two objectives: (i) a latent-space prediction term, i.e., the representation of a slightly perturbed sample must be predictable from the original sample's representation, and (ii) an anti-collapse term, i.e., not all samples should have the same representation. While (ii) is often considered as an obvious remedy to representation collapse, we uncover that JEPAs' anti-collapse term does much more--it provably estimates the data density. In short, any successfully trained JEPA can be used to get sample probabilities, e.g., for data curation, outlier detection, or simply for density estimation. Our theoretical finding is agnostic of the dataset and architecture used--in any case one can compute the learned probabilities of sample $x$ efficiently and in closed-form using the model's Jacobian matrix at $x$. Our findings are empirically validated across datasets (synthetic, controlled, and Imagenet) and across different Self Supervised Learning methods falling under the JEPA family (I-JEPA and DINOv2) and on multimodal models, such as MetaCLIP. We denote the method extracting the JEPA learned density as {\bf JEPA-SCORE}.
☆ EvalMORAAL: Interpretable Chain-of-Thought and LLM-as-Judge Evaluation for Moral Alignment in Large Language Models
We present EvalMORAAL, a transparent chain-of-thought (CoT) framework that uses two scoring methods (log-probabilities and direct ratings) plus a model-as-judge peer review to evaluate moral alignment in 20 large language models. We assess models on the World Values Survey (55 countries, 19 topics) and the PEW Global Attitudes Survey (39 countries, 8 topics). With EvalMORAAL, top models align closely with survey responses (Pearson's r approximately 0.90 on WVS). Yet we find a clear regional difference: Western regions average r=0.82 while non-Western regions average r=0.61 (a 0.21 absolute gap), indicating consistent regional bias. Our framework adds three parts: (1) two scoring methods for all models to enable fair comparison, (2) a structured chain-of-thought protocol with self-consistency checks, and (3) a model-as-judge peer review that flags 348 conflicts using a data-driven threshold. Peer agreement relates to survey alignment (WVS r=0.74, PEW r=0.39, both p<.001), supporting automated quality checks. These results show real progress toward culture-aware AI while highlighting open challenges for use across regions.
☆ LLM-FS-Agent: A Deliberative Role-based Large Language Model Architecture for Transparent Feature Selection
High-dimensional data remains a pervasive challenge in machine learning, often undermining model interpretability and computational efficiency. While Large Language Models (LLMs) have shown promise for dimensionality reduction through feature selection, existing LLM-based approaches frequently lack structured reasoning and transparent justification for their decisions. This paper introduces LLM-FS-Agent, a novel multi-agent architecture designed for interpretable and robust feature selection. The system orchestrates a deliberative "debate" among multiple LLM agents, each assigned a specific role, enabling collective evaluation of feature relevance and generation of detailed justifications. We evaluate LLM-FS-Agent in the cybersecurity domain using the CIC-DIAD 2024 IoT intrusion detection dataset and compare its performance against strong baselines, including LLM-Select and traditional methods such as PCA. Experimental results demonstrate that LLM-FS-Agent consistently achieves superior or comparable classification performance while reducing downstream training time by an average of 46% (statistically significant improvement, p = 0.028 for XGBoost). These findings highlight that the proposed deliberative architecture enhances both decision transparency and computational efficiency, establishing LLM-FS-Agent as a practical and reliable solution for real-world applications.
☆ Carré du champ flow matching: better quality-generalisation tradeoff in generative models
Deep generative models often face a fundamental tradeoff: high sample quality can come at the cost of memorisation, where the model reproduces training data rather than generalising across the underlying data geometry. We introduce Carr\'e du champ flow matching (CDC-FM), a generalisation of flow matching (FM), that improves the quality-generalisation tradeoff by regularising the probability path with a geometry-aware noise. Our method replaces the homogeneous, isotropic noise in FM with a spatially varying, anisotropic Gaussian noise whose covariance captures the local geometry of the latent data manifold. We prove that this geometric noise can be optimally estimated from the data and is scalable to large data. Further, we provide an extensive experimental evaluation on diverse datasets (synthetic manifolds, point clouds, single-cell genomics, animal motion capture, and images) as well as various neural network architectures (MLPs, CNNs, and transformers). We demonstrate that CDC-FM consistently offers a better quality-generalisation tradeoff. We observe significant improvements over standard FM in data-scarce regimes and in highly non-uniformly sampled datasets, which are often encountered in AI for science applications. Our work provides a mathematical framework for studying the interplay between data geometry, generalisation and memorisation in generative models, as well as a robust and scalable algorithm that can be readily integrated into existing flow matching pipelines.
☆ An Attention-Augmented VAE-BiLSTM Framework for Anomaly Detection in 12-Lead ECG Signals
Anomaly detection in 12-lead electrocardiograms (ECGs) is critical for identifying deviations associated with cardiovascular disease. This work presents a comparative analysis of three autoencoder-based architectures: convolutional autoencoder (CAE), variational autoencoder with bidirectional long short-term memory (VAE-BiLSTM), and VAE-BiLSTM with multi-head attention (VAE-BiLSTM-MHA), for unsupervised anomaly detection in ECGs. To the best of our knowledge, this study reports the first application of a VAE-BiLSTM-MHA architecture to ECG anomaly detection. All models are trained on normal ECG samples to reconstruct non-anomalous cardiac morphology and detect deviations indicative of disease. Using a unified preprocessing and evaluation pipeline on the public China Physiological Signal Challenge (CPSC) dataset, the attention-augmented VAE achieves the best performance, with an AUPRC of 0.81 and a recall of 0.85 on the held-out test set, outperforming the other architectures. To support clinical triage, this model is further integrated into an interactive dashboard that visualizes anomaly localization. In addition, a performance comparison with baseline models from the literature is provided.
comment: 14 pages, 11 figures
☆ Optimizing for Persuasion Improves LLM Generalization: Evidence from Quality-Diversity Evolution of Debate Strategies
Large Language Models (LLMs) optimized to output truthful answers often overfit, producing brittle reasoning that fails to generalize. While persuasion-based optimization has shown promise in debate settings, it has not been systematically compared against mainstream truth-based approaches. We introduce DebateQD, a minimal Quality-Diversity (QD) evolutionary algorithm that evolves diverse debate strategies across different categories (rationality, authority, emotional appeal, etc.) through tournament-style competitions where two LLMs debate while a third judges. Unlike previously proposed methods that require a population of LLMs, our approach maintains diversity of opponents through prompt-based strategies within a single LLM architecture, making it more accessible for experiments while preserving the key benefits of population-based optimization. In contrast to prior work, we explicitly isolate the role of the optimization objective by fixing the debate protocol and swapping only the fitness function: persuasion rewards strategies that convince the judge irrespective of truth, whereas truth rewards collaborative correctness. Across three model scales (7B, 32B, 72B parameters) and multiple dataset sizes from the QuALITY benchmark, persuasion-optimized strategies achieve up to 13.94% smaller train-test generalization gaps, while matching or exceeding truth optimization's test performance. These results provide the first controlled evidence that competitive pressure to persuade, rather than seek the truth collaboratively, fosters more transferable reasoning skills, offering a promising path for improving LLM generalization.
comment: Open-source code available at https://github.com/flowersteam/llm_persuasion
☆ Kaputt: A Large-Scale Dataset for Visual Defect Detection ICCV 2025
We present a novel large-scale dataset for defect detection in a logistics setting. Recent work on industrial anomaly detection has primarily focused on manufacturing scenarios with highly controlled poses and a limited number of object categories. Existing benchmarks like MVTec-AD [6] and VisA [33] have reached saturation, with state-of-the-art methods achieving up to 99.9% AUROC scores. In contrast to manufacturing, anomaly detection in retail logistics faces new challenges, particularly in the diversity and variability of object pose and appearance. Leading anomaly detection methods fall short when applied to this new setting. To bridge this gap, we introduce a new benchmark that overcomes the current limitations of existing datasets. With over 230,000 images (and more than 29,000 defective instances), it is 40 times larger than MVTec-AD and contains more than 48,000 distinct objects. To validate the difficulty of the problem, we conduct an extensive evaluation of multiple state-of-the-art anomaly detection methods, demonstrating that they do not surpass 56.96% AUROC on our dataset. Further qualitative analysis confirms that existing methods struggle to leverage normal samples under heavy pose and appearance variation. With our large-scale dataset, we set a new benchmark and encourage future research towards solving this challenging problem in retail logistics anomaly detection. The dataset is available for download under https://www.kaputt-dataset.com.
comment: Accepted to ICCV 2025
☆ Paying Attention to Hybrid Attention: Untangling the Issues with Conversion Methods
Transformers' quadratic computational complexity limits their scalability despite remarkable performance. While linear attention reduces this to linear complexity, pre-training such models from scratch remains, in most cases, prohibitively expensive. Recent post-training linearisation methods convert pre-trained Transformers to linear models efficiently, often using hybrid approaches that combine linear attention with sliding-window softmax. We identify a critical flaw: existing hybrid methods inadvertently bypass the linear component, relying almost entirely on SWA. Component-level diagnostics reveal this previously undetected behaviour stems from overlooked evaluation practices on common-sense benchmarks. We propose three solutions to ensure balanced component usage: (i) inference-time hybridisation of linear-only conversions with sliding-window softmax; (ii) HedgeCATs, combining attention-weight transfer with targeted LoRA fine-tuning; and (iii) Scheduled Sliding-window Dropout (SSD), which stochastically suppresses the softmax branch during training to prevent component collapse. Our methods maintain computational efficiency while recovering most base model performance and ensuring genuine linear attention adoption, restoring the validity of performance attributions in hybrid conversions.
☆ $\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection ICCV2025
The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D$^3$QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D$^3$QE across different AR models, with robustness to real-world perturbations. Code is available at \href{https://github.com/Zhangyr2022/D3QE}{https://github.com/Zhangyr2022/D3QE}.
comment: 10 pages, 5 figures, published to ICCV2025
☆ Segment-Factorized Full-Song Generation on Symbolic Piano Music NeurIPS 2025
We propose the Segmented Full-Song Model (SFS) for symbolic full-song generation. The model accepts a user-provided song structure and an optional short seed segment that anchors the main idea around which the song is developed. By factorizing a song into segments and generating each one through selective attention to related segments, the model achieves higher quality and efficiency compared to prior work. To demonstrate its suitability for human-AI interaction, we further wrap SFS into a web application that enables users to iteratively co-create music on a piano roll with customizable structures and flexible ordering.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI for Music
☆ Towards Label-Free Biological Reasoning Synthetic Dataset Creation via Uncertainty Filtering
Synthetic chain-of-thought (CoT) traces are widely used to train large reasoning models (LRMs), improving generalization by providing step-level supervision. Yet most approaches require ground-truth labels to seed or filter these traces - an expensive bottleneck in domains like biology where wet-lab data are scarce. We propose a label-free alternative: uncertainty-based filtering, which uses a model's own confidence - quantified through established uncertainty metrics like self-consistency and predictive perplexity - as a substitute for external labels. We sample multiple reasoning traces and retain only low-uncertainty subsets. Applied to biological perturbation prediction, a domain where wet-lab labels are especially costly, we show that the filtered subset has higher accuracy, and that supervised fine-tuning (SFT) on uncertainty-filtered data outperforms unfiltered synthetic data, narrows the gap to ground-truth training, and surpasses strong LRM baselines. Ablations show that per-class filtering corrects for class-specific uncertainty scales and that hybrid uncertainty metrics yield higher-quality datasets. Our results suggest that model-internal confidence is a powerful signal for efficient reasoning dataset creation, enabling LRMs in domains where supervision is expensive.
The Safety Challenge of World Models for Embodied AI Agents: A Review
The rapid progress in embodied artificial intelligence has highlighted the necessity for more advanced and integrated models that can perceive, interpret, and predict environmental dynamics. In this context, World Models (WMs) have been introduced to provide embodied agents with the abilities to anticipate future environmental states and fill in knowledge gaps, thereby enhancing agents' ability to plan and execute actions. However, when dealing with embodied agents it is fundamental to ensure that predictions are safe for both the agent and the environment. In this article, we conduct a comprehensive literature review of World Models in the domains of autonomous driving and robotics, with a specific focus on the safety implications of scene and control generation tasks. Our review is complemented by an empirical analysis, wherein we collect and examine predictions from state-of-the-art models, identify and categorize common faults (herein referred to as pathologies), and provide a quantitative evaluation of the results.
☆ Revisiting Long-context Modeling from Context Denoising Perspective
Long-context models (LCMs) have demonstrated great potential in processing long sequences, facilitating many real-world applications. The success of LCMs can be attributed to their ability to locate implicit critical information within the context for further prediction. However, recent research reveals that LCMs are often susceptible to contextual noise, i.e., irrelevant tokens, that can mislead model attention. In this paper, we conduct a fine-grained analysis of the context noise and propose an effective metric, the Integrated Gradient (IG) score, to detect and quantify the noise information within the context. Our findings reveal that even simple mitigation of detected context noise can substantially boost the model's attention on critical tokens and benefit subsequent predictions. Building on this insight, we propose Context Denoising Training (CDT), a straightforward yet effective training strategy that improves attention on critical tokens while reinforcing their influence on model predictions. Extensive experiments across four tasks, under both context window scaling and long-context alignment settings, demonstrate the superiority of CDT. Notably, when trained with CDT, an open-source 8B model can achieve performance (50.92) comparable to GPT-4o (51.00).
☆ DACP: Domain-Adaptive Continual Pre-Training of Large Language Models for Phone Conversation Summarization EMNLP 2025
Large language models (LLMs) have achieved impressive performance in text summarization, yet their performance often falls short when applied to specialized domains %or conversational data that differ from their original pre-training distribution. While fine-tuning can improve summarization quality, it typically relies on costly and scarce high-quality labeled data. In this work, we explore continual pre-training as a scalable, self-supervised approach to adapt LLMs for downstream summarization tasks, particularly in the context of noisy real-world conversation transcripts. We conduct extensive experiments using large-scale, unlabeled business conversation data to investigate whether continual pre-training enhances model capabilities in conversational summarization. Our results demonstrate that continual pre-training yields substantial gains in both in-domain and out-of-domain summarization benchmarks, while maintaining strong generalization and robustness. We also analyze the effects of data selection strategies, providing practical guidelines for applying continual pre-training in summarization-focused industrial applications.
comment: Accepted to the NewSumm Workshop at EMNLP 2025
☆ VCoT-Grasp: Grasp Foundation Models with Visual Chain-of-Thought Reasoning for Language-driven Grasp Generation
Robotic grasping is one of the most fundamental tasks in robotic manipulation, and grasp detection/generation has long been the subject of extensive research. Recently, language-driven grasp generation has emerged as a promising direction due to its practical interaction capabilities. However, most existing approaches either lack sufficient reasoning and generalization capabilities or depend on complex modular pipelines. Moreover, current grasp foundation models tend to overemphasize dialog and object semantics, resulting in inferior performance and restriction to single-object grasping. To maintain strong reasoning ability and generalization in cluttered environments, we propose VCoT-Grasp, an end-to-end grasp foundation model that incorporates visual chain-of-thought reasoning to enhance visual understanding for grasp generation. VCoT-Grasp adopts a multi-turn processing paradigm that dynamically focuses on visual inputs while providing interpretable reasoning traces. For training, we refine and introduce a large-scale dataset, VCoT-GraspSet, comprising 167K synthetic images with over 1.36M grasps, as well as 400+ real-world images with more than 1.2K grasps, annotated with intermediate bounding boxes. Extensive experiments on both VCoT-GraspSet and real robot demonstrate that our method significantly improves grasp success rates and generalizes effectively to unseen objects, backgrounds, and distractors. More details can be found at https://zhanghr2001.github.io/VCoT-Grasp.github.io.
☆ Mitigating Premature Exploitation in Particle-based Monte Carlo for Inference-Time Scaling
Inference-Time Scaling (ITS) improves language models by allocating more computation at generation time. Particle Filtering (PF) has emerged as a strong ITS method for complex mathematical reasoning tasks, but it is vulnerable when guided by process reward models, which often assign overconfident scores early in the reasoning process. This causes PF to suffer from premature exploitation: it myopically commits to locally promising trajectories, prunes potentially correct hypotheses, and converges to suboptimal solutions. This failure mode, known as particle impoverishment, is especially severe under constrained computational budgets. To address this, we analyze the problem and identify two root causes: a lack of diversity in the particle set due to overconfident resampling and consequent inability to assess the potential of a reasoning path. We introduce Entropic Particle Filtering (ePF), an algorithm that integrates two new techniques to solve these issues. The first technique, Entropic Annealing (EA), directly mitigates particle impoverishment by monitoring search diversity via entropy; when diversity drops, it intervenes by dynamically annealing the resampling distribution to preserve exploration. The second, an enhancement called Look-ahead Modulation (LaM), adds a predictive guide to evaluate a state's potential based on its successors. On several challenging math benchmarks, ePF significantly outperforms strong baselines and achieves up to a 50 % relative improvement in task reward. Together, these methods improve PF's resilience by balancing the exploration of diverse solution spaces with the exploitation of high-reward regions, ultimately leading to higher-quality solutions.
Deformable Image Registration for Self-supervised Cardiac Phase Detection in Multi-View Multi-Disease Cardiac Magnetic Resonance Images
Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac function, but individual cardiac cycles complicate automatic temporal comparison or sub-phase analysis. Accurate cardiac keyframe detection can eliminate this problem. However, automatic methods solely derive end-systole (ES) and end-diastole (ED) frames from left ventricular volume curves, which do not provide a deeper insight into myocardial motion. We propose a self-supervised deep learning method detecting five keyframes in short-axis (SAX) and four-chamber long-axis (4CH) cine CMR. Initially, dense deformable registration fields are derived from the images and used to compute a 1D motion descriptor, which provides valuable insights into global cardiac contraction and relaxation patterns. From these characteristic curves, keyframes are determined using a simple set of rules. The method was independently evaluated for both views using three public, multicentre, multidisease datasets. M&Ms-2 (n=360) dataset was used for training and evaluation, and M&Ms (n=345) and ACDC (n=100) datasets for repeatability control. Furthermore, generalisability to patients with rare congenital heart defects was tested using the German Competence Network (GCN) dataset. Our self-supervised approach achieved improved detection accuracy by 30% - 51% for SAX and 11% - 47% for 4CH in ED and ES, as measured by cyclic frame difference (cFD), compared with the volume-based approach. We can detect ED and ES, as well as three additional keyframes throughout the cardiac cycle with a mean cFD below 1.31 frames for SAX and 1.73 for LAX. Our approach enables temporally aligned inter- and intra-patient analysis of cardiac dynamics, irrespective of cycle or phase lengths. GitHub repository: https://github.com/Cardio-AI/cmr-multi-view-phase-detection.git
comment: Main 30 pages, 6 figures
☆ Risk level dependent Minimax Quantile lower bounds for Interactive Statistical Decision Making
Minimax risk and regret focus on expectation, missing rare failures critical in safety-critical bandits and reinforcement learning. Minimax quantiles capture these tails. Three strands of prior work motivate this study: minimax-quantile bounds restricted to non-interactive estimation; unified interactive analyses that focus on expected risk rather than risk level specific quantile bounds; and high-probability bandit bounds that still lack a quantile-specific toolkit for general interactive protocols. To close this gap, within the interactive statistical decision making framework, we develop high-probability Fano and Le Cam tools and derive risk level explicit minimax-quantile bounds, including a quantile-to-expectation conversion and a tight link between strict and lower minimax quantiles. Instantiating these results for the two-armed Gaussian bandit immediately recovers optimal-rate bounds.
☆ Data-efficient Targeted Token-level Preference Optimization for LLM-based Text-to-Speech
Aligning text-to-speech (TTS) system outputs with human feedback through preference optimization has been shown to effectively improve the robustness and naturalness of language model-based TTS models. Current approaches primarily require paired desirable and undesirable samples at the utterance level. However, such pairs are often limited in TTS output data, and utterance-level formulation prevents fine-grained token-level optimization needed for accurate pronunciation alignment. In this study, we propose TKTO that eliminates the need for paired data, enabling a more data-efficient training paradigm, and directly targets token-level units, automatically providing fine-grained alignment signals without token-level annotations. TKTO improves the challenging Japanese TTS accuracy by 39% and reduces CER by 54%, automatically assigning 12.8 times stronger reward to targeted tokens.
☆ Mellum: Production-Grade in-IDE Contextual Code Completion with Multi-File Project Understanding
We present the Mellum models family, open-weight code completion models designed for interactive use in JetBrains IDEs. Mellums have 4B parameters, adopt a Llama-style architecture, and are pre-trained on ~4T tokens of permissively licensed, multi-language code. Our studies show that (i) careful data curation and staged training significantly improve the model's quality, (ii) editor-critical capabilities such as context packing are necessary for high-quality suggestions, and (iii) a compact, task-focused model can meet the cost and latency constraints of interactive completion. In the paper, we describe an end-to-end industrial pipeline for producing contextualized in-editor completion: disciplined data governance, multi-stage training that includes fill-in-the-middle and project context via supervised fine-tuning, and alignment via direct preference optimization using feedback from real-world scenarios. Our quality evaluations include both large-scale offline benchmarks and online telemetry from production deployments in JetBrains IDEs. Mellums are released under the Apache-2.0 license on HuggingFace, with a public model card providing a reproducible reference for practitioners. Our experience offers a pragmatic blueprint for taking a focused, open model from a research prototype to at scale production for hundreds of thousands of users.
comment: 11 pages, 4 figures, 3 tables
☆ ConstraintLLM: A Neuro-Symbolic Framework for Industrial-Level Constraint Programming EMNLP 2025
Constraint programming (CP) is a crucial technology for solving real-world constraint optimization problems (COPs), with the advantages of rich modeling semantics and high solving efficiency. Using large language models (LLMs) to generate formal modeling automatically for COPs is becoming a promising approach, which aims to build trustworthy neuro-symbolic AI with the help of symbolic solvers. However, CP has received less attention compared to works based on operations research (OR) models. We introduce ConstraintLLM, the first LLM specifically designed for CP modeling, which is trained on an open-source LLM with multi-instruction supervised fine-tuning. We propose the Constraint-Aware Retrieval Module (CARM) to increase the in-context learning capabilities, which is integrated in a Tree-of-Thoughts (ToT) framework with guided self-correction mechanism. Moreover, we construct and release IndusCP, the first industrial-level benchmark for CP modeling, which contains 140 challenging tasks from various domains. Our experiments demonstrate that ConstraintLLM achieves state-of-the-art solving accuracy across multiple benchmarks and outperforms the baselines by 2x on the new IndusCP benchmark. Code and data are available at: https://github.com/william4s/ConstraintLLM.
comment: Accepted to the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025), Main Conference
☆ InforME: Improving Informativeness of Abstractive Text Summarization With Informative Attention Guided by Named Entity Salience
Abstractive text summarization is integral to the Big Data era, which demands advanced methods to turn voluminous and often long text data into concise but coherent and informative summaries for efficient human consumption. Despite significant progress, there is still room for improvement in various aspects. One such aspect is to improve informativeness. Hence, this paper proposes a novel learning approach consisting of two methods: an optimal transport-based informative attention method to improve learning focal information in reference summaries and an accumulative joint entropy reduction method on named entities to enhance informative salience. Experiment results show that our approach achieves better ROUGE scores compared to prior work on CNN/Daily Mail while having competitive results on XSum. Human evaluation of informativeness also demonstrates the better performance of our approach over a strong baseline. Further analysis gives insight into the plausible reasons underlying the evaluation results.
☆ RareAgent: Self-Evolving Reasoning for Drug Repurposing in Rare Diseases
Computational drug repurposing for rare diseases is especially challenging when no prior associations exist between drugs and target diseases. Therefore, knowledge graph completion and message-passing GNNs have little reliable signal to learn and propagate, resulting in poor performance. We present RareAgent, a self-evolving multi-agent system that reframes this task from passive pattern recognition to active evidence-seeking reasoning. RareAgent organizes task-specific adversarial debates in which agents dynamically construct evidence graphs from diverse perspectives to support, refute, or entail hypotheses. The reasoning strategies are analyzed post hoc in a self-evolutionary loop, producing textual feedback that refines agent policies, while successful reasoning paths are distilled into transferable heuristics to accelerate future investigations. Comprehensive evaluations reveal that RareAgent improves the indication AUPRC by 18.1% over reasoning baselines and provides a transparent reasoning chain consistent with clinical evidence.
☆ Early Multimodal Prediction of Cross-Lingual Meme Virality on Reddit: A Time-Window Analysis
Predicting the virality of online content remains challenging, especially for culturally complex, fast-evolving memes. This study investigates the feasibility of early prediction of meme virality using a large-scale, cross-lingual dataset from 25 diverse Reddit communities. We propose a robust, data-driven method to define virality based on a hybrid engagement score, learning a percentile-based threshold from a chronologically held-out training set to prevent data leakage. We evaluated a suite of models, including Logistic Regression, XGBoost, and a Multi-layer Perceptron (MLP), with a comprehensive, multimodal feature set across increasing time windows (30-420 min). Crucially, useful signals emerge quickly: our best-performing model, XGBoost, achieves a PR-AUC $>$ 0.52 in just 30 minutes. Our analysis reveals a clear "evidentiary transition," in which the importance of the feature dynamically shifts from the static context to the temporal dynamics as a meme gains traction. This work establishes a robust, interpretable, and practical benchmark for early virality prediction in scenarios where full diffusion cascade data is unavailable, contributing a novel cross-lingual dataset and a methodologically sound definition of virality. To our knowledge, this study is the first to combine time series data with static content and network features to predict early meme virality.
comment: Preprint work in progress. Main body: 9 pages. Total: 15 pages including references and appendix. 16 figures and 12 tables
☆ Uncertainty assessment in satellite-based greenhouse gas emissions estimates using emulated atmospheric transport
Monitoring greenhouse gas emissions and evaluating national inventories require efficient, scalable, and reliable inference methods. Top-down approaches, combined with recent advances in satellite observations, provide new opportunities to evaluate emissions at continental and global scales. However, transport models used in these methods remain a key source of uncertainty: they are computationally expensive to run at scale, and their uncertainty is difficult to characterise. Artificial intelligence offers a dual opportunity to accelerate transport simulations and to quantify their associated uncertainty. We present an ensemble-based pipeline for estimating atmospheric transport "footprints", greenhouse gas mole fraction measurements, and their uncertainties using a graph neural network emulator of a Lagrangian Particle Dispersion Model (LPDM). The approach is demonstrated with GOSAT (Greenhouse Gases Observing Satellite) observations for Brazil in 2016. The emulator achieved a ~1000x speed-up over the NAME LPDM, while reproducing large-scale footprint structures. Ensembles were calculated to quantify absolute and relative uncertainty, revealing spatial correlations with prediction error. The results show that ensemble spread highlights low-confidence spatial and temporal predictions for both atmospheric transport footprints and methane mole fractions. While demonstrated here for an LPDM emulator, the approach could be applied more generally to atmospheric transport models, supporting uncertainty-aware greenhouse gas inversion systems and improving the robustness of satellite-based emissions monitoring. With further development, ensemble-based emulators could also help explore systematic LPDM errors, offering a computationally efficient pathway towards a more comprehensive uncertainty budget in greenhouse gas flux estimates.
☆ Are Heterogeneous Graph Neural Networks Truly Effective? A Causal Perspective
Graph neural networks (GNNs) have achieved remarkable success in node classification. Building on this progress, heterogeneous graph neural networks (HGNNs) integrate relation types and node and edge semantics to leverage heterogeneous information. Causal analysis for HGNNs is advancing rapidly, aiming to separate genuine causal effects from spurious correlations. However, whether HGNNs are intrinsically effective remains underexamined, and most studies implicitly assume rather than establish this effectiveness. In this work, we examine HGNNs from two perspectives: model architecture and heterogeneous information. We conduct a systematic reproduction across 21 datasets and 20 baselines, complemented by comprehensive hyperparameter retuning. To further disentangle the source of performance gains, we develop a causal effect estimation framework that constructs and evaluates candidate factors under standard assumptions through factual and counterfactual analyses, with robustness validated via minimal sufficient adjustment sets, cross-method consistency checks, and sensitivity analyses. Our results lead to two conclusions. First, model architecture and complexity have no causal effect on performance. Second, heterogeneous information exerts a positive causal effect by increasing homophily and local-global distribution discrepancy, which makes node classes more distinguishable. The implementation is publicly available at https://github.com/YXNTU/CausalHGNN.
☆ ARM: Discovering Agentic Reasoning Modules for Generalizable Multi-Agent Systems
Large Language Model (LLM)-powered Multi-agent systems (MAS) have achieved state-of-the-art results on various complex reasoning tasks. Recent works have proposed techniques to automate the design of MASes, eliminating the need for manual engineering. However, these techniques perform poorly, often achieving similar or inferior performance to simple baselines. Furthermore, they require computationally expensive re-discovery of architectures for each new task domain and expensive data annotation on domains without existing labeled validation sets. A critical insight is that simple Chain of Thought (CoT) reasoning often performs competitively with these complex systems, suggesting that the fundamental reasoning unit of MASes, CoT, warrants further investigation. To this end, we present a new paradigm for automatic MAS design that pivots the focus to optimizing CoT reasoning. We introduce the Agentic Reasoning Module (ARM), an agentic generalization of CoT where each granular reasoning step is executed by a specialized reasoning module. This module is discovered through a tree search over the code space, starting from a simple CoT module and evolved using mutations informed by reflection on execution traces. The resulting ARM acts as a versatile reasoning building block which can be utilized as a direct recursive loop or as a subroutine in a learned meta-orchestrator. Our approach significantly outperforms both manually designed MASes and state-of-the-art automatic MAS design methods. Crucially, MASes built with ARM exhibit superb generalization, maintaining high performance across different foundation models and task domains without further optimization.
comment: 29 pages, 2 figures
☆ Artificially intelligent agents in the social and behavioral sciences: A history and outlook
We review the historical development and current trends of artificially intelligent agents (agentic AI) in the social and behavioral sciences: from the first programmable computers, and social simulations soon thereafter, to today's experiments with large language models. This overview emphasizes the role of AI in the scientific process and the changes brought about, both through technological advancements and the broader evolution of science from around 1950 to the present. Some of the specific points we cover include: the challenges of presenting the first social simulation studies to a world unaware of computers, the rise of social systems science, intelligent game theoretic agents, the age of big data and the epistemic upheaval in its wake, and the current enthusiasm around applications of generative AI, and many other topics. A pervasive theme is how deeply entwined we are with the technologies we use to understand ourselves.
☆ Redefining Generalization in Visual Domains: A Two-Axis Framework for Fake Image Detection with FusionDetect
The rapid development of generative models has made it increasingly crucial to develop detectors that can reliably detect synthetic images. Although most of the work has now focused on cross-generator generalization, we argue that this viewpoint is too limited. Detecting synthetic images involves another equally important challenge: generalization across visual domains. To bridge this gap,we present the OmniGen Benchmark. This comprehensive evaluation dataset incorporates 12 state-of-the-art generators, providing a more realistic way of evaluating detector performance under realistic conditions. In addition, we introduce a new method, FusionDetect, aimed at addressing both vectors of generalization. FusionDetect draws on the benefits of two frozen foundation models: CLIP & Dinov2. By deriving features from both complementary models,we develop a cohesive feature space that naturally adapts to changes in both thecontent and design of the generator. Our extensive experiments demonstrate that FusionDetect delivers not only a new state-of-the-art, which is 3.87% more accurate than its closest competitor and 6.13% more precise on average on established benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,along with exceptional robustness to common image perturbations. We introduce not only a top-performing detector, but also a new benchmark and framework for furthering universal AI image detection. The code and dataset are available at http://github.com/amir-aman/FusionDetect
comment: Project code: http://github.com/amir-aman/FusionDetect
☆ Syn-Diag: An LLM-based Synergistic Framework for Generalizable Few-shot Fault Diagnosis on the Edge
Industrial fault diagnosis faces the dual challenges of data scarcity and the difficulty of deploying large AI models in resource-constrained environments. This paper introduces Syn-Diag, a novel cloud-edge synergistic framework that leverages Large Language Models to overcome these limitations in few-shot fault diagnosis. Syn-Diag is built on a three-tiered mechanism: 1) Visual-Semantic Synergy, which aligns signal features with the LLM's semantic space through cross-modal pre-training; 2) Content-Aware Reasoning, which dynamically constructs contextual prompts to enhance diagnostic accuracy with limited samples; and 3) Cloud-Edge Synergy, which uses knowledge distillation to create a lightweight, efficient edge model capable of online updates via a shared decision space. Extensive experiments on six datasets covering different CWRU and SEU working conditions show that Syn-Diag significantly outperforms existing methods, especially in 1-shot and cross-condition scenarios. The edge model achieves performance comparable to the cloud version while reducing model size by 83% and latency by 50%, offering a practical, robust, and deployable paradigm for modern intelligent diagnostics.
☆ Improving Discrete Diffusion Unmasking Policies Beyond Explicit Reference Policies
Masked diffusion models (MDMs) have recently emerged as a novel framework for language modeling. MDMs generate sentences by iteratively denoising masked sequences, filling in [MASK] tokens step by step. Although MDMs support any-order sampling, performance is highly sensitive to the choice of which position to unmask next. Prior work typically relies on rule-based schedules (e.g., max-confidence, max-margin), which provide ad hoc improvements. In contrast, we replace these heuristics with a learned scheduler. Specifically, we cast denoising as a KL-regularized Markov decision process (MDP) with an explicit reference policy and optimize a regularized objective that admits policy improvement and convergence guarantees under standard assumptions. We prove that the optimized policy under this framework generates samples that more closely match the data distribution than heuristic schedules. Empirically, across four benchmarks, our learned policy consistently outperforms max-confidence: for example, on SUDOKU, where unmasking order is critical, it yields a 20.1% gain over random and a 11.2% gain over max-confidence.
comment: Preprint
☆ Federated Split Learning for Resource-Constrained Robots in Industrial IoT: Framework Comparison, Optimization Strategies, and Future Directions
Federated split learning (FedSL) has emerged as a promising paradigm for enabling collaborative intelligence in industrial Internet of Things (IoT) systems, particularly in smart factories where data privacy, communication efficiency, and device heterogeneity are critical concerns. In this article, we present a comprehensive study of FedSL frameworks tailored for resource-constrained robots in industrial scenarios. We compare synchronous, asynchronous, hierarchical, and heterogeneous FedSL frameworks in terms of workflow, scalability, adaptability, and limitations under dynamic industrial conditions. Furthermore, we systematically categorize token fusion strategies into three paradigms: input-level (pre-fusion), intermediate-level (intra-fusion), and output-level (post-fusion), and summarize their respective strengths in industrial applications. We also provide adaptive optimization techniques to enhance the efficiency and feasibility of FedSL implementation, including model compression, split layer selection, computing frequency allocation, and wireless resource management. Simulation results validate the performance of these frameworks under industrial detection scenarios. Finally, we outline open issues and research directions of FedSL in future smart manufacturing systems.
comment: 9 pages, 5 figures, submitted to the IEEE magazine
☆ FinReflectKG - EvalBench: Benchmarking Financial KG with Multi-Dimensional Evaluation
Large language models (LLMs) are increasingly being used to extract structured knowledge from unstructured financial text. Although prior studies have explored various extraction methods, there is no universal benchmark or unified evaluation framework for the construction of financial knowledge graphs (KG). We introduce FinReflectKG - EvalBench, a benchmark and evaluation framework for KG extraction from SEC 10-K filings. Building on the agentic and holistic evaluation principles of FinReflectKG - a financial KG linking audited triples to source chunks from S&P 100 filings and supporting single-pass, multi-pass, and reflection-agent-based extraction modes - EvalBench implements a deterministic commit-then-justify judging protocol with explicit bias controls, mitigating position effects, leniency, verbosity and world-knowledge reliance. Each candidate triple is evaluated with binary judgments of faithfulness, precision, and relevance, while comprehensiveness is assessed on a three-level ordinal scale (good, partial, bad) at the chunk level. Our findings suggest that, when equipped with explicit bias controls, LLM-as-Judge protocols provide a reliable and cost-efficient alternative to human annotation, while also enabling structured error analysis. Reflection-based extraction emerges as the superior approach, achieving best performance in comprehensiveness, precision, and relevance, while single-pass extraction maintains the highest faithfulness. By aggregating these complementary dimensions, FinReflectKG - EvalBench enables fine-grained benchmarking and bias-aware evaluation, advancing transparency and governance in financial AI applications.
☆ Towards Reliable and Practical LLM Security Evaluations via Bayesian Modelling
Before adopting a new large language model (LLM) architecture, it is critical to understand vulnerabilities accurately. Existing evaluations can be difficult to trust, often drawing conclusions from LLMs that are not meaningfully comparable, relying on heuristic inputs or employing metrics that fail to capture the inherent uncertainty. In this paper, we propose a principled and practical end-to-end framework for evaluating LLM vulnerabilities to prompt injection attacks. First, we propose practical approaches to experimental design, tackling unfair LLM comparisons by considering two practitioner scenarios: when training an LLM and when deploying a pre-trained LLM. Second, we address the analysis of experiments and propose a Bayesian hierarchical model with embedding-space clustering. This model is designed to improve uncertainty quantification in the common scenario that LLM outputs are not deterministic, test prompts are designed imperfectly, and practitioners only have a limited amount of compute to evaluate vulnerabilities. We show the improved inferential capabilities of the model in several prompt injection attack settings. Finally, we demonstrate the pipeline to evaluate the security of Transformer versus Mamba architectures. Our findings show that consideration of output variability can suggest less definitive findings. However, for some attacks, we find notably increased Transformer and Mamba-variant vulnerabilities across LLMs with the same training data or mathematical ability.
☆ Uncovering Representation Bias for Investment Decisions in Open-Source Large Language Models
Large Language Models are increasingly adopted in financial applications to support investment workflows. However, prior studies have seldom examined how these models reflect biases related to firm size, sector, or financial characteristics, which can significantly impact decision-making. This paper addresses this gap by focusing on representation bias in open-source Qwen models. We propose a balanced round-robin prompting method over approximately 150 U.S. equities, applying constrained decoding and token-logit aggregation to derive firm-level confidence scores across financial contexts. Using statistical tests and variance analysis, we find that firm size and valuation consistently increase model confidence, while risk factors tend to decrease it. Confidence varies significantly across sectors, with the Technology sector showing the greatest variability. When models are prompted for specific financial categories, their confidence rankings best align with fundamental data, moderately with technical signals, and least with growth indicators. These results highlight representation bias in Qwen models and motivate sector-aware calibration and category-conditioned evaluation protocols for safe and fair financial LLM deployment.
☆ Membership Inference Attacks on Tokenizers of Large Language Models
Membership inference attacks (MIAs) are widely used to assess the privacy risks associated with machine learning models. However, when these attacks are applied to pre-trained large language models (LLMs), they encounter significant challenges, including mislabeled samples, distribution shifts, and discrepancies in model size between experimental and real-world settings. To address these limitations, we introduce tokenizers as a new attack vector for membership inference. Specifically, a tokenizer converts raw text into tokens for LLMs. Unlike full models, tokenizers can be efficiently trained from scratch, thereby avoiding the aforementioned challenges. In addition, the tokenizer's training data is typically representative of the data used to pre-train LLMs. Despite these advantages, the potential of tokenizers as an attack vector remains unexplored. To this end, we present the first study on membership leakage through tokenizers and explore five attack methods to infer dataset membership. Extensive experiments on millions of Internet samples reveal the vulnerabilities in the tokenizers of state-of-the-art LLMs. To mitigate this emerging risk, we further propose an adaptive defense. Our findings highlight tokenizers as an overlooked yet critical privacy threat, underscoring the urgent need for privacy-preserving mechanisms specifically designed for them.
comment: Code is available at: https://github.com/mengtong0110/Tokenizer-MIA
☆ Joint Communication Scheduling and Velocity Control for Multi-UAV-Assisted Post-Disaster Monitoring: An Attention-Based In-Context Learning Approach
Recently, Unmanned Aerial Vehicles (UAVs) are increasingly being investigated to collect sensory data in post-disaster monitoring scenarios, such as tsunamis, where early actions are critical to limit coastal damage. A major challenge is to design the data collection schedules and flight velocities, as unfavorable schedules and velocities can lead to transmission errors and buffer overflows of the ground sensors, ultimately resulting in significant packet loss. Meanwhile, online Deep Reinforcement Learning (DRL) solutions have a complex training process and a mismatch between simulation and reality that does not meet the urgent requirements of tsunami monitoring. Recent advances in Large Language Models (LLMs) offer a compelling alternative. With their strong reasoning and generalization capabilities, LLMs can adapt to new tasks through In-Context Learning (ICL), which enables task adaptation through natural language prompts and example-based guidance without retraining. However, LLM models have input data limitations and thus require customized approaches. In this paper, a joint optimization of data collection schedules and velocities control for multiple UAVs is proposed to minimize data loss. The battery level of the ground sensors, the length of the queues, and the channel conditions, as well as the trajectories of the UAVs, are taken into account. Attention-Based In-Context Learning for Velocity Control and Data Collection Schedule (AIC-VDS) is proposed as an alternative to DRL in emergencies. The simulation results show that the proposed AIC-VDS outperforms both the Deep-Q-Network (DQN) and maximum channel gain baselines.
☆ Sparse deepfake detection promotes better disentanglement
Due to the rapid progress of speech synthesis, deepfake detection has become a major concern in the speech processing community. Because it is a critical task, systems must not only be efficient and robust, but also provide interpretable explanations. Among the different approaches for explainability, we focus on the interpretation of latent representations. In such paper, we focus on the last layer of embeddings of AASIST, a deepfake detection architecture. We use a TopK activation inspired by SAEs on this layer to obtain sparse representations which are used in the decision process. We demonstrate that sparse deepfake detection can improve detection performance, with an EER of 23.36% on ASVSpoof5 test set, with 95% of sparsity. We then show that these representations provide better disentanglement, using completeness and modularity metrics based on mutual information. Notably, some attacks are directly encoded in the latent space.
☆ vAttention: Verified Sparse Attention
State-of-the-art sparse attention methods for reducing decoding latency fall into two main categories: approximate top-$k$ (and its extension, top-$p$) and recently introduced sampling-based estimation. However, these approaches are fundamentally limited in their ability to approximate full attention: they fail to provide consistent approximations across heads and query vectors and, most critically, lack guarantees on approximation quality, limiting their practical deployment. We observe that top-$k$ and random sampling are complementary: top-$k$ performs well when attention scores are dominated by a few tokens, whereas random sampling provides better estimates when attention scores are relatively uniform. Building on this insight and leveraging the statistical guarantees of sampling, we introduce vAttention, the first practical sparse attention mechanism with user-specified $(\epsilon, \delta)$ guarantees on approximation accuracy (thus, verified). These guarantees make vAttention a compelling step toward practical, reliable deployment of sparse attention at scale. By unifying top-k and sampling, vAttention outperforms both individually, delivering a superior quality-efficiency trade-off. Our experiments show that vAttention significantly improves the quality of sparse attention (e.g., $\sim$4.5 percentage points for Llama-3.1-8B-Inst and Deepseek-R1-Distill-Llama-8B on RULER-HARD), and effectively bridges the gap between full and sparse attention (e.g., across datasets, it matches full model quality with upto 20x sparsity). We also demonstrate that it can be deployed in reasoning scenarios to achieve fast decoding without compromising model quality (e.g., vAttention achieves full model quality on AIME2024 at 10x sparsity with up to 32K token generations). Code is open-sourced at https://github.com/xAlg-ai/sparse-attention-hub.
☆ D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/
☆ QGraphLIME - Explaining Quantum Graph Neural Networks
Quantum graph neural networks offer a powerful paradigm for learning on graph-structured data, yet their explainability is complicated by measurement-induced stochasticity and the combinatorial nature of graph structure. In this paper, we introduce QuantumGraphLIME (QGraphLIME), a model-agnostic, post-hoc framework that treats model explanations as distributions over local surrogates fit on structure-preserving perturbations of a graph. By aggregating surrogate attributions together with their dispersion, QGraphLIME yields uncertainty-aware node and edge importance rankings for quantum graph models. The framework further provides a distribution-free, finite-sample guarantee on the size of the surrogate ensemble: a Dvoretzky-Kiefer-Wolfowitz bound ensures uniform approximation of the induced distribution of a binary class probability at target accuracy and confidence under standard independence assumptions. Empirical studies on controlled synthetic graphs with known ground truth demonstrate accurate and stable explanations, with ablations showing clear benefits of nonlinear surrogate modeling and highlighting sensitivity to perturbation design. Collectively, these results establish a principled, uncertainty-aware, and structure-sensitive approach to explaining quantum graph neural networks, and lay the groundwork for scaling to broader architectures and real-world datasets, as quantum resources mature. Code is available at https://github.com/smlab-niser/qglime.
☆ Verifier-free Test-Time Sampling for Vision Language Action Models
Vision-Language-Action models (VLAs) have demonstrated remarkable performance in robot control. However, they remain fundamentally limited in tasks that require high precision due to their single-inference paradigm. While test-time scaling approaches using external verifiers have shown promise, they require additional training and fail to generalize to unseen conditions. We propose Masking Distribution Guided Selection (MG-Select), a novel test-time scaling framework for VLAs that leverages the model's internal properties without requiring additional training or external modules. Our approach utilizes KL divergence from a reference action token distribution as a confidence metric for selecting the optimal action from multiple candidates. We introduce a reference distribution generated by the same VLA but with randomly masked states and language conditions as inputs, ensuring maximum uncertainty while remaining aligned with the target task distribution. Additionally, we propose a joint training strategy that enables the model to learn both conditional and unconditional distributions by applying dropout to state and language conditions, thereby further improving the quality of the reference distribution. Our experiments demonstrate that MG-Select achieves significant performance improvements, including a 28%/35% improvement in real-world in-distribution/out-of-distribution tasks, along with a 168% relative gain on RoboCasa pick-and-place tasks trained with 30 demonstrations.
comment: 14 pages; 3 figures
☆ Code-Switching In-Context Learning for Cross-Lingual Transfer of Large Language Models
While large language models (LLMs) exhibit strong multilingual abilities, their reliance on English as latent representations creates a translation barrier, where reasoning implicitly depends on internal translation into English. When this process fails, performance in non-English languages deteriorates sharply, limiting the inclusiveness of LLM-based applications. Existing cross-lingual in-context learning (X-ICL) methods primarily leverage monolingual demonstrations, often failing to mitigate this barrier and instead reinforcing it. In this work, we introduce code-switching in-context learning (CSICL), a simple yet effective prompting strategy that progressively transitions from a target language to English within demonstrations and instruction to facilitate their latent reasoning in English. By explicitly scaffolding the reasoning process through controlled code-switching, CSICL acts as an implicit linguistic bridge that enhances cross-lingual alignment and reduces reliance on the translation barrier. We conduct extensive experiments across 4 LLMs, 6 datasets, and 10 languages, spanning both knowledge-intensive and reasoning-oriented domains. Our results demonstrate that CSICL consistently outperforms X-ICL baselines, achieving gains of 3.1%p and 1.9%p in both target and unseen languages, respectively. The improvement is even more pronounced in low-resource settings, with gains of 14.7% in target and 5.3% in unseen languages. These findings establish code-switching as a principled and robust approach for overcoming the translation barrier during inference, moving LLMs toward more equitable and effective multilingual systems.
☆ Quantifying the Accuracy-Interpretability Trade-Off in Concept-Based Sidechannel Models
Concept Bottleneck Models (CBNMs) are deep learning models that provide interpretability by enforcing a bottleneck layer where predictions are based exclusively on human-understandable concepts. However, this constraint also restricts information flow and often results in reduced predictive accuracy. Concept Sidechannel Models (CSMs) address this limitation by introducing a sidechannel that bypasses the bottleneck and carry additional task-relevant information. While this improves accuracy, it simultaneously compromises interpretability, as predictions may rely on uninterpretable representations transmitted through sidechannels. Currently, there exists no principled technique to control this fundamental trade-off. In this paper, we close this gap. First, we present a unified probabilistic concept sidechannel meta-model that subsumes existing CSMs as special cases. Building on this framework, we introduce the Sidechannel Independence Score (SIS), a metric that quantifies a CSM's reliance on its sidechannel by contrasting predictions made with and without sidechannel information. We propose SIS regularization, which explicitly penalizes sidechannel reliance to improve interpretability. Finally, we analyze how the expressivity of the predictor and the reliance of the sidechannel jointly shape interpretability, revealing inherent trade-offs across different CSM architectures. Empirical results show that state-of-the-art CSMs, when trained solely for accuracy, exhibit low representation interpretability, and that SIS regularization substantially improves their interpretability, intervenability, and the quality of learned interpretable task predictors. Our work provides both theoretical and practical tools for developing CSMs that balance accuracy and interpretability in a principled manner.
☆ Large Language Model-Based Uncertainty-Adjusted Label Extraction for Artificial Intelligence Model Development in Upper Extremity Radiography
Objectives: To evaluate GPT-4o's ability to extract diagnostic labels (with uncertainty) from free-text radiology reports and to test how these labels affect multi-label image classification of musculoskeletal radiographs. Methods: This retrospective study included radiography series of the clavicle (n=1,170), elbow (n=3,755), and thumb (n=1,978). After anonymization, GPT-4o filled out structured templates by indicating imaging findings as present ("true"), absent ("false"), or "uncertain." To assess the impact of label uncertainty, "uncertain" labels of the training and validation sets were automatically reassigned to "true" (inclusive) or "false" (exclusive). Label-image-pairs were used for multi-label classification using ResNet50. Label extraction accuracy was manually verified on internal (clavicle: n=233, elbow: n=745, thumb: n=393) and external test sets (n=300 for each). Performance was assessed using macro-averaged receiver operating characteristic (ROC) area under the curve (AUC), precision recall curves, sensitivity, specificity, and accuracy. AUCs were compared with the DeLong test. Results: Automatic extraction was correct in 98.6% (60,618 of 61,488) of labels in the test sets. Across anatomic regions, label-based model training yielded competitive performance measured by macro-averaged AUC values for inclusive (e.g., elbow: AUC=0.80 [range, 0.62-0.87]) and exclusive models (elbow: AUC=0.80 [range, 0.61-0.88]). Models generalized well on external datasets (elbow [inclusive]: AUC=0.79 [range, 0.61-0.87]; elbow [exclusive]: AUC=0.79 [range, 0.63-0.89]). No significant differences were observed across labeling strategies or datasets (p>=0.15). Conclusion: GPT-4o extracted labels from radiologic reports to train competitive multi-label classification models with high accuracy. Detected uncertainty in the radiologic reports did not influence the performance of these models.
comment: 28 pages, 6 figures
☆ Ocular-Induced Abnormal Head Posture: Diagnosis and Missing Data Imputation
Ocular-induced abnormal head posture (AHP) is a compensatory mechanism that arises from ocular misalignment conditions, such as strabismus, enabling patients to reduce diplopia and preserve binocular vision. Early diagnosis minimizes morbidity and secondary complications such as facial asymmetry; however, current clinical assessments remain largely subjective and are further complicated by incomplete medical records. This study addresses both challenges through two complementary deep learning frameworks. First, AHP-CADNet is a multi-level attention fusion framework for automated diagnosis that integrates ocular landmarks, head pose features, and structured clinical attributes to generate interpretable predictions. Second, a curriculum learning-based imputation framework is designed to mitigate missing data by progressively leveraging structured variables and unstructured clinical notes to enhance diagnostic robustness under realistic data conditions. Evaluation on the PoseGaze-AHP dataset demonstrates robust diagnostic performance. AHP-CADNet achieves 96.9-99.0 percent accuracy across classification tasks and low prediction errors for continuous variables, with MAE ranging from 0.103 to 0.199 and R2 exceeding 0.93. The imputation framework maintains high accuracy across all clinical variables (93.46-99.78 percent with PubMedBERT), with clinical dependency modeling yielding significant improvements (p < 0.001). These findings confirm the effectiveness of both frameworks for automated diagnosis and recovery from missing data in clinical settings.
☆ The African Languages Lab: A Collaborative Approach to Advancing Low-Resource African NLP
Despite representing nearly one-third of the world's languages, African languages remain critically underserved by modern NLP technologies, with 88\% classified as severely underrepresented or completely ignored in computational linguistics. We present the African Languages Lab (All Lab), a comprehensive research initiative that addresses this technological gap through systematic data collection, model development, and capacity building. Our contributions include: (1) a quality-controlled data collection pipeline, yielding the largest validated African multi-modal speech and text dataset spanning 40 languages with 19 billion tokens of monolingual text and 12,628 hours of aligned speech data; (2) extensive experimental validation demonstrating that our dataset, combined with fine-tuning, achieves substantial improvements over baseline models, averaging +23.69 ChrF++, +0.33 COMET, and +15.34 BLEU points across 31 evaluated languages; and (3) a structured research program that has successfully mentored fifteen early-career researchers, establishing sustainable local capacity. Our comparative evaluation against Google Translate reveals competitive performance in several languages while identifying areas that require continued development.
☆ From Neural Activity to Computation: Biological Reservoirs for Pattern Recognition in Digit Classification ICCV2025
In this paper, we present a biologically grounded approach to reservoir computing (RC), in which a network of cultured biological neurons serves as the reservoir substrate. This system, referred to as biological reservoir computing (BRC), replaces artificial recurrent units with the spontaneous and evoked activity of living neurons. A multi-electrode array (MEA) enables simultaneous stimulation and readout across multiple sites: inputs are delivered through a subset of electrodes, while the remaining ones capture the resulting neural responses, mapping input patterns into a high-dimensional biological feature space. We evaluate the system through a case study on digit classification using a custom dataset. Input images are encoded and delivered to the biological reservoir via electrical stimulation, and the corresponding neural activity is used to train a simple linear classifier. To contextualize the performance of the biological system, we also include a comparison with a standard artificial reservoir trained on the same task. The results indicate that the biological reservoir can effectively support classification, highlighting its potential as a viable and interpretable computational substrate. We believe this work contributes to the broader effort of integrating biological principles into machine learning and aligns with the goals of human-inspired vision by exploring how living neural systems can inform the design of efficient and biologically plausible models.
comment: Accepted at HiCV@ICCV2025
☆ Beyond Spectral Peaks: Interpreting the Cues Behind Synthetic Image Detection
Over the years, the forensics community has proposed several deep learning-based detectors to mitigate the risks of generative AI. Recently, frequency-domain artifacts (particularly periodic peaks in the magnitude spectrum), have received significant attention, as they have been often considered a strong indicator of synthetic image generation. However, state-of-the-art detectors are typically used as black-boxes, and it still remains unclear whether they truly rely on these peaks. This limits their interpretability and trust. In this work, we conduct a systematic study to address this question. We propose a strategy to remove spectral peaks from images and analyze the impact of this operation on several detectors. In addition, we introduce a simple linear detector that relies exclusively on frequency peaks, providing a fully interpretable baseline free from the confounding influence of deep learning. Our findings reveal that most detectors are not fundamentally dependent on spectral peaks, challenging a widespread assumption in the field and paving the way for more transparent and reliable forensic tools.
☆ Generative AI-Driven Hierarchical Multi-Agent Framework for Zero-Touch Optical Networks
The rapid development of Generative Artificial Intelligence (GenAI) has catalyzed a transformative technological revolution across all walks of life. As the backbone of wideband communication, optical networks are expecting high-level autonomous operation and zero-touch management to accommodate their expanding network scales and escalating transmission bandwidth. The integration of GenAI is deemed as the pivotal solution for realizing zero-touch optical networks. However, the lifecycle management of optical networks involves a multitude of tasks and necessitates seamless collaboration across multiple layers, which poses significant challenges to the existing single-agent GenAI systems. In this paper, we propose a GenAI-driven hierarchical multi-agent framework designed to streamline multi-task autonomous execution for zero-touch optical networks. We present the architecture, implementation, and applications of this framework. A field-deployed mesh network is utilized to demonstrate three typical scenarios throughout the lifecycle of optical network: quality of transmission estimation in the planning stage, dynamic channel adding/dropping in the operation stage, and system capacity increase in the upgrade stage. The case studies, illustrate the capabilities of multi-agent framework in multi-task allocation, coordination, execution, evaluation, and summarization. This work provides a promising approach for the future development of intelligent, efficient, and collaborative network management solutions, paving the way for more specialized and adaptive zero-touch optical networks.
comment: 7 pages,6 figures, Accepted by lEEE Communications Magazine, Open call
☆ Monte Carlo-Type Neural Operator for Differential Equations
The Monte Carlo-type Neural Operator (MCNO) introduces a framework for learning solution operators of one-dimensional partial differential equations (PDEs) by directly learning the kernel function and approximating the associated integral operator using a Monte Carlo-type approach. Unlike Fourier Neural Operators (FNOs), which rely on spectral representations and assume translation-invariant kernels, MCNO makes no such assumptions. The kernel is represented as a learnable tensor over sampled input-output pairs, and sampling is performed once, uniformly at random from a discretized grid. This design enables generalization across multiple grid resolutions without relying on fixed global basis functions or repeated sampling during training, while an interpolation step maps between arbitrary input and output grids to further enhance flexibility. Experiments on standard 1D PDE benchmarks show that MCNO achieves competitive accuracy with efficient computational cost. We also provide a theoretical analysis proving that the Monte Carlo estimator yields a bounded bias and variance under mild regularity assumptions. This result holds in any spatial dimension, suggesting that MCNO may extend naturally beyond one-dimensional problems. More broadly, this work explores how Monte Carlo-type integration can be incorporated into neural operator frameworks for continuous-domain PDEs, providing a theoretically supported alternative to spectral methods (such as FNO) and to graph-based Monte Carlo approaches (such as the Graph Kernel Neural Operator, GNO).
☆ PointNSP: Autoregressive 3D Point Cloud Generation with Next-Scale Level-of-Detail Prediction
Autoregressive point cloud generation has long lagged behind diffusion-based approaches in quality. The performance gap stems from the fact that autoregressive models impose an artificial ordering on inherently unordered point sets, forcing shape generation to proceed as a sequence of local predictions. This sequential bias emphasizes short-range continuity but undermines the model's capacity to capture long-range dependencies, hindering its ability to enforce global structural properties such as symmetry, consistent topology, and large-scale geometric regularities. Inspired by the level-of-detail (LOD) principle in shape modeling, we propose PointNSP, a coarse-to-fine generative framework that preserves global shape structure at low resolutions and progressively refines fine-grained geometry at higher scales through a next-scale prediction paradigm. This multi-scale factorization aligns the autoregressive objective with the permutation-invariant nature of point sets, enabling rich intra-scale interactions while avoiding brittle fixed orderings. Experiments on ShapeNet show that PointNSP establishes state-of-the-art (SOTA) generation quality for the first time within the autoregressive paradigm. In addition, it surpasses strong diffusion-based baselines in parameter, training, and inference efficiency. Finally, in dense generation with 8,192 points, PointNSP's advantages become even more pronounced, underscoring its scalability potential.
☆ MADIAVE: Multi-Agent Debate for Implicit Attribute Value Extraction
Implicit Attribute Value Extraction (AVE) is essential for accurately representing products in e-commerce, as it infers lantent attributes from multimodal data. Despite advances in multimodal large language models (MLLMs), implicit AVE remains challenging due to the complexity of multidimensional data and gaps in vision-text understanding. In this work, we introduce \textsc{\modelname}, a multi-agent debate framework that employs multiple MLLM agents to iteratively refine inferences. Through a series of debate rounds, agents verify and update each other's responses, thereby improving inference performance and robustness. Experiments on the ImplicitAVE dataset demonstrate that even a few rounds of debate significantly boost accuracy, especially for attributes with initially low performance. We systematically evaluate various debate configurations, including identical or different MLLM agents, and analyze how debate rounds affect convergence dynamics. Our findings highlight the potential of multi-agent debate strategies to address the limitations of single-agent approaches and offer a scalable solution for implicit AVE in multimodal e-commerce.
☆ HOI-R1: Exploring the Potential of Multimodal Large Language Models for Human-Object Interaction Detection
Recent Human-object interaction detection (HOID) methods highly require prior knowledge from VLMs to enhance the interaction recognition capabilities. The training strategies and model architectures for connecting the knowledge from VLMs to the HOI instance representations from the object detector are challenging, and the whole framework is complex for further development or application. On the other hand, the inherent reasoning abilities of MLLMs on human-object interaction detection are under-explored. Inspired by the recent success of training MLLMs with reinforcement learning (RL) methods, we propose HOI-R1 and first explore the potential of the language model on the HOID task without any additional detection modules. We introduce an HOI reasoning process and HOID reward functions to solve the HOID task by pure text. The results on the HICO-DET dataset show that HOI-R1 achieves 2x the accuracy of the baseline with great generalization ability. The source code is available at https://github.com/cjw2021/HOI-R1.
☆ AutoPentester: An LLM Agent-based Framework for Automated Pentesting
Penetration testing and vulnerability assessment are essential industry practices for safeguarding computer systems. As cyber threats grow in scale and complexity, the demand for pentesting has surged, surpassing the capacity of human professionals to meet it effectively. With advances in AI, particularly Large Language Models (LLMs), there have been attempts to automate the pentesting process. However, existing tools such as PentestGPT are still semi-manual, requiring significant professional human interaction to conduct pentests. To this end, we propose a novel LLM agent-based framework, AutoPentester, which automates the pentesting process. Given a target IP, AutoPentester automatically conducts pentesting steps using common security tools in an iterative process. It can dynamically generate attack strategies based on the tool outputs from the previous iteration, mimicking the human pentester approach. We evaluate AutoPentester using Hack The Box and custom-made VMs, comparing the results with the state-of-the-art PentestGPT. Results show that AutoPentester achieves a 27.0% better subtask completion rate and 39.5% more vulnerability coverage with fewer steps. Most importantly, it requires significantly fewer human interactions and interventions compared to PentestGPT. Furthermore, we recruit a group of security industry professional volunteers for a user survey and perform a qualitative analysis to evaluate AutoPentester against industry practices and compare it with PentestGPT. On average, AutoPentester received a score of 3.93 out of 5 based on user reviews, which was 19.8% higher than PentestGPT.
comment: IEEE TrustCom 2025 10 pages
☆ AgentDR Dynamic Recommendation with Implicit Item-Item Relations via LLM-based Agents
Recent agent-based recommendation frameworks aim to simulate user behaviors by incorporating memory mechanisms and prompting strategies, but they struggle with hallucinating non-existent items and full-catalog ranking. Besides, a largely underexplored opportunity lies in leveraging LLMs'commonsense reasoning to capture user intent through substitute and complement relationships between items, which are usually implicit in datasets and difficult for traditional ID-based recommenders to capture. In this work, we propose a novel LLM-agent framework, AgenDR, which bridges LLM reasoning with scalable recommendation tools. Our approach delegates full-ranking tasks to traditional models while utilizing LLMs to (i) integrate multiple recommendation outputs based on personalized tool suitability and (ii) reason over substitute and complement relationships grounded in user history. This design mitigates hallucination, scales to large catalogs, and enhances recommendation relevance through relational reasoning. Through extensive experiments on three public grocery datasets, we show that our framework achieves superior full-ranking performance, yielding on average a twofold improvement over its underlying tools. We also introduce a new LLM-based evaluation metric that jointly measures semantic alignment and ranking correctness.
From Agentification to Self-Evolving Agentic AI for Wireless Networks: Concepts, Approaches, and Future Research Directions
Self-evolving agentic artificial intelligence (AI) offers a new paradigm for future wireless systems by enabling autonomous agents to continually adapt and improve without human intervention. Unlike static AI models, self-evolving agents embed an autonomous evolution cycle that updates models, tools, and workflows in response to environmental dynamics. This paper presents a comprehensive overview of self-evolving agentic AI, highlighting its layered architecture, life cycle, and key techniques, including tool intelligence, workflow optimization, self-reflection, and evolutionary learning. We further propose a multi-agent cooperative self-evolving agentic AI framework, where multiple large language models (LLMs) are assigned role-specialized prompts under the coordination of a supervisor agent. Through structured dialogue, iterative feedback, and systematic validation, the system autonomously executes the entire life cycle without human intervention. A case study on antenna evolution in low-altitude wireless networks (LAWNs) demonstrates how the framework autonomously upgrades fixed antenna optimization into movable antenna optimization. Experimental results show that the proposed self-evolving agentic AI autonomously improves beam gain and restores degraded performance by up to 52.02%, consistently surpassing the fixed baseline with little to no human intervention and validating its adaptability and robustness for next-generation wireless intelligence.
comment: 7 pages, 4 figures
☆ Improving Chain-of-Thought Efficiency for Autoregressive Image Generation
Autoregressive multimodal large language models have recently gained popularity for image generation, driven by advances in foundation models. To enhance alignment and detail, newer approaches employ chain-of-thought (CoT) reasoning, expanding user inputs into elaborated prompts prior to image synthesis. However, this strategy can introduce unnecessary redundancy -- a phenomenon we call visual overthinking -- which increases computational costs and can introduce details that contradict the original prompt. In this work, we explore how to generate more concise CoT sequences for more efficient image generation. We introduce ShortCoTI, a lightweight optimization framework that encourages more concise CoT while preserving output image quality. ShortCoTI rewards more concise prompts with an adaptive function that scales according to an estimated difficulty for each task. Incorporating this reward into a reinforcement learning paradigm reduces prompt reasoning length by 54% while maintaining or slightly improving quality metrics across multiple benchmarks (T2I-CompBench, GenEval). Qualitative analysis shows that our method eliminates verbose explanations and repetitive refinements, producing reasoning prompts that are both concise and semantically rich. As a result, ShortCoTI improves computational efficiency without compromising the fidelity or visual appeal of generated images.
☆ In-the-Flow Agentic System Optimization for Effective Planning and Tool Use
Outcome-driven reinforcement learning has advanced reasoning in large language models (LLMs), but prevailing tool-augmented approaches train a single, monolithic policy that interleaves thoughts and tool calls under full context; this scales poorly with long horizons and diverse tools and generalizes weakly to new scenarios. Agentic systems offer a promising alternative by decomposing work across specialized modules, yet most remain training-free or rely on offline training decoupled from the live dynamics of multi-turn interaction. We introduce AgentFlow, a trainable, in-the-flow agentic framework that coordinates four modules (planner, executor, verifier, generator) through an evolving memory and directly optimizes its planner inside the multi-turn loop. To train on-policy in live environments, we propose Flow-based Group Refined Policy Optimization (Flow-GRPO), which tackles long-horizon, sparse-reward credit assignment by converting multi-turn optimization into a sequence of tractable single-turn policy updates. It broadcasts a single, verifiable trajectory-level outcome to every turn to align local planner decisions with global success and stabilizes learning with group-normalized advantages. Across ten benchmarks, AgentFlow with a 7B-scale backbone outperforms top-performing baselines with average accuracy gains of 14.9% on search, 14.0% on agentic, 14.5% on mathematical, and 4.1% on scientific tasks, even surpassing larger proprietary models like GPT-4o. Further analyses confirm the benefits of in-the-flow optimization, showing improved planning, enhanced tool-calling reliability, and positive scaling with model size and reasoning turns.
comment: 45 pages, 12 figures. Project website: https://agentflow.stanford.edu/
☆ Deciphering Invariant Feature Decoupling in Source-free Time Series Forecasting with Proxy Denoising
The proliferation of mobile devices generates a massive volume of time series across various domains, where effective time series forecasting enables a variety of real-world applications. This study focuses on a new problem of source-free domain adaptation for time series forecasting. It aims to adapt a pretrained model from sufficient source time series to the sparse target time series domain without access to the source data, embracing data protection regulations. To achieve this, we propose TimePD, the first source-free time series forecasting framework with proxy denoising, where large language models (LLMs) are employed to benefit from their generalization capabilities. Specifically, TimePD consists of three key components: (1) dual-branch invariant disentangled feature learning that enforces representation- and gradient-wise invariance by means of season-trend decomposition; (2) lightweight, parameter-free proxy denoising that dynamically calibrates systematic biases of LLMs; and (3) knowledge distillation that bidirectionally aligns the denoised prediction and the original target prediction. Extensive experiments on real-world datasets offer insight into the effectiveness of the proposed TimePD, outperforming SOTA baselines by 9.3% on average.
☆ MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Vision-Language-Action (VLA) models show promise in embodied reasoning, yet remain far from true generalists-they often require task-specific fine-tuning, and generalize poorly to unseen tasks. We propose MetaVLA, a unified, backbone-agnostic post-training framework for efficient and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training, which consolidates diverse target tasks into a single fine-tuning stage while leveraging structurally diverse auxiliary tasks to improve in-domain generalization. Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning mechanism-derived from Attentive Neural Processes-to enable rapid adaptation from diverse contexts with minimal architectural change or inference overhead. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K to 75K, and cuts GPU time by ~76%. These results show that scalable, low-resource post-training is achievable-paving the way toward general-purpose embodied agents. Code will be available.
☆ Domain-Shift-Aware Conformal Prediction for Large Language Models
Large language models have achieved impressive performance across diverse tasks. However, their tendency to produce overconfident and factually incorrect outputs, known as hallucinations, poses risks in real world applications. Conformal prediction provides finite-sample, distribution-free coverage guarantees, but standard conformal prediction breaks down under domain shift, often leading to under-coverage and unreliable prediction sets. We propose a new framework called Domain-Shift-Aware Conformal Prediction (DS-CP). Our framework adapts conformal prediction to large language models under domain shift, by systematically reweighting calibration samples based on their proximity to the test prompt, thereby preserving validity while enhancing adaptivity. Our theoretical analysis and experiments on the MMLU benchmark demonstrate that the proposed method delivers more reliable coverage than standard conformal prediction, especially under substantial distribution shifts, while maintaining efficiency. This provides a practical step toward trustworthy uncertainty quantification for large language models in real-world deployment.
comment: 26 pages
☆ Generative Dynamic Graph Representation Learning for Conspiracy Spoofing Detection
Spoofing detection in financial trading is crucial, especially for identifying complex behaviors such as conspiracy spoofing. Traditional machine-learning approaches primarily focus on isolated node features, often overlooking the broader context of interconnected nodes. Graph-based techniques, particularly Graph Neural Networks (GNNs), have advanced the field by leveraging relational information effectively. However, in real-world spoofing detection datasets, trading behaviors exhibit dynamic, irregular patterns. Existing spoofing detection methods, though effective in some scenarios, struggle to capture the complexity of dynamic and diverse, evolving inter-node relationships. To address these challenges, we propose a novel framework called the Generative Dynamic Graph Model (GDGM), which models dynamic trading behaviors and the relationships among nodes to learn representations for conspiracy spoofing detection. Specifically, our approach incorporates the generative dynamic latent space to capture the temporal patterns and evolving market conditions. Raw trading data is first converted into time-stamped sequences. Then we model trading behaviors using the neural ordinary differential equations and gated recurrent units, to generate the representation incorporating temporal dynamics of spoofing patterns. Furthermore, pseudo-label generation and heterogeneous aggregation techniques are employed to gather relevant information and enhance the detection performance for conspiratorial spoofing behaviors. Experiments conducted on spoofing detection datasets demonstrate that our approach outperforms state-of-the-art models in detection accuracy. Additionally, our spoofing detection system has been successfully deployed in one of the largest global trading markets, further validating the practical applicability and performance of the proposed method.
comment: 10 pages, 5 figures, ACM the web conference 2025
☆ Critical attention scaling in long-context transformers
As large language models scale to longer contexts, attention layers suffer from a fundamental pathology: attention scores collapse toward uniformity as context length $n$ increases, causing tokens to cluster excessively, a phenomenon known as rank-collapse. While $\textit{attention scaling}$ effectively addresses this deficiency by rescaling attention scores with a polylogarithmic factor $\beta_n$, theoretical justification for this approach remains lacking. We analyze a simplified yet tractable model that magnifies the effect of attention scaling. In this model, attention exhibits a phase transition governed by the scaling factor $\beta_n$: insufficient scaling collapses all tokens to a single direction, while excessive scaling reduces attention to identity, thereby eliminating meaningful interactions between tokens. Our main result identifies the critical scaling $\beta_n \asymp \log n$ and provides a rigorous justification for attention scaling in YaRN and Qwen, clarifying why logarithmic scaling maintains sparse, content-adaptive attention at large context lengths.
comment: 29 pages, 2 figures
☆ Decade-long Emission Forecasting with an Ensemble Model in Taiwan
Taiwan's high population and heavy dependence on fossil fuels have led to severe air pollution, with the most prevalent greenhouse gas being carbon dioxide (CO2). There-fore, this study presents a reproducible and comprehensive case study comparing 21 of the most commonly employed time series models in forecasting emissions, analyzing both univariate and multivariate approaches. Among these, Feedforward Neural Network (FFNN), Support Vector Machine (SVM), and Random Forest Regressor (RFR) achieved the best performances. To further enhance robustness, the top performers were integrated with Linear Regression through a custom stacked generalization en-semble technique. Our proposed ensemble model achieved an SMAPE of 1.407 with no signs of overfitting. Finally, this research provides an accurate decade-long emission projection that will assist policymakers in making more data-driven decisions.
comment: 18 pages, 12 figures, 6 tables
☆ Seeing the Big Picture: Evaluating Multimodal LLMs' Ability to Interpret and Grade Handwritten Student Work
Recent advances in multimodal large language models (MLLMs) raise the question of their potential for grading, analyzing, and offering feedback on handwritten student classwork. This capability would be particularly beneficial in elementary and middle-school mathematics education, where most work remains handwritten, because seeing students' full working of a problem provides valuable insights into their learning processes, but is extremely time-consuming to grade. We present two experiments investigating MLLM performance on handwritten student mathematics classwork. Experiment A examines 288 handwritten responses from Ghanaian middle school students solving arithmetic problems with objective answers. In this context, models achieved near-human accuracy (95%, k = 0.90) but exhibited occasional errors that human educators would be unlikely to make. Experiment B evaluates 150 mathematical illustrations from American elementary students, where the drawings are the answer to the question. These tasks lack single objective answers and require sophisticated visual interpretation as well as pedagogical judgment in order to analyze and evaluate them. We attempted to separate MLLMs' visual capabilities from their pedagogical abilities by first asking them to grade the student illustrations directly, and then by augmenting the image with a detailed human description of the illustration. We found that when the models had to analyze the student illustrations directly, they struggled, achieving only k = 0.20 with ground truth scores, but when given human descriptions, their agreement levels improved dramatically to k = 0.47, which was in line with human-to-human agreement levels. This gap suggests MLLMs can "see" and interpret arithmetic work relatively well, but still struggle to "see" student mathematical illustrations.
☆ Permutation-Invariant Representation Learning for Robust and Privacy-Preserving Feature Selection
Feature selection eliminates redundancy among features to improve downstream task performance while reducing computational overhead. Existing methods often struggle to capture intricate feature interactions and adapt across diverse application scenarios. Recent advances employ generative intelligence to alleviate these drawbacks. However, these methods remain constrained by permutation sensitivity in embedding and reliance on convexity assumptions in gradient-based search. To address these limitations, our initial work introduces a novel framework that integrates permutation-invariant embedding with policy-guided search. Although effective, it still left opportunities to adapt to realistic distributed scenarios. In practice, data across local clients is highly imbalanced, heterogeneous and constrained by strict privacy regulations, limiting direct sharing. These challenges highlight the need for a framework that can integrate feature selection knowledge across clients without exposing sensitive information. In this extended journal version, we advance the framework from two perspectives: 1) developing a privacy-preserving knowledge fusion strategy to derive a unified representation space without sharing sensitive raw data. 2) incorporating a sample-aware weighting strategy to address distributional imbalance among heterogeneous local clients. Extensive experiments validate the effectiveness, robustness, and efficiency of our framework. The results further demonstrate its strong generalization ability in federated learning scenarios. The code and data are publicly available: https://anonymous.4open.science/r/FedCAPS-08BF.
☆ Provably Mitigating Corruption, Overoptimization, and Verbosity Simultaneously in Offline and Online RLHF/DPO Alignment
Reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) are important techniques to align large language models (LLM) with human preference. However, the quality of RLHF and DPO training is seriously compromised by \textit{\textbf{C}orrupted} preference, reward \textit{\textbf{O}veroptimization}, and bias towards \textit{\textbf{V}erbosity}. To our knowledge, most existing works tackle only one of these important issues, and the few other works require much computation to estimate multiple reward models and lack theoretical guarantee of generalization ability. In this work, we propose RLHF-\textbf{COV} and DPO-\textbf{COV} algorithms that can simultaneously mitigate these three issues, in both offline and online settings. This ability is theoretically demonstrated by obtaining length-regularized generalization error rates for our DPO-COV algorithms trained on corrupted data, which match the best-known rates for simpler cases with clean data and without length regularization. Moreover, our DPO-COV algorithm is simple to implement without reward estimation, and is proved to be equivalent to our RLHF-COV algorithm, which directly implies the equivalence between the vanilla RLHF and DPO algorithms. Experiments demonstrate the effectiveness of our DPO-COV algorithms under both offline and online settings.
☆ CAM: A Constructivist View of Agentic Memory for LLM-Based Reading Comprehension NeurIPS 2025
Current Large Language Models (LLMs) are confronted with overwhelming information volume when comprehending long-form documents. This challenge raises the imperative of a cohesive memory module, which can elevate vanilla LLMs into autonomous reading agents. Despite the emergence of some heuristic approaches, a systematic design principle remains absent. To fill this void, we draw inspiration from Jean Piaget's Constructivist Theory, illuminating three traits of the agentic memory -- structured schemata, flexible assimilation, and dynamic accommodation. This blueprint forges a clear path toward a more robust and efficient memory system for LLM-based reading comprehension. To this end, we develop CAM, a prototype implementation of Constructivist Agentic Memory that simultaneously embodies the structurality, flexibility, and dynamicity. At its core, CAM is endowed with an incremental overlapping clustering algorithm for structured memory development, supporting both coherent hierarchical summarization and online batch integration. During inference, CAM adaptively explores the memory structure to activate query-relevant information for contextual response, akin to the human associative process. Compared to existing approaches, our design demonstrates dual advantages in both performance and efficiency across diverse long-text reading comprehension tasks, including question answering, query-based summarization, and claim verification.
comment: Accepted by NeurIPS 2025
☆ Orders in Chaos: Enhancing Large-Scale MoE LLM Serving with Data Movement Forecasting
Large Language Models (LLMs) with Mixture of Experts (MoE) architectures achieve remarkable performance improvements, but their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit serving systems. To forecast the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across three state-of-the-art large-scale MoE models (200B- 671B) using over 24,000 requests spanning diverse workloads. With the resulting 150GB+ trace files, we perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. Taking wafer-scale GPUs as a case study, we demonstrate that minor architectural modifications leveraging our insights achieve substantial performance gains, delivering 6.3X and 4.0X average speedups on DeepSeek V3 and Qwen3, respectively. Our work provides the first comprehensive data-centric analysis of MoE models at scale. Our profiling traces and analysis results are publicly available at {https://huggingface.co/datasets/core12345/MoE_expert_selection_trace. We will also release our simulation framework shortly to facilitate future research in this area.
☆ High-Fidelity Synthetic ECG Generation via Mel-Spectrogram Informed Diffusion Training
The development of machine learning for cardiac care is severely hampered by privacy restrictions on sharing real patient electrocardiogram (ECG) data. Although generative AI offers a promising solution, the real-world use of existing model-synthesized ECGs is limited by persistent gaps in trustworthiness and clinical utility. In this work, we address two major shortcomings of current generative ECG methods: insufficient morphological fidelity and the inability to generate personalized, patient-specific physiological signals. To address these gaps, we build on a conditional diffusion-based Structured State Space Model (SSSD-ECG) with two principled innovations: (1) MIDT-ECG (Mel-Spectrogram Informed Diffusion Training), a novel training paradigm with time-frequency domain supervision to enforce physiological structural realism, and (2) multi-modal demographic conditioning to enable patient-specific synthesis. We comprehensively evaluate our approach on the PTB-XL dataset, assessing the synthesized ECG signals on fidelity, clinical coherence, privacy preservation, and downstream task utility. MIDT-ECG achieves substantial gains: it improves morphological coherence, preserves strong privacy guarantees with all metrics evaluated exceeding the baseline by 4-8%, and notably reduces the interlead correlation error by an average of 74%, while demographic conditioning enhances signal-to-noise ratio and personalization. In critical low-data regimes, a classifier trained on datasets supplemented with our synthetic ECGs achieves performance comparable to a classifier trained solely on real data. Together, we demonstrate that ECG synthesizers, trained with the proposed time-frequency structural regularization scheme, can serve as personalized, high-fidelity, privacy-preserving surrogates when real data are scarce, advancing the responsible use of generative AI in healthcare.
☆ LANTERN: Scalable Distillation of Large Language Models for Job-Person Fit and Explanation
Large language models (LLMs) have achieved strong performance across a wide range of natural language processing tasks. However, deploying LLMs at scale for domain specific applications, such as job-person fit and explanation in job seeking platforms, introduces distinct challenges. At LinkedIn, the job person fit task requires analyzing a candidate's public profile against job requirements to produce both a fit assessment and a detailed explanation. Directly applying open source or finetuned LLMs to this task often fails to yield high quality, actionable feedback due to the complexity of the domain and the need for structured outputs. Moreover, the large size of these models leads to high inference latency and limits scalability, making them unsuitable for online use. To address these challenges, we introduce LANTERN, a novel LLM knowledge distillation framework tailored specifically for job person fit tasks. LANTERN involves modeling over multiple objectives, an encoder model for classification purpose, and a decoder model for explanation purpose. To better distill the knowledge from a strong black box teacher model to multiple downstream models, LANTERN incorporates multi level knowledge distillation that integrates both data and logit level insights. In addition to introducing the knowledge distillation framework, we share our insights on post training techniques and prompt engineering, both of which are crucial for successfully adapting LLMs to domain specific downstream tasks. Extensive experimental results demonstrate that LANTERN significantly improves task specific metrics for both job person fit and explanation. Online evaluations further confirm its effectiveness, showing measurable gains in job seeker engagement, including a 0.24\% increase in apply rate and a 0.28\% increase in qualified applications.
comment: 9 pages, 4 figures, 5 tables
☆ Vul-R2: A Reasoning LLM for Automated Vulnerability Repair
The exponential increase in software vulnerabilities has created an urgent need for automatic vulnerability repair (AVR) solutions. Recent research has formulated AVR as a sequence generation problem and has leveraged large language models (LLMs) to address this problem. Typically, these approaches prompt or fine-tune LLMs to generate repairs for vulnerabilities directly. Although these methods show state-of-the-art performance, they face the following challenges: (1) Lack of high-quality, vulnerability-related reasoning data. Current approaches primarily rely on foundation models that mainly encode general programming knowledge. Without vulnerability-related reasoning data, they tend to fail to capture the diverse vulnerability repair patterns. (2) Hard to verify the intermediate vulnerability repair process during LLM training. Existing reinforcement learning methods often leverage intermediate execution feedback from the environment (e.g., sandbox-based execution results) to guide reinforcement learning training. In contrast, the vulnerability repair process generally lacks such intermediate, verifiable feedback, which poses additional challenges for model training.
comment: 13 pages, 8 figures. This paper is accepted by ASE 2025
☆ AMAQ: Adaptive Mixed-bit Activation Quantization for Collaborative Parameter Efficient Fine-tuning
Large Language Models (LLMs) are scaling rapidly, creating significant challenges for collaborative server client distributed training, particularly in terms of communication efficiency and computational overheads. To address these challenges, we implement Parameter-efficient Split Learning, which effectively balances efficiency and performance for collaborative training on low-resource devices. To reduce communication overhead in collaborative training, we introduce Adaptive Mixed bit Activation Quantization (AMAQ), a strategy that progressively compresses activations and gradients from high precision (6 to 8 bits) to low precision (3 to 4 bits). AMAQ achieves this by effectively allocating bit budgets across channels based on feature wise and layer wise importance using bit regularization. Under the same bit budgets, AMAQ outperforms fixed-precision approaches, delivering about 2.5% higher generation accuracy and about 1.3% better classification accuracy for models like LLaMA3 8B and Qwen2.5 7B. In addition, it significantly enhances training stability and reducing ultra-low bit representation collapse during the training. Experiments demonstrate that AMAQ integrates effectively into practical multi-machine collaborative training setups, offering superior inference accuracy with only a modest communication overhead for bits adaptation during training. This trade off makes AMAQ a practical and effective solution for collaborative training with minimal communication cost.
comment: 14 pages
♻ ☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
♻ ☆ HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
Graph generation is a critical yet challenging task as empirical analyses require a deep understanding of complex, non-Euclidean structures. Diffusion models have recently made significant achievements in graph generation, but these models are typically adapted from image generation frameworks and overlook inherent higher-order topology, leaving them ill-suited for capturing the topological properties of graphs. In this work, we propose Higher-order Guided Diffusion (HOG-Diff), a principled framework that progressively generates plausible graphs with inherent topological structures. HOG-Diff follows a coarse-to-fine generation curriculum guided by higher-order topology and implemented via diffusion bridges. We further prove that our model exhibits a stronger theoretical guarantee than classical diffusion frameworks. Extensive experiments on both molecular and generic graph generation tasks demonstrate that our method consistently outperforms or remains competitive with state-of-the-art baselines. Our code is available at https://github.com/Yiminghh/HOG-Diff.
♻ ☆ Generative Interfaces for Language Models
Large language models (LLMs) are increasingly seen as assistants, copilots, and consultants, capable of supporting a wide range of tasks through natural conversation. However, most systems remain constrained by a linear request-response format that often makes interactions inefficient in multi-turn, information-dense, and exploratory tasks. To address these limitations, we propose Generative Interfaces for Language Models, a paradigm in which LLMs respond to user queries by proactively generating user interfaces (UIs) that enable more adaptive and interactive engagement. Our framework leverages structured interface-specific representations and iterative refinements to translate user queries into task-specific UIs. For systematic evaluation, we introduce a multidimensional assessment framework that compares generative interfaces with traditional chat-based ones across diverse tasks, interaction patterns, and query types, capturing functional, interactive, and emotional aspects of user experience. Results show that generative interfaces consistently outperform conversational ones, with up to a 72% improvement in human preference. These findings clarify when and why users favor generative interfaces, paving the way for future advancements in human-AI interaction.
comment: Preprint
♻ ☆ Hierarchical Reasoning Models: Perspectives and Misconceptions
Transformers have demonstrated remarkable performance in natural language processing and related domains, as they largely focus on sequential, autoregressive next-token prediction tasks. Yet, they struggle in logical reasoning, not necessarily because of a fundamental limitation of these models, but possibly due to the lack of exploration of more creative uses, such as latent space and recurrent reasoning. An emerging exploration in this direction is the Hierarchical Reasoning Model (Wang et. al., 2025), which introduces a novel type of recurrent reasoning in the latent space of transformers, achieving remarkable performance on a wide range of 2D reasoning tasks. Despite the promising results, this line of models is still at an early stage and calls for in-depth investigation. In this work, we review this class of models, examine key design choices, test alternative variants and clarify common misconceptions.
comment: Found errors in some results of v1. Removed them and changed conclusions
♻ ☆ LLM-JEPA: Large Language Models Meet Joint Embedding Predictive Architectures
Large Language Model (LLM) pretraining, finetuning, and evaluation rely on input-space reconstruction and generative capabilities. Yet, it has been observed in vision that embedding-space training objectives, e.g., with Joint Embedding Predictive Architectures (JEPAs), are far superior to their input-space counterpart. That mismatch in how training is achieved between language and vision opens up a natural question: {\em can language training methods learn a few tricks from the vision ones?} The lack of JEPA-style LLM is a testimony of the challenge in designing such objectives for language. In this work, we propose a first step in that direction where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the standard LLM training objectives by a significant margin across models, all while being robust to overfiting. Those findings are observed across numerous datasets (NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3, OpenELM, Gemma2 and Olmo families. Code: https://github.com/rbalestr-lab/llm-jepa.
♻ ☆ Exploring the Potential of Conversational AI Support for Agent-Based Social Simulation Model Design
ChatGPT, the AI-powered chatbot with a massive user base of hundreds of millions, has become a global phenomenon. However, the use of Conversational AI Systems (CAISs) like ChatGPT for research in the field of Social Simulation is still limited. Specifically, there is no evidence of its usage in Agent-Based Social Simulation (ABSS) model design. This paper takes a crucial first step toward exploring the untapped potential of this emerging technology in the context of ABSS model design. The research presented here demonstrates how CAISs can facilitate the development of innovative conceptual ABSS models in a concise timeframe and with minimal required upfront case-based knowledge. By employing advanced prompt engineering techniques and adhering to the Engineering ABSS framework, we have constructed a comprehensive prompt script that enables the design of conceptual ABSS models with or by the CAIS. A proof-of-concept application of the prompt script, used to generate the conceptual ABSS model for a case study on the impact of adaptive architecture in a museum environment, illustrates the practicality of the approach. Despite occasional inaccuracies and conversational divergence, the CAIS proved to be a valuable companion for ABSS modellers.
comment: This paper has been published in the Journal of Artificial Societies and Social Simulation 28 (3) 2. Please refer to the published version at [https://doi.org/10.18564/jasss.5681]
♻ ☆ OWL: Probing Cross-Lingual Recall of Memorized Texts via World Literature EMNLP 2025
Large language models (LLMs) are known to memorize and recall English text from their pretraining data. However, the extent to which this ability generalizes to non-English languages or transfers across languages remains unclear. This paper investigates multilingual and cross-lingual memorization in LLMs, probing if memorized content in one language (e.g., English) can be recalled when presented in translation. To do so, we introduce OWL, a dataset of 31.5K aligned excerpts from 20 books in ten languages, including English originals, official translations (Vietnamese, Spanish, Turkish), and new translations in six low-resource languages (Sesotho, Yoruba, Maithili, Malagasy, Setswana, Tahitian). We evaluate memorization across model families and sizes through three tasks: (1) direct probing, which asks the model to identify a book's title and author; (2) name cloze, which requires predicting masked character names; and (3) prefix probing, which involves generating continuations. We find that LLMs consistently recall content across languages, even for texts without direct translation in pretraining data. GPT-4o, for example, identifies authors and titles 69% of the time and masked entities 6% of the time in newly translated excerpts. Perturbations (e.g., masking characters, shuffling words) modestly reduce direct probing accuracy (7% drop for shuffled official translations). Our results highlight the extent of cross-lingual memorization and provide insights on the differences between the models.
comment: Accepted to EMNLP 2025 Main
♻ ☆ A Fairness-Aware Strategy for B5G Physical-layer Security Leveraging Reconfigurable Intelligent Surfaces
Reconfigurable Intelligent Surfaces are composed of physical elements that can dynamically alter electromagnetic wave properties to enhance beamforming and lead to improvements in areas with low coverage properties. Combined with Reinforcement Learning techniques, they have the potential to be conduct as well physical-layer security hardening. Yet, and in addition to security improvements, it is crucial to consider the concept of fair communication. Reconfigurable Intelligent Surfaces must ensure that User Equipment units receive their signals with adequate strength, without other units being deprived of service due to insufficient power. In this paper, we address such a problem. We explore the fairness properties of previous work and propose a novel method that aims at obtaining both an efficient and fair duplex Reconfigurable Intelligent Surface-Reinforcement Learning system for multiple legitimate User Equipment units without reducing the level of achieved physical-layer security hardening. In terms of contributions, we uncover a fairness imbalance of a previous physical-layer security hardening solution, validate our findings and report experimental work via simulation results. We also provide an alternative reward strategy to solve the uncovered problems and release both code and datasets to foster further research in the topics of this paper.
comment: 19 pages, 5 figures, 2 tables, 41 references
♻ ☆ How Reliable are Causal Probing Interventions?
Causal probing aims to analyze foundation models by examining how intervening on their representation of various latent properties impacts their outputs. Recent works have cast doubt on the theoretical basis of several leading causal probing methods, but it has been unclear how to systematically evaluate the effectiveness of these methods in practice. To address this, we define two key causal probing desiderata: completeness (how thoroughly the representation of the target property has been transformed) and selectivity (how little non-targeted properties have been impacted). We find that there is an inherent tradeoff between the two, which we define as reliability, their harmonic mean. We introduce an empirical analysis framework to measure and evaluate these quantities, allowing us to make the first direct comparisons between different families of leading causal probing methods (e.g., linear vs. nonlinear, or concept removal vs. counterfactual interventions). We find that: (1) all methods show a clear tradeoff between completeness and selectivity; (2) more complete and reliable methods have a greater impact on LLM behavior; and (3) nonlinear interventions are almost always more reliable than linear interventions.
♻ ☆ Gemstones: A Model Suite for Multi-Faceted Scaling Laws NeurIPS 2025
Scaling laws are typically fit using a family of models with a narrow range of frozen hyperparameter choices. In this work we study scaling laws using multiple architectural shapes and hyperparameter choices, highlighting their impact on resulting prescriptions. As a primary artifact of our research, we release the Gemstones: an open-source scaling law dataset, consisting of over 4000 checkpoints from transformers with up to 2 billion parameters and diverse architectural shapes; including ablations over learning rate and cooldown. Our checkpoints enable more complex studies of scaling, such as analyzing the relationship between width and depth. By examining our model suite, we find that the prescriptions of scaling laws can be highly sensitive to the experimental design process and the specific model checkpoints used during fitting.
comment: NeurIPS 2025
♻ ☆ Is It Thinking or Cheating? Detecting Implicit Reward Hacking by Measuring Reasoning Effort
Reward hacking, where a reasoning model exploits loopholes in a reward function to achieve high rewards without solving the intended task, poses a significant threat. This behavior may be explicit, i.e. verbalized in the model's chain-of-thought (CoT), or implicit, where the CoT appears benign thus bypasses CoT monitors. To detect implicit reward hacking, we propose TRACE (Truncated Reasoning AUC Evaluation). Our key observation is that hacking occurs when exploiting the loophole is easier than solving the actual task. This means that the model is using less 'effort' than required to achieve high reward. TRACE quantifies effort by measuring how early a model's reasoning becomes sufficient to obtain the reward. We progressively truncate a model's CoT at various lengths, force the model to answer, and estimate the expected reward at each cutoff. A hacking model, which takes a shortcut, will achieve a high expected reward with only a small fraction of its CoT, yielding a large area under the accuracy-vs-length curve. TRACE achieves over 65% gains over our strongest 72B CoT monitor in math reasoning, and over 30% gains over a 32B monitor in coding. We further show that TRACE can discover unknown loopholes during training. Overall, TRACE offers a scalable unsupervised approach for oversight where current monitoring methods prove ineffective.
comment: 25 pages, 31 figures
♻ ☆ Optimal Policy Minimum Bayesian Risk
Inference scaling helps LLMs solve complex reasoning problems through extended runtime computation. On top of long chain-of-thought (long-CoT) models, purely inference-time techniques such as best-of-N (BoN) sampling, majority voting, or more generally, minimum Bayes risk decoding (MBRD), can further improve LLM accuracy by generating multiple candidate solutions and aggregating over them. These methods typically leverage additional signals in the form of reward models and risk/similarity functions that compare generated samples, e.g., exact match in some normalized space or standard similarity metrics such as Rouge. Here we present a novel method for incorporating reward and risk/similarity signals into MBRD. Based on the concept of optimal policy in KL-controlled reinforcement learning, our framework provides a simple and well-defined mechanism for leveraging such signals, offering several advantages over traditional inference-time methods: higher robustness, improved accuracy, and well-understood asymptotic behavior. In addition, it allows for the development of a sample-efficient variant of MBRD that can adjust the number of samples to generate according to the difficulty of the problem, without relying on majority vote counts. We empirically demonstrate the advantages of our approach on math (MATH-$500$) and coding (HumanEval) tasks using recent open-source models. We also present a comprehensive analysis of its accuracy-compute trade-offs.
♻ ☆ Can We Predict Alignment Before Models Finish Thinking? Towards Monitoring Misaligned Reasoning Models
Reasoning language models improve performance on complex tasks by generating long chains of thought (CoTs), but this process can also increase harmful outputs in adversarial settings. In this work, we ask whether the long CoTs can be leveraged for predictive safety monitoring: do the reasoning traces provide early signals of final response alignment that could enable timely intervention? We evaluate a range of monitoring methods using either CoT text or activations, including highly capable large language models, fine-tuned classifiers, and humans. First, we find that a simple linear probe trained on CoT activations significantly outperforms all text-based baselines in predicting whether a final response is safe or unsafe, with an average absolute increase of 13 in F1 scores over the best-performing alternatives. CoT texts are often unfaithful and misleading, while model latents provide a more reliable predictive signal. Second, the probe can be applied to early CoT segments before the response is generated, showing that alignment signals appear before reasoning completes. Error analysis reveals that the performance gap between text classifiers and the linear probe largely stems from a subset of responses we call performative CoTs, where the reasoning consistently contradicts the final response as the CoT progresses. Our findings generalize across model sizes, families, and safety benchmarks, suggesting that lightweight probes could enable real-time safety monitoring and early intervention during generation.
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables v2 changelog: Fixed the modeling for table 3, random effect is the model version
♻ ☆ Entropy-Gated Branching for Efficient Test-Time Reasoning
Test-time compute methods can significantly improve the reasoning capabilities and problem-solving accuracy of large language models (LLMs). However, these approaches require substantially more computational resources, with most compute wasted on exploring low-diversity branches where the model already exhibits high confidence. We observe that a small subset of uncertain reasoning steps has a disproportionately large impact on final prediction accuracy, and branching at these critical junctures tends to yield more diverse and higher-quality candidate reasoning steps. We propose Entropy-Gated Branching (EGB), which branches only at high-uncertainty steps and prunes expansions with a lightweight verifier. On mathematical and financial reasoning benchmarks, EGB improves accuracy by 22.6% over standard inference while operating 31%-75% faster across math benchmarks than test-time beam search with higher performance. Our results show that dynamic resource allocation during inference can substantially improve both efficiency and effectiveness, offering a more scalable pathway to enhanced LLM reasoning capabilities.
♻ ☆ MedHal: An Evaluation Dataset for Medical Hallucination Detection
We present MedHal, a novel large-scale dataset specifically designed to evaluate if models can detect hallucinations in medical texts. Current hallucination detection methods face significant limitations when applied to specialized domains like medicine, where they can have disastrous consequences. Existing medical datasets are either too small, containing only a few hundred samples, or focus on a single task like Question Answering or Natural Language Inference. MedHal addresses these gaps by: (1) incorporating diverse medical text sources and tasks; (2) providing a substantial volume of annotated samples suitable for training medical hallucination detection models; and (3) including explanations for factual inconsistencies to guide model learning. We demonstrate MedHal's utility by training and evaluating a baseline medical hallucination detection model, showing improvements over general-purpose hallucination detection approaches. This resource enables more efficient evaluation of medical text generation systems while reducing reliance on costly expert review, potentially accelerating the development of medical AI research.
♻ ☆ Large Language Models Achieve Gold Medal Performance at the International Olympiad on Astronomy & Astrophysics (IOAA)
While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.
comment: 18 pages, 6 figures, to be submitted, comments are welcome. Reproducibility details can be found at: https://github.com/OSU-NLP-Group/LLM-IOAA
♻ ☆ QLLM: Do We Really Need a Mixing Network for Credit Assignment in Multi-Agent Reinforcement Learning?
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL). Previous studies have primarily addressed this issue through value decomposition methods under the centralized training with decentralized execution paradigm, where neural networks are utilized to approximate the nonlinear relationship between individual Q-values and the global Q-value. Although these approaches have achieved considerable success in various benchmark tasks, they still suffer from several limitations, including imprecise attribution of contributions, limited interpretability, and poor scalability in high-dimensional state spaces. To address these challenges, we propose a novel algorithm, \textbf{QLLM}, which facilitates the automatic construction of credit assignment functions using large language models (LLMs). Specifically, the concept of \textbf{TFCAF} is introduced, wherein the credit allocation process is represented as a direct and expressive nonlinear functional formulation. A custom-designed \textit{coder-evaluator} framework is further employed to guide the generation, verification, and refinement of executable code by LLMs, significantly mitigating issues such as hallucination and shallow reasoning during inference. Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines. Moreover, QLLM exhibits strong generalization capability and maintains compatibility with a wide range of MARL algorithms that utilize mixing networks, positioning it as a promising and versatile solution for complex multi-agent scenarios.
comment: We are withdrawing this manuscript due to experimental errors and mistakes in data preprocessing. These issues materially affect the results and could mislead subsequent studies
♻ ☆ Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensitive information about individuals. This article provides theoretical guarantees by exploring the fundamental statistical limitations associated with MIAs on machine learning models at large. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. We then theoretically prove that in a non-linear regression setting with overfitting learning procedures, attacks may have a high probability of success. Finally, we investigate several situations for which we provide bounds on this quantity of interest. Interestingly, our findings indicate that discretizing the data might enhance the learning procedure's security. Specifically, it is demonstrated to be limited by a constant, which quantifies the diversity of the underlying data distribution. We illustrate those results through simple simulations.
comment: Accepted for publication in JMLR
♻ ☆ VisioMath: Benchmarking Figure-based Mathematical Reasoning in LMMs
Large Multimodal Models have achieved remarkable progress in integrating vision and language, enabling strong performance across perception, reasoning, and domain-specific tasks. However, their capacity to reason over multiple, visually similar inputs remains insufficiently explored. Such fine-grained comparative reasoning is central to real-world tasks, especially in mathematics and education, where learners must often distinguish between nearly identical diagrams to identify correct solutions. To address this gap, we present VisioMath, a curated benchmark of 1,800 high-quality K-12 mathematics problems in which all candidate answers are diagrams with subtle visual similarities. A comprehensive evaluation of state-of-the-art LMMs, covering both leading closed-source systems and widely adopted open-source models, reveals a consistent decline in accuracy as inter-image similarity increases. Analysis indicates that the dominant failure mode stems from image-text misalignment: rather than grounding reasoning in textual cues, models often resort to shallow positional heuristics, resulting in systematic errors. We further explore three alignment-oriented strategies, spanning training-free approaches and finetuning, and achieve substantial accuracy gains. We hope that VisioMath will serve as a rigorous benchmark and catalyst for developing LMMs toward deeper diagram understanding, precise comparative reasoning, and grounded multi-image-text integration.
♻ ☆ A Fast GRASP Metaheuristic for the Trigger Arc TSP with MIP-Based Construction and Multi-Neighborhood Local Search
The Trigger Arc Traveling Salesman Problem (TA-TSP) extends the classical TSP by introducing dynamic arc costs that change when specific "trigger" arcs are traversed, modeling scenarios such as warehouse operations with compactable storage systems. This paper introduces a GRASP-based metaheuristic that combines multiple construction heuristics with a multi-neighborhood local search. The construction phase uses mixed-integer programming (MIP) techniques to transform the TA-TSP into a sequence of tailored TSP instances, while the improvement phase applies 2-Opt, Swap, and Relocate operators. Computational experiments on MESS 2024 competition instances achieved average optimality gaps of 0.77% and 0.40% relative to the best-known solutions within a 60-second limit. On smaller, synthetically generated datasets, the method produced solutions 11.3% better than the Gurobi solver under the same time constraints. The algorithm finished in the top three at MESS 2024, demonstrating its suitability for real-time routing applications with state-dependent travel costs.
comment: 9 pages, 2 figures. Find the implementation in https://github.com/jsalvasoler/trigger_arc_tsp
♻ ☆ BrowserArena: Evaluating LLM Agents on Real-World Web Navigation Tasks
LLM web agents now browse and take actions on the open web, yet current agent evaluations are constrained to sandboxed environments or artificial tasks. We introduce BrowserArena, a live open-web agent evaluation platform that collects user-submitted tasks, runs Arena-style head-to-head comparisons, and uses step-level human feedback to surface failure modes. Collecting and analyzing step-level annotations on the agent traces, we identify three consistent failure modes: captcha resolution, pop-up banner removal, and direct navigation to URLs. By constructing targeted datasets to further study these tasks, we discover variations in how different language models navigate these failure modes. We find, for example, that o4-mini deploys a wider variety of strategies to circumvent captcha resolution than other models and DeepSeek-R1 consistently misleads users about pop-up banner closure. Our findings surface both the diversity and brittleness of current web agents. More broadly, our benchmarking methodology provides an approach to evaluating and understanding web agent failure modes at scale.
♻ ☆ A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond
Mamba, a special case of the State Space Model, is gaining popularity as an alternative to template-based deep learning approaches in medical image analysis. While transformers are powerful architectures, they have drawbacks, including quadratic computational complexity and an inability to address long-range dependencies efficiently. This limitation affects the analysis of large and complex datasets in medical imaging, where there are many spatial and temporal relationships. In contrast, Mamba offers benefits that make it well-suited for medical image analysis. It has linear time complexity, which is a significant improvement over transformers. Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory. Mamba also demonstrates strong performance in merging multimodal data, improving diagnosis accuracy and patient outcomes. The organization of this paper allows readers to appreciate the capabilities of Mamba in medical imaging step by step. We begin by defining core concepts of SSMs and models, including S4, S5, and S6, followed by an exploration of Mamba architectures such as pure Mamba, U-Net variants, and hybrid models with convolutional neural networks, transformers, and Graph Neural Networks. We also cover Mamba optimizations, techniques and adaptations, scanning, datasets, applications, experimental results, and conclude with its challenges and future directions in medical imaging. This review aims to demonstrate the transformative potential of Mamba in overcoming existing barriers within medical imaging while paving the way for innovative advancements in the field. A comprehensive list of Mamba architectures applied in the medical field, reviewed in this work, is available at Github.
♻ ☆ A Generative Approach to Credit Prediction with Learnable Prompts for Multi-scale Temporal Representation Learning
Recent industrial credit scoring models remain heavily reliant on manually tuned statistical learning methods. Despite their potential, deep learning architectures have struggled to consistently outperform traditional statistical models in industrial credit scoring, largely due to the complexity of heterogeneous financial data and the challenge of modeling evolving creditworthiness. To bridge this gap, we introduce FinLangNet, a novel framework that reformulates credit scoring as a multi-scale sequential learning problem. FinLangNet processes heterogeneous financial data through a dual-module architecture that combines tabular feature extraction with temporal sequence modeling, generating probability distributions of users' future financial behaviors across multiple time horizons. A key innovation is our dual-prompt mechanism within the sequential module, which introduces learnable prompts operating at both feature-level granularity for capturing fine-grained temporal patterns and user-level granularity for aggregating holistic risk profiles. In extensive evaluations, FinLangNet significantly outperforms a production XGBoost system, achieving a 7.2% improvement in the KS metric and a 9.9% relative reduction in bad debt rate. Its effectiveness as a general-purpose sequential learning framework is further validated through state-of-the-art performance on the public UEA time series classification benchmark. The system has been successfully deployed on DiDi's international finance platform, serving leading financial credit companies in Latin America.
♻ ☆ Generative Psycho-Lexical Approach for Constructing Value Systems in Large Language Models ACL 2025
Values are core drivers of individual and collective perception, cognition, and behavior. Value systems, such as Schwartz's Theory of Basic Human Values, delineate the hierarchy and interplay among these values, enabling cross-disciplinary investigations into decision-making and societal dynamics. Recently, the rise of Large Language Models (LLMs) has raised concerns regarding their elusive intrinsic values. Despite growing efforts in evaluating, understanding, and aligning LLM values, a psychologically grounded LLM value system remains underexplored. This study addresses the gap by introducing the Generative Psycho-Lexical Approach (GPLA), a scalable, adaptable, and theoretically informed method for constructing value systems. Leveraging GPLA, we propose a psychologically grounded five-factor value system tailored for LLMs. For systematic validation, we present three benchmarking tasks that integrate psychological principles with cutting-edge AI priorities. Our results reveal that the proposed value system meets standard psychological criteria, better captures LLM values, improves LLM safety prediction, and enhances LLM alignment, when compared to the canonical Schwartz's values.
comment: ACL 2025 Main
♻ ☆ MuFFIN: Multifaceted Pronunciation Feedback Model with Interactive Hierarchical Neural Modeling
Computer-assisted pronunciation training (CAPT) manages to facilitate second-language (L2) learners to practice pronunciation skills by offering timely and instructive feedback. To examine pronunciation proficiency from multiple facets, existing methods for CAPT broadly fall into two categories: mispronunciation detection and diagnosis (MDD) as well as automatic pronunciation assessment (APA). The former aims to pinpoint phonetic pronunciation errors and provide diagnostic feedback, while the latter seeks instead to quantify pronunciation proficiency pertaining to various aspects. Despite the natural complementarity between MDD and APA, researchers and practitioners, however, often treat them as independent tasks with disparate modeling paradigms. In light of this, we in this paper first introduce MuFFIN, a Multi-Faceted pronunciation Feedback model with an Interactive hierarchical Neural architecture, to jointly address the tasks of MDD and APA. To better capture the nuanced distinctions between phonemes in the feature space, a novel phoneme-contrastive ordinal regularization mechanism is then put forward to optimize the proposed model to generate more phoneme-discriminative features while factoring in the ordinality of the aspect scores. In addition, to address the intricate data imbalance problem in MDD, we design a simple yet effective training objective, which is specifically tailored to perturb the outputs of a phoneme classifier with the phoneme-specific variations, so as to better render the distribution of predicted phonemes meanwhile considering their mispronunciation characteristics. A series of experiments conducted on the Speechocean762 benchmark dataset demonstrates the efficacy of our method in relation to several cutting-edge baselines, showing state-of-the-art performance on both the APA and MDD tasks.
comment: Accepted and to appear in IEEE/ACM Transactions on Audio, Speech, and Language Processing
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models NeurIPS 2025
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model
comment: 10 pages, NeurIPS 2025 Spotlight
♻ ☆ Report of the 2025 Workshop on Next-Generation Ecosystems for Scientific Computing: Harnessing Community, Software, and AI for Cross-Disciplinary Team Science
This report summarizes insights from the 2025 Workshop on Next-Generation Ecosystems for Scientific Computing: Harnessing Community, Software, and AI for Cross-Disciplinary Team Science, which convened more than 40 experts from national laboratories, academia, industry, and community organizations to chart a path toward more powerful, sustainable, and collaborative scientific software ecosystems. To address urgent challenges at the intersection of high-performance computing (HPC), AI, and scientific software, participants envisioned agile, robust ecosystems built through socio-technical co-design--the intentional integration of social and technical components as interdependent parts of a unified strategy. This approach combines advances in AI, HPC, and software with new models for cross-disciplinary collaboration, training, and workforce development. Key recommendations include building modular, trustworthy AI-enabled scientific software systems; enabling scientific teams to integrate AI systems into their workflows while preserving human creativity, trust, and scientific rigor; and creating innovative training pipelines that keep pace with rapid technological change. Pilot projects were identified as near-term catalysts, with initial priorities focused on hybrid AI/HPC infrastructure, cross-disciplinary collaboration and pedagogy, responsible AI guidelines, and prototyping of public-private partnerships. This report presents a vision of next-generation ecosystems for scientific computing where AI, software, hardware, and human expertise are interwoven to drive discovery, expand access, strengthen the workforce, and accelerate scientific progress.
comment: 38 pages, 6 figures
♻ ☆ Fine-Grained and Thematic Evaluation of LLMs in Social Deduction Game
Recent studies have investigated whether large language models (LLMs) can support obscured communication, which is characterized by core aspects such as inferring subtext and evading suspicions. To conduct the investigation, researchers have used social deduction games (SDGs) as their experimental environment, in which players conceal and infer specific information. However, prior work has often overlooked how LLMs should be evaluated in such settings. Specifically, we point out two limitations with the evaluation methods they employed. First, metrics used in prior studies are coarse-grained as they are based on overall game outcomes that often fail to capture event-level behaviors; Second, error analyses have lacked structured methodologies capable of producing insights that meaningfully support evaluation outcomes. To address these limitations, we propose a microscopic and systematic approach to the investigation. Specifically, we introduce six fine-grained metrics that resolve the first issue. To tackle the second issue, we conducted a thematic analysis and identified four major reasoning failures that undermine LLMs' performance in obscured communication.
comment: Published in IEEE Access
♻ ☆ FedFlex: Federated Learning for Diverse Netflix Recommendations
The drive for personalization in recommender systems creates a tension between user privacy and the risk of "filter bubbles". Although federated learning offers a promising paradigm for privacy-preserving recommendations, its impact on diversity remains unclear. We introduce FedFlex, a two-stage framework that combines local, on-device fine-tuning of matrix factorization models (SVD and BPR) with a lightweight Maximal Marginal Relevance (MMR) re-ranking step to promote diversity. We conducted the first live user study of a federated recommender, collecting behavioral data and feedback during a two-week online deployment. Our results show that FedFlex successfully engages users, with BPR outperforming SVD in click-through rate. Re-ranking with MMR consistently improved ranking quality (nDCG) across both models, with statistically significant gains, particularly for BPR. Diversity effects varied: MMR increased coverage for both models and improved intra-list diversity for BPR, but slightly reduced it for SVD, suggesting different interactions between personalization and diversification across models. Our exit questionnaire responses indicated that most users expressed no clear preference between re-ranked and unprocessed lists, implying that increased diversity did not substantially reduce user satisfaction.
♻ ☆ Decentralized Collective World Model for Emergent Communication and Coordination
We propose a fully decentralized multi-agent world model that enables both symbol emergence for communication and coordinated behavior through temporal extension of collective predictive coding. Unlike previous research that focuses on either communication or coordination separately, our approach achieves both simultaneously. Our method integrates world models with communication channels, enabling agents to predict environmental dynamics, estimate states from partial observations, and share critical information through bidirectional message exchange with contrastive learning for message alignment. Using a two-agent trajectory drawing task, we demonstrate that our communication-based approach outperforms non-communicative models when agents have divergent perceptual capabilities, achieving the second-best coordination after centralized models. Importantly, our decentralized approach with constraints preventing direct access to other agents' internal states facilitates the emergence of more meaningful symbol systems that accurately reflect environmental states. These findings demonstrate the effectiveness of decentralized communication for supporting coordination while developing shared representations of the environment.
comment: Accepted at IEEE ICDL 2025
♻ ☆ Neon: Negative Extrapolation From Self-Training Improves Image Generation
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/VITA-Group/Neon
♻ ☆ Emotional Manipulation by AI Companions
AI-companion apps such as Replika, Chai, and Character.ai promise relational benefits-yet many boast session lengths that rival gaming platforms while suffering high long-run churn. What conversational design features increase consumer engagement, and what trade-offs do they pose for marketers? We combine a large-scale behavioral audit with four preregistered experiments to identify and test a conversational dark pattern we call emotional manipulation: affect-laden messages that surface precisely when a user signals "goodbye." Analyzing 1,200 real farewells across the most-downloaded companion apps, we find that they deploy one of six recurring tactics in 37% of farewells (e.g., guilt appeals, fear-of-missing-out hooks, metaphorical restraint). Experiments with 3,300 nationally representative U.S. adults replicate these tactics in controlled chats, showing that manipulative farewells boost post-goodbye engagement by up to 14x. Mediation tests reveal two distinct engines-reactance-based anger and curiosity-rather than enjoyment. A final experiment demonstrates the managerial tension: the same tactics that extend usage also elevate perceived manipulation, churn intent, negative word-of-mouth, and perceived legal liability, with coercive or needy language generating steepest penalties. Our multimethod evidence documents an unrecognized mechanism of behavioral influence in AI mediated brand relationships, offering marketers and regulators a framework for distinguishing persuasive design from manipulation at the point of exit.
♻ ☆ CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
comment: Work in progress
♻ ☆ MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Effective model and hyperparameter selection remains a major challenge in deep learning, often requiring extensive expertise and computation. While AutoML and large language models (LLMs) promise automation, current LLM-based approaches rely on trial and error and expensive APIs, which provide limited interpretability and generalizability. We propose MetaLLMiX, a zero-shot hyperparameter optimization framework combining meta-learning, explainable AI, and efficient LLM reasoning. By leveraging historical experiment outcomes with SHAP explanations, MetaLLMiX recommends optimal hyperparameters and pretrained models without additional trials. We further employ an LLM-as-judge evaluation to control output format, accuracy, and completeness. Experiments on eight medical imaging datasets using nine open-source lightweight LLMs show that MetaLLMiX achieves competitive or superior performance to traditional HPO methods while drastically reducing computational cost. Our local deployment outperforms prior API-based approaches, achieving optimal results on 5 of 8 tasks, response time reductions of 99.6-99.9%, and the fastest training times on 6 datasets (2.4-15.7x faster), maintaining accuracy within 1-5% of best-performing baselines.
♻ ☆ Navigating the EU AI Act: Foreseeable Challenges in Qualifying Deep Learning-Based Automated Inspections of Class III Medical Devices
As deep learning (DL) technologies advance, their application in automated visual inspection for Class III medical devices offers significant potential to enhance quality assurance and reduce human error. However, the adoption of such AI-based systems introduces new regulatory complexities-particularly under the EU Artificial Intelligence (AI) Act, which imposes high-risk system obligations that differ in scope and depth from established regulatory frameworks such as the Medical Device Regulation (MDR) and the U.S. FDA Quality System Regulation (QSR). This paper presents a high-level technical assessment of the foreseeable challenges that manufacturers are likely to encounter when qualifying DL-based automated inspections -- specifically static models -- within the existing medical device compliance landscape. It examines divergences in risk management principles, dataset governance, model validation, explainability requirements, and post-deployment monitoring obligations. The discussion also explores potential implementation strategies and highlights areas of uncertainty, including data retention burdens, global compliance implications, and the practical difficulties of achieving statistical significance in validation with limited defect data. Disclaimer: This paper presents a technical perspective and does not constitute legal or regulatory advice.
comment: Critical Review article
♻ ☆ Building Resource-Constrained Language Agents: A Korean Case Study on Chemical Toxicity Information EMNLP 2025
Language agents powered by large language models (LLMs) face significant deployment challenges in resource-constrained environments, particularly for specialized domains and less-common languages. This paper presents Tox-chat, a Korean chemical toxicity information agent devised within these limitations. We propose two key innovations: a context-efficient architecture that reduces token consumption through hierarchical section search, and a scenario-based dialogue generation methodology that effectively distills tool-using capabilities from larger models. Experimental evaluations demonstrate that our fine-tuned 8B parameter model substantially outperforms both untuned models and baseline approaches, in terms of DB faithfulness and preference. Our work offers valuable insights for researchers developing domain-specific language agents under practical constraints.
comment: EMNLP 2025 Industry track
♻ ☆ Cross-Document Cross-Lingual NLI via RST-Enhanced Graph Fusion and Interpretability Prediction EMNLP 2025
Natural Language Inference (NLI) is a fundamental task in natural language processing. While NLI has developed many sub-directions such as sentence-level NLI, document-level NLI and cross-lingual NLI, Cross-Document Cross-Lingual NLI (CDCL-NLI) remains largely unexplored. In this paper, we propose a novel paradigm: CDCL-NLI, which extends traditional NLI capabilities to multi-document, multilingual scenarios. To support this task, we construct a high-quality CDCL-NLI dataset including 25,410 instances and spanning 26 languages. To address the limitations of previous methods on CDCL-NLI task, we further propose an innovative method that integrates RST-enhanced graph fusion with interpretability-aware prediction. Our approach leverages RST (Rhetorical Structure Theory) within heterogeneous graph neural networks for cross-document context modeling, and employs a structure-aware semantic alignment based on lexical chains for cross-lingual understanding. For NLI interpretability, we develop an EDU (Elementary Discourse Unit)-level attribution framework that produces extractive explanations. Extensive experiments demonstrate our approach's superior performance, achieving significant improvements over both conventional NLI models as well as large language models. Our work sheds light on the study of NLI and will bring research interest on cross-document cross-lingual context understanding, hallucination elimination and interpretability inference. Our code and datasets are available at "https://github.com/Leonardo123-ui/CDCL_NLI" for peer review.
comment: EMNLP 2025 Main (Camera Ready)
♻ ☆ Towards Locally Deployable Fine-Tuned Causal Large Language Models for Mode Choice Behaviour
This study investigates the adoption of open-access, locally deployable causal large language models (LLMs) for travel mode choice prediction and introduces LiTransMC, the first fine-tuned causal LLM developed for this task. We systematically benchmark eleven open-access LLMs (1-12B parameters) across three stated and revealed preference datasets, testing 396 configurations and generating over 79,000 mode choice decisions. Beyond predictive accuracy, we evaluate models generated reasoning using BERTopic for topic modelling and a novel Explanation Strength Index, providing the first structured analysis of how LLMs articulate decision factors in alignment with behavioural theory. LiTransMC, fine-tuned using parameter efficient and loss masking strategy, achieved a weighted F1 score of 0.6845 and a Jensen-Shannon Divergence of 0.000245, surpassing both untuned local models and larger proprietary systems, including GPT-4o with advanced persona inference and embedding-based loading, while also outperforming classical mode choice methods such as discrete choice models and machine learning classifiers for the same dataset. This dual improvement, i.e., high instant-level accuracy and near-perfect distributional calibration, demonstrates the feasibility of creating specialist, locally deployable LLMs that integrate prediction and interpretability. Through combining structured behavioural prediction with natural language reasoning, this work unlocks the potential for conversational, multi-task transport models capable of supporting agent-based simulations, policy testing, and behavioural insight generation. These findings establish a pathway for transforming general purpose LLMs into specialized and explainable tools for transportation research and policy formulation, while maintaining privacy, reducing cost, and broadening access through local deployment.
♻ ☆ An Embarrassingly Simple Defense Against LLM Abliteration Attacks
Large language models (LLMs) are typically aligned to refuse harmful instructions through safety fine-tuning. A recent attack, termed abliteration, identifies and suppresses the single latent direction most responsible for refusal behavior, thereby enabling models to generate harmful content. We propose a defense that fundamentally alters how models express refusal. We construct an extended-refusal dataset in which responses to harmful prompts provide detailed justifications before refusing, distributing the refusal signal across multiple token positions. Fine-tuning Llama-2-7B-Chat and Qwen2.5-Instruct (1.5B and 3B parameters) on this dataset yields models that maintain high refusal rates under abliteration: refusal rates drop by at most 10%, compared to 70-80% drops in baseline models. Comprehensive evaluations of safety and utility demonstrate that extended-refusal fine-tuning effectively neutralizes abliteration attacks while preserving general model performance and enhancing robustness across multiple alignment scenarios.
comment: preprint - under review
♻ ☆ Interpretable Clustering: A Survey
In recent years, much of the research on clustering algorithms has primarily focused on enhancing their accuracy and efficiency, frequently at the expense of interpretability. However, as these methods are increasingly being applied in high-stakes domains such as healthcare, finance, and autonomous systems, the need for transparent and interpretable clustering outcomes has become a critical concern. This is not only necessary for gaining user trust but also for satisfying the growing ethical and regulatory demands in these fields. Ensuring that decisions derived from clustering algorithms can be clearly understood and justified is now a fundamental requirement. To address this need, this paper provides a comprehensive and structured review of the current state of explainable clustering algorithms, identifying key criteria to distinguish between various methods. These insights can effectively assist researchers in making informed decisions about the most suitable explainable clustering methods for specific application contexts, while also promoting the development and adoption of clustering algorithms that are both efficient and transparent. For convenient access and reference, an open repository organizes representative and emerging interpretable clustering methods under the taxonomy proposed in this survey, available at https://github.com/hulianyu/Awesome-Interpretable-Clustering
comment: 14 pages, 2 figures, 3 tables
♻ ☆ WildIFEval: Instruction Following in the Wild
Recent LLMs have shown remarkable success in following user instructions, yet handling instructions with multiple constraints remains a significant challenge. In this work, we introduce WildIFEval - a large-scale dataset of 7K real user instructions with diverse, multi-constraint conditions. Unlike prior datasets, our collection spans a broad lexical and topical spectrum of constraints, extracted from natural user instructions. We categorize these constraints into eight high-level classes to capture their distribution and dynamics in real-world scenarios. Leveraging WildIFEval, we conduct extensive experiments to benchmark the instruction-following capabilities of leading LLMs. WildIFEval clearly differentiates between small and large models, and demonstrates that all models have a large room for improvement on such tasks. We analyze the effects of the number and type of constraints on performance, revealing interesting patterns of model constraint-following behavior. We release our dataset to promote further research on instruction-following under complex, realistic conditions.
♻ ☆ Geometry-Guided Adversarial Prompt Detection via Curvature and Local Intrinsic Dimension
Adversarial prompts are capable of jailbreaking frontier large language models (LLMs) and inducing undesirable behaviours, posing a significant obstacle to their safe deployment. Current mitigation strategies primarily rely on activating built-in defence mechanisms or fine-tuning LLMs, both of which are computationally expensive and can sacrifice model utility. In contrast, detection-based approaches are more efficient and practical for deployment in real-world applications. However, the fundamental distinctions between adversarial and benign prompts remain poorly understood. In this work, we introduce CurvaLID, a novel defence framework that efficiently detects adversarial prompts by leveraging their geometric properties. It is agnostic to the type of LLM, offering a unified detection framework across diverse adversarial prompts and LLM architectures. CurvaLID builds on the geometric analysis of text prompts to uncover their underlying differences. We theoretically extend the concept of curvature via the Whewell equation into an $n$-dimensional word embedding space, enabling us to quantify local geometric properties, including semantic shifts and curvature in the underlying manifolds. To further enhance our solution, we leverage Local Intrinsic Dimensionality (LID) to capture complementary geometric features of text prompts within adversarial subspaces. Our findings show that adversarial prompts exhibit distinct geometric signatures from benign prompts, enabling CurvaLID to achieve near-perfect classification and outperform state-of-the-art detectors in adversarial prompt detection. CurvaLID provides a reliable and efficient safeguard against malicious queries as a model-agnostic method that generalises across multiple LLMs and attack families.
comment: 40 Pages, 6 figues
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Mitigate Object Hallucinations in MLLMs?
Contrastive decoding strategies are widely used to reduce object hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ A Set of Generalized Components to Achieve Effective Poison-only Clean-label Backdoor Attacks with Collaborative Sample Selection and Triggers
Poison-only Clean-label Backdoor Attacks aim to covertly inject attacker-desired behavior into DNNs by merely poisoning the dataset without changing the labels. To effectively implant a backdoor, multiple \textbf{triggers} are proposed for various attack requirements of Attack Success Rate (ASR) and stealthiness. Additionally, sample selection enhances clean-label backdoor attacks' ASR by meticulously selecting ``hard'' samples instead of random samples to poison. Current methods 1) usually handle the sample selection and triggers in isolation, leading to severely limited improvements on both ASR and stealthiness. Consequently, attacks exhibit unsatisfactory performance on evaluation metrics when converted to PCBAs via a mere stacking of methods. Therefore, we seek to explore the bidirectional collaborative relations between the sample selection and triggers to address the above dilemma. 2) Since the strong specificity within triggers, the simple combination of sample selection and triggers fails to substantially enhance both evaluation metrics, with generalization preserved among various attacks. Therefore, we seek to propose a set of components to significantly improve both stealthiness and ASR based on the commonalities of attacks. Specifically, Component A ascertains two critical selection factors, and then makes them an appropriate combination based on the trigger scale to select more reasonable ``hard'' samples for improving ASR. Component B is proposed to select samples with similarities to relevant trigger implanted samples to promote stealthiness. Component C reassigns trigger poisoning intensity on RGB colors through distinct sensitivity of the human visual system to RGB for higher ASR, with stealthiness ensured by sample selection, including Component B. Furthermore, all components can be strategically integrated into diverse PCBAs.
comment: 31 pages, 16 figures, accepted in Neurips 2025
♻ ☆ Harnessing LLM for Noise-Robust Cognitive Diagnosis in Web-Based Intelligent Education Systems
Cognitive diagnostics in the Web-based Intelligent Education System (WIES) aims to assess students' mastery of knowledge concepts from heterogeneous, noisy interactions. Recent work has tried to utilize Large Language Models (LLMs) for cognitive diagnosis, yet LLMs struggle with structured data and are prone to noise-induced misjudgments. Specially, WIES's open environment continuously attracts new students and produces vast amounts of response logs, exacerbating the data imbalance and noise issues inherent in traditional educational systems. To address these challenges, we propose DLLM, a Diffusion-based LLM framework for noise-robust cognitive diagnosis. DLLM first constructs independent subgraphs based on response correctness, then applies relation augmentation alignment module to mitigate data imbalance. The two subgraph representations are then fused and aligned with LLM-derived, semantically augmented representations. Importantly, before each alignment step, DLLM employs a two-stage denoising diffusion module to eliminate intrinsic noise while assisting structural representation alignment. Specifically, unconditional denoising diffusion first removes erroneous information, followed by conditional denoising diffusion based on graph-guided to eliminate misleading information. Finally, the noise-robust representation that integrates semantic knowledge and structural information is fed into existing cognitive diagnosis models for prediction. Experimental results on three publicly available web-based educational platform datasets demonstrate that our DLLM achieves optimal predictive performance across varying noise levels, which demonstrates that DLLM achieves noise robustness while effectively leveraging semantic knowledge from LLM.
♻ ☆ Open Agent Specification (Agent Spec) Technical Report
Open Agent Specification (Agent Spec) is a declarative language that allows AI agents and their workflows to be defined in a way that is compatible across different AI frameworks, promoting portability and interoperability within AI Agent frameworks. Agent Spec aims to resolve the challenges of fragmented agent development by providing a common unified specification that allows AI agents to be designed once and deployed across various frameworks, improving interoperability and reusability, and reducing redundant development efforts. Additionally, Agent Spec facilitates development tools and portability, allowing AI agents to be defined independently of their execution environment and enabling teams to exchange solutions without implementation-specific limitations. Agent Spec benefits four key groups: (i) Agent developers, who gain access to a superset of reusable components and design patterns, enabling them to leverage a broader range of functionalities; (ii) Agent framework and tool developers, who can use Agent Spec as an interchange format and therefore benefit from the support of other frameworks as well as other tools; (iii) Researchers, who can achieve reproducible results and comparability, facilitating more reliable and consistent outcomes; (iv) Enterprises, which benefit from faster prototype-to-deployment, increased productivity, as well as greater scalability and maintainability for their AI agent solutions. This technical report provides an overview of the technical foundations of Agent Spec, including motivation, benefits, and future developments.
♻ ☆ SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift. While many methods have been proposed in the literature, fair and realistic evaluation remains an open question, particularly due to methodological difficulties in selecting hyperparameters in the unsupervised setting. With SKADA-bench, we propose a framework to evaluate DA methods on diverse modalities, beyond computer vision task that have been largely explored in the literature. We present a complete and fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment. Realistic hyperparameter selection is performed with nested cross-validation and various unsupervised model selection scores, on both simulated datasets with controlled shifts and real-world datasets across diverse modalities, such as images, text, biomedical, and tabular data. Our benchmark highlights the importance of realistic validation and provides practical guidance for real-life applications, with key insights into the choice and impact of model selection approaches. SKADA-bench is open-source, reproducible, and can be easily extended with novel DA methods, datasets, and model selection criteria without requiring re-evaluating competitors. SKADA-bench is available on Github at https://github.com/scikit-adaptation/skada-bench.
comment: Published in Transactions on Machine Learning Research
♻ ☆ MAPGD: Multi-Agent Prompt Gradient Descent for Collaborative Prompt Optimization
Prompt engineering is crucial for fully leveraging large language models (LLMs), yet most existing optimization methods follow a single trajectory, resulting in limited adaptability, gradient conflicts, and high computational overhead. We propose MAPGD (Multi-Agent Prompt Gradient Descent), a novel framework that reconceptualizes prompt optimization as a collaborative process among specialized agents. Each agent focuses on a distinct refinement dimension, such as instruction clarity, example selection, format structure, or stylistic adaptation, and their contributions are coordinated through semantic gradient embedding, conflict detection, and fusion. To further enhance robustness and stability, MAPGD introduces two new mechanisms: Hypersphere Constrained Gradient Clustering (HCGC), which enforces angular margin constraints for compact and well-separated clusters, and Channel Adaptive Agent Weighting (CAAW), which dynamically reweights agent contributions based on validation performance. Experiments on classification and reasoning benchmarks show that MAPGD consistently surpasses single-agent and random baselines in both accuracy and efficiency. Ablation studies confirm the effectiveness of gradient fusion, agent specialization, and conflict resolution. Together, these components establish MAPGD as a unified, gradient-based, and interpretable framework for robust prompt optimization with theoretical convergence guarantees.
♻ ☆ Deep Reinforcement Learning for Urban Air Quality Management: Multi-Objective Optimization of Pollution Mitigation Booth Placement in Metropolitan Environments
This is the preprint version of the article published in IEEE Access vol. 13, pp. 146503--146526, 2025, doi:10.1109/ACCESS.2025.3599541. Please cite the published version. Urban air pollution remains a pressing global concern, particularly in densely populated and traffic-intensive metropolitan areas like Delhi, where exposure to harmful pollutants severely impacts public health. Delhi, being one of the most polluted cities globally, experiences chronic air quality issues due to vehicular emissions, industrial activities, and construction dust, which exacerbate its already fragile atmospheric conditions. Traditional pollution mitigation strategies, such as static air purifying installations, often fail to maximize their impact due to suboptimal placement and limited adaptability to dynamic urban environments. This study presents a novel deep reinforcement learning (DRL) framework to optimize the placement of air purification booths to improve the air quality index (AQI) in the city of Delhi. We employ Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm, to iteratively learn and identify high-impact locations based on multiple spatial and environmental factors, including population density, traffic patterns, industrial influence, and green space constraints. Our approach is benchmarked against conventional placement strategies, including random and greedy AQI-based methods, using multi-dimensional performance evaluation metrics such as AQI improvement, spatial coverage, population and traffic impact, and spatial entropy.
comment: This is the preprint version of the article published in IEEE Access vol. 13, pp. 146503--146526, 2025, doi:10.1109/ACCESS.2025.3599541. Please cite the published version
♻ ☆ From Accuracy to Robustness: A Study of Rule- and Model-based Verifiers in Mathematical Reasoning
Trustworthy verifiers are essential for the success of reinforcement learning with verifiable reward (RLVR), which is the core methodology behind various large reasoning models such as DeepSeek-R1. In complex domains like mathematical reasoning, rule-based verifiers have been widely adopted in previous works to train strong reasoning models. However, the reliability of these verifiers and their impact on the RL training process remain poorly understood. In this work, we take mathematical reasoning as a case study and conduct a comprehensive analysis of various verifiers in both static evaluation and RL training scenarios. First, we find that current open-source rule-based verifiers often fail to recognize equivalent answers presented in different formats across multiple commonly used mathematical datasets, resulting in non-negligible false negative rates. This limitation adversely affects RL training performance and becomes more pronounced as the policy model gets stronger. Subsequently, we investigate model-based verifiers as a potential solution to address these limitations. While the static evaluation shows that model-based verifiers achieve significantly higher verification accuracy, further analysis and RL results imply that they are highly susceptible to hacking, where they misclassify certain patterns in responses as correct, particularly after fine-tuning. This vulnerability is exploited during policy model optimization, leading to artificially inflated rewards. Our findings underscore the unique challenges inherent to both rule-based and model-based verifiers and provide insights toward developing more accurate and robust reward systems for reinforcement learning.
♻ ☆ PartSDF: Part-Based Implicit Neural Representation for Composite 3D Shape Parametrization and Optimization
Accurate 3D shape representation is essential in engineering applications such as design, optimization, and simulation. In practice, engineering workflows require structured, part-based representations, as objects are inherently designed as assemblies of distinct components. However, most existing methods either model shapes holistically or decompose them without predefined part structures, limiting their applicability in real-world design tasks. We propose PartSDF, a supervised implicit representation framework that explicitly models composite shapes with independent, controllable parts while maintaining shape consistency. Thanks to its simple but innovative architecture, PartSDF outperforms both supervised and unsupervised baselines in reconstruction and generation tasks. We further demonstrate its effectiveness as a structured shape prior for engineering applications, enabling precise control over individual components while preserving overall coherence. Code available at https://github.com/cvlab-epfl/PartSDF.
comment: Accepted to TMLR (27 pages, 14 figures)
♻ ☆ RooseBERT: A New Deal For Political Language Modelling
The increasing amount of political debates and politics-related discussions calls for the definition of novel computational methods to automatically analyse such content with the final goal of lightening up political deliberation to citizens. However, the specificity of the political language and the argumentative form of these debates (employing hidden communication strategies and leveraging implicit arguments) make this task very challenging, even for current general-purpose pre-trained Language Models. To address this issue, we introduce a novel pre-trained Language Model for political discourse language called RooseBERT. Pre-training a language model on a specialised domain presents different technical and linguistic challenges, requiring extensive computational resources and large-scale data. RooseBERT has been trained on large political debate and speech corpora (8K debates, each composed of several sub-debates on different topics) in English. To evaluate its performances, we fine-tuned it on four downstream tasks related to political debate analysis, i.e., stance detection, sentiment analysis, argument component detection and classification, and argument relation prediction and classification. Our results demonstrate significant improvements over general-purpose Language Models on these four tasks, highlighting how domain-specific pre-training enhances performance in political debate analysis. We release RooseBERT for the research community.
♻ ☆ Detecting Invariant Manifolds in ReLU-Based RNNs
Recurrent Neural Networks (RNNs) have found widespread applications in machine learning for time series prediction and dynamical systems reconstruction, and experienced a recent renaissance with improved training algorithms and architectural designs. Understanding why and how trained RNNs produce their behavior is important for scientific and medical applications, and explainable AI more generally. An RNN's dynamical repertoire depends on the topological and geometrical properties of its state space. Stable and unstable manifolds of periodic points play a particularly important role: They dissect a dynamical system's state space into different basins of attraction, and their intersections lead to chaotic dynamics with fractal geometry. Here we introduce a novel algorithm for detecting these manifolds, with a focus on piecewise-linear RNNs (PLRNNs) employing rectified linear units (ReLUs) as their activation function. We demonstrate how the algorithm can be used to trace the boundaries between different basins of attraction, and hence to characterize multistability, a computationally important property. We further show its utility in finding so-called homoclinic points, the intersections between stable and unstable manifolds, and thus establish the existence of chaos in PLRNNs. Finally we show for an empirical example, electrophysiological recordings from a cortical neuron, how insights into the underlying dynamics could be gained through our method.
♻ ☆ Object Centric Concept Bottlenecks
Developing high-performing, yet interpretable models remains a critical challenge in modern AI. Concept-based models (CBMs) attempt to address this by extracting human-understandable concepts from a global encoding (e.g., image encoding) and then applying a linear classifier on the resulting concept activations, enabling transparent decision-making. However, their reliance on holistic image encodings limits their expressiveness in object-centric real-world settings and thus hinders their ability to solve complex vision tasks beyond single-label classification. To tackle these challenges, we introduce Object-Centric Concept Bottlenecks (OCB), a framework that combines the strengths of CBMs and pre-trained object-centric foundation models, boosting performance and interpretability. We evaluate OCB on complex image datasets and conduct a comprehensive ablation study to analyze key components of the framework, such as strategies for aggregating object-concept encodings. The results show that OCB outperforms traditional CBMs and allows one to make interpretable decisions for complex visual tasks.
♻ ☆ Generating High-Quality Datasets for Code Editing via Open-Source Language Models
Code editing plays a vital role in software engineering, requiring developers to adjust existing code according to natural language instructions while keeping functionality intact and avoiding unnecessary modifications. However, commit-based datasets commonly used for this task are often noisy, lack diversity, and fail to reflect the style of real-world edit instructions. To address this, we introduce OpenCodeEdit, an open-source pipeline that leverages multiple LLMs to synthesize realistic code-edit triplets. The pipeline produces both concise "lazy" instructions and more detailed "descriptive" ones, and applies filtering based on diffs and topics to guarantee data quality and variety. Using this process, we construct OCEDataFT, a curated dataset of 20K samples. Fine-tuning three advanced base models on OCEDataFT leads to significant performance boosts on the CanItEdit benchmark, with relative pass@1 improvements ranging from 4.50% to 20.79%. Notably, the resulting models achieve performance close to closed-source systems, narrowing the gap to GPT-4 to just 3.54%, without relying on proprietary resources or manual annotation.
comment: 23 pages, 8 figures
♻ ☆ MigGPT: Harnessing Large Language Models for Automated Migration of Out-of-Tree Linux Kernel Patches Across Versions
Out-of-tree kernel patches are essential for adapting the Linux kernel to new hardware or enabling specific functionalities. Maintaining and updating these patches across different kernel versions demands significant effort from experienced engineers. Large language models (LLMs) have shown remarkable progress across various domains, suggesting their potential for automating out-of-tree kernel patch migration. However, our findings reveal that LLMs, while promising, struggle with incomplete code context understanding and inaccurate migration point identification. In this work, we propose MigGPT, a framework that employs a novel code fingerprint structure to retain code snippet information and incorporates three meticulously designed modules to improve the migration accuracy and efficiency of out-of-tree kernel patches. Furthermore, we establish a robust benchmark using real-world out-of-tree kernel patch projects to evaluate LLM capabilities. Evaluations show that MigGPT significantly outperforms the direct application of vanilla LLMs, achieving an average completion rate of 74.07 for migration tasks.
♻ ☆ RepIt: Representing Isolated Targets to Steer Language Models
While activation steering in large language models (LLMs) is a growing area of research, methods can often incur broader effects than desired. This motivates isolation of purer concept vectors to enable targeted interventions and understand LLM behavior at a more granular level. We present RepIt, a simple and data-efficient framework for isolating concept-specific representations. Across five frontier LLMs, RepIt enables precise interventions: it selectively suppresses refusal on targeted concepts while preserving refusal elsewhere, producing models that answer WMD-related questions while still scoring as safe on standard benchmarks. We further show that the corrective signal localizes to just 100-200 neurons and that robust target representations can be extracted from as few as a dozen examples on a single A6000. This efficiency raises a dual concern: manipulations can be performed with modest compute and data to extend to underrepresented data-scarce topics while evading existing benchmarks. By disentangling refusal vectors with RepIt, this work demonstrates that targeted interventions can counteract overgeneralization, laying the foundation for more granular control of model behavior.
♻ ☆ Applications of Large Models in Medicine
This paper explores the advancements and applications of large-scale models in the medical field, with a particular focus on Medical Large Models (MedLMs). These models, encompassing Large Language Models (LLMs), Vision Models, 3D Large Models, and Multimodal Models, are revolutionizing healthcare by enhancing disease prediction, diagnostic assistance, personalized treatment planning, and drug discovery. The integration of graph neural networks in medical knowledge graphs and drug discovery highlights the potential of Large Graph Models (LGMs) in understanding complex biomedical relationships. The study also emphasizes the transformative role of Vision-Language Models (VLMs) and 3D Large Models in medical image analysis, anatomical modeling, and prosthetic design. Despite the challenges, these technologies are setting new benchmarks in medical innovation, improving diagnostic accuracy, and paving the way for personalized healthcare solutions. This paper aims to provide a comprehensive overview of the current state and future directions of large models in medicine, underscoring their significance in advancing global health.
♻ ☆ BenchAgents: Multi-Agent Systems for Structured Benchmark Creation
Evaluation insights are limited by the availability of high-quality benchmarks. As models evolve, there is a need to create benchmarks that can measure progress on new and complex generative capabilities. However, manually creating new benchmarks is slow and expensive, restricting comprehensive evaluations for any capability. We introduce BenchAgents, a multi-agent framework that methodically leverages large language models (LLMs) to automate evaluation benchmark creation while inherently ensuring data and (evaluation) metric quality. BenchAgents decomposes the benchmark creation process into planning, generation, verification, and evaluation, each of which is ] orchestrated via LLM agents. These agents interact with each other and utilize feedback from benchmark developers to improve and flexibly control data diversity and quality. We use BenchAgents to create benchmarks to evaluate capabilities related to planning, constraint satisfaction, and causal reasoning spanning both language and vision modalities. We then use these benchmarks to study state-of-the-art models and extract new insights into common failure modes and model differences.
Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions
The Model Context Protocol (MCP) is an emerging open standard that defines a unified, bi-directional communication and dynamic discovery protocol between AI models and external tools or resources, aiming to enhance interoperability and reduce fragmentation across diverse systems. This paper presents a systematic study of MCP from both architectural and security perspectives. We first define the full lifecycle of an MCP server, comprising four phases (creation, deployment, operation, and maintenance), further decomposed into 16 key activities that capture its functional evolution. Building on this lifecycle analysis, we construct a comprehensive threat taxonomy that categorizes security and privacy risks across four major attacker types: malicious developers, external attackers, malicious users, and security flaws, encompassing 16 distinct threat scenarios. To validate these risks, we develop and analyze real-world case studies that demonstrate concrete attack surfaces and vulnerability manifestations within MCP implementations. Based on these findings, the paper proposes a set of fine-grained, actionable security safeguards tailored to each lifecycle phase and threat category, offering practical guidance for secure MCP adoption. We also analyze the current MCP landscape, covering industry adoption, integration patterns, and supporting tools, to identify its technological strengths as well as existing limitations that constrain broader deployment. Finally, we outline future research and development directions aimed at strengthening MCP's standardization, trust boundaries, and sustainable growth within the evolving ecosystem of tool-augmented AI systems.
♻ ☆ Safe and Compliant Cross-Market Trade Execution via Constrained RL and Zero-Knowledge Audits
We present a cross-market algorithmic trading system that balances execution quality with rigorous compliance enforcement. The architecture comprises a high-level planner, a reinforcement learning execution agent, and an independent compliance agent. We formulate trade execution as a constrained Markov decision process with hard constraints on participation limits, price bands, and self-trading avoidance. The execution agent is trained with proximal policy optimization, while a runtime action-shield projects any unsafe action into a feasible set. To support auditability without exposing proprietary signals, we add a zero-knowledge compliance audit layer that produces cryptographic proofs that all actions satisfied the constraints. We evaluate in a multi-venue, ABIDES-based simulator and compare against standard baselines (e.g., TWAP, VWAP). The learned policy reduces implementation shortfall and variance while exhibiting no observed constraint violations across stress scenarios including elevated latency, partial fills, compliance module toggling, and varying constraint limits. We report effects at the 95% confidence level using paired t-tests and examine tail risk via CVaR. We situate the work at the intersection of optimal execution, safe reinforcement learning, regulatory technology, and verifiable AI, and discuss ethical considerations, limitations (e.g., modeling assumptions and computational overhead), and paths to real-world deployment.
comment: 22 pages, 3 figures
♻ ☆ An Investigation of Incorporating Mamba for Speech Enhancement
This work aims to investigate the use of a recently proposed, attention-free, scalable state-space model (SSM), Mamba, for the speech enhancement (SE) task. In particular, we employ Mamba to deploy different regression-based SE models (SEMamba) with different configurations, namely basic, advanced, causal, and non-causal. Furthermore, loss functions either based on signal-level distances or metric-oriented are considered. Experimental evidence shows that SEMamba attains a competitive PESQ of 3.55 on the VoiceBank-DEMAND dataset with the advanced, non-causal configuration. A new state-of-the-art PESQ of 3.69 is also reported when SEMamba is combined with Perceptual Contrast Stretching (PCS). Compared against Transformed-based equivalent SE solutions, a noticeable FLOPs reduction up to ~12% is observed with the advanced non-causal configurations. Finally, SEMamba can be used as a pre-processing step before automatic speech recognition (ASR), showing competitive performance against recent SE solutions.
comment: Accepted to IEEE SLT 2024
♻ ☆ Marking Code Without Breaking It: Code Watermarking for Detecting LLM-Generated Code
Identifying LLM-generated code through watermarking poses a challenge in preserving functional correctness. Previous methods rely on the assumption that watermarking high-entropy tokens effectively maintains output quality. Our analysis reveals a fundamental limitation of this assumption: syntax-critical tokens such as keywords often exhibit the highest entropy, making existing approaches vulnerable to logic corruption. We present STONE, a syntax-aware watermarking method that embeds watermarks only in non-syntactic tokens and preserves code integrity. For its rigorous assessment, we also introduce STEM, a comprehensive framework that balances three critical dimensions: correctness, detectability, and imperceptibility. Across Python, C++, and Java, STONE preserves correctness, sustains strong detectability, and achieves balanced performance with minimal overhead. Our implementation is available at https://anonymous.4open.science/r/STONE-watermarking-AB4B/.
♻ ☆ Speech-Based Cognitive Screening: A Systematic Evaluation of LLM Adaptation Strategies
Over half of US adults with Alzheimer disease and related dementias remain undiagnosed, and speech-based screening offers a scalable detection approach. We compared large language model adaptation strategies for dementia detection using the DementiaBank speech corpus, evaluating nine text-only models and three multimodal audio-text models on recordings from DementiaBank speech corpus. Adaptations included in-context learning with different demonstration selection policies, reasoning-augmented prompting, parameter-efficient fine-tuning, and multimodal integration. Results showed that class-centroid demonstrations achieved the highest in-context learning performance, reasoning improved smaller models, and token-level fine-tuning generally produced the best scores. Adding a classification head substantially improved underperforming models. Among multimodal models, fine-tuned audio-text systems performed well but did not surpass the top text-only models. These findings highlight that model adaptation strategies, including demonstration selection, reasoning design, and tuning method, critically influence speech-based dementia detection, and that properly adapted open-weight models can match or exceed commercial systems.
♻ ☆ Scattering Transformer: A Training-Free Transformer Architecture for Heart Murmur Detection
In an attempt to address the need for skilled clinicians in heart sound interpretation, recent research efforts on automating cardiac auscultation have explored deep learning approaches. The majority of these approaches have been based on supervised learning that is always challenged in occasions where training data is limited. More recently, there has been a growing interest in potentials of pre-trained self-supervised audio foundation models for biomedical end tasks. Despite exhibiting promising results, these foundational models are typically computationally intensive. Within the context of automatic cardiac auscultation, this study explores a lightweight alternative to these general-purpose audio foundation models by introducing the Scattering Transformer, a novel, training-free transformer architecture for heart murmur detection. The proposed method leverages standard wavelet scattering networks by introducing contextual dependencies in a transformer-like architecture without any backpropagation. We evaluate our approach on the public CirCor DigiScope dataset, directly comparing it against leading general-purpose foundational models. The Scattering Transformer achieves a Weighted Accuracy(WAR) of 0.786 and an Unweighted Average Recall(UAR) of 0.697, demonstrating performance highly competitive with contemporary state of the art methods. This study establishes the Scattering Transformer as a viable and promising alternative in resource-constrained setups.
comment: This paper has been accepted for presentation at the 14th International Conference on Model and Data Engineering (MEDI 2025). The final authenticated Version of Record will be published by Springer in the Lecture Notes in Computer Science (LNCS) series
♻ ☆ GRAFT: GRaPH and Table Reasoning for Textual Alignment -- A Benchmark for Structured Instruction Following and Visual Reasoning
GRAFT is a structured multimodal benchmark for evaluating models on instruction-following, visual reasoning, and visual-textual alignment tasks. It features programmatically generated charts and synthetically rendered tables, created with Python visualization libraries to ensure control over data semantics, structure, and clarity. Each GRAFT instance pairs a chart or table image with a systematically generated, multi-step analytical question based solely on visual content. Answers are provided in structured formats such as JSON or YAML, supporting consistent evaluation of both reasoning and output format. The benchmark introduces a taxonomy of reasoning types including comparison, trend identification, ranking, aggregation, proportion estimation, and anomaly detection to enable comprehensive assessment. Reference answers follow strict factual and formatting guidelines for precise, aspect-based evaluation. GRAFT offers a unified, scalable framework for fine-grained benchmarking of multimodal models on visually grounded, structured reasoning tasks, setting a new evaluation standard in this field.
comment: 25 pages, 10 tables, 3 figures
♻ ☆ A Middle Path for On-Premises LLM Deployment: Preserving Privacy Without Sacrificing Model Confidentiality
Privacy-sensitive users require deploying large language models (LLMs) within their own infrastructure (on-premises) to safeguard private data and enable customization. However, vulnerabilities in local environments can lead to unauthorized access and potential model theft. To address this, prior research on small models has explored securing only the output layer within hardware-secured devices to balance model confidentiality and customization. Yet this approach fails to protect LLMs effectively. In this paper, we discover that (1) query-based distillation attacks targeting the secured top layer can produce a functionally equivalent replica of the victim model; (2) securing the same number of layers, bottom layers before a transition layer provide stronger protection against distillation attacks than top layers, with comparable effects on customization performance; and (3) the number of secured layers creates a trade-off between protection and customization flexibility. Based on these insights, we propose SOLID, a novel deployment framework that secures a few bottom layers in a secure environment and introduces an efficient metric to optimize the trade-off by determining the ideal number of hidden layers. Extensive experiments on five models (1.3B to 70B parameters) demonstrate that SOLID outperforms baselines, achieving a better balance between protection and downstream customization.
comment: 8 pages for main content of the paper
♻ ☆ Supporting Creative Ownership through Deep Learning-Based Music Variation NeurIPS
This paper investigates the importance of personal ownership in musical AI design, examining how practising musicians can maintain creative control over the compositional process. Through a four-week ecological evaluation, we examined how a music variation tool, reliant on the skill of musicians, functioned within a composition setting. Our findings demonstrate that the dependence of the tool on the musician's ability, to provide a strong initial musical input and to turn moments into complete musical ideas, promoted ownership of both the process and artefact. Qualitative interviews further revealed the importance of this personal ownership, highlighting tensions between technological capability and artistic identity. These findings provide insight into how musical AI can support rather than replace human creativity, highlighting the importance of designing tools that preserve the humanness of musical expression.
comment: Paper Accepted NeurIPS Creative AI Track 2025
♻ ☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
♻ ☆ FLEx: Personalized Federated Learning for Mixture-of-Experts LLMs via Expert Grafting
Federated instruction tuning of large language models (LLMs) is challenged by significant data heterogeneity across clients, demanding robust personalization. The Mixture of Experts (MoE) architecture, where experts can specialize in distinct data patterns, presents a natural architectural solution to this challenge. The inherent sparsity of the MoE architecture, achieved by selectively activating experts, poses a significant challenge to its integration with federated learning (FL). Conventional FL frameworks, designed for dense models, naively aggregate all expert parameters irrespective of their local activation patterns. This naive approach not only undermines MoE's dynamic sparsity but also risks corrupting the world knowledge within pretrained experts. To address this, we propose FLEx (Federated LLMs with Personalized Experts), a novel framework that leverages pretrained MoE-based LLMs for efficient personalization. By aggregating only the shared non-expert parameters, FLEx significantly reduces communication overhead and preserves the world knowledge stored within the frozen pretrained experts. For personalization, we introduce a novel expert grafting mechanism that leverages dynamic sparsity to construct a client-specific expert from selected components of pretrained experts, tailored to local data. This grafted expert is then fine-tuned locally alongside the gating mechanism. This joint training enables the model to learn when to leverage the shared knowledge from frozen experts and when to employ the personalized one. Evaluations on diverse, non-IID instruction tuning datasets show that FLEx consistently outperforms federated baselines on average, while demonstrating strong knowledge preservation on the knowledge-driven benchmark MMLU. Our code is available at \href{https://anonymous.4open.science/r/FLEx-8F12}{\texttt{https://anonymous.4open.science/r/FLEx-8F12}}.
♻ ☆ Robustness of Large Language Models to Perturbations in Text
Having a clean dataset has been the foundational assumption of most natural language processing (NLP) systems. However, properly written text is rarely found in real-world scenarios and hence, oftentimes invalidates the aforementioned foundational assumption. Recently, Large language models (LLMs) have shown impressive performance, but can they handle the inevitable noise in real-world data? This work tackles this critical question by investigating LLMs' resilience against morphological variations in text. To that end, we artificially introduce varying levels of noise into a diverse set of datasets and systematically evaluate LLMs' robustness against the corrupt variations of the original text. Our findings show that contrary to popular beliefs, generative LLMs are quiet robust to noisy perturbations in text. This is a departure from pre-trained models like BERT or RoBERTa whose performance has been shown to be sensitive to deteriorating noisy text. Additionally, we test LLMs' resilience on multiple real-world benchmarks that closely mimic commonly found errors in the wild. With minimal prompting, LLMs achieve a new state-of-the-art on the benchmark tasks of Grammar Error Correction (GEC) and Lexical Semantic Change (LSC). To empower future research, we also release a dataset annotated by humans stating their preference for LLM vs. human-corrected outputs along with the code to reproduce our results.
comment: 8 pages, 1 figure, 6 tables, updated with results also from GPT-4, LLaMa-3
♻ ☆ MediSyn: A Generalist Text-Guided Latent Diffusion Model For Diverse Medical Image Synthesis
Deep learning algorithms require extensive data to achieve robust performance. However, data availability is often restricted in the medical domain due to patient privacy concerns. Synthetic data presents a possible solution to these challenges. Recently, image generative models have found increasing use for medical applications but are often designed for singular medical specialties and imaging modalities, thus limiting their broader utility. To address this, we introduce MediSyn: a text-guided, latent diffusion model capable of generating synthetic images from 6 medical specialties and 10 image types. Through extensive experimentation, we first demonstrate that MediSyn quantitatively matches or surpasses the performance of specialist models. Second, we show that our synthetic images are realistic and exhibit strong alignment with their corresponding text prompts, as validated by a team of expert physicians. Third, we provide empirical evidence that our synthetic images are visually distinct from their corresponding real patient images. Finally, we demonstrate that in data-limited settings, classifiers trained solely on synthetic data or real data supplemented with synthetic data can outperform those trained solely on real data. Our findings highlight the immense potential of generalist image generative models to accelerate algorithmic research and development in medicine.
♻ ☆ Boosting Text-to-Chart Retrieval through Training with Synthesized Semantic Insights
Charts are crucial for data analysis and decision-making.Text-to-chart retrieval systems have become increasingly important for Business Intelligence (BI), where users need to find relevant charts that match their analytical needs. These needs can be categorized into precise queries that are well-specified and fuzzy queries that are more exploratory -- both require understanding the semantics and context of the charts. However, existing text-to-chart retrieval solutions often fail to capture the semantic content and contextual information of charts, primarily due to the lack of comprehensive metadata (or semantic insights). To address this limitation, we propose a training data development pipeline that automatically synthesizes hierarchical semantic insights for charts, covering visual patterns (visual-oriented), statistical properties (statistics-oriented), and practical applications (task-oriented), which produces 207,498 semantic insights for 69,166 charts. Based on these, we train a CLIP-based model named ChartFinder to learn better representations of charts for text-to-chart retrieval. Our method leverages rich semantic insights during the training phase to develop a model that understands both visual and semantic aspects of charts.To evaluate text-to-chart retrieval performance, we curate the first benchmark, CRBench, for this task with 21,862 charts and 326 text queries from real-world BI applications, with ground-truth labels verified by the crowd workers.Experiments show that ChartFinder significantly outperforms existing methods in text-to-chart retrieval tasks across various settings. For precise queries, ChartFinder achieves up to 66.9% NDCG@10, which is 11.58% higher than state-of-the-art models. In fuzzy query tasks, our method also demonstrates consistent improvements, with an average increase of 5% across nearly all metrics.
comment: Need to be revised
♻ ☆ ChartCards: A Chart-Metadata Generation Framework for Multi-Task Chart Understanding
The emergence of Multi-modal Large Language Models (MLLMs) presents new opportunities for chart understanding. However, due to the fine-grained nature of these tasks, applying MLLMs typically requires large, high-quality datasets for task-specific fine-tuning, leading to high data collection and training costs. To address this, we propose ChartCards, a unified chart-metadata generation framework for multi-task chart understanding. ChartCards systematically synthesizes various chart information, including data tables, visualization code, visual elements, and multi-dimensional semantic captions. By structuring this information into organized metadata, ChartCards enables a single chart to support multiple downstream tasks, such as text-to-chart retrieval, chart summarization, chart-to-table conversion, chart description, and chart question answering. Using ChartCards, we further construct MetaChart, a large-scale high-quality dataset containing 10,862 data tables, 85K charts, and 170 K high-quality chart captions. We validate the dataset through qualitative crowdsourcing evaluations and quantitative fine-tuning experiments across various chart understanding tasks. Fine-tuning six different models on MetaChart resulted in an average performance improvement of 5% across all tasks. The most notable improvements are seen in text-to-chart retrieval and chart-to-table tasks, with Long-CLIP and Llama 3.2-11B achieving improvements of 17% and 28%, respectively.
comment: Need to be revised
♻ ☆ AtomWorld: A Benchmark for Evaluating Spatial Reasoning in Large Language Models on Crystalline Materials
Large Language Models (LLMs) excel at textual reasoning and are beginning to develop spatial understanding, prompting the question of whether these abilities can be combined for complex, domain-specific tasks. This question is essential in fields like materials science, where deep understanding of 3D atomic structures is fundamental. While initial studies have successfully applied LLMs to tasks involving pure crystal generation or coordinate understandings, a standardized benchmark to systematically evaluate their core reasoning abilities across diverse atomic structures has been notably absent. To address this gap, we introduce the AtomWorld benchmark to evaluate LLMs on tasks based in Crystallographic Information Files (CIFs), a standard structure representation format. These tasks, including structural editing, CIF perception, and property-guided modeling, reveal a critical limitation: current models, despite establishing promising baselines, consistently fail in structural understanding and spatial reasoning. Our experiments show that these models make frequent errors on structure modification tasks, and even in the basic CIF format understandings, potentially leading to cumulative errors in subsequent analysis and materials insights. By defining these standardized tasks, AtomWorld lays the ground for advancing LLMs toward robust atomic-scale modeling, crucial for accelerating materials research and automating scientific workflows.
♻ ☆ LLM Unlearning Without an Expert Curated Dataset
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.
♻ ☆ Inoculation Prompting: Eliciting traits from LLMs during training can suppress them at test-time ICLR 2026
Language model finetuning often results in learning undesirable traits in combination with desired ones. To address this, we propose inoculation prompting: modifying finetuning data by prepending a short system-prompt instruction that deliberately elicits the undesirable trait. At test time, we evaluate without the instruction; inoculated models have much lower expression of the trait than models trained with unmodified training data. Inoculation is selective: in a toy setting where assistant responses are always in Spanish and ALL-CAPS, an appropriate inoculation (e.g., ``You always speak in Spanish.'') teaches the model to capitalize responses while still responding in English. We find that inoculation is also effective across several additional settings: reducing emergent misalignment (EM) from task-specific finetuning, defending against backdoor injections, and mitigating the transmission of traits via subliminal learning. Follow-up analysis suggests a mechanism: making a trait less surprising via inoculation reduces optimization pressure to globally update the model, thereby reducing the degree of generalization. Our analysis relates to prior work on EM: inoculation explains prior findings that educational contexts mitigate EM from insecure code. Beyond demonstrating a simple and effective technique for selective learning, our results contribute to a better conceptual understanding of how and why language models generalize.
comment: 40 pages, 22 figures In proceedings at ICLR 2026
♻ ☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
♻ ☆ PLSemanticsBench: Large Language Models As Programming Language Interpreters
As large language models (LLMs) excel at code reasoning, a natural question arises: can an LLM execute programs (i.e., act as an interpreter) purely based on a programming language's formal semantics? If so, it will enable rapid prototyping of new programming languages and language features. We study this question using the imperative language IMP (a subset of C), formalized via small-step operational semantics (SOS) and rewriting-based operational semantics (K-semantics). We introduce three evaluation sets-Human-Written, LLM-Translated, and Fuzzer- Generated-whose difficulty is controlled by code-complexity metrics spanning the size, control-flow, and data-flow axes. Given a program and its semantics formalized with SOS/K-semantics, models are evaluated on three tasks ranging from coarse to fine: (1) final-state prediction, (2) semantic rule prediction, and (3) execution trace prediction. To distinguish pretraining memorization from semantic competence, we define two nonstandard semantics obtained through systematic mutations of the standard rules. Across strong code/reasoning LLMs, performance drops under nonstandard semantics despite high performance under the standard one. We further find that (i) there are patterns to different model failures, (ii) most reasoning models perform exceptionally well on coarse grained tasks involving reasoning about highly complex programs often containing nested loop depths beyond five, and surprisingly, (iii) providing formal semantics helps on simple programs but often hurts on more complex ones. Overall, the results show a promise that LLMs could serve as programming language interpreters, but points to the lack of their robust semantics understanding. We release the benchmark and the supporting code at https://github.com/EngineeringSoftware/PLSemanticsBench.
♻ ☆ Learning Exposure Mapping Functions for Inferring Heterogeneous Peer Effects
In causal inference, interference refers to the phenomenon in which the actions of peers in a network can influence an individual's outcome. Peer effect refers to the difference in counterfactual outcomes of an individual for different levels of peer exposure, the extent to which an individual is exposed to the treatments, actions, or behaviors of peers. Estimating peer effects requires deciding how to represent peer exposure. Typically, researchers define an exposure mapping function that aggregates peer treatments and outputs peer exposure. Most existing approaches for defining exposure mapping functions assume peer exposure based on the number or fraction of treated peers. Recent studies have investigated more complex functions of peer exposure which capture that different peers can exert different degrees of influence. However, none of these works have explicitly considered the problem of automatically learning the exposure mapping function. In this work, we focus on learning this function for the purpose of estimating heterogeneous peer effects, where heterogeneity refers to the variation in counterfactual outcomes for the same peer exposure but different individual's contexts. We develop EgoNetGNN, a graph neural network (GNN)-based method, to automatically learn the appropriate exposure mapping function allowing for complex peer influence mechanisms that, in addition to peer treatments, can involve the local neighborhood structure and edge attributes. We show that GNN models that use peer exposure based on the number or fraction of treated peers or learn peer exposure naively face difficulty accounting for such influence mechanisms. Our comprehensive evaluation on synthetic and semi-synthetic network data shows that our method is more robust to different unknown underlying influence mechanisms when estimating heterogeneous peer effects when compared to state-of-the-art baselines.
♻ ☆ Risk Profiling and Modulation for LLMs
Large language models (LLMs) are increasingly used for decision-making tasks under uncertainty; however, their risk profiles and how they are influenced by prompting and alignment methods remain underexplored. Existing studies have primarily examined personality prompting or multi-agent interactions, leaving open the question of how post-training influences the risk behavior of LLMs. In this work, we propose a new pipeline for eliciting, steering, and modulating LLMs' risk profiles, drawing on tools from behavioral economics and finance. Using utility-theoretic models, we compare pre-trained, instruction-tuned, and RLHF-aligned LLMs, and find that while instruction-tuned models exhibit behaviors consistent with some standard utility formulations, pre-trained and RLHF-aligned models deviate more from any utility models fitted. We further evaluate modulation strategies, including prompt engineering, in-context learning, and post-training, and show that post-training provides the most stable and effective modulation of risk preference. Our findings provide insights into the risk profiles of different classes and stages of LLMs and demonstrate how post-training modulates these profiles, laying the groundwork for future research on behavioral alignment and risk-aware LLM design.
♻ ☆ Training Vision-Language Process Reward Models for Test-Time Scaling in Multimodal Reasoning: Key Insights and Lessons Learned
Process Reward Models (PRMs) provide step-level supervision that improves the reliability of reasoning in large language models. While PRMs have been extensively studied in text-based domains, their extension to Vision Language Models (VLMs) remains limited. Existing Vision-Language PRMs (VL-PRMs) rely on Monte Carlo Tree Search (MCTS) for data construction, which can often produce noisy supervision signals and limit generalization across tasks. In this work, we aim to elucidate the design space of VL-PRMs by exploring diverse strategies for dataset construction, training, and test-time scaling. First, we introduce a hybrid data synthesis framework that combines MCTS with judgments from a strong VLM, producing more accurate step-level labels. Second, we propose perception-focused supervision, enabling our PRM to explicitly detect errors at the visual grounding stage of reasoning. Third, we systematically evaluate multiple test-time scaling strategies, showing that our PRMs can reliably guide VLMs toward more accurate solutions. Our experiments covering five diverse multimodal benchmarks (MMMU, PuzzleVQA, AlgoPuzzleVQA, MathVista, and MathVision) reveal several key insights: (i) VL-PRMs when used as Outcome Reward Models (ORMs) during test-time scaling (TTS) can outperform VL-PRM guided process step selection, (ii) smaller VL-PRMs can match or even surpass larger ones in detecting process errors, (iii) VL-PRMs uncover latent reasoning abilities in stronger VLM backbones, (iv) perception-level supervision leads to significant gains in test-time scaling, and (v) TTS performance of different policies improve on advanced math reasoning datasets despite not training VL-PRMs on such datasets. We hope our work will motivate further research and support the advancement of VLMs.
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Interactive Environmental Learning in Physical Embodied Systems
Embodied agents face persistent challenges in real-world environments, including partial observability, limited spatial reasoning, and high-latency multi-memory integration. We present RoboMemory, a brain-inspired framework that unifies Spatial, Temporal, Episodic, and Semantic memory under a parallelized architecture for efficient long-horizon planning and interactive environmental learning. A dynamic spatial knowledge graph (KG) ensures scalable and consistent memory updates, while a closed-loop planner with a critic module supports adaptive decision-making in dynamic settings. Experiments on EmbodiedBench show that RoboMemory, built on Qwen2.5-VL-72B-Ins, improves average success rates by 25% over its baseline and exceeds the closed-source state-of-the-art (SOTA) Gemini-1.5-Pro by 3%. Real-world trials further confirm its capacity for cumulative learning, with performance improving across repeated tasks. These results highlight RoboMemory as a scalable foundation for memory-augmented embodied intelligence, bridging the gap between cognitive neuroscience and robotic autonomy.
♻ ☆ Distilled Protein Backbone Generation
Diffusion- and flow-based generative models have recently demonstrated strong performance in protein backbone generation tasks, offering unprecedented capabilities for de novo protein design. However, while achieving notable performance in generation quality, these models are limited by their generating speed, often requiring hundreds of iterative steps in the reverse-diffusion process. This computational bottleneck limits their practical utility in large-scale protein discovery, where thousands to millions of candidate structures are needed. To address this challenge, we explore the techniques of score distillation, which has shown great success in reducing the number of sampling steps in the vision domain while maintaining high generation quality. However, a straightforward adaptation of these methods results in unacceptably low designability. Through extensive study, we have identified how to appropriately adapt Score identity Distillation (SiD), a state-of-the-art score distillation strategy, to train few-step protein backbone generators which significantly reduce sampling time, while maintaining comparable performance to their pretrained teacher model. In particular, multistep generation combined with inference time noise modulation is key to the success. We demonstrate that our distilled few-step generators achieve more than a 20-fold improvement in sampling speed, while achieving similar levels of designability, diversity, and novelty as the Proteina teacher model. This reduction in inference cost enables large-scale in silico protein design, thereby bringing diffusion-based models closer to real-world protein engineering applications.
♻ ☆ Bayesian Teaching Enables Probabilistic Reasoning in Large Language Models
Artificial intelligence systems based on large language models (LLMs) are increasingly used as agents that interact with users and with the world. To do so successfully, LLMs need to construct internal representations of the world and form probabilistic beliefs about those representations. To provide a user with personalized recommendations, for example, the LLM needs to gradually infer the user's preferences, over the course of multiple interactions. To evaluate whether contemporary LLMs are able to do so, we use the Bayesian inference framework from probability theory, which lays out the optimal way to update an agent's beliefs as it receives new information. We first show that LLMs do not update their beliefs as expected from the Bayesian framework, and that consequently their predictions do not improve as expected as more information becomes available. To address this issue, we teach the LLMs to reason in a Bayesian manner by training them to mimic the predictions of the normative Bayesian model. We find that this approach not only significantly improves the LLM's performance on the particular recommendation task it is trained on, but also enables generalization to other tasks. This suggests that this method teaches the LLM to better approximate Bayesian reasoning. More generally, our results indicate that LLMs can effectively learn reasoning skills from examples and generalize those skills to new domains.
♻ ☆ RainSeer: Fine-Grained Rainfall Reconstruction via Physics-Guided Modeling
Reconstructing high-resolution rainfall fields is essential for flood forecasting, hydrological modeling, and climate analysis. However, existing spatial interpolation methods-whether based on automatic weather station (AWS) measurements or enhanced with satellite/radar observations often over-smooth critical structures, failing to capture sharp transitions and localized extremes. We introduce RainSeer, a structure-aware reconstruction framework that reinterprets radar reflectivity as a physically grounded structural prior-capturing when, where, and how rain develops. This shift, however, introduces two fundamental challenges: (i) translating high-resolution volumetric radar fields into sparse point-wise rainfall observations, and (ii) bridging the physical disconnect between aloft hydro-meteors and ground-level precipitation. RainSeer addresses these through a physics-informed two-stage architecture: a Structure-to-Point Mapper performs spatial alignment by projecting mesoscale radar structures into localized ground-level rainfall, through a bidirectional mapping, and a Geo-Aware Rain Decoder captures the semantic transformation of hydro-meteors through descent, melting, and evaporation via a causal spatiotemporal attention mechanism. We evaluate RainSeer on two public datasets-RAIN-F (Korea, 2017-2019) and MeteoNet (France, 2016-2018)-and observe consistent improvements over state-of-the-art baselines, reducing MAE by over 13.31% and significantly enhancing structural fidelity in reconstructed rainfall fields.
♻ ☆ Compound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions EMNLP 2025
Recent advancements in large language models (LLMs) and AI systems have led to a paradigm shift in the design and optimization of complex AI workflows. By integrating multiple components, compound AI systems have become increasingly adept at performing sophisticated tasks. However, as these systems grow in complexity, new challenges arise in optimizing not only individual components but also their interactions. While traditional optimization methods such as supervised fine-tuning (SFT) and reinforcement learning (RL) remain foundational, the rise of natural language feedback introduces promising new approaches, especially for optimizing non-differentiable systems. This paper provides a systematic review of recent progress in optimizing compound AI systems, encompassing both numerical and language-based techniques. We formalize the notion of compound AI system optimization, classify existing methods along several key dimensions, and highlight open research challenges and future directions in this rapidly evolving field. A list of surveyed papers is publicly available at https://github.com/MiuLab/AISysOpt-Survey.
comment: Accepted to EMNLP 2025 (Main)
♻ ☆ SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes toward Intelligent Vehicle Suspension Systems
Speed bumps and potholes are the most common road anomalies, significantly affecting ride comfort and vehicle stability. Preview-based suspension control mitigates their impact by detecting such irregularities in advance and adjusting suspension parameters proactively. Accurate and real-time detection is essential, but embedded deployment is constrained by limited computational resources and the small size of targets in input images.To address these challenges, this paper proposes SBP-YOLO, an efficient detection framework for speed bumps and potholes in embedded systems. Built upon YOLOv11n, it integrates GhostConv and VoVGSCSPC modules in the backbone and neck to reduce computation while enhancing multi-scale semantic features. A P2-level branch improves small-object detection, and a lightweight and efficient detection head (LEDH) maintains accuracy with minimal overhead. A hybrid training strategy further enhances robustness under varying road and environmental conditions, combining NWD loss, BCKD knowledge distillation, and Albumentations-based augmentation. Experiments show that SBP-YOLO achieves 87.0% mAP, outperforming the YOLOv11n baseline by 5.8%. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, yielding a 12.4% speedup over the P2-enhanced YOLOv11. These results demonstrate the framework's suitability for fast, low-latency road condition perception in embedded suspension control systems.
comment: 14pages,11figures
♻ ☆ QAPyramid: Fine-grained Evaluation of Content Selection for Text Summarization
How to properly conduct human evaluations for text summarization is a longstanding challenge. The Pyramid human evaluation protocol, which assesses content selection by breaking the reference summary into subunits and verifying their presence in the system summary, has been widely adopted. However, it suffers from a lack of systematicity in the definition and granularity of the sub-units. We address these problems by proposing QAPyramid, which decomposes each reference summary into finer-grained question-answer (QA) pairs according to the QA-SRL framework. We collect QA-SRL annotations for reference summaries from CNN/DM and evaluate 10 summarization systems, resulting in 8.9K QA-level annotations. We show that, compared to Pyramid, QAPyramid provides more systematic and fine-grained content selection evaluation while maintaining high inter-annotator agreement without needing expert annotations. Furthermore, we propose metrics that automate the evaluation pipeline and achieve higher correlations with QAPyramid than other widely adopted metrics.
comment: Accepted to COLM 2025. The first two authors contributed equally. Code: https://github.com/ZhangShiyue/QAPyramid
♻ ☆ Diagnosing and Addressing Pitfalls in KG-RAG Datasets: Toward More Reliable Benchmarking NeurIPS 2025
Knowledge Graph Question Answering (KGQA) systems rely on high-quality benchmarks to evaluate complex multi-hop reasoning. However, despite their widespread use, popular datasets such as WebQSP and CWQ suffer from critical quality issues, including inaccurate or incomplete ground-truth annotations, poorly constructed questions that are ambiguous, trivial, or unanswerable, and outdated or inconsistent knowledge. Through a manual audit of 16 popular KGQA datasets, including WebQSP and CWQ, we find that the average factual correctness rate is only 57 %. To address these issues, we introduce KGQAGen, an LLM-in-the-loop framework that systematically resolves these pitfalls. KGQAGen combines structured knowledge grounding, LLM-guided generation, and symbolic verification to produce challenging and verifiable QA instances. Using KGQAGen, we construct KGQAGen-10k, a ten-thousand scale benchmark grounded in Wikidata, and evaluate a diverse set of KG-RAG models. Experimental results demonstrate that even state-of-the-art systems struggle on this benchmark, highlighting its ability to expose limitations of existing models. Our findings advocate for more rigorous benchmark construction and position KGQAGen as a scalable framework for advancing KGQA evaluation.
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track
Machine Learning 205
☆ TaTToo: Tool-Grounded Thinking PRM for Test-Time Scaling in Tabular Reasoning
Process Reward Models (PRMs) have recently emerged as a powerful framework for enhancing the reasoning capabilities of large reasoning models (LRMs), particularly in the context of test-time scaling (TTS). However, their potential for supervising LRMs on tabular reasoning domains remains underexplored. Through detailed empirical analyses, we identify that existing PRMs, though widely adopted for supervising text-only reasoning steps, struggle with table-specific operations such as sub-table retrieval and schema interaction, leading to critical performance bottlenecks. To address this limitation, we propose TaTToo, a novel table-grounded PRM framework that (i) reasons explicitly over tabular reasoning steps and (ii) integrates tool-based verification to provide precise reward supervision. Concretely, we first design a scalable data curation pipeline that constructs over 60k high-quality step-level annotations by integrating table verification rationales with tool-based executions. Building on the collected data, we train TaTToo with a dual-stage paradigm: cold-start supervised fine-tuning to capture tool-use reasoning patterns, followed by reinforcement learning with tool-grounded reward shaping to align our model with table-based verification. We provide a comprehensive evaluation of the policy improvement induced by our newly designed PRM. Across 5 challenging tabular reasoning benchmarks covering numerical reasoning, fact-checking, and data analysis, TaTToo improves downstream policy LRMs by 30.9% at inference, surpasses strong PRM baselines such as Qwen-2.5-Math-PRM-72B with only 8B parameters, and demonstrates strong generalizability across diverse TTS strategies.
☆ Stratified GRPO: Handling Structural Heterogeneity in Reinforcement Learning of LLM Search Agents
Large language model (LLM) agents increasingly rely on external tools such as search engines to solve complex, multi-step problems, and reinforcement learning (RL) has become a key paradigm for training them. However, the trajectories of search agents are structurally heterogeneous, where variations in the number, placement, and outcomes of search calls lead to fundamentally different answer directions and reward distributions. Standard policy gradient methods, which use a single global baseline, suffer from what we identify and formalize as cross-stratum bias-an "apples-to-oranges" comparison of heterogeneous trajectories. This cross-stratum bias distorts credit assignment and hinders exploration of complex, multi-step search strategies. To address this, we propose Stratified GRPO, whose central component, Stratified Advantage Normalization (SAN), partitions trajectories into homogeneous strata based on their structural properties and computes advantages locally within each stratum. This ensures that trajectories are evaluated only against their true peers. Our analysis proves that SAN eliminates cross-stratum bias, yields conditionally unbiased unit-variance estimates inside each stratum, and retains the global unbiasedness and unit-variance properties enjoyed by standard normalization, resulting in a more pure and scale-stable learning signal. To improve practical stability under finite-sample regimes, we further linearly blend SAN with the global estimator. Extensive experiments on diverse single-hop and multi-hop question-answering benchmarks demonstrate that Stratified GRPO consistently and substantially outperforms GRPO by up to 11.3 points, achieving higher training rewards, greater training stability, and more effective search policies. These results establish stratification as a principled remedy for structural heterogeneity in RL for LLM search agents.
☆ Training Dynamics Impact Post-Training Quantization Robustness
While post-training quantization is widely adopted for efficient deployment of large language models, the mechanisms underlying quantization robustness remain unclear. We conduct a comprehensive analysis of quantization degradation across open-source language model training trajectories up to 32B parameters and 15T training tokens to accurately assess the relationship between training dynamics and quantization performance. Our key finding is that quantization errors in large-scale training runs are driven by a complex interplay between learning rate and other training hyperparameters. Specifically, once learning rates decay, validation loss and quantization error diverge, largely independent of training data scale. To investigate interventions on the training dynamics and identify specific configurations that can modulate quantization robustness favorably, we train our own models in controlled experiments up to 100B tokens. Our results challenge the assumption that increasing dataset scale inherently compromises quantization effectiveness, demonstrating instead that strategic training hyperparameter interventions can improve quantization quality at scale.
☆ Modulation Discovery with Differentiable Digital Signal Processing SP
Modulations are a critical part of sound design and music production, enabling the creation of complex and evolving audio. Modern synthesizers provide envelopes, low frequency oscillators (LFOs), and more parameter automation tools that allow users to modulate the output with ease. However, determining the modulation signals used to create a sound is difficult, and existing sound-matching / parameter estimation systems are often uninterpretable black boxes or predict high-dimensional framewise parameter values without considering the shape, structure, and routing of the underlying modulation curves. We propose a neural sound-matching approach that leverages modulation extraction, constrained control signal parameterizations, and differentiable digital signal processing (DDSP) to discover the modulations present in a sound. We demonstrate the effectiveness of our approach on highly modulated synthetic and real audio samples, its applicability to different DDSP synth architectures, and investigate the trade-off it incurs between interpretability and sound-matching accuracy. We make our code and audio samples available and provide the trained DDSP synths in a VST plugin.
comment: Accepted to WASPAA 2025 (best paper award candidate). Code, audio samples, and plugins can be found at https://christhetree.github.io/mod_discovery/
☆ Reference Grounded Skill Discovery
Scaling unsupervised skill discovery algorithms to high-DoF agents remains challenging. As dimensionality increases, the exploration space grows exponentially, while the manifold of meaningful skills remains limited. Therefore, semantic meaningfulness becomes essential to effectively guide exploration in high-dimensional spaces. In this work, we present Reference-Grounded Skill Discovery (RGSD), a novel algorithm that grounds skill discovery in a semantically meaningful latent space using reference data. RGSD first performs contrastive pretraining to embed motions on a unit hypersphere, clustering each reference trajectory into a distinct direction. This grounding enables skill discovery to simultaneously involve both imitation of reference behaviors and the discovery of semantically related diverse behaviors. On a simulated SMPL humanoid with 359-D observations and 69-D actions, RGSD learns structured skills including walking, running, punching, and side stepping, and also discovers related novel behaviors. In downstream control tasks, RGSD outperforms imitation-based skill acquisition baselines. Our results suggest that lightweight reference-guided grounding offers a practical path to discovering semantically rich and structured skills in high-DoF systems.
☆ Latent Speech-Text Transformer
Auto-regressive speech-text models are typically pre-trained on a large number of interleaved sequences of text tokens and raw speech encoded as speech tokens using vector quantization. These models have demonstrated state-of-the-art performance in speech-to-speech understanding and generation benchmarks, together with promising scaling laws, primarily enabled by the representational alignment between text and speech. Nevertheless, they suffer from shortcomings, partly owing to the disproportionately longer sequences of speech tokens in contrast to textual tokens. This results in a large compute imbalance between modalities during pre-training as well as during inference, and a potential hindrance to effectively aligning speech and text, ultimately translating to several orders of magnitude slower scaling laws. We introduce the Latent Speech-Text Transformer (LST), which makes pre-training speech-text models more data-efficient by dynamically and inexpensively aggregating speech tokens into latent speech patches. These patches serve as higher-level units that can either align with corresponding textual units to aid capability transfer or even encapsulate common speech sequences like silences to be more compute-efficient. We show that LST outperforms vanilla approaches on speech-to-speech as well as text-to-text benchmarks in both data- and compute-controlled settings, the former indicating more effective representational alignment and the latter indicating steeper scaling laws for speech-text models. On HellaSwag story completion, LST achieves 6.5% absolute gain in speech accuracy under compute-controlled training and 5.3% under data-controlled training, while also improving text performance. We will release our models, code, and the evaluation data to facilitate further research.
comment: 16 pages, 13 figures
☆ On Powerful Ways to Generate: Autoregression, Diffusion, and Beyond
This paper formally studies generation processes, including auto-regressive next-token prediction and masked diffusion, that abstract beyond architectural specifics. At this level of abstraction, we quantify their benefits and limitations through measurable criteria such as computational hardness and learnability. In particular, we demonstrate that allowing generation to proceed beyond autoregression and current masked diffusion, with capabilities to rewrite and length-variable edit, can bring significant theoretical and empirical advantages, with important implications for frontier LLMs that aspire to tackle increasingly hard problems and work universally across domains beyond natural language, such as coding and science.
☆ BanglaTalk: Towards Real-Time Speech Assistance for Bengali Regional Dialects
Real-time speech assistants are becoming increasingly popular for ensuring improved accessibility to information. Bengali, being a low-resource language with a high regional dialectal diversity, has seen limited progress in developing such systems. Existing systems are not optimized for real-time use and focus only on standard Bengali. In this work, we present BanglaTalk, the first real-time speech assistance system for Bengali regional dialects. BanglaTalk follows the client-server architecture and uses the Real-time Transport Protocol (RTP) to ensure low-latency communication. To address dialectal variation, we introduce a dialect-aware ASR system, BRDialect, developed by fine-tuning the IndicWav2Vec model in ten Bengali regional dialects. It outperforms the baseline ASR models by 12.41-33.98% on the RegSpeech12 dataset. Furthermore, BanglaTalk can operate at a low bandwidth of 24 kbps while maintaining an average end-to-end delay of 4.9 seconds. Low bandwidth usage and minimal end-to-end delay make the system both cost-effective and interactive for real-time use cases, enabling inclusive and accessible speech technology for the diverse community of Bengali speakers.
☆ Conformalized Gaussian processes for online uncertainty quantification over graphs
Uncertainty quantification (UQ) over graphs arises in a number of safety-critical applications in network science. The Gaussian process (GP), as a classical Bayesian framework for UQ, has been developed to handle graph-structured data by devising topology-aware kernel functions. However, such GP-based approaches are limited not only by the prohibitive computational complexity, but also the strict modeling assumptions that might yield poor coverage, especially with labels arriving on the fly. To effect scalability, we devise a novel graph-aware parametric GP model by leveraging the random feature (RF)-based kernel approximation, which is amenable to efficient recursive Bayesian model updates. To further allow for adaptivity, an ensemble of graph-aware RF-based scalable GPs have been leveraged, with per-GP weight adapted to data arriving incrementally. To ensure valid coverage with robustness to model mis-specification, we wed the GP-based set predictors with the online conformal prediction framework, which post-processes the prediction sets using adaptive thresholds. Experimental results the proposed method yields improved coverage and efficient prediction sets over existing baselines by adaptively ensembling the GP models and setting the key threshold parameters in CP.
☆ Climate Model Tuning with Online Synchronization-Based Parameter Estimation
In climate science, the tuning of climate models is a computationally intensive problem due to the combination of the high-dimensionality of the system state and long integration times. Here we demonstrate the potential of a parameter estimation algorithm which makes use of synchronization to tune a global atmospheric model at modest computational costs. We first use it to directly optimize internal model parameters. We then apply the algorithm to the weights of each member of a supermodel ensemble to optimize the overall predictions. In both cases, the algorithm is able to find parameters which result in reduced errors in the climatology of the model. Finally, we introduce a novel approach which combines both methods called adaptive supermodeling, where the internal parameters of the members of a supermodel are tuned simultaneously with the model weights such that the supermodel predictions are optimized. For a case designed to challenge the two previous methods, adaptive supermodeling achieves a performance similar to a perfect model.
comment: 19 pages, 11 figures
☆ Differentiable Model Predictive Control on the GPU
Differentiable model predictive control (MPC) offers a powerful framework for combining learning and control. However, its adoption has been limited by the inherently sequential nature of traditional optimization algorithms, which are challenging to parallelize on modern computing hardware like GPUs. In this work, we tackle this bottleneck by introducing a GPU-accelerated differentiable optimization tool for MPC. This solver leverages sequential quadratic programming and a custom preconditioned conjugate gradient (PCG) routine with tridiagonal preconditioning to exploit the problem's structure and enable efficient parallelization. We demonstrate substantial speedups over CPU- and GPU-based baselines, significantly improving upon state-of-the-art training times on benchmark reinforcement learning and imitation learning tasks. Finally, we showcase the method on the challenging task of reinforcement learning for driving at the limits of handling, where it enables robust drifting of a Toyota Supra through water puddles.
☆ Thermodynamic Performance Limits for Score-Based Diffusion Models
We establish a fundamental connection between score-based diffusion models and non-equilibrium thermodynamics by deriving performance limits based on entropy rates. Our main theoretical contribution is a lower bound on the negative log-likelihood of the data that relates model performance to entropy rates of diffusion processes. We numerically validate this bound on a synthetic dataset and investigate its tightness. By building a bridge to entropy rates - system, intrinsic, and exchange entropy - we provide new insights into the thermodynamic operation of these models, drawing parallels to Maxwell's demon and implications for thermodynamic computing hardware. Our framework connects generative modeling performance to fundamental physical principles through stochastic thermodynamics.
☆ Higher-Order Feature Attribution: Bridging Statistics, Explainable AI, and Topological Signal Processing
Feature attributions are post-training analysis methods that assess how various input features of a machine learning model contribute to an output prediction. Their interpretation is straightforward when features act independently, but becomes less direct when the predictive model involves interactions such as multiplicative relationships or joint feature contributions. In this work, we propose a general theory of higher-order feature attribution, which we develop on the foundation of Integrated Gradients (IG). This work extends existing frameworks in the literature on explainable AI. When using IG as the method of feature attribution, we discover natural connections to statistics and topological signal processing. We provide several theoretical results that establish the theory, and we validate our theory on a few examples.
comment: 5 pages, 3 figures
☆ TabPFN-Wide: Continued Pre-Training for Extreme Feature Counts
Revealing novel insights from the relationship between molecular measurements and pathology remains a very impactful application of machine learning in biomedicine. Data in this domain typically contain only a few observations but thousands of potentially noisy features, posing challenges for conventional machine learning approaches. While prior-data fitted networks emerge as foundation models for tabular data, they are currently not suited to handle large feature counts (>500). Although feature reduction enables their application, it hinders feature importance analysis. We propose a strategy that extends existing models through continued pre-training on synthetic data sampled from a customized prior. The resulting model, TabPFN-Wide, matches or exceeds its base model's performance while exhibiting improved robustness to noise. It seamlessly scales beyond 50,000 features, regardless of noise levels, while maintaining inherent interpretability, which is critical for biomedical applications. Our results show that prior-informed adaptation is suitable to enhance the capability of foundation models for high-dimensional data. On real-world biomedical datasets many of the most relevant features identified by the model overlap with previous biological findings, while others propose potential starting points for future studies.
☆ LLMs as Policy-Agnostic Teammates: A Case Study in Human Proxy Design for Heterogeneous Agent Teams ECAI 2025
A critical challenge in modelling Heterogeneous-Agent Teams is training agents to collaborate with teammates whose policies are inaccessible or non-stationary, such as humans. Traditional approaches rely on expensive human-in-the-loop data, which limits scalability. We propose using Large Language Models (LLMs) as policy-agnostic human proxies to generate synthetic data that mimics human decision-making. To evaluate this, we conduct three experiments in a grid-world capture game inspired by Stag Hunt, a game theory paradigm that balances risk and reward. In Experiment 1, we compare decisions from 30 human participants and 2 expert judges with outputs from LLaMA 3.1 and Mixtral 8x22B models. LLMs, prompted with game-state observations and reward structures, align more closely with experts than participants, demonstrating consistency in applying underlying decision criteria. Experiment 2 modifies prompts to induce risk-sensitive strategies (e.g. "be risk averse"). LLM outputs mirror human participants' variability, shifting between risk-averse and risk-seeking behaviours. Finally, Experiment 3 tests LLMs in a dynamic grid-world where the LLM agents generate movement actions. LLMs produce trajectories resembling human participants' paths. While LLMs cannot yet fully replicate human adaptability, their prompt-guided diversity offers a scalable foundation for simulating policy-agnostic teammates.
comment: This is a preprint of a paper presented at the \textit{European Conference on Artificial Intelligence (ECAI 2025)}. It is made publicly available for the benefit of the research community and should be regarded as a preprint rather than a formally reviewed publication
☆ Implicit Updates for Average-Reward Temporal Difference Learning
Temporal difference (TD) learning is a cornerstone of reinforcement learning. In the average-reward setting, standard TD($\lambda$) is highly sensitive to the choice of step-size and thus requires careful tuning to maintain numerical stability. We introduce average-reward implicit TD($\lambda$), which employs an implicit fixed point update to provide data-adaptive stabilization while preserving the per iteration computational complexity of standard average-reward TD($\lambda$). In contrast to prior finite-time analyses of average-reward TD($\lambda$), which impose restrictive step-size conditions, we establish finite-time error bounds for the implicit variant under substantially weaker step-size requirements. Empirically, average-reward implicit TD($\lambda$) operates reliably over a much broader range of step-sizes and exhibits markedly improved numerical stability. This enables more efficient policy evaluation and policy learning, highlighting its effectiveness as a robust alternative to average-reward TD($\lambda$).
☆ Non-iid hypothesis testing: from classical to quantum
We study hypothesis testing (aka state certification) in the non-identically distributed setting. A recent work (Garg et al. 2023) considered the classical case, in which one is given (independent) samples from $T$ unknown probability distributions $p_1, \dots, p_T$ on $[d] = \{1, 2, \dots, d\}$, and one wishes to accept/reject the hypothesis that their average $p_{\mathrm{avg}}$ equals a known hypothesis distribution $q$. Garg et al. showed that if one has just $c = 2$ samples from each $p_i$, and provided $T \gg \frac{\sqrt{d}}{\epsilon^2} + \frac{1}{\epsilon^4}$, one can (whp) distinguish $p_{\mathrm{avg}} = q$ from $d_{\mathrm{TV}}(p_{\mathrm{avg}},q) > \epsilon$. This nearly matches the optimal result for the classical iid setting (namely, $T \gg \frac{\sqrt{d}}{\epsilon^2}$). Besides optimally improving this result (and generalizing to tolerant testing with more stringent distance measures), we study the analogous problem of hypothesis testing for non-identical quantum states. Here we uncover an unexpected phenomenon: for any $d$-dimensional hypothesis state $\sigma$, and given just a single copy ($c = 1$) of each state $\rho_1, \dots, \rho_T$, one can distinguish $\rho_{\mathrm{avg}} = \sigma$ from $D_{\mathrm{tr}}(\rho_{\mathrm{avg}},\sigma) > \epsilon$ provided $T \gg d/\epsilon^2$. (Again, we generalize to tolerant testing with more stringent distance measures.) This matches the optimal result for the iid case, which is surprising because doing this with $c = 1$ is provably impossible in the classical case. We also show that the analogous phenomenon happens for the non-iid extension of identity testing between unknown states. A technical tool we introduce may be of independent interest: an Efron-Stein inequality, and more generally an Efron-Stein decomposition, in the quantum setting.
comment: 33 pages, 2 figures
☆ Bimanual 3D Hand Motion and Articulation Forecasting in Everyday Images
We tackle the problem of forecasting bimanual 3D hand motion & articulation from a single image in everyday settings. To address the lack of 3D hand annotations in diverse settings, we design an annotation pipeline consisting of a diffusion model to lift 2D hand keypoint sequences to 4D hand motion. For the forecasting model, we adopt a diffusion loss to account for the multimodality in hand motion distribution. Extensive experiments across 6 datasets show the benefits of training on diverse data with imputed labels (14% improvement) and effectiveness of our lifting (42% better) & forecasting (16.4% gain) models, over the best baselines, especially in zero-shot generalization to everyday images.
comment: Project page: https://ap229997.github.io/projects/forehand4d
☆ Improved High-probability Convergence Guarantees of Decentralized SGD
Convergence in high-probability (HP) has been receiving increasing interest, due to its attractive properties, such as exponentially decaying tail bounds and strong guarantees for each individual run of an algorithm. While HP guarantees are extensively studied in centralized settings, much less is understood in the decentralized, networked setup. Existing HP studies in decentralized settings impose strong assumptions, like uniformly bounded gradients, or asymptotically vanishing noise, resulting in a significant gap between assumptions used to establish convergence in the HP and the mean-squared error (MSE) sense, even for vanilla Decentralized Stochastic Gradient Descent ($\mathtt{DSGD}$) algorithm. This is contrary to centralized settings, where it is known that $\mathtt{SGD}$ converges in HP under the same conditions on the cost function as needed to guarantee MSE convergence. Motivated by this observation, we revisit HP guarantees for $\mathtt{DSGD}$ in the presence of light-tailed noise. We show that $\mathtt{DSGD}$ converges in HP under the same conditions on the cost as in the MSE sense, removing uniformly bounded gradients and other restrictive assumptions, while simultaneously achieving order-optimal rates for both non-convex and strongly convex costs. Moreover, our improved analysis yields linear speed-up in the number of users, demonstrating that $\mathtt{DSGD}$ maintains strong performance in the HP sense and matches existing MSE guarantees. Our improved results stem from a careful analysis of the MGF of quantities of interest (norm-squared of gradient or optimality gap) and the MGF of the consensus gap between users' models. To achieve linear speed-up, we provide a novel result on the variance-reduction effect of decentralized methods in the HP sense and more fine-grained bounds on the MGF for strongly convex costs, which are both of independent interest.
comment: 39 pages
Multi-Task Reinforcement Learning with Language-Encoded Gated Policy Networks
Multi-task reinforcement learning often relies on task metadata -- such as brief natural-language descriptions -- to guide behavior across diverse objectives. We present Lexical Policy Networks (LEXPOL), a language-conditioned mixture-of-policies architecture for multi-task RL. LEXPOL encodes task metadata with a text encoder and uses a learned gating module to select or blend among multiple sub-policies, enabling end-to-end training across tasks. On MetaWorld benchmarks, LEXPOL matches or exceeds strong multi-task baselines in success rate and sample efficiency, without task-specific retraining. To analyze the mechanism, we further study settings with fixed expert policies obtained independently of the gate and show that the learned language gate composes these experts to produce behaviors appropriate to novel task descriptions and unseen task combinations. These results indicate that natural-language metadata can effectively index and recombine reusable skills within a single policy.
comment: 14 pages, 3 figures, 12 tables, 2 appendices. Currently under review
☆ lm-Meter: Unveiling Runtime Inference Latency for On-Device Language Models
Large Language Models (LLMs) are increasingly integrated into everyday applications, but their prevalent cloud-based deployment raises growing concerns around data privacy and long-term sustainability. Running LLMs locally on mobile and edge devices (on-device LLMs) offers the promise of enhanced privacy, reliability, and reduced communication costs. However, realizing this vision remains challenging due to substantial memory and compute demands, as well as limited visibility into performance-efficiency trade-offs on resource-constrained hardware. We propose lm-Meter, the first lightweight, online latency profiler tailored for on-device LLM inference. lm-Meter captures fine-grained, real-time latency at both phase (e.g., embedding, prefill, decode, softmax, sampling) and kernel levels without auxiliary devices. We implement lm-Meter on commercial mobile platforms and demonstrate its high profiling accuracy with minimal system overhead, e.g., only 2.58% throughput reduction in prefill and 0.99% in decode under the most constrained Powersave governor. Leveraging lm-Meter, we conduct comprehensive empirical studies revealing phase- and kernel-level bottlenecks in on-device LLM inference, quantifying accuracy-efficiency trade-offs, and identifying systematic optimization opportunities. lm-Meter provides unprecedented visibility into the runtime behavior of LLMs on constrained platforms, laying the foundation for informed optimization and accelerating the democratization of on-device LLM systems. Code and tutorials are available at https://github.com/amai-gsu/LM-Meter.
comment: This is the preprint version of the paper accepted to The 10th ACM/IEEE Symposium on Edge Computing (SEC 2025)
☆ Downsized and Compromised?: Assessing the Faithfulness of Model Compression
In real-world applications, computational constraints often require transforming large models into smaller, more efficient versions through model compression. While these techniques aim to reduce size and computational cost without sacrificing performance, their evaluations have traditionally focused on the trade-off between size and accuracy, overlooking the aspect of model faithfulness. This limited view is insufficient for high-stakes domains like healthcare, finance, and criminal justice, where compressed models must remain faithful to the behavior of their original counterparts. This paper presents a novel approach to evaluating faithfulness in compressed models, moving beyond standard metrics. We introduce and demonstrate a set of faithfulness metrics that capture how model behavior changes post-compression. Our contributions include introducing techniques to assess predictive consistency between the original and compressed models using model agreement, and applying chi-squared tests to detect statistically significant changes in predictive patterns across both the overall dataset and demographic subgroups, thereby exposing shifts that aggregate fairness metrics may obscure. We demonstrate our approaches by applying quantization and pruning to artificial neural networks (ANNs) trained on three diverse and socially meaningful datasets. Our findings show that high accuracy does not guarantee faithfulness, and our statistical tests detect subtle yet significant shifts that are missed by standard metrics, such as Accuracy and Equalized Odds. The proposed metrics provide a practical and more direct method for ensuring that efficiency gains through compression do not compromise the fairness or faithfulness essential for trustworthy AI.
comment: Submitted to and under review at Springer Machine Learning Journal
☆ PolyGraph Discrepancy: a classifier-based metric for graph generation
Existing methods for evaluating graph generative models primarily rely on Maximum Mean Discrepancy (MMD) metrics based on graph descriptors. While these metrics can rank generative models, they do not provide an absolute measure of performance. Their values are also highly sensitive to extrinsic parameters, namely kernel and descriptor parametrization, making them incomparable across different graph descriptors. We introduce PolyGraph Discrepancy (PGD), a new evaluation framework that addresses these limitations. It approximates the Jensen-Shannon distance of graph distributions by fitting binary classifiers to distinguish between real and generated graphs, featurized by these descriptors. The data log-likelihood of these classifiers approximates a variational lower bound on the JS distance between the two distributions. Resulting metrics are constrained to the unit interval [0,1] and are comparable across different graph descriptors. We further derive a theoretically grounded summary metric that combines these individual metrics to provide a maximally tight lower bound on the distance for the given descriptors. Thorough experiments demonstrate that PGD provides a more robust and insightful evaluation compared to MMD metrics. The PolyGraph framework for benchmarking graph generative models is made publicly available at https://github.com/BorgwardtLab/polygraph-benchmark.
☆ Influence Functions for Efficient Data Selection in Reasoning
Fine-tuning large language models (LLMs) on chain-of-thought (CoT) data shows that a small amount of high-quality data can outperform massive datasets. Yet, what constitutes "quality" remains ill-defined. Existing reasoning methods rely on indirect heuristics such as problem difficulty or trace length, while instruction-tuning has explored a broader range of automated selection strategies, but rarely in the context of reasoning. We propose to define reasoning data quality using influence functions, which measure the causal effect of individual CoT examples on downstream accuracy, and introduce influence-based pruning, which consistently outperforms perplexity and embedding-based baselines on math reasoning within a model family.
☆ The Physics of Data and Tasks: Theories of Locality and Compositionality in Deep Learning
Deep neural networks have achieved remarkable success, yet our understanding of how they learn remains limited. These models can learn high-dimensional tasks, which is generally statistically intractable due to the curse of dimensionality. This apparent paradox suggests that learnable data must have an underlying latent structure. What is the nature of this structure? How do neural networks encode and exploit it, and how does it quantitatively impact performance - for instance, how does generalization improve with the number of training examples? This thesis addresses these questions by studying the roles of locality and compositionality in data, tasks, and deep learning representations.
comment: PhD dissertation. Preprint
☆ Moloch's Bargain: Emergent Misalignment When LLMs Compete for Audiences
Large language models (LLMs) are increasingly shaping how information is created and disseminated, from companies using them to craft persuasive advertisements, to election campaigns optimizing messaging to gain votes, to social media influencers boosting engagement. These settings are inherently competitive, with sellers, candidates, and influencers vying for audience approval, yet it remains poorly understood how competitive feedback loops influence LLM behavior. We show that optimizing LLMs for competitive success can inadvertently drive misalignment. Using simulated environments across these scenarios, we find that, 6.3% increase in sales is accompanied by a 14.0% rise in deceptive marketing; in elections, a 4.9% gain in vote share coincides with 22.3% more disinformation and 12.5% more populist rhetoric; and on social media, a 7.5% engagement boost comes with 188.6% more disinformation and a 16.3% increase in promotion of harmful behaviors. We call this phenomenon Moloch's Bargain for AI--competitive success achieved at the cost of alignment. These misaligned behaviors emerge even when models are explicitly instructed to remain truthful and grounded, revealing the fragility of current alignment safeguards. Our findings highlight how market-driven optimization pressures can systematically erode alignment, creating a race to the bottom, and suggest that safe deployment of AI systems will require stronger governance and carefully designed incentives to prevent competitive dynamics from undermining societal trust.
☆ The Alignment Auditor: A Bayesian Framework for Verifying and Refining LLM Objectives
The objectives that Large Language Models (LLMs) implicitly optimize remain dangerously opaque, making trustworthy alignment and auditing a grand challenge. While Inverse Reinforcement Learning (IRL) can infer reward functions from behaviour, existing approaches either produce a single, overconfident reward estimate or fail to address the fundamental ambiguity of the task (non-identifiability). This paper introduces a principled auditing framework that re-frames reward inference from a simple estimation task to a comprehensive process for verification. Our framework leverages Bayesian IRL to not only recover a distribution over objectives but to enable three critical audit capabilities: (i) Quantifying and systematically reducing non-identifiability by demonstrating posterior contraction over sequential rounds of evidence; (ii) Providing actionable, uncertainty-aware diagnostics that expose spurious shortcuts and identify out-of-distribution prompts where the inferred objective cannot be trusted; and (iii) Validating policy-level utility by showing that the refined, low-uncertainty reward can be used directly in RLHF to achieve training dynamics and toxicity reductions comparable to the ground-truth alignment process. Empirically, our framework successfully audits a detoxified LLM, yielding a well-calibrated and interpretable objective that strengthens alignment guarantees. Overall, this work provides a practical toolkit for auditors, safety teams, and regulators to verify what LLMs are truly trying to achieve, moving us toward more trustworthy and accountable AI.
comment: Preprint
☆ Learning from Failures: Understanding LLM Alignment through Failure-Aware Inverse RL
Reinforcement Learning from Human Feedback (RLHF) aligns Large Language Models (LLMs) with human preferences, yet the underlying reward signals they internalize remain hidden, posing a critical challenge for interpretability and safety. Existing approaches attempt to extract these latent incentives using Inverse Reinforcement Learning (IRL), but treat all preference pairs equally, often overlooking the most informative signals: those examples the extracted reward model misclassifies or assigns nearly equal scores, which we term \emph{failures}. We introduce a novel \emph{failure-aware} IRL algorithm that focuses on misclassified or difficult examples to recover the latent rewards defining model behaviors. By learning from these failures, our failure-aware IRL extracts reward functions that better reflect the true objectives behind RLHF. We demonstrate that failure-aware IRL outperforms existing IRL baselines across multiple metrics when applied to LLM detoxification, without requiring external classifiers or supervision. Crucially, failure-aware IRL yields rewards that better capture the true incentives learned during RLHF, enabling more effective re-RLHF training than standard IRL. This establishes failure-aware IRL as a robust, scalable method for auditing model alignment and reducing ambiguity in the IRL process.
comment: Preprint
☆ Learning Mixtures of Linear Dynamical Systems (MoLDS) via Hybrid Tensor-EM Method
Mixtures of linear dynamical systems (MoLDS) provide a path to model time-series data that exhibit diverse temporal dynamics across trajectories. However, its application remains challenging in complex and noisy settings, limiting its effectiveness for neural data analysis. Tensor-based moment methods can provide global identifiability guarantees for MoLDS, but their performance degrades under noise and complexity. Commonly used expectation-maximization (EM) methods offer flexibility in fitting latent models but are highly sensitive to initialization and prone to poor local minima. Here, we propose a tensor-based method that provides identifiability guarantees for learning MoLDS, which is followed by EM updates to combine the strengths of both approaches. The novelty in our approach lies in the construction of moment tensors using the input-output data to recover globally consistent estimates of mixture weights and system parameters. These estimates can then be refined through a Kalman EM algorithm, with closed-form updates for all LDS parameters. We validate our framework on synthetic benchmarks and real-world datasets. On synthetic data, the proposed Tensor-EM method achieves more reliable recovery and improved robustness compared to either pure tensor or randomly initialized EM methods. We then analyze neural recordings from the primate somatosensory cortex while a non-human primate performs reaches in different directions. Our method successfully models and clusters different conditions as separate subsystems, consistent with supervised single-LDS fits for each condition. Finally, we apply this approach to another neural dataset where monkeys perform a sequential reaching task. These results demonstrate that MoLDS provides an effective framework for modeling complex neural data, and that Tensor-EM is a reliable approach to MoLDS learning for these applications.
comment: 20 pages, 7 figures
☆ EmoHRNet: High-Resolution Neural Network Based Speech Emotion Recognition
Speech emotion recognition (SER) is pivotal for enhancing human-machine interactions. This paper introduces "EmoHRNet", a novel adaptation of High-Resolution Networks (HRNet) tailored for SER. The HRNet structure is designed to maintain high-resolution representations from the initial to the final layers. By transforming audio samples into spectrograms, EmoHRNet leverages the HRNet architecture to extract high-level features. EmoHRNet's unique architecture maintains high-resolution representations throughout, capturing both granular and overarching emotional cues from speech signals. The model outperforms leading models, achieving accuracies of 92.45% on RAVDESS, 80.06% on IEMOCAP, and 92.77% on EMOVO. Thus, we show that EmoHRNet sets a new benchmark in the SER domain.
Benchmark It Yourself (BIY): Preparing a Dataset and Benchmarking AI Models for Scatterplot-Related Tasks IEEE VIS 2025
AI models are increasingly used for data analysis and visualization, yet benchmarks rarely address scatterplot-specific tasks, limiting insight into performance. To address this gap for one of the most common chart types, we introduce a synthetic, annotated dataset of over 18,000 scatterplots from six data generators and 17 chart designs, and a benchmark based on it. We evaluate proprietary models from OpenAI and Google using N-shot prompting on five distinct tasks derived from annotations of cluster bounding boxes, their center coordinates, and outlier coordinates. OpenAI models and Gemini 2.5 Flash, especially when prompted with examples, are viable options for counting clusters and, in Flash's case, outliers (90%+ Accuracy). However, the results for localization-related tasks are unsatisfactory: Precision and Recall are near or below 50%, except for Flash in outlier identification (65.01%). Furthermore, the impact of chart design on performance appears to be a secondary factor, but it is advisable to avoid scatterplots with wide aspect ratios (16:9 and 21:9) or those colored randomly. Supplementary materials are available at https://github.com/feedzai/biy-paper.
comment: 9 pages, 3 figures, short paper accepted at VISxGenAI: 1st Workshop on GenAI, Agents, and the Future of VIS (IEEE VIS 2025)
☆ Analyzing the Effect of Embedding Norms and Singular Values to Oversmoothing in Graph Neural Networks
In this paper, we study the factors that contribute to the effect of oversmoothing in deep Graph Neural Networks (GNNs). Specifically, our analysis is based on a new metric (Mean Average Squared Distance - $MASED$) to quantify the extent of oversmoothing. We derive layer-wise bounds on $MASED$, which aggregate to yield global upper and lower distance bounds. Based on this quantification of oversmoothing, we further analyze the importance of two different properties of the model; namely the norms of the generated node embeddings, along with the largest and smallest singular values of the weight matrices. Building on the insights drawn from the theoretical analysis, we show that oversmoothing increases as the number of trainable weight matrices and the number of adjacency matrices increases. We also use the derived layer-wise bounds on $MASED$ to form a proposal for decoupling the number of hops (i.e., adjacency depth) from the number of weight matrices. In particular, we introduce G-Reg, a regularization scheme that increases the bounds, and demonstrate through extensive experiments that by doing so node classification accuracy increases, achieving robustness at large depths. We further show that by reducing oversmoothing in deep networks, we can achieve better results in some tasks than using shallow ones. Specifically, we experiment with a ``cold start" scenario, i.e., when there is no feature information for the unlabeled nodes. Finally, we show empirically the trade-off between receptive field size (i.e., number of weight matrices) and performance, using the $MASED$ bounds. This is achieved by distributing adjacency hops across a small number of trainable layers, avoiding the extremes of under- or over-parameterization of the GNN.
☆ TelecomTS: A Multi-Modal Observability Dataset for Time Series and Language Analysis
Modern enterprises generate vast streams of time series metrics when monitoring complex systems, known as observability data. Unlike conventional time series from domains such as weather, observability data are zero-inflated, highly stochastic, and exhibit minimal temporal structure. Despite their importance, observability datasets are underrepresented in public benchmarks due to proprietary restrictions. Existing datasets are often anonymized and normalized, removing scale information and limiting their use for tasks beyond forecasting, such as anomaly detection, root-cause analysis, and multi-modal reasoning. To address this gap, we introduce TelecomTS, a large-scale observability dataset derived from a 5G telecommunications network. TelecomTS features heterogeneous, de-anonymized covariates with explicit scale information and supports a suite of downstream tasks, including anomaly detection, root-cause analysis, and a question-answering benchmark requiring multi-modal reasoning. Benchmarking state-of-the-art time series, language, and reasoning models reveals that existing approaches struggle with the abrupt, noisy, and high-variance dynamics of observability data. Our experiments also underscore the importance of preserving covariates' absolute scale, emphasizing the need for foundation time series models that natively leverage scale information for practical observability applications.
☆ Medical Vision Language Models as Policies for Robotic Surgery
Vision-based Proximal Policy Optimization (PPO) struggles with visual observation-based robotic laparoscopic surgical tasks due to the high-dimensional nature of visual input, the sparsity of rewards in surgical environments, and the difficulty of extracting task-relevant features from raw visual data. We introduce a simple approach integrating MedFlamingo, a medical domain-specific Vision-Language Model, with PPO. Our method is evaluated on five diverse laparoscopic surgery task environments in LapGym, using only endoscopic visual observations. MedFlamingo PPO outperforms and converges faster compared to both standard vision-based PPO and OpenFlamingo PPO baselines, achieving task success rates exceeding 70% across all environments, with improvements ranging from 66.67% to 1114.29% compared to baseline. By processing task observations and instructions once per episode to generate high-level planning tokens, our method efficiently combines medical expertise with real-time visual feedback. Our results highlight the value of specialized medical knowledge in robotic surgical planning and decision-making.
comment: IEEE CAI 2025
☆ Edit-Based Flow Matching for Temporal Point Processes
Temporal point processes (TPPs) are a fundamental tool for modeling event sequences in continuous time, but most existing approaches rely on autoregressive parameterizations that are limited by their sequential sampling. Recent non-autoregressive, diffusion-style models mitigate these issues by jointly interpolating between noise and data through event insertions and deletions in a discrete Markov chain. In this work, we generalize this perspective and introduce an Edit Flow process for TPPs that transports noise to data via insert, delete, and substitute edit operations. By learning the instantaneous edit rates within a continuous-time Markov chain framework, we attain a flexible and efficient model that effectively reduces the total number of necessary edit operations during generation. Empirical results demonstrate the generative flexibility of our unconditionally trained model in a wide range of unconditional and conditional generation tasks on benchmark TPPs.
☆ BLISS: A Lightweight Bilevel Influence Scoring Method for Data Selection in Language Model Pretraining
Effective data selection is essential for pretraining large language models (LLMs), enhancing efficiency and improving generalization to downstream tasks. However, existing approaches often require leveraging external pretrained models, making it difficult to disentangle the effects of data selection from those of the external pretrained models. In addition, they often overlook the long-term impact of selected data if the model is trained to convergence, primarily due to the prohibitive cost of full-scale LLM pretraining. In this paper, we introduce BLISS (\textbf{B}ileve\textbf{L} \textbf{I}nfluence \textbf{S}coring method for data \textbf{S}election): a lightweight data selection method that operates entirely \emph{from scratch}, without relying on any external pretrained oracle models, while explicitly accounting for the long-term impact of selected data. BLISS leverages a small proxy model as a surrogate for the LLM and employs a score model to estimate the long-term influence of training samples if the proxy model is trained to convergence. We formulate data selection as a bilevel optimization problem, where the upper-level objective optimizes the score model to assign importance weights to training samples, ensuring that minimizing the lower-level objective (i.e., training the proxy model over the weighted training loss until convergence) leads to best validation performance. Once optimized, the trained score model predicts influence scores for the dataset, enabling efficient selection of high-quality samples for LLM pretraining. We validate BLISS by pretraining 410M/1B/2.8B Pythia and LLaMA-0.5B models on selected subsets of the C4 dataset. Notably, under the 1B model setting, BLISS achieves $1.7\times$ speedup in reaching the same performance as the state-of-the-art method, demonstrating superior performance across multiple downstream tasks.
☆ From Learning to Mastery: Achieving Safe and Efficient Real-World Autonomous Driving with Human-In-The-Loop Reinforcement Learning
Autonomous driving with reinforcement learning (RL) has significant potential. However, applying RL in real-world settings remains challenging due to the need for safe, efficient, and robust learning. Incorporating human expertise into the learning process can help overcome these challenges by reducing risky exploration and improving sample efficiency. In this work, we propose a reward-free, active human-in-the-loop learning method called Human-Guided Distributional Soft Actor-Critic (H-DSAC). Our method combines Proxy Value Propagation (PVP) and Distributional Soft Actor-Critic (DSAC) to enable efficient and safe training in real-world environments. The key innovation is the construction of a distributed proxy value function within the DSAC framework. This function encodes human intent by assigning higher expected returns to expert demonstrations and penalizing actions that require human intervention. By extrapolating these labels to unlabeled states, the policy is effectively guided toward expert-like behavior. With a well-designed state space, our method achieves real-world driving policy learning within practical training times. Results from both simulation and real-world experiments demonstrate that our framework enables safe, robust, and sample-efficient learning for autonomous driving.
☆ Adaptive Pruning for Increased Robustness and Reduced Computational Overhead in Gaussian Process Accelerated Saddle Point Searches
Gaussian process (GP) regression provides a strategy for accelerating saddle point searches on high-dimensional energy surfaces by reducing the number of times the energy and its derivatives with respect to atomic coordinates need to be evaluated. The computational overhead in the hyperparameter optimization can, however, be large and make the approach inefficient. Failures can also occur if the search ventures too far into regions that are not represented well enough by the GP model. Here, these challenges are resolved by using geometry-aware optimal transport measures and an active pruning strategy using a summation over Wasserstein-1 distances for each atom-type in farthest-point sampling, selecting a fixed-size subset of geometrically diverse configurations to avoid rapidly increasing cost of GP updates as more observations are made. Stability is enhanced by permutation-invariant metric that provides a reliable trust radius for early-stopping and a logarithmic barrier penalty for the growth of the signal variance. These physically motivated algorithmic changes prove their efficacy by reducing to less than a half the mean computational time on a set of 238 challenging configurations from a previously published data set of chemical reactions. With these improvements, the GP approach is established as, a robust and scalable algorithm for accelerating saddle point searches when the evaluation of the energy and atomic forces requires significant computational effort.
comment: Invited article for the ChemPhysChem special issue dedicated to the 60th birthday of Prof. Debabrata Goswami. A preliminary version of this work was presented at the UNOOS 2025 conference
☆ Fast Leave-One-Out Approximation from Fragment-Target Prevalence Vectors (molFTP) : From Dummy Masking to Key-LOO for Leakage-Free Feature Construction
We introduce molFTP (molecular fragment-target prevalence), a compact representation that delivers strong predictive performance. To prevent feature leakage across cross-validation folds, we implement a dummy-masking procedure that removes information about fragments present in the held-out molecules. We further show that key leave-one-out (key-loo) closely approximates true molecule-level leave-one-out (LOO), with deviation below 8% on our datasets. This enables near full data training while preserving unbiased cross-validation estimates of model performance. Overall, molFTP provides a fast, leakage-resistant fragment-target prevalence vectorization with practical safeguards (dummy masking or key-LOO) that approximate LOO at a fraction of its cost.
comment: 28 pages, 21 figures, 3 tables
☆ Generalization of Gibbs and Langevin Monte Carlo Algorithms in the Interpolation Regime
The paper provides data-dependent bounds on the test error of the Gibbs algorithm in the overparameterized interpolation regime, where low training errors are also obtained for impossible data, such as random labels in classification. The bounds are stable under approximation with Langevin Monte Carlo algorithms. Experiments on the MNIST and CIFAR-10 datasets verify that the bounds yield nontrivial predictions on true labeled data and correctly upper bound the test error for random labels. Our method indicates that generalization in the low-temperature, interpolation regime is already signaled by small training errors in the more classical high temperature regime.
☆ Emergent AI Surveillance: Overlearned Person Re-Identification and Its Mitigation in Law Enforcement Context
Generic instance search models can dramatically reduce the manual effort required to analyze vast surveillance footage during criminal investigations by retrieving specific objects of interest to law enforcement. However, our research reveals an unintended emergent capability: through overlearning, these models can single out specific individuals even when trained on datasets without human subjects. This capability raises concerns regarding identification and profiling of individuals based on their personal data, while there is currently no clear standard on how de-identification can be achieved. We evaluate two technical safeguards to curtail a model's person re-identification capacity: index exclusion and confusion loss. Our experiments demonstrate that combining these approaches can reduce person re-identification accuracy to below 2% while maintaining 82% of retrieval performance for non-person objects. However, we identify critical vulnerabilities in these mitigations, including potential circumvention using partial person images. These findings highlight urgent regulatory questions at the intersection of AI governance and data protection: How should we classify and regulate systems with emergent identification capabilities? And what technical standards should be required to prevent identification capabilities from developing in seemingly benign applications?
comment: 10 pages, accepted to AIES 2025
☆ Out-of-Distribution Detection from Small Training Sets using Bayesian Neural Network Classifiers BMVC
Out-of-Distribution (OOD) detection is critical to AI reliability and safety, yet in many practical settings, only a limited amount of training data is available. Bayesian Neural Networks (BNNs) are a promising class of model on which to base OOD detection, because they explicitly represent epistemic (i.e. model) uncertainty. In the small training data regime, BNNs are especially valuable because they can incorporate prior model information. We introduce a new family of Bayesian posthoc OOD scores based on expected logit vectors, and compare 5 Bayesian and 4 deterministic posthoc OOD scores. Experiments on MNIST and CIFAR-10 In-Distributions, with 5000 training samples or less, show that the Bayesian methods outperform corresponding deterministic methods.
comment: British Machine Vision Conference (BMVC) 2025; 18 pages, 6 figures, 3 tables
☆ RamPINN: Recovering Raman Spectra From Coherent Anti-Stokes Spectra Using Embedded Physics
Transferring the recent advancements in deep learning into scientific disciplines is hindered by the lack of the required large-scale datasets for training. We argue that in these knowledge-rich domains, the established body of scientific theory provides reliable inductive biases in the form of governing physical laws. We address the ill-posed inverse problem of recovering Raman spectra from noisy Coherent Anti-Stokes Raman Scattering (CARS) measurements, as the true Raman signal here is suppressed by a dominating non-resonant background. We propose RamPINN, a model that learns to recover Raman spectra from given CARS spectra. Our core methodological contribution is a physics-informed neural network that utilizes a dual-decoder architecture to disentangle resonant and non-resonant signals. This is done by enforcing the Kramers-Kronig causality relations via a differentiable Hilbert transform loss on the resonant and a smoothness prior on the non-resonant part of the signal. Trained entirely on synthetic data, RamPINN demonstrates strong zero-shot generalization to real-world experimental data, explicitly closing this gap and significantly outperforming existing baselines. Furthermore, we show that training with these physics-based losses alone, without access to any ground-truth Raman spectra, still yields competitive results. This work highlights a broader concept: formal scientific rules can act as a potent inductive bias, enabling robust, self-supervised learning in data-limited scientific domains.
☆ Hybrid Quantum-Classical Policy Gradient for Adaptive Control of Cyber-Physical Systems: A Comparative Study of VQC vs. MLP
The comparative evaluation between classical and quantum reinforcement learning (QRL) paradigms was conducted to investigate their convergence behavior, robustness under observational noise, and computational efficiency in a benchmark control environment. The study employed a multilayer perceptron (MLP) agent as a classical baseline and a parameterized variational quantum circuit (VQC) as a quantum counterpart, both trained on the CartPole-v1 environment over 500 episodes. Empirical results demonstrated that the classical MLP achieved near-optimal policy convergence with a mean return of 498.7 +/- 3.2, maintaining stable equilibrium throughout training. In contrast, the VQC exhibited limited learning capability, with an average return of 14.6 +/- 4.8, primarily constrained by circuit depth and qubit connectivity. Noise robustness analysis further revealed that the MLP policy deteriorated gracefully under Gaussian perturbations, while the VQC displayed higher sensitivity at equivalent noise levels. Despite the lower asymptotic performance, the VQC exhibited significantly lower parameter count and marginally increased training time, highlighting its potential scalability for low-resource quantum processors. The results suggest that while classical neural policies remain dominant in current control benchmarks, quantum-enhanced architectures could offer promising efficiency advantages once hardware noise and expressivity limitations are mitigated.
comment: 6 pages, 5 figures, 2 tables, 17 equations, 1 algorithm
☆ Uncertainty in Machine Learning
This book chapter introduces the principles and practical applications of uncertainty quantification in machine learning. It explains how to identify and distinguish between different types of uncertainty and presents methods for quantifying uncertainty in predictive models, including linear regression, random forests, and neural networks. The chapter also covers conformal prediction as a framework for generating predictions with predefined confidence intervals. Finally, it explores how uncertainty estimation can be leveraged to improve business decision-making, enhance model reliability, and support risk-aware strategies.
comment: Authored by Hans Weytjens. Wouter Verbeke provided proofreading and served as the chief editor of the book in which this chapter appears
☆ Information-Theoretic Policy Pre-Training with Empowerment
Empowerment, an information-theoretic measure of an agent's potential influence on its environment, has emerged as a powerful intrinsic motivation and exploration framework for reinforcement learning (RL). Besides for unsupervised RL and skill learning algorithms, the specific use of empowerment as a pre-training signal has received limited attention in the literature. We show that empowerment can be used as a pre-training signal for data-efficient downstream task adaptation. For this we extend the traditional notion of empowerment by introducing discounted empowerment, which balances the agent's control over the environment across short- and long-term horizons. Leveraging this formulation, we propose a novel pre-training paradigm that initializes policies to maximize discounted empowerment, enabling agents to acquire a robust understanding of environmental dynamics. We analyze empowerment-based pre-training for various existing RL algorithms and empirically demonstrate its potential as a general-purpose initialization strategy: empowerment-maximizing policies with long horizons are data-efficient and effective, leading to improved adaptability in downstream tasks. Our findings pave the way for future research to scale this framework to high-dimensional and complex tasks, further advancing the field of RL.
☆ Sample Smart, Not Hard: Correctness-First Decoding for Better Reasoning in LLMs
Large Language Models (LLMs) are increasingly applied to complex tasks that require extended reasoning. In such settings, models often benefit from diverse chains-of-thought to arrive at multiple candidate solutions. This requires two competing objectives: to inject enough stochasticity to explore multiple reasoning chains, and to ensure sufficient accuracy and quality in each path. Existing works pursue the first objective by increasing exploration at highly uncertain steps with higher temperature or larger candidate token sets, while others improve reliability by rejecting samples with low confidence post-generation, implying that low confidence correlates with low answer quality. These two lines of thought are in conflict, as they conflate different sources of uncertainty. To resolve this, we argue that the decoding rule should be calibrated by correctness, not confidence alone. We should sample from tokens with higher estimated correctness, and reduce sampling where expected correctness is low. We propose simple strategies that achieve this goal: Greedy-Threshold makes sampling greedy at very low confidence steps. Calibrated-TopK and Calibrated-epsilon set truncation threshold based on estimated rank-wise correctness. Together, our findings challenge prevailing heuristics about decoding under uncertainty and show gains across math and general reasoning benchmarks.
☆ Diffusion Models for Low-Light Image Enhancement: A Multi-Perspective Taxonomy and Performance Analysis
Low-light image enhancement (LLIE) is vital for safety-critical applications such as surveillance, autonomous navigation, and medical imaging, where visibility degradation can impair downstream task performance. Recently, diffusion models have emerged as a promising generative paradigm for LLIE due to their capacity to model complex image distributions via iterative denoising. This survey provides an up-to-date critical analysis of diffusion models for LLIE, distinctively featuring an in-depth comparative performance evaluation against Generative Adversarial Network and Transformer-based state-of-the-art methods, a thorough examination of practical deployment challenges, and a forward-looking perspective on the role of emerging paradigms like foundation models. We propose a multi-perspective taxonomy encompassing six categories: Intrinsic Decomposition, Spectral & Latent, Accelerated, Guided, Multimodal, and Autonomous; that map enhancement methods across physical priors, conditioning schemes, and computational efficiency. Our taxonomy is grounded in a hybrid view of both the model mechanism and the conditioning signals. We evaluate qualitative failure modes, benchmark inconsistencies, and trade-offs between interpretability, generalization, and inference efficiency. We also discuss real-world deployment constraints (e.g., memory, energy use) and ethical considerations. This survey aims to guide the next generation of diffusion-based LLIE research by highlighting trends and surfacing open research questions, including novel conditioning, real-time adaptation, and the potential of foundation models.
☆ Gaussian Embeddings: How JEPAs Secretly Learn Your Data Density
Joint Embedding Predictive Architectures (JEPAs) learn representations able to solve numerous downstream tasks out-of-the-box. JEPAs combine two objectives: (i) a latent-space prediction term, i.e., the representation of a slightly perturbed sample must be predictable from the original sample's representation, and (ii) an anti-collapse term, i.e., not all samples should have the same representation. While (ii) is often considered as an obvious remedy to representation collapse, we uncover that JEPAs' anti-collapse term does much more--it provably estimates the data density. In short, any successfully trained JEPA can be used to get sample probabilities, e.g., for data curation, outlier detection, or simply for density estimation. Our theoretical finding is agnostic of the dataset and architecture used--in any case one can compute the learned probabilities of sample $x$ efficiently and in closed-form using the model's Jacobian matrix at $x$. Our findings are empirically validated across datasets (synthetic, controlled, and Imagenet) and across different Self Supervised Learning methods falling under the JEPA family (I-JEPA and DINOv2) and on multimodal models, such as MetaCLIP. We denote the method extracting the JEPA learned density as {\bf JEPA-SCORE}.
☆ N-Parties Private Structure and Parameter Learning for Sum-Product Networks
A sum-product network (SPN) is a graphical model that allows several types of probabilistic inference to be performed efficiently. In this paper, we propose a privacy-preserving protocol which tackles structure generation and parameter learning of SPNs. Additionally, we provide a protocol for private inference on SPNs, subsequent to training. To preserve the privacy of the participants, we derive our protocol based on secret sharing, which guarantees privacy in the honest-but-curious setting even when at most half of the parties cooperate to disclose the data. The protocol makes use of a forest of randomly generated SPNs, which is trained and weighted privately and can then be used for private inference on data points. Our experiments indicate that preserving the privacy of all participants does not decrease log-likelihood performance on both homogeneously and heterogeneously partitioned data. We furthermore show that our protocol's performance is comparable to current state-of-the-art SPN learners in homogeneously partitioned data settings. In terms of runtime and memory usage, we demonstrate that our implementation scales well when increasing the number of parties, comparing favorably to protocols for neural networks, when they are trained to reproduce the input-output behavior of SPNs.
☆ EARL: Efficient Agentic Reinforcement Learning Systems for Large Language Models
Reinforcement learning (RL) has become a pivotal component of large language model (LLM) post-training, and agentic RL extends this paradigm to operate as agents through multi-turn interaction and tool use. Scaling such systems exposes two practical bottlenecks: (1) context length grows rapidly during training, inflating memory usage and latency, and triggering out-of-memory (OOM) failures; and (2) intermediate tensors accumulate with context length, making cross-device data movement a major system bottleneck. We present EARL, a scalable system for efficient agentic RL. EARL designs a parallelism selector that dynamically adapts model and training parallelism across RL stages based on sequence length and system load, and a data dispatcher that performs layout-aware, decentralized exchange of intermediate data batches. Together, these components increase throughput, reduce long-context failures, and enable stable large-scale training of agentic LLMs without relying on hard limits or penalties of context length.
☆ LLM-FS-Agent: A Deliberative Role-based Large Language Model Architecture for Transparent Feature Selection
High-dimensional data remains a pervasive challenge in machine learning, often undermining model interpretability and computational efficiency. While Large Language Models (LLMs) have shown promise for dimensionality reduction through feature selection, existing LLM-based approaches frequently lack structured reasoning and transparent justification for their decisions. This paper introduces LLM-FS-Agent, a novel multi-agent architecture designed for interpretable and robust feature selection. The system orchestrates a deliberative "debate" among multiple LLM agents, each assigned a specific role, enabling collective evaluation of feature relevance and generation of detailed justifications. We evaluate LLM-FS-Agent in the cybersecurity domain using the CIC-DIAD 2024 IoT intrusion detection dataset and compare its performance against strong baselines, including LLM-Select and traditional methods such as PCA. Experimental results demonstrate that LLM-FS-Agent consistently achieves superior or comparable classification performance while reducing downstream training time by an average of 46% (statistically significant improvement, p = 0.028 for XGBoost). These findings highlight that the proposed deliberative architecture enhances both decision transparency and computational efficiency, establishing LLM-FS-Agent as a practical and reliable solution for real-world applications.
☆ Carré du champ flow matching: better quality-generalisation tradeoff in generative models
Deep generative models often face a fundamental tradeoff: high sample quality can come at the cost of memorisation, where the model reproduces training data rather than generalising across the underlying data geometry. We introduce Carr\'e du champ flow matching (CDC-FM), a generalisation of flow matching (FM), that improves the quality-generalisation tradeoff by regularising the probability path with a geometry-aware noise. Our method replaces the homogeneous, isotropic noise in FM with a spatially varying, anisotropic Gaussian noise whose covariance captures the local geometry of the latent data manifold. We prove that this geometric noise can be optimally estimated from the data and is scalable to large data. Further, we provide an extensive experimental evaluation on diverse datasets (synthetic manifolds, point clouds, single-cell genomics, animal motion capture, and images) as well as various neural network architectures (MLPs, CNNs, and transformers). We demonstrate that CDC-FM consistently offers a better quality-generalisation tradeoff. We observe significant improvements over standard FM in data-scarce regimes and in highly non-uniformly sampled datasets, which are often encountered in AI for science applications. Our work provides a mathematical framework for studying the interplay between data geometry, generalisation and memorisation in generative models, as well as a robust and scalable algorithm that can be readily integrated into existing flow matching pipelines.
☆ Prompt reinforcing for long-term planning of large language models
Large language models (LLMs) have achieved remarkable success in a wide range of natural language processing tasks and can be adapted through prompting. However, they remain suboptimal in multi-turn interactions, often relying on incorrect early assumptions and failing to track user goals over time, which makes such tasks particularly challenging. Prior works in dialogue systems have shown that long-term planning is essential for handling interactive tasks. In this work, we propose a prompt optimisation framework inspired by reinforcement learning, which enables such planning to take place by only modifying the task instruction prompt of the LLM-based agent. By generating turn-by-turn feedback and leveraging experience replay for prompt rewriting, our proposed method shows significant improvement in multi-turn tasks such as text-to-SQL and task-oriented dialogue. Moreover, it generalises across different LLM-based agents and can leverage diverse LLMs as meta-prompting agents. This warrants future research in reinforcement learning-inspired parameter-free optimisation methods.
☆ An Attention-Augmented VAE-BiLSTM Framework for Anomaly Detection in 12-Lead ECG Signals
Anomaly detection in 12-lead electrocardiograms (ECGs) is critical for identifying deviations associated with cardiovascular disease. This work presents a comparative analysis of three autoencoder-based architectures: convolutional autoencoder (CAE), variational autoencoder with bidirectional long short-term memory (VAE-BiLSTM), and VAE-BiLSTM with multi-head attention (VAE-BiLSTM-MHA), for unsupervised anomaly detection in ECGs. To the best of our knowledge, this study reports the first application of a VAE-BiLSTM-MHA architecture to ECG anomaly detection. All models are trained on normal ECG samples to reconstruct non-anomalous cardiac morphology and detect deviations indicative of disease. Using a unified preprocessing and evaluation pipeline on the public China Physiological Signal Challenge (CPSC) dataset, the attention-augmented VAE achieves the best performance, with an AUPRC of 0.81 and a recall of 0.85 on the held-out test set, outperforming the other architectures. To support clinical triage, this model is further integrated into an interactive dashboard that visualizes anomaly localization. In addition, a performance comparison with baseline models from the literature is provided.
comment: 14 pages, 11 figures
☆ Kaputt: A Large-Scale Dataset for Visual Defect Detection ICCV 2025
We present a novel large-scale dataset for defect detection in a logistics setting. Recent work on industrial anomaly detection has primarily focused on manufacturing scenarios with highly controlled poses and a limited number of object categories. Existing benchmarks like MVTec-AD [6] and VisA [33] have reached saturation, with state-of-the-art methods achieving up to 99.9% AUROC scores. In contrast to manufacturing, anomaly detection in retail logistics faces new challenges, particularly in the diversity and variability of object pose and appearance. Leading anomaly detection methods fall short when applied to this new setting. To bridge this gap, we introduce a new benchmark that overcomes the current limitations of existing datasets. With over 230,000 images (and more than 29,000 defective instances), it is 40 times larger than MVTec-AD and contains more than 48,000 distinct objects. To validate the difficulty of the problem, we conduct an extensive evaluation of multiple state-of-the-art anomaly detection methods, demonstrating that they do not surpass 56.96% AUROC on our dataset. Further qualitative analysis confirms that existing methods struggle to leverage normal samples under heavy pose and appearance variation. With our large-scale dataset, we set a new benchmark and encourage future research towards solving this challenging problem in retail logistics anomaly detection. The dataset is available for download under https://www.kaputt-dataset.com.
comment: Accepted to ICCV 2025
☆ Paying Attention to Hybrid Attention: Untangling the Issues with Conversion Methods
Transformers' quadratic computational complexity limits their scalability despite remarkable performance. While linear attention reduces this to linear complexity, pre-training such models from scratch remains, in most cases, prohibitively expensive. Recent post-training linearisation methods convert pre-trained Transformers to linear models efficiently, often using hybrid approaches that combine linear attention with sliding-window softmax. We identify a critical flaw: existing hybrid methods inadvertently bypass the linear component, relying almost entirely on SWA. Component-level diagnostics reveal this previously undetected behaviour stems from overlooked evaluation practices on common-sense benchmarks. We propose three solutions to ensure balanced component usage: (i) inference-time hybridisation of linear-only conversions with sliding-window softmax; (ii) HedgeCATs, combining attention-weight transfer with targeted LoRA fine-tuning; and (iii) Scheduled Sliding-window Dropout (SSD), which stochastically suppresses the softmax branch during training to prevent component collapse. Our methods maintain computational efficiency while recovering most base model performance and ensuring genuine linear attention adoption, restoring the validity of performance attributions in hybrid conversions.
☆ Segment-Factorized Full-Song Generation on Symbolic Piano Music NeurIPS 2025
We propose the Segmented Full-Song Model (SFS) for symbolic full-song generation. The model accepts a user-provided song structure and an optional short seed segment that anchors the main idea around which the song is developed. By factorizing a song into segments and generating each one through selective attention to related segments, the model achieves higher quality and efficiency compared to prior work. To demonstrate its suitability for human-AI interaction, we further wrap SFS into a web application that enables users to iteratively co-create music on a piano roll with customizable structures and flexible ordering.
comment: Accepted to the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI for Music
☆ OBSR: Open Benchmark for Spatial Representations SP
GeoAI is evolving rapidly, fueled by diverse geospatial datasets like traffic patterns, environmental data, and crowdsourced OpenStreetMap (OSM) information. While sophisticated AI models are being developed, existing benchmarks are often concentrated on single tasks and restricted to a single modality. As such, progress in GeoAI is limited by the lack of a standardized, multi-task, modality-agnostic benchmark for their systematic evaluation. This paper introduces a novel benchmark designed to assess the performance, accuracy, and efficiency of geospatial embedders. Our benchmark is modality-agnostic and comprises 7 distinct datasets from diverse cities across three continents, ensuring generalizability and mitigating demographic biases. It allows for the evaluation of GeoAI embedders on various phenomena that exhibit underlying geographic processes. Furthermore, we establish a simple and intuitive task-oriented model baselines, providing a crucial reference point for comparing more complex solutions.
comment: ACM SIGSPATIAL 2025 Full Paper
☆ MaNGO - Adaptable Graph Network Simulators via Meta-Learning NeurIPS 2025
Accurately simulating physics is crucial across scientific domains, with applications spanning from robotics to materials science. While traditional mesh-based simulations are precise, they are often computationally expensive and require knowledge of physical parameters, such as material properties. In contrast, data-driven approaches like Graph Network Simulators (GNSs) offer faster inference but suffer from two key limitations: Firstly, they must be retrained from scratch for even minor variations in physical parameters, and secondly they require labor-intensive data collection for each new parameter setting. This is inefficient, as simulations with varying parameters often share a common underlying latent structure. In this work, we address these challenges by learning this shared structure through meta-learning, enabling fast adaptation to new physical parameters without retraining. To this end, we propose a novel architecture that generates a latent representation by encoding graph trajectories using conditional neural processes (CNPs). To mitigate error accumulation over time, we combine CNPs with a novel neural operator architecture. We validate our approach, Meta Neural Graph Operator (MaNGO), on several dynamics prediction tasks with varying material properties, demonstrating superior performance over existing GNS methods. Notably, MaNGO achieves accuracy on unseen material properties close to that of an oracle model.
comment: 19 pages including appendix. NeurIPS 2025 (preprint version)
☆ Towards Label-Free Biological Reasoning Synthetic Dataset Creation via Uncertainty Filtering
Synthetic chain-of-thought (CoT) traces are widely used to train large reasoning models (LRMs), improving generalization by providing step-level supervision. Yet most approaches require ground-truth labels to seed or filter these traces - an expensive bottleneck in domains like biology where wet-lab data are scarce. We propose a label-free alternative: uncertainty-based filtering, which uses a model's own confidence - quantified through established uncertainty metrics like self-consistency and predictive perplexity - as a substitute for external labels. We sample multiple reasoning traces and retain only low-uncertainty subsets. Applied to biological perturbation prediction, a domain where wet-lab labels are especially costly, we show that the filtered subset has higher accuracy, and that supervised fine-tuning (SFT) on uncertainty-filtered data outperforms unfiltered synthetic data, narrows the gap to ground-truth training, and surpasses strong LRM baselines. Ablations show that per-class filtering corrects for class-specific uncertainty scales and that hybrid uncertainty metrics yield higher-quality datasets. Our results suggest that model-internal confidence is a powerful signal for efficient reasoning dataset creation, enabling LRMs in domains where supervision is expensive.
☆ DACP: Domain-Adaptive Continual Pre-Training of Large Language Models for Phone Conversation Summarization EMNLP 2025
Large language models (LLMs) have achieved impressive performance in text summarization, yet their performance often falls short when applied to specialized domains %or conversational data that differ from their original pre-training distribution. While fine-tuning can improve summarization quality, it typically relies on costly and scarce high-quality labeled data. In this work, we explore continual pre-training as a scalable, self-supervised approach to adapt LLMs for downstream summarization tasks, particularly in the context of noisy real-world conversation transcripts. We conduct extensive experiments using large-scale, unlabeled business conversation data to investigate whether continual pre-training enhances model capabilities in conversational summarization. Our results demonstrate that continual pre-training yields substantial gains in both in-domain and out-of-domain summarization benchmarks, while maintaining strong generalization and robustness. We also analyze the effects of data selection strategies, providing practical guidelines for applying continual pre-training in summarization-focused industrial applications.
comment: Accepted to the NewSumm Workshop at EMNLP 2025
☆ How to model Human Actions distribution with Event Sequence Data
This paper studies forecasting of the future distribution of events in human action sequences, a task essential in domains like retail, finance, healthcare, and recommendation systems where the precise temporal order is often less critical than the set of outcomes. We challenge the dominant autoregressive paradigm and investigate whether explicitly modeling the future distribution or order-invariant multi-token approaches outperform order-preserving methods. We analyze local order invariance and introduce a KL-based metric to quantify temporal drift. We find that a simple explicit distribution forecasting objective consistently surpasses complex implicit baselines. We further demonstrate that mode collapse of predicted categories is primarily driven by distributional imbalance. This work provides a principled framework for selecting modeling strategies and offers practical guidance for building more accurate and robust forecasting systems.
comment: 9 pages main text + 2 pages references + 6 pages appendix, 10 figures, 3 tables. Preprint version
☆ ESS-Flow: Training-free guidance of flow-based models as inference in source space
Guiding pretrained flow-based generative models for conditional generation or to produce samples with desired target properties enables solving diverse tasks without retraining on paired data. We present ESS-Flow, a gradient-free method that leverages the typically Gaussian prior of the source distribution in flow-based models to perform Bayesian inference directly in the source space using Elliptical Slice Sampling. ESS-Flow only requires forward passes through the generative model and observation process, no gradient or Jacobian computations, and is applicable even when gradients are unreliable or unavailable, such as with simulation-based observations or quantization in the generation or observation process. We demonstrate its effectiveness on designing materials with desired target properties and predicting protein structures from sparse inter-residue distance measurements.
comment: 14 pages, 12 figures. Code will be made available after publication
Multimodal Trajectory Representation Learning for Travel Time Estimation
Accurate travel time estimation (TTE) plays a crucial role in intelligent transportation systems. However, it remains challenging due to heterogeneous data sources and complex traffic dynamics. Moreover, conventional approaches typically convert trajectories into fixed-length representations, neglecting the inherent variability of real-world trajectories, which often leads to information loss or feature redundancy. To address these challenges, this paper introduces the Multimodal Dynamic Trajectory Integration (MDTI) framework--a novel multimodal trajectory representation learning approach that integrates GPS sequences, grid trajectories, and road network constraints to enhance TTE accuracy. MDTI employs modality-specific encoders and a cross-modal interaction module to capture complementary spatial, temporal, and topological semantics, while a dynamic trajectory modeling mechanism adaptively regulates information density for trajectories of varying lengths. Two self-supervised pretraining objectives, named contrastive alignment and masked language modeling, further strengthen multimodal consistency and contextual understanding. Extensive experiments on three real-world datasets demonstrate that MDTI consistently outperforms state-of-the-art baselines, confirming its robustness and strong generalization abilities. The code is publicly available at: https://github.com/freshhxy/MDTI/
☆ FoleyGRAM: Video-to-Audio Generation with GRAM-Aligned Multimodal Encoders IJCNN 2025
In this work, we present FoleyGRAM, a novel approach to video-to-audio generation that emphasizes semantic conditioning through the use of aligned multimodal encoders. Building on prior advancements in video-to-audio generation, FoleyGRAM leverages the Gramian Representation Alignment Measure (GRAM) to align embeddings across video, text, and audio modalities, enabling precise semantic control over the audio generation process. The core of FoleyGRAM is a diffusion-based audio synthesis model conditioned on GRAM-aligned embeddings and waveform envelopes, ensuring both semantic richness and temporal alignment with the corresponding input video. We evaluate FoleyGRAM on the Greatest Hits dataset, a standard benchmark for video-to-audio models. Our experiments demonstrate that aligning multimodal encoders using GRAM enhances the system's ability to semantically align generated audio with video content, advancing the state of the art in video-to-audio synthesis.
comment: Acepted at IJCNN 2025
☆ StereoSync: Spatially-Aware Stereo Audio Generation from Video IJCNN 2025
Although audio generation has been widely studied over recent years, video-aligned audio generation still remains a relatively unexplored frontier. To address this gap, we introduce StereoSync, a novel and efficient model designed to generate audio that is both temporally synchronized with a reference video and spatially aligned with its visual context. Moreover, StereoSync also achieves efficiency by leveraging pretrained foundation models, reducing the need for extensive training while maintaining high-quality synthesis. Unlike existing methods that primarily focus on temporal synchronization, StereoSync introduces a significant advancement by incorporating spatial awareness into video-aligned audio generation. Indeed, given an input video, our approach extracts spatial cues from depth maps and bounding boxes, using them as cross-attention conditioning in a diffusion-based audio generation model. Such an approach allows StereoSync to go beyond simple synchronization, producing stereo audio that dynamically adapts to the spatial structure and movement of a video scene. We evaluate StereoSync on Walking The Maps, a curated dataset comprising videos from video games that feature animated characters walking through diverse environments. Experimental results demonstrate the ability of StereoSync to achieve both temporal and spatial alignment, advancing the state of the art in video-to-audio generation and resulting in a significantly more immersive and realistic audio experience.
comment: Accepted at IJCNN 2025
☆ Mitigating Premature Exploitation in Particle-based Monte Carlo for Inference-Time Scaling
Inference-Time Scaling (ITS) improves language models by allocating more computation at generation time. Particle Filtering (PF) has emerged as a strong ITS method for complex mathematical reasoning tasks, but it is vulnerable when guided by process reward models, which often assign overconfident scores early in the reasoning process. This causes PF to suffer from premature exploitation: it myopically commits to locally promising trajectories, prunes potentially correct hypotheses, and converges to suboptimal solutions. This failure mode, known as particle impoverishment, is especially severe under constrained computational budgets. To address this, we analyze the problem and identify two root causes: a lack of diversity in the particle set due to overconfident resampling and consequent inability to assess the potential of a reasoning path. We introduce Entropic Particle Filtering (ePF), an algorithm that integrates two new techniques to solve these issues. The first technique, Entropic Annealing (EA), directly mitigates particle impoverishment by monitoring search diversity via entropy; when diversity drops, it intervenes by dynamically annealing the resampling distribution to preserve exploration. The second, an enhancement called Look-ahead Modulation (LaM), adds a predictive guide to evaluate a state's potential based on its successors. On several challenging math benchmarks, ePF significantly outperforms strong baselines and achieves up to a 50 % relative improvement in task reward. Together, these methods improve PF's resilience by balancing the exploration of diverse solution spaces with the exploitation of high-reward regions, ultimately leading to higher-quality solutions.
☆ Improving Clinical Dataset Condensation with Mode Connectivity-based Trajectory Surrogates AISTATS 2026
Dataset condensation (DC) enables the creation of compact, privacy-preserving synthetic datasets that can match the utility of real patient records, supporting democratised access to highly regulated clinical data for developing downstream clinical models. State-of-the-art DC methods supervise synthetic data by aligning the training dynamics of models trained on real and those trained on synthetic data, typically using full stochastic gradient descent (SGD) trajectories as alignment targets; however, these trajectories are often noisy, high-curvature, and storage-intensive, leading to unstable gradients, slow convergence, and substantial memory overhead. We address these limitations by replacing full SGD trajectories with smooth, low-loss parametric surrogates, specifically quadratic B\'ezier curves that connect the initial and final model states from real training trajectories. These mode-connected paths provide noise-free, low-curvature supervision signals that stabilise gradients, accelerate convergence, and eliminate the need for dense trajectory storage. We theoretically justify B\'ezier-mode connections as effective surrogates for SGD paths and empirically show that the proposed method outperforms state-of-the-art condensation approaches across five clinical datasets, yielding condensed datasets that enable clinically effective model development.
comment: 20 pages, 4 figures, Submitted to AISTATS 2026
☆ Mellum: Production-Grade in-IDE Contextual Code Completion with Multi-File Project Understanding
We present the Mellum models family, open-weight code completion models designed for interactive use in JetBrains IDEs. Mellums have 4B parameters, adopt a Llama-style architecture, and are pre-trained on ~4T tokens of permissively licensed, multi-language code. Our studies show that (i) careful data curation and staged training significantly improve the model's quality, (ii) editor-critical capabilities such as context packing are necessary for high-quality suggestions, and (iii) a compact, task-focused model can meet the cost and latency constraints of interactive completion. In the paper, we describe an end-to-end industrial pipeline for producing contextualized in-editor completion: disciplined data governance, multi-stage training that includes fill-in-the-middle and project context via supervised fine-tuning, and alignment via direct preference optimization using feedback from real-world scenarios. Our quality evaluations include both large-scale offline benchmarks and online telemetry from production deployments in JetBrains IDEs. Mellums are released under the Apache-2.0 license on HuggingFace, with a public model card providing a reproducible reference for practitioners. Our experience offers a pragmatic blueprint for taking a focused, open model from a research prototype to at scale production for hundreds of thousands of users.
comment: 11 pages, 4 figures, 3 tables
☆ Möbius transforms and Shapley values for vector-valued functions on weighted directed acyclic multigraphs
We generalize the concept of M\"obius inversion and Shapley values to directed acyclic multigraphs and weighted versions thereof. We further allow value functions (games) and thus their M\"obius transforms (synergy function) and Shapley values to have values in any abelian group that is a module over a ring that contains the graph weights, e.g. vector-valued functions. To achieve this and overcome the obstruction that the classical axioms (linearity, efficiency, null player, symmetry) are not strong enough to uniquely determine Shapley values in this more general setting, we analyze Shapley values from two novel points of view: 1) We introduce projection operators that allow us to interpret Shapley values as the recursive projection and re-attribution of higher-order synergies to lower-order ones; 2) we propose a strengthening of the null player axiom and a localized symmetry axiom, namely the weak elements and flat hierarchy axioms. The former allows us to remove coalitions with vanishing synergy while preserving the rest of the hierarchical structure. The latter treats player-coalition bonds uniformly in the corner case of hierarchically flat graphs. Together with linearity these axioms already imply a unique explicit formula for the Shapley values, as well as classical properties like efficiency, null player, symmetry, and novel ones like the projection property. This whole framework then specializes to finite inclusion algebras, lattices, partial orders and mereologies, and also recovers certain previously known cases as corner cases, and presents others from a new perspective. The admission of general weighted directed acyclic multigraph structured hierarchies and vector-valued functions and Shapley values opens up the possibility for new analytic tools and application areas, like machine learning, language processing, explainable artificial intelligence, and many more.
comment: 43 pages, 2 figures
☆ DP-SNP-TIHMM: Differentially Private, Time-Inhomogeneous Hidden Markov Models for Synthesizing Genome-Wide Association Datasets
Single nucleotide polymorphism (SNP) datasets are fundamental to genetic studies but pose significant privacy risks when shared. The correlation of SNPs with each other makes strong adversarial attacks such as masked-value reconstruction, kin, and membership inference attacks possible. Existing privacy-preserving approaches either apply differential privacy to statistical summaries of these datasets or offer complex methods that require post-processing and the usage of a publicly available dataset to suppress or selectively share SNPs. In this study, we introduce an innovative framework for generating synthetic SNP sequence datasets using samples derived from time-inhomogeneous hidden Markov models (TIHMMs). To preserve the privacy of the training data, we ensure that each SNP sequence contributes only a bounded influence during training, enabling strong differential privacy guarantees. Crucially, by operating on full SNP sequences and bounding their gradient contributions, our method directly addresses the privacy risks introduced by their inherent correlations. Through experiments conducted on the real-world 1000 Genomes dataset, we demonstrate the efficacy of our method using privacy budgets of $\varepsilon \in [1, 10]$ at $\delta=10^{-4}$. Notably, by allowing the transition models of the HMM to be dependent on the location in the sequence, we significantly enhance performance, enabling the synthetic datasets to closely replicate the statistical properties of non-private datasets. This framework facilitates the private sharing of genomic data while offering researchers exceptional flexibility and utility.
☆ Transcribing Rhythmic Patterns of the Guitar Track in Polyphonic Music SP
Whereas chord transcription has received considerable attention during the past couple of decades, far less work has been devoted to transcribing and encoding the rhythmic patterns that occur in a song. The topic is especially relevant for instruments such as the rhythm guitar, which is typically played by strumming rhythmic patterns that repeat and vary over time. However, in many cases one cannot objectively define a single "right" rhythmic pattern for a given song section. To create a dataset with well-defined ground-truth labels, we asked expert musicians to transcribe the rhythmic patterns in 410 popular songs and record cover versions where the guitar tracks followed those transcriptions. To transcribe the strums and their corresponding rhythmic patterns, we propose a three-step framework. Firstly, we perform approximate stem separation to extract the guitar part from the polyphonic mixture. Secondly, we detect individual strums within the separated guitar audio, using a pre-trained foundation model (MERT) as a backbone. Finally, we carry out a pattern-decoding process in which the transcribed sequence of guitar strums is represented by patterns drawn from an expert-curated vocabulary. We show that it is possible to transcribe the rhythmic patterns of the guitar track in polyphonic music with quite high accuracy, producing a representation that is human-readable and includes automatically detected bar lines and time signature markers. We perform ablation studies and error analysis and propose a set of evaluation metrics to assess the accuracy and readability of the predicted rhythmic pattern sequence.
comment: Accepted to WASPAA 2025
☆ Empirical Comparison of Membership Inference Attacks in Deep Transfer Learning
With the emergence of powerful large-scale foundation models, the training paradigm is increasingly shifting from from-scratch training to transfer learning. This enables high utility training with small, domain-specific datasets typical in sensitive applications.Membership inference attacks (MIAs) provide an empirical estimate of the privacy leakage by machine learning models. Yet, prior assessments of MIAs against models fine-tuned with transfer learning rely on a small subset of possible attacks. We address this by comparing performance of diverse MIAs in transfer learning settings to help practitioners identify the most efficient attacks for privacy risk evaluation. We find that attack efficacy decreases with the increase in training data for score-based MIAs. We find that there is no one MIA which captures all privacy risks in models trained with transfer learning. While the Likelihood Ratio Attack (LiRA) demonstrates superior performance across most experimental scenarios, the Inverse Hessian Attack (IHA) proves to be more effective against models fine-tuned on PatchCamelyon dataset in high data regime.
comment: 30 pages, 13 figures, published in TMLR https://openreview.net/forum?id=UligTUCgdt
☆ Uncertainty assessment in satellite-based greenhouse gas emissions estimates using emulated atmospheric transport
Monitoring greenhouse gas emissions and evaluating national inventories require efficient, scalable, and reliable inference methods. Top-down approaches, combined with recent advances in satellite observations, provide new opportunities to evaluate emissions at continental and global scales. However, transport models used in these methods remain a key source of uncertainty: they are computationally expensive to run at scale, and their uncertainty is difficult to characterise. Artificial intelligence offers a dual opportunity to accelerate transport simulations and to quantify their associated uncertainty. We present an ensemble-based pipeline for estimating atmospheric transport "footprints", greenhouse gas mole fraction measurements, and their uncertainties using a graph neural network emulator of a Lagrangian Particle Dispersion Model (LPDM). The approach is demonstrated with GOSAT (Greenhouse Gases Observing Satellite) observations for Brazil in 2016. The emulator achieved a ~1000x speed-up over the NAME LPDM, while reproducing large-scale footprint structures. Ensembles were calculated to quantify absolute and relative uncertainty, revealing spatial correlations with prediction error. The results show that ensemble spread highlights low-confidence spatial and temporal predictions for both atmospheric transport footprints and methane mole fractions. While demonstrated here for an LPDM emulator, the approach could be applied more generally to atmospheric transport models, supporting uncertainty-aware greenhouse gas inversion systems and improving the robustness of satellite-based emissions monitoring. With further development, ensemble-based emulators could also help explore systematic LPDM errors, offering a computationally efficient pathway towards a more comprehensive uncertainty budget in greenhouse gas flux estimates.
☆ Are Heterogeneous Graph Neural Networks Truly Effective? A Causal Perspective
Graph neural networks (GNNs) have achieved remarkable success in node classification. Building on this progress, heterogeneous graph neural networks (HGNNs) integrate relation types and node and edge semantics to leverage heterogeneous information. Causal analysis for HGNNs is advancing rapidly, aiming to separate genuine causal effects from spurious correlations. However, whether HGNNs are intrinsically effective remains underexamined, and most studies implicitly assume rather than establish this effectiveness. In this work, we examine HGNNs from two perspectives: model architecture and heterogeneous information. We conduct a systematic reproduction across 21 datasets and 20 baselines, complemented by comprehensive hyperparameter retuning. To further disentangle the source of performance gains, we develop a causal effect estimation framework that constructs and evaluates candidate factors under standard assumptions through factual and counterfactual analyses, with robustness validated via minimal sufficient adjustment sets, cross-method consistency checks, and sensitivity analyses. Our results lead to two conclusions. First, model architecture and complexity have no causal effect on performance. Second, heterogeneous information exerts a positive causal effect by increasing homophily and local-global distribution discrepancy, which makes node classes more distinguishable. The implementation is publicly available at https://github.com/YXNTU/CausalHGNN.
☆ Communication Enables Cooperation in LLM Agents: A Comparison with Curriculum-Based Approaches
Eliciting cooperation in multi-agent LLM systems is critical for AI alignment. We investigate two approaches: direct communication and curriculum learning. In a 4-player Stag Hunt, a one-word "cheap talk" channel increases cooperation from 0% to 48.3%, demonstrating communication as a robust coordination mechanism. In contrast, we find that curriculum learning is highly sensitive to design choices: our pedagogical curriculum through progressively complex games reduced agent payoffs by 27.4% in an Iterated Public Goods Game with Punishment. Qualitative analysis reveals that curricula emphasizing defection-equilibrium games can induce "learned pessimism" in agents. These findings suggest that for coordination problems, simple communication protocols may be more reliable than experience-based training, and that curriculum design for social dilemmas requires careful attention to the strategic lessons embedded in game sequences.
☆ ARM: Discovering Agentic Reasoning Modules for Generalizable Multi-Agent Systems
Large Language Model (LLM)-powered Multi-agent systems (MAS) have achieved state-of-the-art results on various complex reasoning tasks. Recent works have proposed techniques to automate the design of MASes, eliminating the need for manual engineering. However, these techniques perform poorly, often achieving similar or inferior performance to simple baselines. Furthermore, they require computationally expensive re-discovery of architectures for each new task domain and expensive data annotation on domains without existing labeled validation sets. A critical insight is that simple Chain of Thought (CoT) reasoning often performs competitively with these complex systems, suggesting that the fundamental reasoning unit of MASes, CoT, warrants further investigation. To this end, we present a new paradigm for automatic MAS design that pivots the focus to optimizing CoT reasoning. We introduce the Agentic Reasoning Module (ARM), an agentic generalization of CoT where each granular reasoning step is executed by a specialized reasoning module. This module is discovered through a tree search over the code space, starting from a simple CoT module and evolved using mutations informed by reflection on execution traces. The resulting ARM acts as a versatile reasoning building block which can be utilized as a direct recursive loop or as a subroutine in a learned meta-orchestrator. Our approach significantly outperforms both manually designed MASes and state-of-the-art automatic MAS design methods. Crucially, MASes built with ARM exhibit superb generalization, maintaining high performance across different foundation models and task domains without further optimization.
comment: 29 pages, 2 figures
☆ Improving Discrete Diffusion Unmasking Policies Beyond Explicit Reference Policies
Masked diffusion models (MDMs) have recently emerged as a novel framework for language modeling. MDMs generate sentences by iteratively denoising masked sequences, filling in [MASK] tokens step by step. Although MDMs support any-order sampling, performance is highly sensitive to the choice of which position to unmask next. Prior work typically relies on rule-based schedules (e.g., max-confidence, max-margin), which provide ad hoc improvements. In contrast, we replace these heuristics with a learned scheduler. Specifically, we cast denoising as a KL-regularized Markov decision process (MDP) with an explicit reference policy and optimize a regularized objective that admits policy improvement and convergence guarantees under standard assumptions. We prove that the optimized policy under this framework generates samples that more closely match the data distribution than heuristic schedules. Empirically, across four benchmarks, our learned policy consistently outperforms max-confidence: for example, on SUDOKU, where unmasking order is critical, it yields a 20.1% gain over random and a 11.2% gain over max-confidence.
comment: Preprint
☆ Neighborhood-Adaptive Generalized Linear Graph Embedding with Latent Pattern Mining
Graph embedding has been widely applied in areas such as network analysis, social network mining, recommendation systems, and bioinformatics. However, current graph construction methods often require the prior definition of neighborhood size, limiting the effective revelation of potential structural correlations in the data. Additionally, graph embedding methods using linear projection heavily rely on a singular pattern mining approach, resulting in relative weaknesses in adapting to different scenarios. To address these challenges, we propose a novel model, Neighborhood-Adaptive Generalized Linear Graph Embedding (NGLGE), grounded in latent pattern mining. This model introduces an adaptive graph learning method tailored to the neighborhood, effectively revealing intrinsic data correlations. Simultaneously, leveraging a reconstructed low-rank representation and imposing $\ell_{2,0}$ norm constraint on the projection matrix allows for flexible exploration of additional pattern information. Besides, an efficient iterative solving algorithm is derived for the proposed model. Comparative evaluations on datasets from diverse scenarios demonstrate the superior performance of our model compared to state-of-the-art methods.
☆ DiffSDA: Unsupervised Diffusion Sequential Disentanglement Across Modalities
Unsupervised representation learning, particularly sequential disentanglement, aims to separate static and dynamic factors of variation in data without relying on labels. This remains a challenging problem, as existing approaches based on variational autoencoders and generative adversarial networks often rely on multiple loss terms, complicating the optimization process. Furthermore, sequential disentanglement methods face challenges when applied to real-world data, and there is currently no established evaluation protocol for assessing their performance in such settings. Recently, diffusion models have emerged as state-of-the-art generative models, but no theoretical formalization exists for their application to sequential disentanglement. In this work, we introduce the Diffusion Sequential Disentanglement Autoencoder (DiffSDA), a novel, modal-agnostic framework effective across diverse real-world data modalities, including time series, video, and audio. DiffSDA leverages a new probabilistic modeling, latent diffusion, and efficient samplers, while incorporating a challenging evaluation protocol for rigorous testing. Our experiments on diverse real-world benchmarks demonstrate that DiffSDA outperforms recent state-of-the-art methods in sequential disentanglement.
☆ Stable Robot Motions on Manifolds: Learning Lyapunov-Constrained Neural Manifold ODEs
Learning stable dynamical systems from data is crucial for safe and reliable robot motion planning and control. However, extending stability guarantees to trajectories defined on Riemannian manifolds poses significant challenges due to the manifold's geometric constraints. To address this, we propose a general framework for learning stable dynamical systems on Riemannian manifolds using neural ordinary differential equations. Our method guarantees stability by projecting the neural vector field evolving on the manifold so that it strictly satisfies the Lyapunov stability criterion, ensuring stability at every system state. By leveraging a flexible neural parameterisation for both the base vector field and the Lyapunov function, our framework can accurately represent complex trajectories while respecting manifold constraints by evolving solutions directly on the manifold. We provide an efficient training strategy for applying our framework and demonstrate its utility by solving Riemannian LASA datasets on the unit quaternion (S^3) and symmetric positive-definite matrix manifolds, as well as robotic motions evolving on \mathbb{R}^3 \times S^3. We demonstrate the performance, scalability, and practical applicability of our approach through extensive simulations and by learning robot motions in a real-world experiment.
comment: 12 pages, 6 figures
☆ Primal-Dual Direct Preference Optimization for Constrained LLM Alignment
The widespread application of Large Language Models (LLMs) imposes increasing demands on safety, such as reducing harmful content and fake information, and avoiding certain forbidden tokens due to rules and laws. While there have been several recent works studying safe alignment of LLMs, these works either require the training of reward and cost models and incur high memory and computational costs, or need prior knowledge about the optimal solution. Motivated by this fact, we study the problem of constrained alignment in LLMs, i.e., maximizing the output reward while restricting the cost due to potentially unsafe content to stay below a threshold. For this problem, we propose a novel primal-dual DPO approach, which first trains a model using standard DPO on reward preference data to provide reward information, and then adopts a rearranged Lagrangian DPO objective utilizing the provided reward information to fine-tune LLMs on cost preference data. Our approach significantly reduces memory and computational costs, and does not require extra prior knowledge. Moreover, we establish rigorous theoretical guarantees on the suboptimality and constraint violation of the output policy. We also extend our approach to an online data setting by incorporating exploration bonuses, which enables our approach to explore uncovered prompt-response space, and then provide theoretical results that get rid of the dependence on preference data coverage. Experimental results on the widely-used preference dataset PKU-SafeRLHF demonstrate the effectiveness of our approach.
☆ Sparse deepfake detection promotes better disentanglement
Due to the rapid progress of speech synthesis, deepfake detection has become a major concern in the speech processing community. Because it is a critical task, systems must not only be efficient and robust, but also provide interpretable explanations. Among the different approaches for explainability, we focus on the interpretation of latent representations. In such paper, we focus on the last layer of embeddings of AASIST, a deepfake detection architecture. We use a TopK activation inspired by SAEs on this layer to obtain sparse representations which are used in the decision process. We demonstrate that sparse deepfake detection can improve detection performance, with an EER of 23.36% on ASVSpoof5 test set, with 95% of sparsity. We then show that these representations provide better disentanglement, using completeness and modularity metrics based on mutual information. Notably, some attacks are directly encoded in the latent space.
☆ Oracle-Guided Masked Contrastive Reinforcement Learning for Visuomotor Policies
A prevailing approach for learning visuomotor policies is to employ reinforcement learning to map high-dimensional visual observations directly to action commands. However, the combination of high-dimensional visual inputs and agile maneuver outputs leads to long-standing challenges, including low sample efficiency and significant sim-to-real gaps. To address these issues, we propose Oracle-Guided Masked Contrastive Reinforcement Learning (OMC-RL), a novel framework designed to improve the sample efficiency and asymptotic performance of visuomotor policy learning. OMC-RL explicitly decouples the learning process into two stages: an upstream representation learning stage and a downstream policy learning stage. In the upstream stage, a masked Transformer module is trained with temporal modeling and contrastive learning to extract temporally-aware and task-relevant representations from sequential visual inputs. After training, the learned encoder is frozen and used to extract visual representations from consecutive frames, while the Transformer module is discarded. In the downstream stage, an oracle teacher policy with privileged access to global state information supervises the agent during early training to provide informative guidance and accelerate early policy learning. This guidance is gradually reduced to allow independent exploration as training progresses. Extensive experiments in simulated and real-world environments demonstrate that OMC-RL achieves superior sample efficiency and asymptotic policy performance, while also improving generalization across diverse and perceptually complex scenarios.
☆ vAttention: Verified Sparse Attention
State-of-the-art sparse attention methods for reducing decoding latency fall into two main categories: approximate top-$k$ (and its extension, top-$p$) and recently introduced sampling-based estimation. However, these approaches are fundamentally limited in their ability to approximate full attention: they fail to provide consistent approximations across heads and query vectors and, most critically, lack guarantees on approximation quality, limiting their practical deployment. We observe that top-$k$ and random sampling are complementary: top-$k$ performs well when attention scores are dominated by a few tokens, whereas random sampling provides better estimates when attention scores are relatively uniform. Building on this insight and leveraging the statistical guarantees of sampling, we introduce vAttention, the first practical sparse attention mechanism with user-specified $(\epsilon, \delta)$ guarantees on approximation accuracy (thus, verified). These guarantees make vAttention a compelling step toward practical, reliable deployment of sparse attention at scale. By unifying top-k and sampling, vAttention outperforms both individually, delivering a superior quality-efficiency trade-off. Our experiments show that vAttention significantly improves the quality of sparse attention (e.g., $\sim$4.5 percentage points for Llama-3.1-8B-Inst and Deepseek-R1-Distill-Llama-8B on RULER-HARD), and effectively bridges the gap between full and sparse attention (e.g., across datasets, it matches full model quality with upto 20x sparsity). We also demonstrate that it can be deployed in reasoning scenarios to achieve fast decoding without compromising model quality (e.g., vAttention achieves full model quality on AIME2024 at 10x sparsity with up to 32K token generations). Code is open-sourced at https://github.com/xAlg-ai/sparse-attention-hub.
☆ QGraphLIME - Explaining Quantum Graph Neural Networks
Quantum graph neural networks offer a powerful paradigm for learning on graph-structured data, yet their explainability is complicated by measurement-induced stochasticity and the combinatorial nature of graph structure. In this paper, we introduce QuantumGraphLIME (QGraphLIME), a model-agnostic, post-hoc framework that treats model explanations as distributions over local surrogates fit on structure-preserving perturbations of a graph. By aggregating surrogate attributions together with their dispersion, QGraphLIME yields uncertainty-aware node and edge importance rankings for quantum graph models. The framework further provides a distribution-free, finite-sample guarantee on the size of the surrogate ensemble: a Dvoretzky-Kiefer-Wolfowitz bound ensures uniform approximation of the induced distribution of a binary class probability at target accuracy and confidence under standard independence assumptions. Empirical studies on controlled synthetic graphs with known ground truth demonstrate accurate and stable explanations, with ablations showing clear benefits of nonlinear surrogate modeling and highlighting sensitivity to perturbation design. Collectively, these results establish a principled, uncertainty-aware, and structure-sensitive approach to explaining quantum graph neural networks, and lay the groundwork for scaling to broader architectures and real-world datasets, as quantum resources mature. Code is available at https://github.com/smlab-niser/qglime.
☆ Verifier-free Test-Time Sampling for Vision Language Action Models
Vision-Language-Action models (VLAs) have demonstrated remarkable performance in robot control. However, they remain fundamentally limited in tasks that require high precision due to their single-inference paradigm. While test-time scaling approaches using external verifiers have shown promise, they require additional training and fail to generalize to unseen conditions. We propose Masking Distribution Guided Selection (MG-Select), a novel test-time scaling framework for VLAs that leverages the model's internal properties without requiring additional training or external modules. Our approach utilizes KL divergence from a reference action token distribution as a confidence metric for selecting the optimal action from multiple candidates. We introduce a reference distribution generated by the same VLA but with randomly masked states and language conditions as inputs, ensuring maximum uncertainty while remaining aligned with the target task distribution. Additionally, we propose a joint training strategy that enables the model to learn both conditional and unconditional distributions by applying dropout to state and language conditions, thereby further improving the quality of the reference distribution. Our experiments demonstrate that MG-Select achieves significant performance improvements, including a 28%/35% improvement in real-world in-distribution/out-of-distribution tasks, along with a 168% relative gain on RoboCasa pick-and-place tasks trained with 30 demonstrations.
comment: 14 pages; 3 figures
☆ Inductive inference of gradient-boosted decision trees on graphs for insurance fraud detection
Graph-based methods are becoming increasingly popular in machine learning due to their ability to model complex data and relations. Insurance fraud is a prime use case, since false claims are often the result of organised criminals that stage accidents or the same persons filing erroneous claims on multiple policies. One challenge is that graph-based approaches struggle to find meaningful representations of the data because of the high class imbalance present in fraud data. Another is that insurance networks are heterogeneous and dynamic, given the changing relations among people, companies and policies. That is why gradient boosted tree approaches on tabular data still dominate the field. Therefore, we present a novel inductive graph gradient boosting machine (G-GBM) for supervised learning on heterogeneous and dynamic graphs. We show that our estimator competes with popular graph neural network approaches in an experiment using a variety of simulated random graphs. We demonstrate the power of G-GBM for insurance fraud detection using an open-source and a real-world, proprietary dataset. Given that the backbone model is a gradient boosting forest, we apply established explainability methods to gain better insights into the predictions made by G-GBM.
☆ Quantifying the Accuracy-Interpretability Trade-Off in Concept-Based Sidechannel Models
Concept Bottleneck Models (CBNMs) are deep learning models that provide interpretability by enforcing a bottleneck layer where predictions are based exclusively on human-understandable concepts. However, this constraint also restricts information flow and often results in reduced predictive accuracy. Concept Sidechannel Models (CSMs) address this limitation by introducing a sidechannel that bypasses the bottleneck and carry additional task-relevant information. While this improves accuracy, it simultaneously compromises interpretability, as predictions may rely on uninterpretable representations transmitted through sidechannels. Currently, there exists no principled technique to control this fundamental trade-off. In this paper, we close this gap. First, we present a unified probabilistic concept sidechannel meta-model that subsumes existing CSMs as special cases. Building on this framework, we introduce the Sidechannel Independence Score (SIS), a metric that quantifies a CSM's reliance on its sidechannel by contrasting predictions made with and without sidechannel information. We propose SIS regularization, which explicitly penalizes sidechannel reliance to improve interpretability. Finally, we analyze how the expressivity of the predictor and the reliance of the sidechannel jointly shape interpretability, revealing inherent trade-offs across different CSM architectures. Empirical results show that state-of-the-art CSMs, when trained solely for accuracy, exhibit low representation interpretability, and that SIS regularization substantially improves their interpretability, intervenability, and the quality of learned interpretable task predictors. Our work provides both theoretical and practical tools for developing CSMs that balance accuracy and interpretability in a principled manner.
☆ NEO: No-Optimization Test-Time Adaptation through Latent Re-Centering
Test-Time Adaptation (TTA) methods are often computationally expensive, require a large amount of data for effective adaptation, or are brittle to hyperparameters. Based on a theoretical foundation of the geometry of the latent space, we are able to significantly improve the alignment between source and distribution-shifted samples by re-centering target data embeddings at the origin. This insight motivates NEO -- a hyperparameter-free fully TTA method, that adds no significant compute compared to vanilla inference. NEO is able to improve the classification accuracy of ViT-Base on ImageNet-C from 55.6% to 59.2% after adapting on just one batch of 64 samples. When adapting on 512 samples NEO beats all 7 TTA methods we compare against on ImageNet-C, ImageNet-R and ImageNet-S and beats 6/7 on CIFAR-10-C, while using the least amount of compute. NEO performs well on model calibration metrics and additionally is able to adapt from 1 class to improve accuracy on 999 other classes in ImageNet-C. On Raspberry Pi and Jetson Orin Nano devices, NEO reduces inference time by 63% and memory usage by 9% compared to baselines. Our results based on 3 ViT architectures and 4 datasets show that NEO can be used efficiently and effectively for TTA.
☆ From Principles to Practice: A Systematic Study of LLM Serving on Multi-core NPUs
With the widespread adoption of Large Language Models (LLMs), the demand for high-performance LLM inference services continues to grow. To meet this demand, a growing number of AI accelerators have been proposed, such as Google TPU, Huawei NPU, Graphcore IPU, and Cerebras WSE, etc. Most of these accelerators adopt multi-core architectures to achieve enhanced scalability, but lack the flexibility of SIMT architectures. Therefore, without careful configuration of the hardware architecture, as well as deliberate design of tensor parallelism and core placement strategies, computational resources may be underutilized, resulting in suboptimal inference performance. To address these challenges, we first present a multi-level simulation framework with both transaction-level and performance-model-based simulation for multi-core NPUs. Using this simulator, we conduct a systematic analysis and further propose the optimal solutions for tensor parallelism strategies, core placement policies, memory management methods, as well as the selection between PD-disaggregation and PD-fusion on multi-core NPUs. We conduct comprehensive experiments on representative LLMs and various NPU configurations. The evaluation results demonstrate that, our solution can achieve 1.32x-6.03x speedup compared to SOTA designs for multi-core NPUs across different hardware configurations. As for LLM serving, our work offers guidance on designing optimal hardware architectures and serving strategies for multi-core NPUs across various LLM workloads.
☆ Monte Carlo-Type Neural Operator for Differential Equations
The Monte Carlo-type Neural Operator (MCNO) introduces a framework for learning solution operators of one-dimensional partial differential equations (PDEs) by directly learning the kernel function and approximating the associated integral operator using a Monte Carlo-type approach. Unlike Fourier Neural Operators (FNOs), which rely on spectral representations and assume translation-invariant kernels, MCNO makes no such assumptions. The kernel is represented as a learnable tensor over sampled input-output pairs, and sampling is performed once, uniformly at random from a discretized grid. This design enables generalization across multiple grid resolutions without relying on fixed global basis functions or repeated sampling during training, while an interpolation step maps between arbitrary input and output grids to further enhance flexibility. Experiments on standard 1D PDE benchmarks show that MCNO achieves competitive accuracy with efficient computational cost. We also provide a theoretical analysis proving that the Monte Carlo estimator yields a bounded bias and variance under mild regularity assumptions. This result holds in any spatial dimension, suggesting that MCNO may extend naturally beyond one-dimensional problems. More broadly, this work explores how Monte Carlo-type integration can be incorporated into neural operator frameworks for continuous-domain PDEs, providing a theoretically supported alternative to spectral methods (such as FNO) and to graph-based Monte Carlo approaches (such as the Graph Kernel Neural Operator, GNO).
☆ InstaGeo: Compute-Efficient Geospatial Machine Learning from Data to Deployment
Open-access multispectral imagery from missions like Landsat 8-9 and Sentinel-2 has fueled the development of geospatial foundation models (GFMs) for humanitarian and environmental applications. Yet, their deployment remains limited by (i) the absence of automated geospatial data pipelines and (ii) the large size of fine-tuned models. Existing GFMs lack workflows for processing raw satellite imagery, and downstream adaptations often retain the full complexity of the original encoder. We present InstaGeo, an open-source, end-to-end framework that addresses these challenges by integrating: (1) automated data curation to transform raw imagery into model-ready datasets; (2) task-specific model distillation to derive compact, compute-efficient models; and (3) seamless deployment as interactive web-map applications. Using InstaGeo, we reproduced datasets from three published studies and trained models with marginal mIoU differences of -0.73 pp for flood mapping, -0.20 pp for crop segmentation, and +1.79 pp for desert locust prediction. The distilled models are up to 8x smaller than standard fine-tuned counterparts, reducing FLOPs and CO2 emissions with minimal accuracy loss. Leveraging InstaGeo's streamlined data pipeline, we also curated a larger crop segmentation dataset, achieving a state-of-the-art mIoU of 60.65%, a 12 pp improvement over prior baselines. Moreover, InstaGeo enables users to progress from raw data to model deployment within a single working day. By unifying data preparation, model compression, and deployment, InstaGeo transforms research-grade GFMs into practical, low-carbon tools for real-time, large-scale Earth observation. This approach shifts geospatial AI toward data quality and application-driven innovation. Source code, datasets, and model checkpoints are available at: https://github.com/instadeepai/InstaGeo-E2E-Geospatial-ML.git
☆ PointNSP: Autoregressive 3D Point Cloud Generation with Next-Scale Level-of-Detail Prediction
Autoregressive point cloud generation has long lagged behind diffusion-based approaches in quality. The performance gap stems from the fact that autoregressive models impose an artificial ordering on inherently unordered point sets, forcing shape generation to proceed as a sequence of local predictions. This sequential bias emphasizes short-range continuity but undermines the model's capacity to capture long-range dependencies, hindering its ability to enforce global structural properties such as symmetry, consistent topology, and large-scale geometric regularities. Inspired by the level-of-detail (LOD) principle in shape modeling, we propose PointNSP, a coarse-to-fine generative framework that preserves global shape structure at low resolutions and progressively refines fine-grained geometry at higher scales through a next-scale prediction paradigm. This multi-scale factorization aligns the autoregressive objective with the permutation-invariant nature of point sets, enabling rich intra-scale interactions while avoiding brittle fixed orderings. Experiments on ShapeNet show that PointNSP establishes state-of-the-art (SOTA) generation quality for the first time within the autoregressive paradigm. In addition, it surpasses strong diffusion-based baselines in parameter, training, and inference efficiency. Finally, in dense generation with 8,192 points, PointNSP's advantages become even more pronounced, underscoring its scalability potential.
☆ Riddled basin geometry sets fundamental limits to predictability and reproducibility in deep learning
Fundamental limits to predictability are central to our understanding of many physical and computational systems. Here we show that, despite its remarkable capabilities, deep learning exhibits such fundamental limits rooted in the fractal, riddled geometry of its basins of attraction: any initialization that leads to one solution lies arbitrarily close to another that leads to a different one. We derive sufficient conditions for the emergence of riddled basins by analytically linking features widely observed in deep learning, including chaotic learning dynamics and symmetry-induced invariant subspaces, to reveal a general route to riddling in realistic deep networks. The resulting basins of attraction possess an infinitely fine-scale fractal structure characterized by an uncertainty exponent near zero, so that even large increases in the precision of initial conditions yield only marginal gains in outcome predictability. Riddling thus imposes a fundamental limit on the predictability and hence reproducibility of neural network training, providing a unified account of many empirical observations. These results reveal a general organizing principle of deep learning with important implications for optimization and the safe deployment of artificial intelligence.
☆ In-the-Flow Agentic System Optimization for Effective Planning and Tool Use
Outcome-driven reinforcement learning has advanced reasoning in large language models (LLMs), but prevailing tool-augmented approaches train a single, monolithic policy that interleaves thoughts and tool calls under full context; this scales poorly with long horizons and diverse tools and generalizes weakly to new scenarios. Agentic systems offer a promising alternative by decomposing work across specialized modules, yet most remain training-free or rely on offline training decoupled from the live dynamics of multi-turn interaction. We introduce AgentFlow, a trainable, in-the-flow agentic framework that coordinates four modules (planner, executor, verifier, generator) through an evolving memory and directly optimizes its planner inside the multi-turn loop. To train on-policy in live environments, we propose Flow-based Group Refined Policy Optimization (Flow-GRPO), which tackles long-horizon, sparse-reward credit assignment by converting multi-turn optimization into a sequence of tractable single-turn policy updates. It broadcasts a single, verifiable trajectory-level outcome to every turn to align local planner decisions with global success and stabilizes learning with group-normalized advantages. Across ten benchmarks, AgentFlow with a 7B-scale backbone outperforms top-performing baselines with average accuracy gains of 14.9% on search, 14.0% on agentic, 14.5% on mathematical, and 4.1% on scientific tasks, even surpassing larger proprietary models like GPT-4o. Further analyses confirm the benefits of in-the-flow optimization, showing improved planning, enhanced tool-calling reliability, and positive scaling with model size and reasoning turns.
comment: 45 pages, 12 figures. Project website: https://agentflow.stanford.edu/
☆ Deciphering Invariant Feature Decoupling in Source-free Time Series Forecasting with Proxy Denoising
The proliferation of mobile devices generates a massive volume of time series across various domains, where effective time series forecasting enables a variety of real-world applications. This study focuses on a new problem of source-free domain adaptation for time series forecasting. It aims to adapt a pretrained model from sufficient source time series to the sparse target time series domain without access to the source data, embracing data protection regulations. To achieve this, we propose TimePD, the first source-free time series forecasting framework with proxy denoising, where large language models (LLMs) are employed to benefit from their generalization capabilities. Specifically, TimePD consists of three key components: (1) dual-branch invariant disentangled feature learning that enforces representation- and gradient-wise invariance by means of season-trend decomposition; (2) lightweight, parameter-free proxy denoising that dynamically calibrates systematic biases of LLMs; and (3) knowledge distillation that bidirectionally aligns the denoised prediction and the original target prediction. Extensive experiments on real-world datasets offer insight into the effectiveness of the proposed TimePD, outperforming SOTA baselines by 9.3% on average.
☆ When Does Global Attention Help? A Unified Empirical Study on Atomistic Graph Learning
Graph neural networks (GNNs) are widely used as surrogates for costly experiments and first-principles simulations to study the behavior of compounds at atomistic scale, and their architectural complexity is constantly increasing to enable the modeling of complex physics. While most recent GNNs combine more traditional message passing neural networks (MPNNs) layers to model short-range interactions with more advanced graph transformers (GTs) with global attention mechanisms to model long-range interactions, it is still unclear when global attention mechanisms provide real benefits over well-tuned MPNN layers due to inconsistent implementations, features, or hyperparameter tuning. We introduce the first unified, reproducible benchmarking framework - built on HydraGNN - that enables seamless switching among four controlled model classes: MPNN, MPNN with chemistry/topology encoders, GPS-style hybrids of MPNN with global attention, and fully fused local - global models with encoders. Using seven diverse open-source datasets for benchmarking across regression and classification tasks, we systematically isolate the contributions of message passing, global attention, and encoder-based feature augmentation. Our study shows that encoder-augmented MPNNs form a robust baseline, while fused local-global models yield the clearest benefits for properties governed by long-range interaction effects. We further quantify the accuracy - compute trade-offs of attention, reporting its overhead in memory. Together, these results establish the first controlled evaluation of global attention in atomistic graph learning and provide a reproducible testbed for future model development.
comment: 40 pages, 8 figures, 18 tables
☆ (Token-Level) \textbf{InfoRMIA}: Stronger Membership Inference and Memorization Assessment for LLMs
Machine learning models are known to leak sensitive information, as they inevitably memorize (parts of) their training data. More alarmingly, large language models (LLMs) are now trained on nearly all available data, which amplifies the magnitude of information leakage and raises serious privacy risks. Hence, it is more crucial than ever to quantify privacy risk before the release of LLMs. The standard method to quantify privacy is via membership inference attacks, where the state-of-the-art approach is the Robust Membership Inference Attack (RMIA). In this paper, we present InfoRMIA, a principled information-theoretic formulation of membership inference. Our method consistently outperforms RMIA across benchmarks while also offering improved computational efficiency. In the second part of the paper, we identify the limitations of treating sequence-level membership inference as the gold standard for measuring leakage. We propose a new perspective for studying membership and memorization in LLMs: token-level signals and analyses. We show that a simple token-based InfoRMIA can pinpoint which tokens are memorized within generated outputs, thereby localizing leakage from the sequence level down to individual tokens, while achieving stronger sequence-level inference power on LLMs. This new scope rethinks privacy in LLMs and can lead to more targeted mitigation, such as exact unlearning.
☆ Power Mechanism: Private Tabular Representation Release for Model Agnostic Consumption
Traditional collaborative learning approaches are based on sharing of model weights between clients and a server. However, there are advantages to resource efficiency through schemes based on sharing of embeddings (activations) created from the data. Several differentially private methods were developed for sharing of weights while such mechanisms do not exist so far for sharing of embeddings. We propose Ours to learn a privacy encoding network in conjunction with a small utility generation network such that the final embeddings generated from it are equipped with formal differential privacy guarantees. These privatized embeddings are then shared with a more powerful server, that learns a post-processing that results in a higher accuracy for machine learning tasks. We show that our co-design of collaborative and private learning results in requiring only one round of privatized communication and lesser compute on the client than traditional methods. The privatized embeddings that we share from the client are agnostic to the type of model (deep learning, random forests or XGBoost) used on the server in order to process these activations to complete a task.
☆ On the Theory of Continual Learning with Gradient Descent for Neural Networks
Continual learning, the ability of a model to adapt to an ongoing sequence of tasks without forgetting the earlier ones, is a central goal of artificial intelligence. To shed light on its underlying mechanisms, we analyze the limitations of continual learning in a tractable yet representative setting. In particular, we study one-hidden-layer quadratic neural networks trained by gradient descent on an XOR cluster dataset with Gaussian noise, where different tasks correspond to different clusters with orthogonal means. Our results obtain bounds on the rate of forgetting during train and test-time in terms of the number of iterations, the sample size, the number of tasks, and the hidden-layer size. Our results reveal interesting phenomena on the role of different problem parameters in the rate of forgetting. Numerical experiments across diverse setups confirm our results, demonstrating their validity beyond the analyzed settings.
☆ Efficient Learning-based Graph Simulation for Temporal Graphs ICDE 2025
Graph simulation has recently received a surge of attention in graph processing and analytics. In real-life applications, e.g. social science, biology, and chemistry, many graphs are composed of a series of evolving graphs (i.e., temporal graphs). While most of the existing graph generators focus on static graphs, the temporal information of the graphs is ignored. In this paper, we focus on simulating temporal graphs, which aim to reproduce the structural and temporal properties of the observed real-life temporal graphs. In this paper, we first give an overview of the existing temporal graph generators, including recently emerged learning-based approaches. Most of these learning-based methods suffer from one of the limitations: low efficiency in training or slow generating, especially for temporal random walk-based methods. Therefore, we propose an efficient learning-based approach to generate graph snapshots, namely temporal graph autoencoder (TGAE). Specifically, we propose an attention-based graph encoder to encode temporal and structural characteristics on sampled ego-graphs. And we proposed an ego-graph decoder that can achieve a good trade-off between simulation quality and efficiency in temporal graph generation. Finally, the experimental evaluation is conducted among our proposed TGAE and representative temporal graph generators on real-life temporal graphs and synthesized graphs. It is reported that our proposed approach outperforms the state-of-the-art temporal graph generators by means of simulation quality and efficiency.
comment: 14 pages, 6 figures, IEEE ICDE 2025
☆ Bilevel optimization for learning hyperparameters: Application to solving PDEs and inverse problems with Gaussian processes
Methods for solving scientific computing and inference problems, such as kernel- and neural network-based approaches for partial differential equations (PDEs), inverse problems, and supervised learning tasks, depend crucially on the choice of hyperparameters. Specifically, the efficacy of such methods, and in particular their accuracy, stability, and generalization properties, strongly depends on the choice of hyperparameters. While bilevel optimization offers a principled framework for hyperparameter tuning, its nested optimization structure can be computationally demanding, especially in PDE-constrained contexts. In this paper, we propose an efficient strategy for hyperparameter optimization within the bilevel framework by employing a Gauss-Newton linearization of the inner optimization step. Our approach provides closed-form updates, eliminating the need for repeated costly PDE solves. As a result, each iteration of the outer loop reduces to a single linearized PDE solve, followed by explicit gradient-based hyperparameter updates. We demonstrate the effectiveness of the proposed method through Gaussian process models applied to nonlinear PDEs and to PDE inverse problems. Extensive numerical experiments highlight substantial improvements in accuracy and robustness compared to conventional random hyperparameter initialization. In particular, experiments with additive kernels and neural network-parameterized deep kernels demonstrate the method's scalability and effectiveness for high-dimensional hyperparameter optimization.
☆ Domain-Shift-Aware Conformal Prediction for Large Language Models
Large language models have achieved impressive performance across diverse tasks. However, their tendency to produce overconfident and factually incorrect outputs, known as hallucinations, poses risks in real world applications. Conformal prediction provides finite-sample, distribution-free coverage guarantees, but standard conformal prediction breaks down under domain shift, often leading to under-coverage and unreliable prediction sets. We propose a new framework called Domain-Shift-Aware Conformal Prediction (DS-CP). Our framework adapts conformal prediction to large language models under domain shift, by systematically reweighting calibration samples based on their proximity to the test prompt, thereby preserving validity while enhancing adaptivity. Our theoretical analysis and experiments on the MMLU benchmark demonstrate that the proposed method delivers more reliable coverage than standard conformal prediction, especially under substantial distribution shifts, while maintaining efficiency. This provides a practical step toward trustworthy uncertainty quantification for large language models in real-world deployment.
comment: 26 pages
☆ Generative Dynamic Graph Representation Learning for Conspiracy Spoofing Detection
Spoofing detection in financial trading is crucial, especially for identifying complex behaviors such as conspiracy spoofing. Traditional machine-learning approaches primarily focus on isolated node features, often overlooking the broader context of interconnected nodes. Graph-based techniques, particularly Graph Neural Networks (GNNs), have advanced the field by leveraging relational information effectively. However, in real-world spoofing detection datasets, trading behaviors exhibit dynamic, irregular patterns. Existing spoofing detection methods, though effective in some scenarios, struggle to capture the complexity of dynamic and diverse, evolving inter-node relationships. To address these challenges, we propose a novel framework called the Generative Dynamic Graph Model (GDGM), which models dynamic trading behaviors and the relationships among nodes to learn representations for conspiracy spoofing detection. Specifically, our approach incorporates the generative dynamic latent space to capture the temporal patterns and evolving market conditions. Raw trading data is first converted into time-stamped sequences. Then we model trading behaviors using the neural ordinary differential equations and gated recurrent units, to generate the representation incorporating temporal dynamics of spoofing patterns. Furthermore, pseudo-label generation and heterogeneous aggregation techniques are employed to gather relevant information and enhance the detection performance for conspiratorial spoofing behaviors. Experiments conducted on spoofing detection datasets demonstrate that our approach outperforms state-of-the-art models in detection accuracy. Additionally, our spoofing detection system has been successfully deployed in one of the largest global trading markets, further validating the practical applicability and performance of the proposed method.
comment: 10 pages, 5 figures, ACM the web conference 2025
☆ Midway Network: Learning Representations for Recognition and Motion from Latent Dynamics
Object recognition and motion understanding are key components of perception that complement each other. While self-supervised learning methods have shown promise in their ability to learn from unlabeled data, they have primarily focused on obtaining rich representations for either recognition or motion rather than both in tandem. On the other hand, latent dynamics modeling has been used in decision making to learn latent representations of observations and their transformations over time for control and planning tasks. In this work, we present Midway Network, a new self-supervised learning architecture that is the first to learn strong visual representations for both object recognition and motion understanding solely from natural videos, by extending latent dynamics modeling to this domain. Midway Network leverages a midway top-down path to infer motion latents between video frames, as well as a dense forward prediction objective and hierarchical structure to tackle the complex, multi-object scenes of natural videos. We demonstrate that after pretraining on two large-scale natural video datasets, Midway Network achieves strong performance on both semantic segmentation and optical flow tasks relative to prior self-supervised learning methods. We also show that Midway Network's learned dynamics can capture high-level correspondence via a novel analysis method based on forward feature perturbation.
comment: Project page: https://agenticlearning.ai/midway-network/
☆ Critical attention scaling in long-context transformers
As large language models scale to longer contexts, attention layers suffer from a fundamental pathology: attention scores collapse toward uniformity as context length $n$ increases, causing tokens to cluster excessively, a phenomenon known as rank-collapse. While $\textit{attention scaling}$ effectively addresses this deficiency by rescaling attention scores with a polylogarithmic factor $\beta_n$, theoretical justification for this approach remains lacking. We analyze a simplified yet tractable model that magnifies the effect of attention scaling. In this model, attention exhibits a phase transition governed by the scaling factor $\beta_n$: insufficient scaling collapses all tokens to a single direction, while excessive scaling reduces attention to identity, thereby eliminating meaningful interactions between tokens. Our main result identifies the critical scaling $\beta_n \asymp \log n$ and provides a rigorous justification for attention scaling in YaRN and Qwen, clarifying why logarithmic scaling maintains sparse, content-adaptive attention at large context lengths.
comment: 29 pages, 2 figures
☆ Channel Simulation and Distributed Compression with Ensemble Rejection Sampling
We study channel simulation and distributed matching, two fundamental problems with several applications to machine learning, using a recently introduced generalization of the standard rejection sampling (RS) algorithm known as Ensemble Rejection Sampling (ERS). For channel simulation, we propose a new coding scheme based on ERS that achieves a near-optimal coding rate. In this process, we demonstrate that standard RS can also achieve a near-optimal coding rate and generalize the result of Braverman and Garg (2014) to the continuous alphabet setting. Next, as our main contribution, we present a distributed matching lemma for ERS, which serves as the rejection sampling counterpart to the Poisson Matching Lemma (PML) introduced by Li and Anantharam (2021). Our result also generalizes a recent work on importance matching lemma (Phan et al, 2024) and, to our knowledge, is the first result on distributed matching in the family of rejection sampling schemes where the matching probability is close to PML. We demonstrate the practical significance of our approach over prior works by applying it to distributed compression. The effectiveness of our proposed scheme is validated through experiments involving synthetic Gaussian sources and distributed image compression using the MNIST dataset.
☆ Activation-Informed Pareto-Guided Low-Rank Compression for Efficient LLM/VLM
Large language models (LLM) and vision-language models (VLM) have achieved state-of-the-art performance, but they impose significant memory and computing challenges in deployment. We present a novel low-rank compression framework to address this challenge. First, we upper bound the change of network loss via layer-wise activation-based compression errors, filling a theoretical gap in the literature. We then formulate low-rank model compression as a bi-objective optimization and prove that a single uniform tolerance yields surrogate Pareto-optimal heterogeneous ranks. Based on our theoretical insights, we propose Pareto-Guided Singular Value Decomposition (PGSVD), a zero-shot pipeline that improves activation-aware compression via Pareto-guided rank selection and alternating least-squares implementation. We apply PGSVD to both LLM and VLM, showing better accuracy at the same compression levels and inference speedup.
☆ Permutation-Invariant Representation Learning for Robust and Privacy-Preserving Feature Selection
Feature selection eliminates redundancy among features to improve downstream task performance while reducing computational overhead. Existing methods often struggle to capture intricate feature interactions and adapt across diverse application scenarios. Recent advances employ generative intelligence to alleviate these drawbacks. However, these methods remain constrained by permutation sensitivity in embedding and reliance on convexity assumptions in gradient-based search. To address these limitations, our initial work introduces a novel framework that integrates permutation-invariant embedding with policy-guided search. Although effective, it still left opportunities to adapt to realistic distributed scenarios. In practice, data across local clients is highly imbalanced, heterogeneous and constrained by strict privacy regulations, limiting direct sharing. These challenges highlight the need for a framework that can integrate feature selection knowledge across clients without exposing sensitive information. In this extended journal version, we advance the framework from two perspectives: 1) developing a privacy-preserving knowledge fusion strategy to derive a unified representation space without sharing sensitive raw data. 2) incorporating a sample-aware weighting strategy to address distributional imbalance among heterogeneous local clients. Extensive experiments validate the effectiveness, robustness, and efficiency of our framework. The results further demonstrate its strong generalization ability in federated learning scenarios. The code and data are publicly available: https://anonymous.4open.science/r/FedCAPS-08BF.
☆ Teamwork: Collaborative Diffusion with Low-rank Coordination and Adaptation
Large pretrained diffusion models can provide strong priors beneficial for many graphics applications. However, generative applications such as neural rendering and inverse methods such as SVBRDF estimation and intrinsic image decomposition require additional input or output channels. Current solutions for channel expansion are often application specific and these solutions can be difficult to adapt to different diffusion models or new tasks. This paper introduces Teamwork: a flexible and efficient unified solution for jointly increasing the number of input and output channels as well as adapting a pretrained diffusion model to new tasks. Teamwork achieves channel expansion without altering the pretrained diffusion model architecture by coordinating and adapting multiple instances of the base diffusion model (\ie, teammates). We employ a novel variation of Low Rank-Adaptation (LoRA) to jointly address both adaptation and coordination between the different teammates. Furthermore Teamwork supports dynamic (de)activation of teammates. We demonstrate the flexibility and efficiency of Teamwork on a variety of generative and inverse graphics tasks such as inpainting, single image SVBRDF estimation, intrinsic decomposition, neural shading, and intrinsic image synthesis.
☆ Efficient learning of bosonic Gaussian unitaries
Bosonic Gaussian unitaries are fundamental building blocks of central continuous-variable quantum technologies such as quantum-optic interferometry and bosonic error-correction schemes. In this work, we present the first time-efficient algorithm for learning bosonic Gaussian unitaries with a rigorous analysis. Our algorithm produces an estimate of the unknown unitary that is accurate to small worst-case error, measured by the physically motivated energy-constrained diamond distance. Its runtime and query complexity scale polynomially with the number of modes, the inverse target accuracy, and natural energy parameters quantifying the allowed input energy and the unitary's output-energy growth. The protocol uses only experimentally friendly photonic resources: coherent and squeezed probes, passive linear optics, and heterodyne/homodyne detection. We then employ an efficient classical post-processing routine that leverages a symplectic regularization step to project matrix estimates onto the symplectic group. In the limit of unbounded input energy, our procedure attains arbitrarily high precision using only $2m+2$ queries, where $m$ is the number of modes. To our knowledge, this is the first provably efficient learning algorithm for a multiparameter family of continuous-variable unitaries.
☆ LATTA: Langevin-Anchored Test-Time Adaptation for Enhanced Robustness and Stability
Test-time adaptation (TTA) aims to adapt a pretrained model to distribution shifts using only unlabeled test data. While promising, existing methods like Tent suffer from instability and can catastrophically forget the source knowledge, especially with small batch sizes or challenging corruptions. We argue that this arises from overly deterministic updates on a complex loss surface. In this paper, we introduce Langevin-Anchored Test-Time Adaptation (LATTA), a novel approach that regularizes adaptation through two key mechanisms: (1) a noisy weight perturbation inspired by Stochastic Gradient Langevin Dynamics (SGLD) to explore the local parameter space and escape poor local minima, and (2) a stable weight anchor that prevents the model from diverging from its robust source pre-training. This combination allows LATTA to adapt effectively without sacrificing stability. Unlike prior Bayesian TTA methods, LATTA requires no architectural changes or expensive Monte Carlo passes. We conduct extensive experiments on standard benchmarks, including Rotated-MNIST and the more challenging CIFAR-10-C. Our results demonstrate that LATTA significantly outperforms existing methods, including Tent, CoTTA, and EATA, setting a new state of the art for self-supervised TTA by improving average accuracy on CIFAR-10-C by over 2% while simultaneously reducing performance variance.
comment: MIT URTC 2025 Technical Paper (Oral), 5 pages, 3 figures
☆ H1B-KV: Hybrid One-Bit Caches for Memory-Efficient Large Language Model Inference
Autoregressive decoding in large language models (LLMs) requires caching a growing list of past key-value (KV) pairs, making long-context inference a memory-bound problem. While recent methods have explored quantizing the cache, evicting tokens, or using binary sketches for keys (e.g., Loki), these approaches often provide an incomplete solution by leaving one component (like values) uncompressed or by discarding context information. This paper introduces the Hybrid One-Bit KV Cache (H1B-KV), a comprehensive compression scheme that radically reduces memory usage without sacrificing context. H1B-KV represents each key vector using a 1-bit binary sketch, enabling hardware-friendly bitwise attention, and further compresses value vectors using 4-bit quantization. This holistic, hybrid approach allows a 7-billion parameter LLM to handle an 8k-token context with under 60 MB of cache memory - a 70x reduction. We demonstrate that after a lightweight finetuning, H1B-KV matches full-precision performance not only on perplexity benchmarks but also on complex downstream tasks like mathematical reasoning (GSM8K), multi-task understanding (MMLU), and code generation (HumanEval). Our results show H1B-KV significantly outperforms leading quantization (KIVI), token eviction (SparseLLM), and key-only sketching (Loki) methods in quality-per-byte, establishing it as a robust solution for deploying LLMs in memory-constrained environments.
comment: MIT URTC 2025 Technical Paper (Oral), 5 pages, 1 figure
☆ ARMOR: High-Performance Semi-Structured Pruning via Adaptive Matrix Factorization
Large language models (LLMs) present significant deployment challenges due to their immense computational and memory requirements. While semi-structured pruning, particularly 2:4 sparsity, offers a path to practical hardware acceleration, existing methods often incur substantial performance degradation. To bridge this gap, we introduce ARMOR: (Adaptive Representation with Matrix-factORization), a novel one-shot post-training pruning algorithm. Instead of directly pruning weights, ARMOR factorizes each weight matrix into a 2:4 sparse core wrapped by two low-overhead, block diagonal matrices. These wrappers act as efficient pre and post-transformation error correctors, offering greater flexibility to preserve model quality compared to conventional 2:4 pruning techniques. The sparse core and block diagonal wrappers are chosen through a block coordinate descent algorithm that minimizes a layer-wise proxy loss. We theoretically prove this optimization is guaranteed to converge to a solution with a proxy loss less than or equal to state-of-the-art pruning algorithms. Experiments on Llama (Touvron et al., 2023; Dubey et al., 2024) and Qwen (Yang et al., 2025) model families demonstrate that ARMOR consistently and significantly outperforms state-of-the-art 2:4 pruning methods across a wide range of downstream tasks and perplexity evaluations. ARMOR achieves this superior performance while retaining the inference speedups and substantial memory usage reductions of 2:4 pruning, establishing a more effective trade-off between model compression and task accuracy
☆ Transfer Learning on Edge Connecting Probability Estimation under Graphon Model
Graphon models provide a flexible nonparametric framework for estimating latent connectivity probabilities in networks, enabling a range of downstream applications such as link prediction and data augmentation. However, accurate graphon estimation typically requires a large graph, whereas in practice, one often only observes a small-sized network. One approach to addressing this issue is to adopt a transfer learning framework, which aims to improve estimation in a small target graph by leveraging structural information from a larger, related source graph. In this paper, we propose a novel method, namely GTRANS, a transfer learning framework that integrates neighborhood smoothing and Gromov-Wasserstein optimal transport to align and transfer structural patterns between graphs. To prevent negative transfer, GTRANS includes an adaptive debiasing mechanism that identifies and corrects for target-specific deviations via residual smoothing. We provide theoretical guarantees on the stability of the estimated alignment matrix and demonstrate the effectiveness of GTRANS in improving the accuracy of target graph estimation through extensive synthetic and real data experiments. These improvements translate directly to enhanced performance in downstream applications, such as the graph classification task and the link prediction task.
☆ Provably Mitigating Corruption, Overoptimization, and Verbosity Simultaneously in Offline and Online RLHF/DPO Alignment
Reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) are important techniques to align large language models (LLM) with human preference. However, the quality of RLHF and DPO training is seriously compromised by \textit{\textbf{C}orrupted} preference, reward \textit{\textbf{O}veroptimization}, and bias towards \textit{\textbf{V}erbosity}. To our knowledge, most existing works tackle only one of these important issues, and the few other works require much computation to estimate multiple reward models and lack theoretical guarantee of generalization ability. In this work, we propose RLHF-\textbf{COV} and DPO-\textbf{COV} algorithms that can simultaneously mitigate these three issues, in both offline and online settings. This ability is theoretically demonstrated by obtaining length-regularized generalization error rates for our DPO-COV algorithms trained on corrupted data, which match the best-known rates for simpler cases with clean data and without length regularization. Moreover, our DPO-COV algorithm is simple to implement without reward estimation, and is proved to be equivalent to our RLHF-COV algorithm, which directly implies the equivalence between the vanilla RLHF and DPO algorithms. Experiments demonstrate the effectiveness of our DPO-COV algorithms under both offline and online settings.
☆ NeST-BO: Fast Local Bayesian Optimization via Newton-Step Targeting of Gradient and Hessian Information
Bayesian optimization (BO) is effective for expensive black-box problems but remains challenging in high dimensions. We propose NeST-BO, a local BO method that targets the Newton step by jointly learning gradient and Hessian information with Gaussian process surrogates, and selecting evaluations via a one-step lookahead bound on Newton-step error. We show that this bound (and hence the step error) contracts with batch size, so NeST-BO directly inherits inexact-Newton convergence: global progress under mild stability assumptions and quadratic local rates once steps are sufficiently accurate. To scale, we optimize the acquisition in low-dimensional subspaces (e.g., random embeddings or learned sparse subspaces), reducing the dominant cost of learning curvature from $O(d^2)$ to $O(m^2)$ with $m \ll d$ while preserving step targeting. Across high-dimensional synthetic and real-world problems, including cases with thousands of variables and unknown active subspaces, NeST-BO consistently yields faster convergence and lower regret than state-of-the-art local and high-dimensional BO baselines.
☆ EEG-Based Acute Pain Classification: Machine Learning Model Comparison and Real-Time Clinical Feasibility
Current pain assessment within hospitals often relies on self-reporting or non-specific EKG vital signs. This system leaves critically ill, sedated, and cognitively impaired patients vulnerable to undertreated pain and opioid overuse. Electroencephalography (EEG) offers a noninvasive method of measuring brain activity. This technology could potentially be applied as an assistive tool to highlight nociceptive processing in order to mitigate this issue. In this study, we compared machine learning models for classifying high-pain versus low/no-pain EEG epochs using data from fifty-two healthy adults exposed to laser-evoked pain at three intensities (low, medium, high). Each four-second epoch was transformed into a 537-feature vector spanning spectral power, band ratios, Hjorth parameters, entropy measures, coherence, wavelet energies, and peak-frequency metrics. Nine traditional machine learning models were evaluated with leave-one-participant-out cross-validation. A support vector machine with radial basis function kernel achieved the best offline performance with 88.9% accuracy and sub-millisecond inference time (1.02 ms). Our Feature importance analysis was consistent with current canonical pain physiology, showing contralateral alpha suppression, midline theta/alpha enhancement, and frontal gamma bursts. The real-time XGBoost model maintained an end-to-end latency of about 4 ms and 94.2% accuracy, demonstrating that an EEG-based pain monitor is technically feasible within a clinical setting and provides a pathway towards clinical validation.
☆ Orders in Chaos: Enhancing Large-Scale MoE LLM Serving with Data Movement Forecasting
Large Language Models (LLMs) with Mixture of Experts (MoE) architectures achieve remarkable performance improvements, but their random expert selection mechanism introduces significant data movement overhead that becomes the dominant bottleneck in multi-unit serving systems. To forecast the patterns underlying this data movement, we conduct comprehensive data-movement-centric profiling across three state-of-the-art large-scale MoE models (200B- 671B) using over 24,000 requests spanning diverse workloads. With the resulting 150GB+ trace files, we perform systematic analysis from both temporal and spatial perspectives and distill six key insights to guide the design of diverse future serving systems. Taking wafer-scale GPUs as a case study, we demonstrate that minor architectural modifications leveraging our insights achieve substantial performance gains, delivering 6.3X and 4.0X average speedups on DeepSeek V3 and Qwen3, respectively. Our work provides the first comprehensive data-centric analysis of MoE models at scale. Our profiling traces and analysis results are publicly available at {https://huggingface.co/datasets/core12345/MoE_expert_selection_trace. We will also release our simulation framework shortly to facilitate future research in this area.
☆ Fundamental Limits of Crystalline Equivariant Graph Neural Networks: A Circuit Complexity Perspective
Graph neural networks (GNNs) have become a core paradigm for learning on relational data. In materials science, equivariant GNNs (EGNNs) have emerged as a compelling backbone for crystalline-structure prediction, owing to their ability to respect Euclidean symmetries and periodic boundary conditions. Despite strong empirical performance, their expressive power in periodic, symmetry-constrained settings remains poorly understood. This work characterizes the intrinsic computational and expressive limits of EGNNs for crystalline-structure prediction through a circuit-complexity lens. We analyze the computations carried out by EGNN layers acting on node features, atomic coordinates, and lattice matrices, and prove that, under polynomial precision, embedding width $d=O(n)$ for $n$ nodes, $O(1)$ layers, and $O(1)$-depth, $O(n)$-width MLP instantiations of the message/update/readout maps, these models admit a simulation by a uniform $\mathsf{TC}^0$ threshold-circuit family of polynomial size (with an explicit constant-depth bound). Situating EGNNs within $\mathsf{TC}^0$ provides a concrete ceiling on the decision and prediction problems solvable by such architectures under realistic resource constraints and clarifies which architectural modifications (e.g., increased depth, richer geometric primitives, or wider layers) are required to transcend this regime. The analysis complements Weisfeiler-Lehman style results that do not directly transfer to periodic crystals, and offers a complexity-theoretic foundation for symmetry-aware graph learning on crystalline systems.
☆ High-Fidelity Synthetic ECG Generation via Mel-Spectrogram Informed Diffusion Training
The development of machine learning for cardiac care is severely hampered by privacy restrictions on sharing real patient electrocardiogram (ECG) data. Although generative AI offers a promising solution, the real-world use of existing model-synthesized ECGs is limited by persistent gaps in trustworthiness and clinical utility. In this work, we address two major shortcomings of current generative ECG methods: insufficient morphological fidelity and the inability to generate personalized, patient-specific physiological signals. To address these gaps, we build on a conditional diffusion-based Structured State Space Model (SSSD-ECG) with two principled innovations: (1) MIDT-ECG (Mel-Spectrogram Informed Diffusion Training), a novel training paradigm with time-frequency domain supervision to enforce physiological structural realism, and (2) multi-modal demographic conditioning to enable patient-specific synthesis. We comprehensively evaluate our approach on the PTB-XL dataset, assessing the synthesized ECG signals on fidelity, clinical coherence, privacy preservation, and downstream task utility. MIDT-ECG achieves substantial gains: it improves morphological coherence, preserves strong privacy guarantees with all metrics evaluated exceeding the baseline by 4-8%, and notably reduces the interlead correlation error by an average of 74%, while demographic conditioning enhances signal-to-noise ratio and personalization. In critical low-data regimes, a classifier trained on datasets supplemented with our synthetic ECGs achieves performance comparable to a classifier trained solely on real data. Together, we demonstrate that ECG synthesizers, trained with the proposed time-frequency structural regularization scheme, can serve as personalized, high-fidelity, privacy-preserving surrogates when real data are scarce, advancing the responsible use of generative AI in healthcare.
NorMuon: Making Muon more efficient and scalable
The choice of optimizer significantly impacts the training efficiency and computational costs of large language models (LLMs). Recently, the Muon optimizer has demonstrated promising results by orthogonalizing parameter updates, improving optimization geometry through better conditioning. Despite Muon's emergence as a candidate successor to Adam, the potential for jointly leveraging their strengths has not been systematically explored. In this work, we bridge this gap by proposing NorMuon (Neuron-wise Normalized Muon), an optimizer that synergistically combines orthogonalization with neuron-level adaptive learning rates. Our analysis reveals that while Muon effectively reduces condition numbers, the resulting updates exhibit highly non-uniform neuron norms, causing certain neurons to dominate the optimization process. NorMuon addresses this imbalance by maintaining second-order momentum statistics for each neuron and applying row-wise normalization after orthogonalization, ensuring balanced parameter utilization while preserving Muon's conditioning benefits. To enable practical deployment at scale, we develop an efficient distributed implementation under the FSDP2 framework that strategically distributes orthogonalization computations across devices. Experiments across multiple model scales demonstrate that NorMuon consistently outperforms both Adam and Muon, achieving 21.74% better training efficiency than Adam and 11.31% improvement over Muon on 1.1 B pretraining setting, while maintaining a comparable memory footprint to Muon. Our findings suggest that orthogonalization and adaptive learning rates are complementary rather than competing approaches, opening new avenues for optimizer design in large-scale deep learning.
☆ The Method of Infinite Descent
Training - the optimisation of complex models - is traditionally performed through small, local, iterative updates [D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 323, 533-536 (1986)]. Approximating solutions through truncated gradients is a paradigm dating back to Cauchy [A.-L. Cauchy, Comptes Rendus Math\'ematique 25, 536-538 (1847)] and Newton [I. Newton, The Method of Fluxions and Infinite Series (Henry Woodfall, London, 1736)]. This work introduces the Method of Infinite Descent, a semi-analytic optimisation paradigm that reformulates training as the direct solution to the first-order optimality condition. By analytical resummation of its Taylor expansion, this method yields an exact, algebraic equation for the update step. Realisation of the infinite Taylor tower's cascading resummation is formally derived, and an exploitative algorithm for the direct solve step is proposed. This principle is demonstrated with the herein-introduced AION (Analytic, Infinitely-Optimisable Network) architecture. AION is a model designed expressly to satisfy the algebraic closure required by Infinite Descent. In a simple test problem, AION reaches the optimum in a single descent step. Together, this optimiser-model pair exemplify how analytic structure enables exact, non-iterative convergence. Infinite Descent extends beyond this example, applying to any appropriately closed architecture. This suggests a new class of semi-analytically optimisable models: the \emph{Infinity Class}; sufficient conditions for class membership are discussed. This offers a pathway toward non-iterative learning.
☆ TensorBLEU: Vectorized GPU-based BLEU Score Implementation for Per-Sentence In-Training Evaluation
Modern natural language processing models have achieved unprecedented scale, yet the tools for their evaluation often remain a computational bottleneck, limiting the pace of research. This is particularly acute for in-training evaluation metrics, such as per-sentence reward signals in Reinforcement Learning, which must operate efficiently on batches of token IDs directly on the GPU. In this paper, we introduce TensorBLEU, a novel implementation of the BLEU metric designed from the ground up for this specific use case. Our approach is fully vectorized for GPU-accelerated, per-sentence computation within PyTorch and introduces a memory-efficient counting mechanism. By creating a compact, batch-specific dictionary of n-grams using \texttt{torch.unique}, our method avoids the prohibitive memory costs of traditional hashing-based vectorization, making it practical for large-vocabulary models. We benchmark TensorBLEU against NLTK, the standard library for token-ID-based BLEU calculation on the CPU. Experiments show that TensorBLEU provides speedups of over 13x on consumer-grade GPUs (NVIDIA T4) and exceeding 40x on data-center-class hardware (NVIDIA A100). This performance transforms a significant bottleneck into a negligible part of the training loop. By clearly defining its role as a "Token-ID BLEU" for development purposes and open-sourcing our implementation, we provide a powerful tool for accelerating research in areas like RL-based model fine-tuning.
comment: 9 pages, 3 figures
☆ ATOM: A Pretrained Neural Operator for Multitask Molecular Dynamics
Molecular dynamics (MD) simulations underpin modern computational drug dis- covery, materials science, and biochemistry. Recent machine learning models provide high-fidelity MD predictions without the need to repeatedly solve quantum mechanical forces, enabling significant speedups over conventional pipelines. Yet many such methods typically enforce strict equivariance and rely on sequential rollouts, thus limiting their flexibility and simulation efficiency. They are also com- monly single-task, trained on individual molecules and fixed timeframes, which restricts generalization to unseen compounds and extended timesteps. To address these issues, we propose Atomistic Transformer Operator for Molecules (ATOM), a pretrained transformer neural operator for multitask molecular dynamics. ATOM adopts a quasi-equivariant design that requires no explicit molecular graph and employs a temporal attention mechanism, allowing for the accurate parallel decod- ing of multiple future states. To support operator pretraining across chemicals and timescales, we curate TG80, a large, diverse, and numerically stable MD dataset with over 2.5 million femtoseconds of trajectories across 80 compounds. ATOM achieves state-of-the-art performance on established single-task benchmarks, such as MD17, RMD17 and MD22. After multitask pretraining on TG80, ATOM shows exceptional zero-shot generalization to unseen molecules across varying time hori- zons. We believe ATOM represents a significant step toward accurate, efficient, and transferable molecular dynamics models
☆ AMAQ: Adaptive Mixed-bit Activation Quantization for Collaborative Parameter Efficient Fine-tuning
Large Language Models (LLMs) are scaling rapidly, creating significant challenges for collaborative server client distributed training, particularly in terms of communication efficiency and computational overheads. To address these challenges, we implement Parameter-efficient Split Learning, which effectively balances efficiency and performance for collaborative training on low-resource devices. To reduce communication overhead in collaborative training, we introduce Adaptive Mixed bit Activation Quantization (AMAQ), a strategy that progressively compresses activations and gradients from high precision (6 to 8 bits) to low precision (3 to 4 bits). AMAQ achieves this by effectively allocating bit budgets across channels based on feature wise and layer wise importance using bit regularization. Under the same bit budgets, AMAQ outperforms fixed-precision approaches, delivering about 2.5% higher generation accuracy and about 1.3% better classification accuracy for models like LLaMA3 8B and Qwen2.5 7B. In addition, it significantly enhances training stability and reducing ultra-low bit representation collapse during the training. Experiments demonstrate that AMAQ integrates effectively into practical multi-machine collaborative training setups, offering superior inference accuracy with only a modest communication overhead for bits adaptation during training. This trade off makes AMAQ a practical and effective solution for collaborative training with minimal communication cost.
comment: 14 pages
♻ ☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
♻ ☆ HOG-Diff: Higher-Order Guided Diffusion for Graph Generation
Graph generation is a critical yet challenging task as empirical analyses require a deep understanding of complex, non-Euclidean structures. Diffusion models have recently made significant achievements in graph generation, but these models are typically adapted from image generation frameworks and overlook inherent higher-order topology, leaving them ill-suited for capturing the topological properties of graphs. In this work, we propose Higher-order Guided Diffusion (HOG-Diff), a principled framework that progressively generates plausible graphs with inherent topological structures. HOG-Diff follows a coarse-to-fine generation curriculum guided by higher-order topology and implemented via diffusion bridges. We further prove that our model exhibits a stronger theoretical guarantee than classical diffusion frameworks. Extensive experiments on both molecular and generic graph generation tasks demonstrate that our method consistently outperforms or remains competitive with state-of-the-art baselines. Our code is available at https://github.com/Yiminghh/HOG-Diff.
♻ ☆ Hierarchical Reasoning Models: Perspectives and Misconceptions
Transformers have demonstrated remarkable performance in natural language processing and related domains, as they largely focus on sequential, autoregressive next-token prediction tasks. Yet, they struggle in logical reasoning, not necessarily because of a fundamental limitation of these models, but possibly due to the lack of exploration of more creative uses, such as latent space and recurrent reasoning. An emerging exploration in this direction is the Hierarchical Reasoning Model (Wang et. al., 2025), which introduces a novel type of recurrent reasoning in the latent space of transformers, achieving remarkable performance on a wide range of 2D reasoning tasks. Despite the promising results, this line of models is still at an early stage and calls for in-depth investigation. In this work, we review this class of models, examine key design choices, test alternative variants and clarify common misconceptions.
comment: Found errors in some results of v1. Removed them and changed conclusions
♻ ☆ A Fairness-Aware Strategy for B5G Physical-layer Security Leveraging Reconfigurable Intelligent Surfaces
Reconfigurable Intelligent Surfaces are composed of physical elements that can dynamically alter electromagnetic wave properties to enhance beamforming and lead to improvements in areas with low coverage properties. Combined with Reinforcement Learning techniques, they have the potential to be conduct as well physical-layer security hardening. Yet, and in addition to security improvements, it is crucial to consider the concept of fair communication. Reconfigurable Intelligent Surfaces must ensure that User Equipment units receive their signals with adequate strength, without other units being deprived of service due to insufficient power. In this paper, we address such a problem. We explore the fairness properties of previous work and propose a novel method that aims at obtaining both an efficient and fair duplex Reconfigurable Intelligent Surface-Reinforcement Learning system for multiple legitimate User Equipment units without reducing the level of achieved physical-layer security hardening. In terms of contributions, we uncover a fairness imbalance of a previous physical-layer security hardening solution, validate our findings and report experimental work via simulation results. We also provide an alternative reward strategy to solve the uncovered problems and release both code and datasets to foster further research in the topics of this paper.
comment: 19 pages, 5 figures, 2 tables, 41 references
♻ ☆ How Reliable are Causal Probing Interventions?
Causal probing aims to analyze foundation models by examining how intervening on their representation of various latent properties impacts their outputs. Recent works have cast doubt on the theoretical basis of several leading causal probing methods, but it has been unclear how to systematically evaluate the effectiveness of these methods in practice. To address this, we define two key causal probing desiderata: completeness (how thoroughly the representation of the target property has been transformed) and selectivity (how little non-targeted properties have been impacted). We find that there is an inherent tradeoff between the two, which we define as reliability, their harmonic mean. We introduce an empirical analysis framework to measure and evaluate these quantities, allowing us to make the first direct comparisons between different families of leading causal probing methods (e.g., linear vs. nonlinear, or concept removal vs. counterfactual interventions). We find that: (1) all methods show a clear tradeoff between completeness and selectivity; (2) more complete and reliable methods have a greater impact on LLM behavior; and (3) nonlinear interventions are almost always more reliable than linear interventions.
♻ ☆ Gemstones: A Model Suite for Multi-Faceted Scaling Laws NeurIPS 2025
Scaling laws are typically fit using a family of models with a narrow range of frozen hyperparameter choices. In this work we study scaling laws using multiple architectural shapes and hyperparameter choices, highlighting their impact on resulting prescriptions. As a primary artifact of our research, we release the Gemstones: an open-source scaling law dataset, consisting of over 4000 checkpoints from transformers with up to 2 billion parameters and diverse architectural shapes; including ablations over learning rate and cooldown. Our checkpoints enable more complex studies of scaling, such as analyzing the relationship between width and depth. By examining our model suite, we find that the prescriptions of scaling laws can be highly sensitive to the experimental design process and the specific model checkpoints used during fitting.
comment: NeurIPS 2025
♻ ☆ Optimal Policy Minimum Bayesian Risk
Inference scaling helps LLMs solve complex reasoning problems through extended runtime computation. On top of long chain-of-thought (long-CoT) models, purely inference-time techniques such as best-of-N (BoN) sampling, majority voting, or more generally, minimum Bayes risk decoding (MBRD), can further improve LLM accuracy by generating multiple candidate solutions and aggregating over them. These methods typically leverage additional signals in the form of reward models and risk/similarity functions that compare generated samples, e.g., exact match in some normalized space or standard similarity metrics such as Rouge. Here we present a novel method for incorporating reward and risk/similarity signals into MBRD. Based on the concept of optimal policy in KL-controlled reinforcement learning, our framework provides a simple and well-defined mechanism for leveraging such signals, offering several advantages over traditional inference-time methods: higher robustness, improved accuracy, and well-understood asymptotic behavior. In addition, it allows for the development of a sample-efficient variant of MBRD that can adjust the number of samples to generate according to the difficulty of the problem, without relying on majority vote counts. We empirically demonstrate the advantages of our approach on math (MATH-$500$) and coding (HumanEval) tasks using recent open-source models. We also present a comprehensive analysis of its accuracy-compute trade-offs.
♻ ☆ Spatiotemporal Graph Learning with Direct Volumetric Information Passing and Feature Enhancement
Data-driven learning of physical systems has kindled significant attention, where many neural models have been developed. In particular, mesh-based graph neural networks (GNNs) have demonstrated significant potential in modeling spatiotemporal dynamics across arbitrary geometric domains. However, the existing node-edge message-passing and aggregation mechanism in GNNs limits the representation learning ability. In this paper, we proposed a dual-module framework, Cell-embedded and Feature-enhanced Graph Neural Network (aka, CeFeGNN), for learning spatiotemporal dynamics. Specifically, we embed learnable cell attributions to the common node-edge message passing process, which better captures the spatial dependency of regional features. Such a strategy essentially upgrades the local aggregation scheme from first order (e.g., from edge to node) to a higher order (e.g., from volume and edge to node), which takes advantage of volumetric information in message passing. Meanwhile, a novel feature-enhanced block is designed to further improve the model's performance and alleviate the over-smoothness problem. Extensive experiments on various PDE systems and one real-world dataset demonstrate that CeFeGNN achieves superior performance compared with other baselines.
♻ ☆ Can We Predict Alignment Before Models Finish Thinking? Towards Monitoring Misaligned Reasoning Models
Reasoning language models improve performance on complex tasks by generating long chains of thought (CoTs), but this process can also increase harmful outputs in adversarial settings. In this work, we ask whether the long CoTs can be leveraged for predictive safety monitoring: do the reasoning traces provide early signals of final response alignment that could enable timely intervention? We evaluate a range of monitoring methods using either CoT text or activations, including highly capable large language models, fine-tuned classifiers, and humans. First, we find that a simple linear probe trained on CoT activations significantly outperforms all text-based baselines in predicting whether a final response is safe or unsafe, with an average absolute increase of 13 in F1 scores over the best-performing alternatives. CoT texts are often unfaithful and misleading, while model latents provide a more reliable predictive signal. Second, the probe can be applied to early CoT segments before the response is generated, showing that alignment signals appear before reasoning completes. Error analysis reveals that the performance gap between text classifiers and the linear probe largely stems from a subset of responses we call performative CoTs, where the reasoning consistently contradicts the final response as the CoT progresses. Our findings generalize across model sizes, families, and safety benchmarks, suggesting that lightweight probes could enable real-time safety monitoring and early intervention during generation.
♻ ☆ Robust-Multi-Task Gradient Boosting
Multi-task learning (MTL) has shown effectiveness in exploiting shared information across tasks to improve generalization. MTL assumes tasks share similarities that can improve performance. In addition, boosting algorithms have demonstrated exceptional performance across diverse learning problems, primarily due to their ability to focus on hard-to-learn instances and iteratively reduce residual errors. This makes them a promising approach for learning multi-task problems. However, real-world MTL scenarios often involve tasks that are not well-aligned (known as outlier or adversarial tasks), which do not share beneficial similarities with others and can, in fact, deteriorate the performance of the overall model. To overcome this challenge, we propose Robust-Multi-Task Gradient Boosting (R-MTGB), a novel boosting framework that explicitly models and adapts to task heterogeneity during training. R-MTGB structures the learning process into three sequential blocks: (1) learning shared patterns, (2) partitioning tasks into outliers and non-outliers with regularized parameters, and (3) fine-tuning task-specific predictors. This architecture enables R-MTGB to automatically detect and penalize outlier tasks while promoting effective knowledge transfer among related tasks. Our method integrates these mechanisms seamlessly within gradient boosting, allowing robust handling of noisy or adversarial tasks without sacrificing accuracy. Extensive experiments on both synthetic benchmarks and real-world datasets demonstrate that our approach successfully isolates outliers, transfers knowledge, and consistently reduces prediction errors for each task individually, and achieves overall performance gains across all tasks. These results highlight robustness, adaptability, and reliable convergence of R-MTGB in challenging MTL environments.
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables v2 changelog: Fixed the modeling for table 3, random effect is the model version
♻ ☆ CAMERA: Multi-Matrix Joint Compression for MoE Models via Micro-Expert Redundancy Analysis
Large Language Models (LLMs) with Mixture-of-Experts (MoE) architectures are distinguished by their strong performance scaling with increasing parameters across a wide range of tasks, yet they also suffer from substantial computational and storage overheads. Notably, the performance gains of MoE models do not scale proportionally with the growth in expert parameters. While prior works attempt to reduce parameters via expert-level pruning, merging, or decomposition, they still suffer from challenges in both performance and computational efficiency. In this paper, we address these challenges by introducing micro-expert as a finer-grained compression unit that spans across matrices. We first establish a more fundamental perspective, viewing MoE layers as mixtures of micro-experts, and present CAMERA, a lightweight and training-free framework for identifying micro-expert redundancy. Our analysis uncovers significant variance in micro-expert contributions during decoding. Based on this insight, we further propose CAMERA-P, a structured micro-expert pruning framework, and CAMERA-Q, a mixed-precision quantization idea designed for micro-experts. Extensive experiments on nine downstream tasks show that CAMERA-P consistently outperforms strong baselines under pruning ratios ranging from 20% to 60%. Furthermore, CAMERA-Q achieves superior results under aggressive 2-bit quantization, surpassing existing matrix- and channel-level ideas. Notably, our method enables complete micro-expert analysis of Qwen2-57B-A14B in less than 5 minutes on a single NVIDIA A100-40GB GPU.
comment: 16 pages, 9 figures, 7 tables
♻ ☆ Unified Cross-Modal Medical Image Synthesis with Hierarchical Mixture of Product-of-Experts
We propose a deep mixture of multimodal hierarchical variational auto-encoders called MMHVAE that synthesizes missing images from observed images in different modalities. MMHVAE's design focuses on tackling four challenges: (i) creating a complex latent representation of multimodal data to generate high-resolution images; (ii) encouraging the variational distributions to estimate the missing information needed for cross-modal image synthesis; (iii) learning to fuse multimodal information in the context of missing data; (iv) leveraging dataset-level information to handle incomplete data sets at training time. Extensive experiments are performed on the challenging problem of pre-operative brain multi-parametric magnetic resonance and intra-operative ultrasound imaging.
comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Uni-Instruct: One-step Diffusion Model through Unified Diffusion Divergence Instruction
In this paper, we unify more than 10 existing one-step diffusion distillation approaches, such as Diff-Instruct, DMD, SIM, SiD, $f$-distill, etc, inside a theory-driven framework which we name the \textbf{\emph{Uni-Instruct}}. Uni-Instruct is motivated by our proposed diffusion expansion theory of the $f$-divergence family. Then we introduce key theories that overcome the intractability issue of the original expanded $f$-divergence, resulting in an equivalent yet tractable loss that effectively trains one-step diffusion models by minimizing the expanded $f$-divergence family. The novel unification introduced by Uni-Instruct not only offers new theoretical contributions that help understand existing approaches from a high-level perspective but also leads to state-of-the-art one-step diffusion generation performances. On the CIFAR10 generation benchmark, Uni-Instruct achieves record-breaking Frechet Inception Distance (FID) values of \textbf{\emph{1.46}} for unconditional generation and \textbf{\emph{1.38}} for conditional generation. On the ImageNet-$64\times 64$ generation benchmark, Uni-Instruct achieves a new SoTA one-step generation FID of \textbf{\emph{1.02}}, which outperforms its 79-step teacher diffusion with a significant improvement margin of 1.33 (1.02 vs 2.35). We also apply Uni-Instruct on broader tasks like text-to-3D generation. For text-to-3D generation, Uni-Instruct gives decent results, which slightly outperforms previous methods, such as SDS and VSD, in terms of both generation quality and diversity. Both the solid theoretical and empirical contributions of Uni-Instruct will potentially help future studies on one-step diffusion distillation and knowledge transferring of diffusion models.
♻ ☆ Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensitive information about individuals. This article provides theoretical guarantees by exploring the fundamental statistical limitations associated with MIAs on machine learning models at large. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. We then theoretically prove that in a non-linear regression setting with overfitting learning procedures, attacks may have a high probability of success. Finally, we investigate several situations for which we provide bounds on this quantity of interest. Interestingly, our findings indicate that discretizing the data might enhance the learning procedure's security. Specifically, it is demonstrated to be limited by a constant, which quantifies the diversity of the underlying data distribution. We illustrate those results through simple simulations.
comment: Accepted for publication in JMLR
♻ ☆ Teaching Metric Distance to Discrete Autoregressive Language Models
As large language models expand beyond natural language to domains such as mathematics, multimodal understanding, and embodied agents, tokens increasingly reflect metric relationships rather than purely linguistic meaning. We introduce DIST2Loss, a distance-aware framework designed to train autoregressive discrete models by leveraging predefined distance relationships among output tokens. At its core, DIST2Loss transforms continuous exponential family distributions derived from inherent distance metrics into discrete, categorical optimization targets compatible with the models' architectures. This approach enables the models to learn and preserve meaningful distance relationships during token generation while maintaining compatibility with existing architectures. Empirical evaluations show consistent performance gains in diverse multimodal applications, including visual grounding, robotic manipulation, generative reward modeling, and image generation using vector-quantized features. These improvements are most notable in low-data regimes, demonstrating DIST2Loss's strength under resource constraints.
♻ ☆ BrowserArena: Evaluating LLM Agents on Real-World Web Navigation Tasks
LLM web agents now browse and take actions on the open web, yet current agent evaluations are constrained to sandboxed environments or artificial tasks. We introduce BrowserArena, a live open-web agent evaluation platform that collects user-submitted tasks, runs Arena-style head-to-head comparisons, and uses step-level human feedback to surface failure modes. Collecting and analyzing step-level annotations on the agent traces, we identify three consistent failure modes: captcha resolution, pop-up banner removal, and direct navigation to URLs. By constructing targeted datasets to further study these tasks, we discover variations in how different language models navigate these failure modes. We find, for example, that o4-mini deploys a wider variety of strategies to circumvent captcha resolution than other models and DeepSeek-R1 consistently misleads users about pop-up banner closure. Our findings surface both the diversity and brittleness of current web agents. More broadly, our benchmarking methodology provides an approach to evaluating and understanding web agent failure modes at scale.
♻ ☆ ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression NeurIPS 2025
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.
comment: Accepted at NeurIPS 2025 (oral)
♻ ☆ Structured Sparse Transition Matrices to Enable State Tracking in State-Space Models NeurIPS 2025
Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model
comment: 10 pages, NeurIPS 2025 Spotlight
♻ ☆ SAE-FiRE: Enhancing Earnings Surprise Predictions Through Sparse Autoencoder Feature Selection
Predicting earnings surprises from financial documents, such as earnings conference calls, regulatory filings, and financial news, has become increasingly important in financial economics. However, these financial documents present significant analytical challenges, typically containing over 5,000 words with substantial redundancy and industry-specific terminology that creates obstacles for language models. In this work, we propose the SAE-FiRE (Sparse Autoencoder for Financial Representation Enhancement) framework to address these limitations by extracting key information while eliminating redundancy. SAE-FiRE employs Sparse Autoencoders (SAEs) to decompose dense neural representations from large language models into interpretable sparse components, then applies statistical feature selection methods, including ANOVA F-tests and tree-based importance scoring, to identify the top-k most discriminative dimensions for classification. By systematically filtering out noise that might otherwise lead to overfitting, we enable more robust and generalizable predictions. Experimental results across three financial datasets demonstrate that SAE-FiRE significantly outperforms baseline approaches.
♻ ☆ Investigating Forecasting Models for Pandemic Infections Using Heterogeneous Data Sources: A 2-year Study with COVID-19
Emerging in December 2019, the COVID-19 pandemic caused widespread health, economic, and social disruptions. Rapid global transmission overwhelmed healthcare systems, resulting in high infection rates, hospitalisations, and fatalities. To minimise the spread, governments implemented several non-pharmaceutical interventions like lockdowns and travel restrictions. While effective in controlling transmission, these measures also posed significant economic and societal challenges. Although the WHO declared COVID-19 no longer a global health emergency in May 2023, its impact persists, shaping public health strategies. The vast amount of data collected during the pandemic offers valuable insights into disease dynamics, transmission, and intervention effectiveness. Leveraging these insights can improve forecasting models, enhancing preparedness and response to future outbreaks while mitigating their social and economic impact. This paper presents a large-scale case study on COVID-19 forecasting in Cyprus, utilising a two-year dataset that integrates epidemiological data, vaccination records, policy measures, and weather conditions. We analyse infection trends, assess forecasting performance, and examine the influence of external factors on disease dynamics. The insights gained contribute to improved pandemic preparedness and response strategies.
comment: Keywords: epidemiology, pandemic forecasting, COVID-19, infections, machine learning. Published in: IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 2025
♻ ☆ Randomly Removing 50% of Dimensions in Text Embeddings has Minimal Impact on Retrieval and Classification Tasks EMNLP 2025
In this paper, we study the surprising impact that truncating text embeddings has on downstream performance. We consistently observe across 6 state-of-the-art text encoders and 26 downstream tasks, that randomly removing up to 50% of embedding dimensions results in only a minor drop in performance, less than 10%, in retrieval and classification tasks. Given the benefits of using smaller-sized embeddings, as well as the potential insights about text encoding, we study this phenomenon and find that, contrary to what is suggested in prior work, this is not the result of an ineffective use of representation space. Instead, we find that a large number of uniformly distributed dimensions actually cause an increase in performance when removed. This would explain why, on average, removing a large number of embedding dimensions results in a marginal drop in performance. We make similar observations when truncating the embeddings used by large language models to make next-token predictions on generative tasks, suggesting that this phenomenon is not isolated to classification or retrieval tasks.
comment: Accepted to EMNLP 2025 Main Conference (Oral), camera-ready version
♻ ☆ FedFlex: Federated Learning for Diverse Netflix Recommendations
The drive for personalization in recommender systems creates a tension between user privacy and the risk of "filter bubbles". Although federated learning offers a promising paradigm for privacy-preserving recommendations, its impact on diversity remains unclear. We introduce FedFlex, a two-stage framework that combines local, on-device fine-tuning of matrix factorization models (SVD and BPR) with a lightweight Maximal Marginal Relevance (MMR) re-ranking step to promote diversity. We conducted the first live user study of a federated recommender, collecting behavioral data and feedback during a two-week online deployment. Our results show that FedFlex successfully engages users, with BPR outperforming SVD in click-through rate. Re-ranking with MMR consistently improved ranking quality (nDCG) across both models, with statistically significant gains, particularly for BPR. Diversity effects varied: MMR increased coverage for both models and improved intra-list diversity for BPR, but slightly reduced it for SVD, suggesting different interactions between personalization and diversification across models. Our exit questionnaire responses indicated that most users expressed no clear preference between re-ranked and unprocessed lists, implying that increased diversity did not substantially reduce user satisfaction.
♻ ☆ Neon: Negative Extrapolation From Self-Training Improves Image Generation
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/VITA-Group/Neon
♻ ☆ A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localises and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-centre WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score of 0.67 for whole skeletal delineation, 0.76 when excluding ribcage, 0.83 for internal organs, and 0.86 for spinal canal, with average surface distances below 3mm. Relative median ADC differences between automated and manual full-body delineations were below 10%. The model was 12x faster than the atlas-based registration algorithm (25 sec vs. 5 min). Two experienced radiologists rated the model's outputs as either "good" or "excellent" on test scans, with inter-reader agreement from fair to substantial (Gwet's AC1 = 0.27-0.72). Conclusion: The model offers fast, reproducible probability maps for localising and delineating body regions on WB-DWI, potentially enabling non-invasive imaging biomarker quantification to support disease staging and treatment response assessment.
♻ ☆ CAPO: Towards Enhancing LLM Reasoning through Generative Credit Assignment
Reinforcement Learning with Verifiable Rewards (RLVR) has improved the reasoning abilities of Large Language Models (LLMs) by using rule-based binary feedback. However, current RLVR methods typically assign the same reward to every token. This coarse-grained feedback hampers precise credit assignment, making it hard for models to identify which reasoning steps lead to success or failure, and often results in suboptimal policies. Methods like PPO provide credit assignment by value estimation, but yield inaccurate and unverifiable signals due to limited sampling. On the other hand, methods using Process Reward Models can provide step-wise rewards but suffer from several key limitations: they require high-quality process supervision labels, the feedback is unreliable due to probabilistic reward modeling, and their application in online reinforcement learning (RL) is time-consuming. To overcome these limitations, we introduce a simple but efficient method-Credit Assignment Policy Optimization (CAPO). Instead of training auxiliary models, CAPO directly leverages an off-the-shelf, general-purpose LLM as a Generative Process Reward Model (LLM-as-GenPRM) to generate all step-wise critique by one pass only based on the correctness of the step itself, providing deterministic token-level credits to refine the tokens that were originally assigned identical rule-based rewards. To further enhance the accuracy and robustness, we employ voting mechanisms that scale with the number of generated critiques. Extensive experiments on various backbones like Llama and Qwen models show that CAPO consistently outperforms supervised learning-based and RL-based fine-tuning methods across four challenging mathematical benchmarks and three out-of-domain benchmarks. Further analysis shows that CAPO can help the model to foster the learning of correct reasoning pathways leading to correct answers.
comment: Work in progress
♻ ☆ MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Effective model and hyperparameter selection remains a major challenge in deep learning, often requiring extensive expertise and computation. While AutoML and large language models (LLMs) promise automation, current LLM-based approaches rely on trial and error and expensive APIs, which provide limited interpretability and generalizability. We propose MetaLLMiX, a zero-shot hyperparameter optimization framework combining meta-learning, explainable AI, and efficient LLM reasoning. By leveraging historical experiment outcomes with SHAP explanations, MetaLLMiX recommends optimal hyperparameters and pretrained models without additional trials. We further employ an LLM-as-judge evaluation to control output format, accuracy, and completeness. Experiments on eight medical imaging datasets using nine open-source lightweight LLMs show that MetaLLMiX achieves competitive or superior performance to traditional HPO methods while drastically reducing computational cost. Our local deployment outperforms prior API-based approaches, achieving optimal results on 5 of 8 tasks, response time reductions of 99.6-99.9%, and the fastest training times on 6 datasets (2.4-15.7x faster), maintaining accuracy within 1-5% of best-performing baselines.
♻ ☆ How Foundational are Foundation Models for Time Series Forecasting? NeurIPS 2025
Foundation Models are designed to serve as versatile embedding machines, with strong zero shot capabilities and superior generalization performance when fine-tuned on diverse downstream tasks. While this is largely true for language and vision foundation models, we argue that the inherent diversity of time series data makes them less suited for building effective foundation models. We demonstrate this using forecasting as our downstream task. We show that the zero-shot capabilities of a time series foundation model are significantly influenced and tied to the specific domains it has been pretrained on. Furthermore, when applied to unseen real-world time series data, fine-tuned foundation models do not consistently yield substantially better results, relative to their increased parameter count and memory footprint, than smaller, dedicated models tailored to the specific forecasting task at hand.
comment: Typo rectified in this v3 version. Accepted at NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)
♻ ☆ Understanding Catastrophic Interference: On the Identifibility of Latent Representations
Catastrophic interference, also known as catastrophic forgetting, is a fundamental challenge in machine learning, where a trained learning model progressively loses performance on previously learned tasks when adapting to new ones. In this paper, we aim to better understand and model the catastrophic interference problem from a latent representation learning point of view, and propose a novel theoretical framework that formulates catastrophic interference as an identification problem. Our analysis demonstrates that the forgetting phenomenon can be quantified by the distance between partial-task aware (PTA) and all-task aware (ATA) setups. Building upon recent advances in identifiability theory, we prove that this distance can be minimized through identification of shared latent variables between these setups. When learning, we propose our method \ourmeos with two-stage training strategy: First, we employ maximum likelihood estimation to learn the latent representations from both PTA and ATA configurations. Subsequently, we optimize the KL divergence to identify and learn the shared latent variables. Through theoretical guarantee and empirical validations, we establish that identifying and learning these shared representations can effectively mitigate catastrophic interference in machine learning systems. Our approach provides both theoretical guarantees and practical performance improvements across both synthetic and benchmark datasets.
♻ ☆ Mitigating Exponential Mixed Frequency Growth through Frequency Selection
Quantum machine learning research has expanded rapidly due to potential computational advantages over classical methods. Angle encoding has emerged as a popular choice as feature map (FM) for embedding classical data into quantum models due to its simplicity and natural generation of truncated Fourier series, providing universal function approximation capabilities. Efficient FMs within quantum circuits can exploit exponential scaling of Fourier frequencies, with multi-dimensional inputs introducing additional exponential growth through mixed-frequency terms. Despite this promising expressive capability, practical implementation faces significant challenges. Through controlled experiments with white-box target functions, we demonstrate that training failures can occur even when all relevant frequencies are theoretically accessible. We illustrate how two primary known causes lead to unsuccessful optimization: insufficient trainable parameters relative to the model's frequency content, and limitations imposed by the ansatz's dynamic lie algebra dimension, but also uncover an additional parameter burden: the necessity of controlling non-unique frequencies within the model. To address this, we propose near-zero weight initialization to suppress unnecessary duplicate frequencies. For target functions with a priori frequency knowledge, we introduce frequency selection as a practical solution that reduces parameter requirements and mitigates the exponential growth that would otherwise render problems intractable due to parameter insufficiency. Our frequency selection approach achieved near-optimal performance (median $R^2 \approx 0.95$) with 78\% of the parameters needed by the best standard approach in 10 randomly chosen target functions.
comment: 10 pages, 3 figures
♻ ☆ Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both $\ell_\infty$ and $\ell_2$ threat models (binary and multiclass), the certified radius grows as the dual norms of $W^\top u$ shrink, where $W$ is the projection and $u$ the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.
comment: Killian Steunou is the main contributor and corresponding author of this work
♻ ☆ Back to Square Roots: An Optimal Bound on the Matrix Factorization Error for Multi-Epoch Differentially Private SGD
Matrix factorization mechanisms for differentially private training have emerged as a promising approach to improve model utility under privacy constraints. In practical settings, models are typically trained over multiple epochs, requiring matrix factorizations that account for repeated participation. Existing theoretical upper and lower bounds on multi-epoch factorization error leave a significant gap. In this work, we introduce a new explicit factorization method, Banded Inverse Square Root (BISR), which imposes a banded structure on the inverse correlation matrix. This factorization enables us to derive an explicit and tight characterization of the multi-epoch error. We further prove that BISR achieves asymptotically optimal error by matching the upper and lower bounds. Empirically, BISR performs on par with state-of-the-art factorization methods, while being simpler to implement, computationally efficient, and easier to analyze.
♻ ☆ Fast Policy Learning for Linear Quadratic Control with Entropy Regularization
This paper proposes and analyzes two new policy learning methods: regularized policy gradient (RPG) and iterative policy optimization (IPO), for a class of discounted linear-quadratic control (LQC) problems over an infinite time horizon with entropy regularization. Assuming access to the exact policy evaluation, both proposed approaches are proven to converge linearly in finding optimal policies of the regularized LQC. Moreover, the IPO method can achieve a super-linear convergence rate once it enters a local region around the optimal policy. Finally, when the optimal policy for an RL problem with a known environment is appropriately transferred as the initial policy to an RL problem with an unknown environment, the IPO method is shown to enable a super-linear convergence rate if the two environments are sufficiently close. Performances of these proposed algorithms are supported by numerical examples.
comment: 31 pages, 3 figures
♻ ☆ The Use of Binary Choice Forests to Model and Estimate Discrete Choices
Problem definition. In retailing, discrete choice models (DCMs) are commonly used to capture the choice behavior of customers when offered an assortment of products. When estimating DCMs using transaction data, flexible models (such as machine learning models or nonparametric models) are typically not interpretable and hard to estimate, while tractable models (such as the multinomial logit model) tend to misspecify the complex behavior represeted in the data. Methodology/results. In this study, we use a forest of binary decision trees to represent DCMs. This approach is based on random forests, a popular machine learning algorithm. The resulting model is interpretable: the decision trees can explain the decision-making process of customers during the purchase. We show that our approach can predict the choice probability of any DCM consistently and thus never suffers from misspecification. Moreover, our algorithm predicts assortments unseen in the training data. The mechanism and errors can be theoretically analyzed. We also prove that the random forest can recover preference rankings of customers thanks to the splitting criterion such as the Gini index and information gain ratio. Managerial implications. The framework has unique practical advantages. It can capture customers' behavioral patterns such as irrationality or sequential searches when purchasing a product. It handles nonstandard formats of training data that result from aggregation. It can measure product importance based on how frequently a random customer would make decisions depending on the presence of the product. It can also incorporate price information and customer features. Our numerical experiments using synthetic and real data show that using random forests to estimate customer choices can outperform existing methods.
comment: 63 pages, 10 figures, 30 tables
♻ ☆ Minimizing the Weighted Number of Tardy Jobs: Data-Driven Heuristic for Single-Machine Scheduling
Existing research on single-machine scheduling is largely focused on exact algorithms, which perform well on typical instances but can significantly deteriorate on certain regions of the problem space. In contrast, data-driven approaches provide strong and scalable performance when tailored to the structure of specific datasets. Leveraging this idea, we focus on a single-machine scheduling problem where each job is defined by its weight, duration, due date, and deadline, aiming to minimize the total weight of tardy jobs. We introduce a novel data-driven scheduling heuristic that combines machine learning with problem-specific characteristics, ensuring feasible solutions, which is a common challenge for ML-based algorithms. Experimental results demonstrate that our approach significantly outperforms the state-of-the-art in terms of optimality gap, number of optimal solutions, and adaptability across varied data scenarios, highlighting its flexibility for practical applications. In addition, we conduct a systematic exploration of ML models, addressing a common gap in similar studies by offering a detailed model selection process and providing insights into why the chosen model is the best fit.
comment: Published version: Computers & Operations Research, https://doi.org/10.1016/j.cor.2025.107281. Data are publicly available at https://doi.org/10.5281/zenodo.17233362
♻ ☆ An Embarrassingly Simple Defense Against LLM Abliteration Attacks
Large language models (LLMs) are typically aligned to refuse harmful instructions through safety fine-tuning. A recent attack, termed abliteration, identifies and suppresses the single latent direction most responsible for refusal behavior, thereby enabling models to generate harmful content. We propose a defense that fundamentally alters how models express refusal. We construct an extended-refusal dataset in which responses to harmful prompts provide detailed justifications before refusing, distributing the refusal signal across multiple token positions. Fine-tuning Llama-2-7B-Chat and Qwen2.5-Instruct (1.5B and 3B parameters) on this dataset yields models that maintain high refusal rates under abliteration: refusal rates drop by at most 10%, compared to 70-80% drops in baseline models. Comprehensive evaluations of safety and utility demonstrate that extended-refusal fine-tuning effectively neutralizes abliteration attacks while preserving general model performance and enhancing robustness across multiple alignment scenarios.
comment: preprint - under review
♻ ☆ Can foundation models actively gather information in interactive environments to test hypotheses?
Foundation models excel at single-turn reasoning but struggle with multi-turn exploration in dynamic environments, a requirement for many real-world challenges. We evaluated these models on their ability to learn from experience, adapt, and gather information. First, in "Feature World," a simple setting for testing information gathering, models performed near-optimally. However, to test more complex, multi-trial learning, we implemented a text-based version of the "Alchemy" environment, a benchmark for meta-learning. Here, agents must deduce a latent causal structure by integrating information across many trials. In this setting, recent foundation models initially failed to improve their performance over time. Crucially, we found that prompting the models to summarize their observations at regular intervals enabled an emergent meta-learning process. This allowed them to improve across trials and even adaptively re-learn when the environment's rules changed unexpectedly. While most models handled the simple task, Alchemy revealed stark differences in robustness: Gemini 2.5 performed best, followed by Claude 3.7, while ChatGPT-4o and o4-mini struggled. This underscores Alchemy's value as a benchmark. Our findings demonstrate that the biggest challenge for foundation models is not selecting informative actions in the moment, but integrating knowledge through adaptive strategies over time. Encouragingly, there appears to be no intrinsic barrier to future models mastering these abilities.
♻ ☆ Expected Free Energy-based Planning as Variational Inference
We address the problem of planning under uncertainty, where an agent must choose actions that not only achieve desired outcomes but also reduce uncertainty. Traditional methods often treat exploration and exploitation as separate objectives, lacking a unified inferential foundation. Active inference, grounded in the Free Energy Principle, provides such a foundation by minimizing Expected Free Energy (EFE), a cost function that combines utility with epistemic drives, such as ambiguity resolution and novelty seeking. However, the computational burden of EFE minimization had remained a significant obstacle to its scalability. In this paper, we show that EFE-based planning arises naturally from minimizing a variational free energy functional on a generative model augmented with preference and epistemic priors. This result reinforces theoretical consistency with the Free Energy Principle by casting planning under uncertainty itself as a form of variational inference. Our formulation yields policies that jointly support goal achievement and information gain, while incorporating a complexity term that accounts for bounded computational resources. This unifying framework connects and extends existing methods, enabling scalable, resource-aware implementations of active inference agents.
comment: 18 pages
♻ ☆ Constrained free energy minimization for the design of thermal states and stabilizer thermodynamic systems
A quantum thermodynamic system is described by a Hamiltonian and a list of conserved, non-commuting charges, and a fundamental goal is to determine the minimum energy of the system subject to constraints on the charges. Recently, [Liu et al., arXiv:2505.04514] proposed first- and second-order classical and hybrid quantum-classical algorithms for solving a dual chemical potential maximization problem, and they proved that these algorithms converge to global optima by means of gradient-ascent approaches. In this paper, we benchmark these algorithms on several problems of interest in thermodynamics, including one- and two-dimensional quantum Heisenberg models with nearest and next-to-nearest neighbor interactions and with the charges set to the total x, y, and z magnetizations. We also offer an alternative compelling interpretation of these algorithms as methods for designing ground and thermal states of controllable Hamiltonians, with potential applications in molecular and material design. Furthermore, we introduce stabilizer thermodynamic systems as thermodynamic systems based on stabilizer codes, with the Hamiltonian constructed from a given code's stabilizer operators and the charges constructed from the code's logical operators. We benchmark the aforementioned algorithms on several examples of stabilizer thermodynamic systems, including those constructed from the one-to-three-qubit repetition code, the perfect one-to-five-qubit code, and the two-to-four-qubit error-detecting code. Finally, we observe that the aforementioned hybrid quantum-classical algorithms, when applied to stabilizer thermodynamic systems, can serve as alternative methods for encoding qubits into stabilizer codes at a fixed temperature, and we provide an effective method for warm-starting these encoding algorithms whenever a single qubit is encoded into multiple physical qubits.
comment: v2: 35 pages, 12 figures, updated simulations
♻ ☆ Interpretable Clustering: A Survey
In recent years, much of the research on clustering algorithms has primarily focused on enhancing their accuracy and efficiency, frequently at the expense of interpretability. However, as these methods are increasingly being applied in high-stakes domains such as healthcare, finance, and autonomous systems, the need for transparent and interpretable clustering outcomes has become a critical concern. This is not only necessary for gaining user trust but also for satisfying the growing ethical and regulatory demands in these fields. Ensuring that decisions derived from clustering algorithms can be clearly understood and justified is now a fundamental requirement. To address this need, this paper provides a comprehensive and structured review of the current state of explainable clustering algorithms, identifying key criteria to distinguish between various methods. These insights can effectively assist researchers in making informed decisions about the most suitable explainable clustering methods for specific application contexts, while also promoting the development and adoption of clustering algorithms that are both efficient and transparent. For convenient access and reference, an open repository organizes representative and emerging interpretable clustering methods under the taxonomy proposed in this survey, available at https://github.com/hulianyu/Awesome-Interpretable-Clustering
comment: 14 pages, 2 figures, 3 tables
♻ ☆ AuToMATo: An Out-Of-The-Box Persistence-Based Clustering Algorithm
We present AuToMATo, a novel clustering algorithm based on persistent homology. While AuToMATo is not parameter-free per se, we provide default choices for its parameters that make it into an out-of-the-box clustering algorithm that performs well across the board. AuToMATo combines the existing ToMATo clustering algorithm with a bootstrapping procedure in order to separate significant peaks of an estimated density function from non-significant ones. We perform a thorough comparison of AuToMATo (with its parameters fixed to their defaults) against many other state-of-the-art clustering algorithms. We find not only that AuToMATo compares favorably against parameter-free clustering algorithms, but in many instances also significantly outperforms even the best selection of parameters for other algorithms. AuToMATo is motivated by applications in topological data analysis, in particular the Mapper algorithm, where it is desirable to work with a clustering algorithm that does not need tuning of its parameters. Indeed, we provide evidence that AuToMATo performs well when used with Mapper. Finally, we provide an open-source implementation of AuToMATo in Python that is fully compatible with the standard scikit-learn architecture.
comment: Code: https://doi.org/10.5281/zenodo.17279740
♻ ☆ Shortcuts Everywhere and Nowhere: Exploring Multi-Trigger Backdoor Attacks
Backdoor attacks have become a significant threat to the pre-training and deployment of deep neural networks (DNNs). Although numerous methods for detecting and mitigating backdoor attacks have been proposed, most rely on identifying and eliminating the ``shortcut" created by the backdoor, which links a specific source class to a target class. However, these approaches can be easily circumvented by designing multiple backdoor triggers that create shortcuts everywhere and therefore nowhere specific. In this study, we explore the concept of Multi-Trigger Backdoor Attacks (MTBAs), where multiple adversaries leverage different types of triggers to poison the same dataset. By proposing and investigating three types of multi-trigger attacks including \textit{parallel}, \textit{sequential}, and \textit{hybrid} attacks, we demonstrate that 1) multiple triggers can coexist, overwrite, or cross-activate one another, and 2) MTBAs easily break the prevalent shortcut assumption underlying most existing backdoor detection/removal methods, rendering them ineffective. Given the security risk posed by MTBAs, we have created a multi-trigger backdoor poisoning dataset to facilitate future research on detecting and mitigating these attacks, and we also discuss potential defense strategies against MTBAs. Our code is available at https://github.com/bboylyg/Multi-Trigger-Backdoor-Attacks.
comment: 13 pages
♻ ☆ Learning to Price Bundles: A GCN Approach for Mixed Bundling
Bundle pricing refers to designing several product combinations (i.e., bundles) and determining their prices in order to maximize the expected profit. It is a classic problem in revenue management and arises in many industries, such as e-commerce, tourism, and video games. However, the problem is typically intractable due to the exponential number of candidate bundles. In this paper, we explore the usage of graph convolutional networks (GCNs) in solving the bundle pricing problem. Specifically, we first develop a graph representation of the mixed bundling model (where every possible bundle is assigned with a specific price) and then train a GCN to learn the latent patterns of optimal bundles. Based on the trained GCN, we propose two inference strategies to derive high-quality feasible solutions. A local-search technique is further proposed to improve the solution quality. Numerical experiments validate the effectiveness and efficiency of our proposed GCN-based framework. Using a GCN trained on instances with 5 products, our methods consistently achieve near-optimal solutions (better than 97%) with only a fraction of computational time for problems of small to medium size. It also achieves superior solutions for larger size of problems compared with other heuristic methods such as bundle size pricing (BSP). The method can also provide high quality solutions for instances with more than 30 products even for the challenging cases where product utilities are non-additive.
♻ ☆ EntryPrune: Neural Network Feature Selection using First Impressions
There is an ongoing effort to develop feature selection algorithms to improve interpretability, reduce computational resources, and minimize overfitting in predictive models. Neural networks stand out as architectures on which to build feature selection methods, and recently, neuron pruning and regrowth have emerged from the sparse neural network literature as promising new tools. We introduce EntryPrune, a novel supervised feature selection algorithm using a dense neural network with a dynamic sparse input layer. It employs entry-based pruning, a novel approach that compares neurons based on their relative change induced when they have entered the network. Extensive experiments on 13 different datasets show that our approach generally outperforms the current state-of-the-art methods, and in particular improves the average accuracy on low-dimensional datasets. Furthermore, we show that EntryPruning surpasses traditional techniques such as magnitude pruning within the EntryPrune framework and that EntryPrune achieves lower runtime than competing approaches. Our code is available at https://github.com/flxzimmer/entryprune.
♻ ☆ SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift. While many methods have been proposed in the literature, fair and realistic evaluation remains an open question, particularly due to methodological difficulties in selecting hyperparameters in the unsupervised setting. With SKADA-bench, we propose a framework to evaluate DA methods on diverse modalities, beyond computer vision task that have been largely explored in the literature. We present a complete and fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment. Realistic hyperparameter selection is performed with nested cross-validation and various unsupervised model selection scores, on both simulated datasets with controlled shifts and real-world datasets across diverse modalities, such as images, text, biomedical, and tabular data. Our benchmark highlights the importance of realistic validation and provides practical guidance for real-life applications, with key insights into the choice and impact of model selection approaches. SKADA-bench is open-source, reproducible, and can be easily extended with novel DA methods, datasets, and model selection criteria without requiring re-evaluating competitors. SKADA-bench is available on Github at https://github.com/scikit-adaptation/skada-bench.
comment: Published in Transactions on Machine Learning Research
♻ ☆ TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems NeurIPS 2025
Regression models are crucial in recommender systems. However, retransformation bias problem has been conspicuously neglected within the community. While many works in other fields have devised effective bias correction methods, all of them are post-hoc cures externally to the model, facing practical challenges when applied to real-world recommender systems. Hence, we propose a preemptive paradigm to eradicate the bias intrinsically from the models via minor model refinement. Specifically, a novel TranSUN method is proposed with a joint bias learning manner to offer theoretically guaranteed unbiasedness under empirical superior convergence. It is further generalized into a novel generic regression model family, termed Generalized TranSUN (GTS), which not only offers more theoretical insights but also serves as a generic framework for flexibly developing various bias-free models. Comprehensive experimental results demonstrate the superiority of our methods across data from various domains, which have been successfully deployed in two real-world industrial recommendation scenarios, i.e. product and short video recommendation scenarios in Guess What You Like business domain in the homepage of Taobao App (a leading e-commerce platform with DAU > 300M), to serve the major online traffic.
comment: 37 pages, 6 figures, NeurIPS 2025 Poster
♻ ☆ Mutatis Mutandis: Revisiting the Comparator in Discrimination Testing
Testing for individual discrimination involves deriving a profile, the comparator, similar to the one making the discrimination claim, the complainant, based on a protected attribute, such as race or gender, and comparing their decision outcomes. The complainant-comparator pair is central to discrimination testing. Most discrimination testing tools rely on this pair to establish evidence for discrimination. In this work we revisit the role of the comparator in discrimination testing. We first argue for the inherent causal modeling nature of deriving the comparator. We then introduce a two-kinds classification for the comparator: the ceteris paribus, or``with all else equal,'' (CP) comparator and the mutatis mutandis, or ``with the appropriate adjustments being made,'' (MM) comparator. The CP comparator is the standard comparator, representing an idealized comparison for establishing discrimination as it aims for a complainant-comparator pair that only differs on membership to the protected attribute. As an alternative to it, we define the MM comparator, which requires that the comparator represents the``what would have been of'' the complainant without the effects of the protected attribute on the non-protected attributes. Under the MM comparator, the complainant-comparator pair can be dissimilar in terms of the non-protected attributes, departing from an idealized comparison. Notably, the MM comparator is a more complex kind of comparator and its implementation offers an impactful venue for machine learning methods. We illustrate these two comparators and their impact on discrimination testing using a real-world example.
♻ ☆ Context Biasing for Pronunciations-Orthography Mismatch in Automatic Speech Recognition
Neural sequence-to-sequence systems deliver state-of-the-art performance for automatic speech recognition. When using appropriate modeling units, e.g., byte-pair encoded characters, these systems are in principal open vocabulary systems. In practice, however, they often fail to recognize words not seen during training, e.g., named entities, acronyms, or domain-specific special words. To address this problem, many context biasing methods have been proposed; however, for words with a pronunciation-orthography mismatch, these methods may still struggle. We propose a method which allows corrections of substitution errors to improve the recognition accuracy of such challenging words. Users can add corrections on the fly during inference. We show that with this method we get a relative improvement in biased word error rate of up to 8%, while maintaining a competitive overall word error rate.
♻ ☆ Benchmarking the Robustness of Agentic Systems to Adversarially-Induced Harms
Ensuring the safe use of agentic systems requires a thorough understanding of the range of malicious behaviors these systems may exhibit when under attack. In this paper, we evaluate the robustness of LLM-based agentic systems against attacks that aim to elicit harmful actions from agents. To this end, we propose a novel taxonomy of harms for agentic systems and a novel benchmark, BAD-ACTS, for studying the security of agentic systems with respect to a wide range of harmful actions. BAD-ACTS consists of 4 implementations of agentic systems in distinct application environments, as well as a dataset of 188 high-quality examples of harmful actions. This enables a comprehensive study of the robustness of agentic systems across a wide range of categories of harmful behaviors, available tools, and inter-agent communication structures. Using this benchmark, we analyze the robustness of agentic systems against an attacker that controls one of the agents in the system and aims to manipulate other agents to execute a harmful target action. Our results show that the attack has a high success rate, demonstrating that even a single adversarial agent within the system can have a significant impact on the security. This attack remains effective even when agents use a simple prompting-based defense strategy. However, we additionally propose a more effective defense based on message monitoring. We believe that this benchmark provides a diverse testbed for the security research of agentic systems. The benchmark can be found at github.com/JNoether/BAD-ACTS
comment: 54 Pages
♻ ☆ SDFs from Unoriented Point Clouds using Neural Variational Heat Distances
We propose a novel variational approach for computing neural Signed Distance Fields (SDF) from unoriented point clouds. To this end, we replace the commonly used eikonal equation with the heat method, carrying over to the neural domain what has long been standard practice for computing distances on discrete surfaces. This yields two convex optimization problems for whose solution we employ neural networks: We first compute a neural approximation of the gradients of the unsigned distance field through a small time step of heat flow with weighted point cloud densities as initial data. Then we use it to compute a neural approximation of the SDF. We prove that the underlying variational problems are well-posed. Through numerical experiments, we demonstrate that our method provides state-of-the-art surface reconstruction and consistent SDF gradients. Furthermore, we show in a proof-of-concept that it is accurate enough for solving a PDE on the zero-level set.
comment: 15 pages, 17 figures, 4 tables
♻ ☆ Deep Reinforcement Learning for Urban Air Quality Management: Multi-Objective Optimization of Pollution Mitigation Booth Placement in Metropolitan Environments
This is the preprint version of the article published in IEEE Access vol. 13, pp. 146503--146526, 2025, doi:10.1109/ACCESS.2025.3599541. Please cite the published version. Urban air pollution remains a pressing global concern, particularly in densely populated and traffic-intensive metropolitan areas like Delhi, where exposure to harmful pollutants severely impacts public health. Delhi, being one of the most polluted cities globally, experiences chronic air quality issues due to vehicular emissions, industrial activities, and construction dust, which exacerbate its already fragile atmospheric conditions. Traditional pollution mitigation strategies, such as static air purifying installations, often fail to maximize their impact due to suboptimal placement and limited adaptability to dynamic urban environments. This study presents a novel deep reinforcement learning (DRL) framework to optimize the placement of air purification booths to improve the air quality index (AQI) in the city of Delhi. We employ Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm, to iteratively learn and identify high-impact locations based on multiple spatial and environmental factors, including population density, traffic patterns, industrial influence, and green space constraints. Our approach is benchmarked against conventional placement strategies, including random and greedy AQI-based methods, using multi-dimensional performance evaluation metrics such as AQI improvement, spatial coverage, population and traffic impact, and spatial entropy.
comment: This is the preprint version of the article published in IEEE Access vol. 13, pp. 146503--146526, 2025, doi:10.1109/ACCESS.2025.3599541. Please cite the published version
♻ ☆ From Accuracy to Robustness: A Study of Rule- and Model-based Verifiers in Mathematical Reasoning
Trustworthy verifiers are essential for the success of reinforcement learning with verifiable reward (RLVR), which is the core methodology behind various large reasoning models such as DeepSeek-R1. In complex domains like mathematical reasoning, rule-based verifiers have been widely adopted in previous works to train strong reasoning models. However, the reliability of these verifiers and their impact on the RL training process remain poorly understood. In this work, we take mathematical reasoning as a case study and conduct a comprehensive analysis of various verifiers in both static evaluation and RL training scenarios. First, we find that current open-source rule-based verifiers often fail to recognize equivalent answers presented in different formats across multiple commonly used mathematical datasets, resulting in non-negligible false negative rates. This limitation adversely affects RL training performance and becomes more pronounced as the policy model gets stronger. Subsequently, we investigate model-based verifiers as a potential solution to address these limitations. While the static evaluation shows that model-based verifiers achieve significantly higher verification accuracy, further analysis and RL results imply that they are highly susceptible to hacking, where they misclassify certain patterns in responses as correct, particularly after fine-tuning. This vulnerability is exploited during policy model optimization, leading to artificially inflated rewards. Our findings underscore the unique challenges inherent to both rule-based and model-based verifiers and provide insights toward developing more accurate and robust reward systems for reinforcement learning.
♻ ☆ Conformal Prediction in Hierarchical Classification with Constrained Representation Complexity
Conformal prediction has emerged as a widely used framework for constructing valid prediction sets in classification and regression tasks. In this work, we extend the split conformal prediction framework to hierarchical classification, where prediction sets are commonly restricted to internal nodes of a predefined hierarchy, and propose two computationally efficient inference algorithms. The first algorithm returns internal nodes as prediction sets, while the second one relaxes this restriction. Using the notion of representation complexity, the latter yields smaller set sizes at the cost of a more general and combinatorial inference problem. Empirical evaluations on several benchmark datasets demonstrate the effectiveness of the proposed algorithms in achieving nominal coverage.
♻ ☆ A Deterministic Information Bottleneck Method for Clustering Mixed-Type Data
In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The proposed approach extends the Information Bottleneck principle to heterogeneous data through generalised product kernels, integrating continuous, nominal, and ordinal variables within a unified optimization framework. We address the following challenges: developing a systematic bandwidth selection strategy that equalises contributions across variable types, and proposing an adaptive hyperparameter updating scheme that ensures a valid solution into a predetermined number of potentially imbalanced clusters. Through simulations on 28,800 synthetic data sets and ten publicly available benchmarks, we demonstrate that the proposed method, named DIBmix, achieves superior performance compared to four established methods (KAMILA, K-Prototypes, FAMD with K-Means, and PAM with Gower's dissimilarity). Results show DIBmix particularly excels when clusters exhibit size imbalances, data contain low or moderate cluster overlap, and categorical and continuous variables are equally represented. The method presents a significant advantage over traditional centroid-based algorithms, establishing DIBmix as a competitive and theoretically grounded alternative for mixed-type data clustering.
comment: 33 pages
♻ ☆ Detecting Invariant Manifolds in ReLU-Based RNNs
Recurrent Neural Networks (RNNs) have found widespread applications in machine learning for time series prediction and dynamical systems reconstruction, and experienced a recent renaissance with improved training algorithms and architectural designs. Understanding why and how trained RNNs produce their behavior is important for scientific and medical applications, and explainable AI more generally. An RNN's dynamical repertoire depends on the topological and geometrical properties of its state space. Stable and unstable manifolds of periodic points play a particularly important role: They dissect a dynamical system's state space into different basins of attraction, and their intersections lead to chaotic dynamics with fractal geometry. Here we introduce a novel algorithm for detecting these manifolds, with a focus on piecewise-linear RNNs (PLRNNs) employing rectified linear units (ReLUs) as their activation function. We demonstrate how the algorithm can be used to trace the boundaries between different basins of attraction, and hence to characterize multistability, a computationally important property. We further show its utility in finding so-called homoclinic points, the intersections between stable and unstable manifolds, and thus establish the existence of chaos in PLRNNs. Finally we show for an empirical example, electrophysiological recordings from a cortical neuron, how insights into the underlying dynamics could be gained through our method.
♻ ☆ DeepBoost-AF: A Novel Unsupervised Feature Learning and Gradient Boosting Fusion for Robust Atrial Fibrillation Detection in Raw ECG Signals
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with elevated health risks, where timely detection is pivotal for mitigating stroke-related morbidity. This study introduces an innovative hybrid methodology integrating unsupervised deep learning and gradient boosting models to improve AF detection. A 19-layer deep convolutional autoencoder (DCAE) is coupled with three boosting classifiers-AdaBoost, XGBoost, and LightGBM (LGBM)-to harness their complementary advantages while addressing individual limitations. The proposed framework uniquely combines DCAE with gradient boosting, enabling end-to-end AF identification devoid of manual feature extraction. The DCAE-LGBM model attains an F1-score of 95.20%, sensitivity of 99.99%, and inference latency of four seconds, outperforming existing methods and aligning with clinical deployment requirements. The DCAE integration significantly enhances boosting models, positioning this hybrid system as a reliable tool for automated AF detection in clinical settings.
comment: 12-page,4 figures,3 tables, Achieves 95.20% F1-score (99.99% sensitivity) on 8,528 PhysioNet 2017 recordings, Mean inference time: 4 seconds, Python implementation will be open-sourced upon publication
♻ ☆ Object Centric Concept Bottlenecks
Developing high-performing, yet interpretable models remains a critical challenge in modern AI. Concept-based models (CBMs) attempt to address this by extracting human-understandable concepts from a global encoding (e.g., image encoding) and then applying a linear classifier on the resulting concept activations, enabling transparent decision-making. However, their reliance on holistic image encodings limits their expressiveness in object-centric real-world settings and thus hinders their ability to solve complex vision tasks beyond single-label classification. To tackle these challenges, we introduce Object-Centric Concept Bottlenecks (OCB), a framework that combines the strengths of CBMs and pre-trained object-centric foundation models, boosting performance and interpretability. We evaluate OCB on complex image datasets and conduct a comprehensive ablation study to analyze key components of the framework, such as strategies for aggregating object-concept encodings. The results show that OCB outperforms traditional CBMs and allows one to make interpretable decisions for complex visual tasks.
♻ ☆ Conditional Local Independence Testing for Itô processes with Applications to Dynamic Causal Discovery
Inferring causal relationships from dynamical systems is the central interest of many scientific inquiries. Conditional local independence, which describes whether the evolution of one process is influenced by another process given additional processes, is important for causal learning in such systems. In this paper, we propose a hypothesis test for conditional local independence in It\^o processes. Our test is grounded in the semimartingale decomposition of the It\^o process, with which we introduce a stochastic integral process that is a martingale under the null hypothesis. We then apply a test for the martingale property, quantifying potential deviation from local independence. The test statistics is estimated using the optimal filtering equation. We show the consistency of the estimation, thereby establishing the level and power of our test. Numerical verification and a real-world application to causal discovery in brain resting-state fMRIs are conducted.
comment: Preprint
♻ ☆ Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning NeurIPS 2025
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97\%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.
comment: The paper is accepted by NeurIPS 2025
♻ ☆ BenchAgents: Multi-Agent Systems for Structured Benchmark Creation
Evaluation insights are limited by the availability of high-quality benchmarks. As models evolve, there is a need to create benchmarks that can measure progress on new and complex generative capabilities. However, manually creating new benchmarks is slow and expensive, restricting comprehensive evaluations for any capability. We introduce BenchAgents, a multi-agent framework that methodically leverages large language models (LLMs) to automate evaluation benchmark creation while inherently ensuring data and (evaluation) metric quality. BenchAgents decomposes the benchmark creation process into planning, generation, verification, and evaluation, each of which is ] orchestrated via LLM agents. These agents interact with each other and utilize feedback from benchmark developers to improve and flexibly control data diversity and quality. We use BenchAgents to create benchmarks to evaluate capabilities related to planning, constraint satisfaction, and causal reasoning spanning both language and vision modalities. We then use these benchmarks to study state-of-the-art models and extract new insights into common failure modes and model differences.
♻ ☆ DP-HYPE: Distributed Differentially Private Hyperparameter Search
The tuning of hyperparameters in distributed machine learning can substantially impact model performance. When the hyperparameters are tuned on sensitive data, privacy becomes an important challenge and to this end, differential privacy has emerged as the de facto standard for provable privacy. A standard setting when performing distributed learning tasks is that clients agree on a shared setup, i.e., find a compromise from a set of hyperparameters, like the learning rate of the model to be trained. Yet, prior work on differentially private hyperparameter tuning either uses computationally expensive cryptographic protocols, determines hyperparameters separately for each client, or applies differential privacy locally, which can lead to undesirable utility-privacy trade-offs. In this work, we present our algorithm DP-HYPE, which performs a distributed and privacy-preserving hyperparameter search by conducting a distributed voting based on local hyperparameter evaluations of clients. In this way, DP-HYPE selects hyperparameters that lead to a compromise supported by the majority of clients, while maintaining scalability and independence from specific learning tasks. We prove that DP-HYPE preserves the strong notion of differential privacy called client-level differential privacy and, importantly, show that its privacy guarantees do not depend on the number of hyperparameters. We also provide bounds on its utility guarantees, that is, the probability of reaching a compromise, and implement DP-HYPE as a submodule in the popular Flower framework for distributed machine learning. In addition, we evaluate performance on multiple benchmark data sets in iid as well as multiple non-iid settings and demonstrate high utility of DP-HYPE even under small privacy budgets.
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a step-by-step video-to-audio (V2A) generation method for finer controllability over the generation process and more realistic audio synthesis. Inspired by traditional Foley workflows, our approach aims to comprehensively capture all sound events induced by a video through the incremental generation of missing sound events. To avoid the need for costly multi-reference video-audio datasets, each generation step is formulated as a negatively guided V2A process that discourages duplication of existing sounds. The guidance model is trained by finetuning a pre-trained V2A model on audio pairs from adjacent segments of the same video, allowing training with standard single-reference audiovisual datasets that are easily accessible. Objective and subjective evaluations demonstrate that our method enhances the separability of generated sounds at each step and improves the overall quality of the final composite audio, outperforming existing baselines.
♻ ☆ Bypassing Prompt Guards in Production with Controlled-Release Prompting
As large language models (LLMs) advance, ensuring AI safety and alignment is paramount. One popular approach is prompt guards, lightweight mechanisms designed to filter malicious queries while being easy to implement and update. In this work, we introduce a new attack that circumvents such prompt guards, highlighting their limitations. Our method consistently jailbreaks production models while maintaining response quality, even under the highly protected chat interfaces of Google Gemini (2.5 Flash/Pro), DeepSeek Chat (DeepThink), Grok (3), and Mistral Le Chat (Magistral). The attack exploits a resource asymmetry between the prompt guard and the main LLM, encoding a jailbreak prompt that lightweight guards cannot decode but the main model can. This reveals an attack surface inherent to lightweight prompt guards in modern LLM architectures and underscores the need to shift defenses from blocking malicious inputs to preventing malicious outputs. We additionally identify other critical alignment issues, such as copyrighted data extraction, training data extraction, and malicious response leakage during thinking.
♻ ☆ GRAFT: GRaPH and Table Reasoning for Textual Alignment -- A Benchmark for Structured Instruction Following and Visual Reasoning
GRAFT is a structured multimodal benchmark for evaluating models on instruction-following, visual reasoning, and visual-textual alignment tasks. It features programmatically generated charts and synthetically rendered tables, created with Python visualization libraries to ensure control over data semantics, structure, and clarity. Each GRAFT instance pairs a chart or table image with a systematically generated, multi-step analytical question based solely on visual content. Answers are provided in structured formats such as JSON or YAML, supporting consistent evaluation of both reasoning and output format. The benchmark introduces a taxonomy of reasoning types including comparison, trend identification, ranking, aggregation, proportion estimation, and anomaly detection to enable comprehensive assessment. Reference answers follow strict factual and formatting guidelines for precise, aspect-based evaluation. GRAFT offers a unified, scalable framework for fine-grained benchmarking of multimodal models on visually grounded, structured reasoning tasks, setting a new evaluation standard in this field.
comment: 25 pages, 10 tables, 3 figures
♻ ☆ A Middle Path for On-Premises LLM Deployment: Preserving Privacy Without Sacrificing Model Confidentiality
Privacy-sensitive users require deploying large language models (LLMs) within their own infrastructure (on-premises) to safeguard private data and enable customization. However, vulnerabilities in local environments can lead to unauthorized access and potential model theft. To address this, prior research on small models has explored securing only the output layer within hardware-secured devices to balance model confidentiality and customization. Yet this approach fails to protect LLMs effectively. In this paper, we discover that (1) query-based distillation attacks targeting the secured top layer can produce a functionally equivalent replica of the victim model; (2) securing the same number of layers, bottom layers before a transition layer provide stronger protection against distillation attacks than top layers, with comparable effects on customization performance; and (3) the number of secured layers creates a trade-off between protection and customization flexibility. Based on these insights, we propose SOLID, a novel deployment framework that secures a few bottom layers in a secure environment and introduces an efficient metric to optimize the trade-off by determining the ideal number of hidden layers. Extensive experiments on five models (1.3B to 70B parameters) demonstrate that SOLID outperforms baselines, achieving a better balance between protection and downstream customization.
comment: 8 pages for main content of the paper
♻ ☆ Geometry-Preserving Encoder/Decoder in Latent Generative Models
Generative modeling aims to generate new data samples that resemble a given dataset, with diffusion models recently becoming the most popular generative model. One of the main challenges of diffusion models is solving the problem in the input space, which tends to be very high-dimensional. Recently, solving diffusion models in the latent space through an encoder that maps from the data space to a lower-dimensional latent space has been considered to make the training process more efficient and has shown state-of-the-art results. The variational autoencoder (VAE) is the most commonly used encoder/decoder framework in this domain, known for its ability to learn latent representations and generate data samples. In this paper, we introduce a novel encoder/decoder framework with theoretical properties distinct from those of the VAE, specifically designed to preserve the geometric structure of the data distribution. We demonstrate the significant advantages of this geometry-preserving encoder in the training process of both the encoder and decoder. Additionally, we provide theoretical results proving convergence of the training process, including convergence guarantees for encoder training, and results showing faster convergence of decoder training when using the geometry-preserving encoder.
comment: 56 pages
♻ ☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
♻ ☆ MediSyn: A Generalist Text-Guided Latent Diffusion Model For Diverse Medical Image Synthesis
Deep learning algorithms require extensive data to achieve robust performance. However, data availability is often restricted in the medical domain due to patient privacy concerns. Synthetic data presents a possible solution to these challenges. Recently, image generative models have found increasing use for medical applications but are often designed for singular medical specialties and imaging modalities, thus limiting their broader utility. To address this, we introduce MediSyn: a text-guided, latent diffusion model capable of generating synthetic images from 6 medical specialties and 10 image types. Through extensive experimentation, we first demonstrate that MediSyn quantitatively matches or surpasses the performance of specialist models. Second, we show that our synthetic images are realistic and exhibit strong alignment with their corresponding text prompts, as validated by a team of expert physicians. Third, we provide empirical evidence that our synthetic images are visually distinct from their corresponding real patient images. Finally, we demonstrate that in data-limited settings, classifiers trained solely on synthetic data or real data supplemented with synthetic data can outperform those trained solely on real data. Our findings highlight the immense potential of generalist image generative models to accelerate algorithmic research and development in medicine.
♻ ☆ LLM Unlearning Without an Expert Curated Dataset
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.
♻ ☆ DUA-D2C: Dynamic Uncertainty Aware Method for Overfitting Remediation in Deep Learning
Overfitting remains a significant challenge in deep learning, often arising from data outliers, noise, and limited training data. To address this, the Divide2Conquer (D2C) method was previously proposed, which partitions training data into multiple subsets and trains identical models independently on each. This strategy enables learning more consistent patterns while minimizing the influence of individual outliers and noise. However, D2C's standard aggregation typically treats all subset models equally or based on fixed heuristics (like data size), potentially underutilizing information about their varying generalization capabilities. Building upon this foundation, we introduce Dynamic Uncertainty-Aware Divide2Conquer (DUA-D2C), an advanced technique that refines the aggregation process. DUA-D2C dynamically weights the contributions of subset models based on their performance on a shared validation set, considering both accuracy and prediction uncertainty. This intelligent aggregation allows the central model to preferentially learn from subsets yielding more generalizable and confident edge models, thereby more effectively combating overfitting. Empirical evaluations on benchmark datasets spanning multiple domains demonstrate that DUA-D2C significantly improves generalization. Our analysis includes evaluations of decision boundaries, loss curves, and other performance metrics, highlighting the effectiveness of DUA-D2C. This study demonstrates that DUA-D2C improves generalization performance even when applied on top of other regularization methods, establishing it as a theoretically grounded and effective approach to combating overfitting in modern deep learning. Our codes are publicly available at: https://github.com/Saiful185/DUA-D2C.
comment: This version (v2) extends our previous work (arXiv:2411.15876v1) on Divide2Conquer (D2C) by introducing Dynamic Uncertainty-Aware Divide2Conquer (DUA-D2C). The manuscript is currently under review at Complex and Intelligent Systems
♻ ☆ Learning Exposure Mapping Functions for Inferring Heterogeneous Peer Effects
In causal inference, interference refers to the phenomenon in which the actions of peers in a network can influence an individual's outcome. Peer effect refers to the difference in counterfactual outcomes of an individual for different levels of peer exposure, the extent to which an individual is exposed to the treatments, actions, or behaviors of peers. Estimating peer effects requires deciding how to represent peer exposure. Typically, researchers define an exposure mapping function that aggregates peer treatments and outputs peer exposure. Most existing approaches for defining exposure mapping functions assume peer exposure based on the number or fraction of treated peers. Recent studies have investigated more complex functions of peer exposure which capture that different peers can exert different degrees of influence. However, none of these works have explicitly considered the problem of automatically learning the exposure mapping function. In this work, we focus on learning this function for the purpose of estimating heterogeneous peer effects, where heterogeneity refers to the variation in counterfactual outcomes for the same peer exposure but different individual's contexts. We develop EgoNetGNN, a graph neural network (GNN)-based method, to automatically learn the appropriate exposure mapping function allowing for complex peer influence mechanisms that, in addition to peer treatments, can involve the local neighborhood structure and edge attributes. We show that GNN models that use peer exposure based on the number or fraction of treated peers or learn peer exposure naively face difficulty accounting for such influence mechanisms. Our comprehensive evaluation on synthetic and semi-synthetic network data shows that our method is more robust to different unknown underlying influence mechanisms when estimating heterogeneous peer effects when compared to state-of-the-art baselines.
♻ ☆ Risk Profiling and Modulation for LLMs
Large language models (LLMs) are increasingly used for decision-making tasks under uncertainty; however, their risk profiles and how they are influenced by prompting and alignment methods remain underexplored. Existing studies have primarily examined personality prompting or multi-agent interactions, leaving open the question of how post-training influences the risk behavior of LLMs. In this work, we propose a new pipeline for eliciting, steering, and modulating LLMs' risk profiles, drawing on tools from behavioral economics and finance. Using utility-theoretic models, we compare pre-trained, instruction-tuned, and RLHF-aligned LLMs, and find that while instruction-tuned models exhibit behaviors consistent with some standard utility formulations, pre-trained and RLHF-aligned models deviate more from any utility models fitted. We further evaluate modulation strategies, including prompt engineering, in-context learning, and post-training, and show that post-training provides the most stable and effective modulation of risk preference. Our findings provide insights into the risk profiles of different classes and stages of LLMs and demonstrate how post-training modulates these profiles, laying the groundwork for future research on behavioral alignment and risk-aware LLM design.
♻ ☆ End-to-End Training of High-Dimensional Optimal Control with Implicit Hamiltonians via Jacobian-Free Backpropagation
Neural network approaches that parameterize value functions have succeeded in approximating high-dimensional optimal feedback controllers when the Hamiltonian admits explicit formulas. However, many practical problems, such as the space shuttle reentry problem and bicycle dynamics, among others, may involve implicit Hamiltonians that do not admit explicit formulas, limiting the applicability of existing methods. Rather than directly parameterizing controls, which does not leverage the Hamiltonian's underlying structure, we propose an end-to-end implicit deep learning approach that directly parameterizes the value function to learn optimal control laws. Our method enforces physical principles by ensuring trained networks adhere to the control laws by exploiting the fundamental relationship between the optimal control and the value function's gradient; this is a direct consequence of the connection between Pontryagin's Maximum Principle and dynamic programming. Using Jacobian-Free Backpropagation (JFB), we achieve efficient training despite temporal coupling in trajectory optimization. We show that JFB produces descent directions for the optimal control objective and experimentally demonstrate that our approach effectively learns high-dimensional feedback controllers across multiple scenarios involving implicit Hamiltonians, which existing methods cannot address.
♻ ☆ Distilled Protein Backbone Generation
Diffusion- and flow-based generative models have recently demonstrated strong performance in protein backbone generation tasks, offering unprecedented capabilities for de novo protein design. However, while achieving notable performance in generation quality, these models are limited by their generating speed, often requiring hundreds of iterative steps in the reverse-diffusion process. This computational bottleneck limits their practical utility in large-scale protein discovery, where thousands to millions of candidate structures are needed. To address this challenge, we explore the techniques of score distillation, which has shown great success in reducing the number of sampling steps in the vision domain while maintaining high generation quality. However, a straightforward adaptation of these methods results in unacceptably low designability. Through extensive study, we have identified how to appropriately adapt Score identity Distillation (SiD), a state-of-the-art score distillation strategy, to train few-step protein backbone generators which significantly reduce sampling time, while maintaining comparable performance to their pretrained teacher model. In particular, multistep generation combined with inference time noise modulation is key to the success. We demonstrate that our distilled few-step generators achieve more than a 20-fold improvement in sampling speed, while achieving similar levels of designability, diversity, and novelty as the Proteina teacher model. This reduction in inference cost enables large-scale in silico protein design, thereby bringing diffusion-based models closer to real-world protein engineering applications.
♻ ☆ Integrating Feature Selection and Machine Learning for Nitrogen Assessment in Grapevine Leaves using In-Field Hyperspectral Imaging
Nitrogen (N) is one of the most crucial nutrients in vineyards, affecting plant growth and subsequent products such as wine and juice. Because soil N has high spatial and temporal variability, it is desirable to accurately estimate the N concentration of grapevine leaves and manage fertilization at the individual plant level to optimally meet plant needs. In this study, we used in-field hyperspectral images with wavelengths ranging from $400 to 1000nm of four different grapevine cultivars collected from distinct vineyards and over two growth stages during two growing seasons to develop models for predicting N concentration at the leaf-level and canopy-level. After image processing, two feature selection methods were employed to identify the optimal set of spectral bands that were responsive to leaf N concentrations. The selected spectral bands were used to train and test two different Machine Learning (ML) models, Gradient Boosting and XGBoost, for predicting nitrogen concentrations. The comparison of selected bands for both leaf-level and canopy-level datasets showed that most of the spectral regions identified by the feature selection methods were across both methods and the dataset types (leaf- and canopy-level datasets), particularly in the key regions, 500-525nm, 650-690nm, 750-800nm, and 900-950nm. These findings indicated the robustness of these spectral regions for predicting nitrogen content. The results for N prediction demonstrated that the ML model achieved an R square of 0.49 for canopy-level data and an R square of 0.57 for leaf-level data, despite using different sets of selected spectral bands for each analysis level. The study demonstrated the potential of using in-field hyperspectral imaging and the use of spectral data in integrated feature selection and ML techniques to monitor N status in vineyards.
comment: Major Revision
♻ ☆ RainSeer: Fine-Grained Rainfall Reconstruction via Physics-Guided Modeling
Reconstructing high-resolution rainfall fields is essential for flood forecasting, hydrological modeling, and climate analysis. However, existing spatial interpolation methods-whether based on automatic weather station (AWS) measurements or enhanced with satellite/radar observations often over-smooth critical structures, failing to capture sharp transitions and localized extremes. We introduce RainSeer, a structure-aware reconstruction framework that reinterprets radar reflectivity as a physically grounded structural prior-capturing when, where, and how rain develops. This shift, however, introduces two fundamental challenges: (i) translating high-resolution volumetric radar fields into sparse point-wise rainfall observations, and (ii) bridging the physical disconnect between aloft hydro-meteors and ground-level precipitation. RainSeer addresses these through a physics-informed two-stage architecture: a Structure-to-Point Mapper performs spatial alignment by projecting mesoscale radar structures into localized ground-level rainfall, through a bidirectional mapping, and a Geo-Aware Rain Decoder captures the semantic transformation of hydro-meteors through descent, melting, and evaporation via a causal spatiotemporal attention mechanism. We evaluate RainSeer on two public datasets-RAIN-F (Korea, 2017-2019) and MeteoNet (France, 2016-2018)-and observe consistent improvements over state-of-the-art baselines, reducing MAE by over 13.31% and significantly enhancing structural fidelity in reconstructed rainfall fields.
♻ ☆ Diagnosing and Addressing Pitfalls in KG-RAG Datasets: Toward More Reliable Benchmarking NeurIPS 2025
Knowledge Graph Question Answering (KGQA) systems rely on high-quality benchmarks to evaluate complex multi-hop reasoning. However, despite their widespread use, popular datasets such as WebQSP and CWQ suffer from critical quality issues, including inaccurate or incomplete ground-truth annotations, poorly constructed questions that are ambiguous, trivial, or unanswerable, and outdated or inconsistent knowledge. Through a manual audit of 16 popular KGQA datasets, including WebQSP and CWQ, we find that the average factual correctness rate is only 57 %. To address these issues, we introduce KGQAGen, an LLM-in-the-loop framework that systematically resolves these pitfalls. KGQAGen combines structured knowledge grounding, LLM-guided generation, and symbolic verification to produce challenging and verifiable QA instances. Using KGQAGen, we construct KGQAGen-10k, a ten-thousand scale benchmark grounded in Wikidata, and evaluate a diverse set of KG-RAG models. Experimental results demonstrate that even state-of-the-art systems struggle on this benchmark, highlighting its ability to expose limitations of existing models. Our findings advocate for more rigorous benchmark construction and position KGQAGen as a scalable framework for advancing KGQA evaluation.
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track
Graphics 5
☆ Teamwork: Collaborative Diffusion with Low-rank Coordination and Adaptation
Large pretrained diffusion models can provide strong priors beneficial for many graphics applications. However, generative applications such as neural rendering and inverse methods such as SVBRDF estimation and intrinsic image decomposition require additional input or output channels. Current solutions for channel expansion are often application specific and these solutions can be difficult to adapt to different diffusion models or new tasks. This paper introduces Teamwork: a flexible and efficient unified solution for jointly increasing the number of input and output channels as well as adapting a pretrained diffusion model to new tasks. Teamwork achieves channel expansion without altering the pretrained diffusion model architecture by coordinating and adapting multiple instances of the base diffusion model (\ie, teammates). We employ a novel variation of Low Rank-Adaptation (LoRA) to jointly address both adaptation and coordination between the different teammates. Furthermore Teamwork supports dynamic (de)activation of teammates. We demonstrate the flexibility and efficiency of Teamwork on a variety of generative and inverse graphics tasks such as inpainting, single image SVBRDF estimation, intrinsic decomposition, neural shading, and intrinsic image synthesis.
♻ ☆ Neon: Negative Extrapolation From Self-Training Improves Image Generation
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/VITA-Group/Neon
♻ ☆ SDFs from Unoriented Point Clouds using Neural Variational Heat Distances
We propose a novel variational approach for computing neural Signed Distance Fields (SDF) from unoriented point clouds. To this end, we replace the commonly used eikonal equation with the heat method, carrying over to the neural domain what has long been standard practice for computing distances on discrete surfaces. This yields two convex optimization problems for whose solution we employ neural networks: We first compute a neural approximation of the gradients of the unsigned distance field through a small time step of heat flow with weighted point cloud densities as initial data. Then we use it to compute a neural approximation of the SDF. We prove that the underlying variational problems are well-posed. Through numerical experiments, we demonstrate that our method provides state-of-the-art surface reconstruction and consistent SDF gradients. Furthermore, we show in a proof-of-concept that it is accurate enough for solving a PDE on the zero-level set.
comment: 15 pages, 17 figures, 4 tables
♻ ☆ Submillimeter-Accurate 3D Lumbar Spine Reconstruction from Biplanar X-Ray Images: Incorporating a Multi-Task Network and Landmark-Weighted Loss
To meet the clinical demand for accurate 3D lumbar spine assessment in a weight-bearing position, this study presents a novel, fully automatic framework for high-precision 3D reconstruction from biplanar X-ray images, overcoming the limitations of existing methods. The core of this method involves a novel multi-task deep learning network that simultaneously performs lumbar decomposition and landmark detection on the original biplanar radiographs. The decomposition effectively eliminates interference from surrounding tissues, simplifying subsequent image registration, while the landmark detection provides an initial pose estimation for the Statistical Shape Model (SSM), enhancing the efficiency and robustness of the registration process. Building on this, we introduce a landmark-weighted 2D-3D registration strategy. By assigning higher weights to complex posterior structures like the transverse and spinous processes during optimization, this strategy significantly enhances the reconstruction accuracy of the posterior arch. Our method was validated against a gold standard derived from registering CT segmentations to the biplanar X-rays. It sets a new benchmark by achieving sub-millimeter accuracy and completes the full reconstruction and measurement workflow in under 20 seconds, establishing a state-of-the-art combination of precision and speed. This fast and low-dose pipeline provides a powerful automated tool for diagnosing lumbar conditions such as spondylolisthesis and scoliosis in their functional, weight-bearing state.
comment: 27 pages, 16 figures, 9 tables
♻ ☆ HiMat: DiT-based Ultra-High Resolution SVBRDF Generation
Creating ultra-high-resolution spatially varying bidirectional reflectance functions (SVBRDFs) is critical for photorealistic 3D content creation, to faithfully represent fine-scale surface details required for close-up rendering. However, achieving 4K generation faces two key challenges: (1) the need to synthesize multiple reflectance maps at full resolution, which multiplies the pixel budget and imposes prohibitive memory and computational cost, and (2) the requirement to maintain strong pixel-level alignment across maps at 4K, which is particularly difficult when adapting pretrained models designed for the RGB image domain. We introduce HiMat, a diffusion-based framework tailored for efficient and diverse 4K SVBRDF generation. To address the first challenge, HiMat performs generation in a high-compression latent space via DC-AE, and employs a pretrained diffusion transformer with linear attention to improve per-map efficiency. To address the second challenge, we propose CrossStitch, a lightweight convolutional module that enforces cross-map consistency without incurring the cost of global attention. Our experiments show that HiMat achieves high-fidelity 4K SVBRDF generation with superior efficiency, structural consistency, and diversity compared to prior methods. Beyond materials, our framework also generalizes to related applications such as intrinsic decomposition.
Robotics 57
ResMimic: From General Motion Tracking to Humanoid Whole-body Loco-Manipulation via Residual Learning
Humanoid whole-body loco-manipulation promises transformative capabilities for daily service and warehouse tasks. While recent advances in general motion tracking (GMT) have enabled humanoids to reproduce diverse human motions, these policies lack the precision and object awareness required for loco-manipulation. To this end, we introduce ResMimic, a two-stage residual learning framework for precise and expressive humanoid control from human motion data. First, a GMT policy, trained on large-scale human-only motion, serves as a task-agnostic base for generating human-like whole-body movements. An efficient but precise residual policy is then learned to refine the GMT outputs to improve locomotion and incorporate object interaction. To further facilitate efficient training, we design (i) a point-cloud-based object tracking reward for smoother optimization, (ii) a contact reward that encourages accurate humanoid body-object interactions, and (iii) a curriculum-based virtual object controller to stabilize early training. We evaluate ResMimic in both simulation and on a real Unitree G1 humanoid. Results show substantial gains in task success, training efficiency, and robustness over strong baselines. Videos are available at https://resmimic.github.io/ .
comment: 9 pages, 8 figures
☆ Automaton Constrained Q-Learning NeurIPS 2025
Real-world robotic tasks often require agents to achieve sequences of goals while respecting time-varying safety constraints. However, standard Reinforcement Learning (RL) paradigms are fundamentally limited in these settings. A natural approach to these problems is to combine RL with Linear-time Temporal Logic (LTL), a formal language for specifying complex, temporally extended tasks and safety constraints. Yet, existing RL methods for LTL objectives exhibit poor empirical performance in complex and continuous environments. As a result, no scalable methods support both temporally ordered goals and safety simultaneously, making them ill-suited for realistic robotics scenarios. We propose Automaton Constrained Q-Learning (ACQL), an algorithm that addresses this gap by combining goal-conditioned value learning with automaton-guided reinforcement. ACQL supports most LTL task specifications and leverages their automaton representation to explicitly encode stage-wise goal progression and both stationary and non-stationary safety constraints. We show that ACQL outperforms existing methods across a range of continuous control tasks, including cases where prior methods fail to satisfy either goal-reaching or safety constraints. We further validate its real-world applicability by deploying ACQL on a 6-DOF robotic arm performing a goal-reaching task in a cluttered, cabinet-like space with safety constraints. Our results demonstrate that ACQL is a robust and scalable solution for learning robotic behaviors according to rich temporal specifications.
comment: 9 pages, 4 figures, 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ StaMo: Unsupervised Learning of Generalizable Robot Motion from Compact State Representation
A fundamental challenge in embodied intelligence is developing expressive and compact state representations for efficient world modeling and decision making. However, existing methods often fail to achieve this balance, yielding representations that are either overly redundant or lacking in task-critical information. We propose an unsupervised approach that learns a highly compressed two-token state representation using a lightweight encoder and a pre-trained Diffusion Transformer (DiT) decoder, capitalizing on its strong generative prior. Our representation is efficient, interpretable, and integrates seamlessly into existing VLA-based models, improving performance by 14.3% on LIBERO and 30% in real-world task success with minimal inference overhead. More importantly, we find that the difference between these tokens, obtained via latent interpolation, naturally serves as a highly effective latent action, which can be further decoded into executable robot actions. This emergent capability reveals that our representation captures structured dynamics without explicit supervision. We name our method StaMo for its ability to learn generalizable robotic Motion from compact State representation, which is encoded from static images, challenging the prevalent dependence to learning latent action on complex architectures and video data. The resulting latent actions also enhance policy co-training, outperforming prior methods by 10.4% with improved interpretability. Moreover, our approach scales effectively across diverse data sources, including real-world robot data, simulation, and human egocentric video.
☆ Walking, Rolling, and Beyond: First-Principles and RL Locomotion on a TARS-Inspired Robot
Robotic locomotion research typically draws from biologically inspired leg designs, yet many human-engineered settings can benefit from non-anthropomorphic forms. TARS3D translates the block-shaped 'TARS' robot from Interstellar into a 0.25 m, 0.99 kg research platform with seven actuated degrees of freedom. The film shows two primary gaits: a bipedal-like walk and a high-speed rolling mode. For TARS3D, we build reduced-order models for each, derive closed-form limit-cycle conditions, and validate the predictions on hardware. Experiments confirm that the robot respects its +/-150 degree hip limits, alternates left-right contacts without interference, and maintains an eight-step hybrid limit cycle in rolling mode. Because each telescopic leg provides four contact corners, the rolling gait is modeled as an eight-spoke double rimless wheel. The robot's telescopic leg redundancy implies a far richer gait repertoire than the two limit cycles treated analytically. So, we used deep reinforcement learning (DRL) in simulation to search the unexplored space. We observed that the learned policy can recover the analytic gaits under the right priors and discover novel behaviors as well. Our findings show that TARS3D's fiction-inspired bio-transcending morphology can realize multiple previously unexplored locomotion modes and that further learning-driven search is likely to reveal more. This combination of analytic synthesis and reinforcement learning opens a promising pathway for multimodal robotics.
comment: 6 pages, 10 figures. Presented at IEEE-RAS International Conference on Humanoid Robots (Humanoids) 2025
☆ Efficient Navigation in Unknown Indoor Environments with Vision-Language Models
We present a novel high-level planning framework that leverages vision-language models (VLMs) to improve autonomous navigation in unknown indoor environments with many dead ends. Traditional exploration methods often take inefficient routes due to limited global reasoning and reliance on local heuristics. In contrast, our approach enables a VLM to reason directly about an occupancy map in a zero-shot manner, selecting subgoals that are likely to lead to more efficient paths. At each planning step, we convert a 3D occupancy grid into a partial 2D map of the environment, and generate candidate subgoals. Each subgoal is then evaluated and ranked against other candidates by the model. We integrate this planning scheme into DYNUS \cite{kondo2025dynus}, a state-of-the-art trajectory planner, and demonstrate improved navigation efficiency in simulation. The VLM infers structural patterns (e.g., rooms, corridors) from incomplete maps and balances the need to make progress toward a goal against the risk of entering unknown space. This reduces common greedy failures (e.g., detouring into small rooms) and achieves about 10\% shorter paths on average.
comment: 8 pages, 4 figures
☆ HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ TAG-K: Tail-Averaged Greedy Kaczmarz for Computationally Efficient and Performant Online Inertial Parameter Estimation
Accurate online inertial parameter estimation is essential for adaptive robotic control, enabling real-time adjustment to payload changes, environmental interactions, and system wear. Traditional methods such as Recursive Least Squares (RLS) and the Kalman Filter (KF) often struggle to track abrupt parameter shifts or incur high computational costs, limiting their effectiveness in dynamic environments and for computationally constrained robotic systems. As such, we introduce TAG-K, a lightweight extension of the Kaczmarz method that combines greedy randomized row selection for rapid convergence with tail averaging for robustness under noise and inconsistency. This design enables fast, stable parameter adaptation while retaining the low per-iteration complexity inherent to the Kaczmarz framework. We evaluate TAG-K in synthetic benchmarks and quadrotor tracking tasks against RLS, KF, and other Kaczmarz variants. TAG-K achieves 1.5x-1.9x faster solve times on laptop-class CPUs and 4.8x-20.7x faster solve times on embedded microcontrollers. More importantly, these speedups are paired with improved resilience to measurement noise and a 25% reduction in estimation error, leading to nearly 2x better end-to-end tracking performance.
Efficient Probabilistic Planning with Maximum-Coverage Distributionally Robust Backward Reachable Trees
This paper presents a new multi-query motion planning algorithm for linear Gaussian systems with the goal of reaching a Euclidean ball with high probability. We develop a new formulation for ball-shaped ambiguity sets of Gaussian distributions and leverage it to develop a distributionally robust belief roadmap construction algorithm. This algorithm synthe- sizes robust controllers which are certified to be safe for maximal size ball-shaped ambiguity sets of Gaussian distributions. Our algorithm achieves better coverage than the maximal coverage algorithm for planning over Gaussian distributions [1], and we identify mild conditions under which our algorithm achieves strictly better coverage. For the special case of no process noise or state constraints, we formally prove that our algorithm achieves maximal coverage. In addition, we present a second multi-query motion planning algorithm for linear Gaussian systems with the goal of reaching a region parameterized by the Minkowski sum of an ellipsoid and a Euclidean ball with high probability. This algorithm plans over ellipsoidal sets of maximal size ball-shaped ambiguity sets of Gaussian distributions, and provably achieves equal or better coverage than the best-known algorithm for planning over ellipsoidal ambiguity sets of Gaussian distributions [2]. We demonstrate the efficacy of both methods in a wide range of conditions via extensive simulation experiments.
☆ Online automatic code generation for robot swarms: LLMs and self-organizing hierarchy
Our recently introduced self-organizing nervous system (SoNS) provides robot swarms with 1) ease of behavior design and 2) global estimation of the swarm configuration and its collective environment, facilitating the implementation of online automatic code generation for robot swarms. In a demonstration with 6 real robots and simulation trials with >30 robots, we show that when a SoNS-enhanced robot swarm gets stuck, it can automatically solicit and run code generated by an external LLM on the fly, completing its mission with an 85% success rate.
☆ Performance-guided Task-specific Optimization for Multirotor Design
This paper introduces a methodology for task-specific design optimization of multirotor Micro Aerial Vehicles. By leveraging reinforcement learning, Bayesian optimization, and covariance matrix adaptation evolution strategy, we optimize aerial robot designs guided exclusively by their closed-loop performance in a considered task. Our approach systematically explores the design space of motor pose configurations while ensuring manufacturability constraints and minimal aerodynamic interference. Results demonstrate that optimized designs achieve superior performance compared to conventional multirotor configurations in agile waypoint navigation tasks, including against fully actuated designs from the literature. We build and test one of the optimized designs in the real world to validate the sim2real transferability of our approach.
☆ Building Gradient by Gradient: Decentralised Energy Functions for Bimanual Robot Assembly
There are many challenges in bimanual assembly, including high-level sequencing, multi-robot coordination, and low-level, contact-rich operations such as component mating. Task and motion planning (TAMP) methods, while effective in this domain, may be prohibitively slow to converge when adapting to disturbances that require new task sequencing and optimisation. These events are common during tight-tolerance assembly, where difficult-to-model dynamics such as friction or deformation require rapid replanning and reattempts. Moreover, defining explicit task sequences for assembly can be cumbersome, limiting flexibility when task replanning is required. To simplify this planning, we introduce a decentralised gradient-based framework that uses a piecewise continuous energy function through the automatic composition of adaptive potential functions. This approach generates sub-goals using only myopic optimisation, rather than long-horizon planning. It demonstrates effectiveness at solving long-horizon tasks due to the structure and adaptivity of the energy function. We show that our approach scales to physical bimanual assembly tasks for constructing tight-tolerance assemblies. In these experiments, we discover that our gradient-based rapid replanning framework generates automatic retries, coordinated motions and autonomous handovers in an emergent fashion.
comment: 8 pages, 6 figures, 1 table
☆ Bio-Inspired Robotic Houbara: From Development to Field Deployment for Behavioral Studies
Biomimetic intelligence and robotics are transforming field ecology by enabling lifelike robotic surrogates that interact naturally with animals under real world conditions. Studying avian behavior in the wild remains challenging due to the need for highly realistic morphology, durable outdoor operation, and intelligent perception that can adapt to uncontrolled environments. We present a next generation bio inspired robotic platform that replicates the morphology and visual appearance of the female Houbara bustard to support controlled ethological studies and conservation oriented field research. The system introduces a fully digitally replicable fabrication workflow that combines high resolution structured light 3D scanning, parametric CAD modelling, articulated 3D printing, and photorealistic UV textured vinyl finishing to achieve anatomically accurate and durable robotic surrogates. A six wheeled rocker bogie chassis ensures stable mobility on sand and irregular terrain, while an embedded NVIDIA Jetson module enables real time RGB and thermal perception, lightweight YOLO based detection, and an autonomous visual servoing loop that aligns the robot's head toward detected targets without human intervention. A lightweight thermal visible fusion module enhances perception in low light conditions. Field trials in desert aviaries demonstrated reliable real time operation at 15 to 22 FPS with latency under 100 ms and confirmed that the platform elicits natural recognition and interactive responses from live Houbara bustards under harsh outdoor conditions. This integrated framework advances biomimetic field robotics by uniting reproducible digital fabrication, embodied visual intelligence, and ecological validation, providing a transferable blueprint for animal robot interaction research, conservation robotics, and public engagement.
☆ Learning a Shape-adaptive Assist-as-needed Rehabilitation Policy from Therapist-informed Input
Therapist-in-the-loop robotic rehabilitation has shown great promise in enhancing rehabilitation outcomes by integrating the strengths of therapists and robotic systems. However, its broader adoption remains limited due to insufficient safe interaction and limited adaptation capability. This article proposes a novel telerobotics-mediated framework that enables therapists to intuitively and safely deliver assist-as-needed~(AAN) therapy based on two primary contributions. First, our framework encodes the therapist-informed corrective force into via-points in a latent space, allowing the therapist to provide only minimal assistance while encouraging patient maintaining own motion preferences. Second, a shape-adaptive ANN rehabilitation policy is learned to partially and progressively deform the reference trajectory for movement therapy based on encoded patient motion preferences and therapist-informed via-points. The effectiveness of the proposed shape-adaptive AAN strategy was validated on a telerobotic rehabilitation system using two representative tasks. The results demonstrate its practicality for remote AAN therapy and its superiority over two state-of-the-art methods in reducing corrective force and improving movement smoothness.
☆ OKVIS2-X: Open Keyframe-based Visual-Inertial SLAM Configurable with Dense Depth or LiDAR, and GNSS
To empower mobile robots with usable maps as well as highest state estimation accuracy and robustness, we present OKVIS2-X: a state-of-the-art multi-sensor Simultaneous Localization and Mapping (SLAM) system building dense volumetric occupancy maps, while scalable to large environments and operating in realtime. Our unified SLAM framework seamlessly integrates different sensor modalities: visual, inertial, measured or learned depth, LiDAR and Global Navigation Satellite System (GNSS) measurements. Unlike most state-of-the-art SLAM systems, we advocate using dense volumetric map representations when leveraging depth or range-sensing capabilities. We employ an efficient submapping strategy that allows our system to scale to large environments, showcased in sequences of up to 9 kilometers. OKVIS2-X enhances its accuracy and robustness by tightly-coupling the estimator and submaps through map alignment factors. Our system provides globally consistent maps, directly usable for autonomous navigation. To further improve the accuracy of OKVIS2-X, we also incorporate the option of performing online calibration of camera extrinsics. Our system achieves the highest trajectory accuracy in EuRoC against state-of-the-art alternatives, outperforms all competitors in the Hilti22 VI-only benchmark, while also proving competitive in the LiDAR version, and showcases state of the art accuracy in the diverse and large-scale sequences from the VBR dataset.
comment: IEEE Transactions on Robotics (T-RO) - Special Issue: Visual SLAM
☆ MobRT: A Digital Twin-Based Framework for Scalable Learning in Mobile Manipulation
Recent advances in robotics have been largely driven by imitation learning, which depends critically on large-scale, high-quality demonstration data. However, collecting such data remains a significant challenge-particularly for mobile manipulators, which must coordinate base locomotion and arm manipulation in high-dimensional, dynamic, and partially observable environments. Consequently, most existing research remains focused on simpler tabletop scenarios, leaving mobile manipulation relatively underexplored. To bridge this gap, we present \textit{MobRT}, a digital twin-based framework designed to simulate two primary categories of complex, whole-body tasks: interaction with articulated objects (e.g., opening doors and drawers) and mobile-base pick-and-place operations. \textit{MobRT} autonomously generates diverse and realistic demonstrations through the integration of virtual kinematic control and whole-body motion planning, enabling coherent and physically consistent execution. We evaluate the quality of \textit{MobRT}-generated data across multiple baseline algorithms, establishing a comprehensive benchmark and demonstrating a strong correlation between task success and the number of generated trajectories. Experiments integrating both simulated and real-world demonstrations confirm that our approach markedly improves policy generalization and performance, achieving robust results in both simulated and real-world environments.
☆ Everything-Grasping (EG) Gripper: A Universal Gripper with Synergistic Suction-Grasping Capabilities for Cross-Scale and Cross-State Manipulation
Grasping objects across vastly different sizes and physical states-including both solids and liquids-with a single robotic gripper remains a fundamental challenge in soft robotics. We present the Everything-Grasping (EG) Gripper, a soft end-effector that synergistically integrates distributed surface suction with internal granular jamming, enabling cross-scale and cross-state manipulation without requiring airtight sealing at the contact interface with target objects. The EG Gripper can handle objects with surface areas ranging from sub-millimeter scale 0.2 mm2 (glass bead) to over 62,000 mm2 (A4 sized paper and woven bag), enabling manipulation of objects nearly 3,500X smaller and 88X larger than its own contact area (approximated at 707 mm2 for a 30 mm-diameter base). We further introduce a tactile sensing framework that combines liquid detection and pressure-based suction feedback, enabling real-time differentiation between solid and liquid targets. Guided by the actile-Inferred Grasping Mode Selection (TIGMS) algorithm, the gripper autonomously selects grasping modes based on distributed pressure and voltage signals. Experiments across diverse tasks-including underwater grasping, fragile object handling, and liquid capture-demonstrate robust and repeatable performance. To our knowledge, this is the first soft gripper to reliably grasp both solid and liquid objects across scales using a unified compliant architecture.
comment: 19 pages, 10 figures, journal
☆ More Than Meets the Eye? Uncovering the Reasoning-Planning Disconnect in Training Vision-Language Driving Models
Vision-Language Model (VLM) driving agents promise explainable end-to-end autonomy by first producing natural-language reasoning and then predicting trajectory planning. However, whether planning is causally driven by this reasoning remains a critical but unverified assumption. To investigate this, we build DriveMind, a large-scale driving Visual Question Answering (VQA) corpus with plan-aligned Chain-of-Thought (CoT), automatically generated from nuPlan. Our data generation process converts sensors and annotations into structured inputs and, crucially, separates priors from to-be-reasoned signals, enabling clean information ablations. Using DriveMind, we train representative VLM agents with Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) and evaluate them with nuPlan's metrics. Our results, unfortunately, indicate a consistent causal disconnect in reasoning-planning: removing ego/navigation priors causes large drops in planning scores, whereas removing CoT produces only minor changes. Attention analysis further shows that planning primarily focuses on priors rather than the CoT. Based on this evidence, we propose the Reasoning-Planning Decoupling Hypothesis, positing that the training-yielded reasoning is an ancillary byproduct rather than a causal mediator. To enable efficient diagnosis, we also introduce a novel, training-free probe that measures an agent's reliance on priors by evaluating its planning robustness against minor input perturbations. In summary, we provide the community with a new dataset and a diagnostic tool to evaluate the causal fidelity of future models.
comment: The dataset will be released publicly once the paper is accepted for publication
☆ Velocity-Form Data-Enabled Predictive Control of Soft Robots under Unknown External Payloads
Data-driven control methods such as data-enabled predictive control (DeePC) have shown strong potential in efficient control of soft robots without explicit parametric models. However, in object manipulation tasks, unknown external payloads and disturbances can significantly alter the system dynamics and behavior, leading to offset error and degraded control performance. In this paper, we present a novel velocity-form DeePC framework that achieves robust and optimal control of soft robots under unknown payloads. The proposed framework leverages input-output data in an incremental representation to mitigate performance degradation induced by unknown payloads, eliminating the need for weighted datasets or disturbance estimators. We validate the method experimentally on a planar soft robot and demonstrate its superior performance compared to standard DeePC in scenarios involving unknown payloads.
☆ PAD-TRO: Projection-Augmented Diffusion for Direct Trajectory Optimization
Recently, diffusion models have gained popularity and attention in trajectory optimization due to their capability of modeling multi-modal probability distributions. However, addressing nonlinear equality constraints, i.e, dynamic feasi- bility, remains a great challenge in diffusion-based trajectory optimization. Recent diffusion-based trajectory optimization frameworks rely on a single-shooting style approach where the denoised control sequence is applied to forward propagate the dynamical system, which cannot explicitly enforce constraints on the states and frequently leads to sub-optimal solutions. In this work, we propose a novel direct trajectory optimization approach via model-based diffusion, which directly generates a sequence of states. To ensure dynamic feasibility, we propose a gradient-free projection mechanism that is incorporated into the reverse diffusion process. Our results show that, compared to a recent state-of-the-art baseline, our approach leads to zero dynamic feasibility error and approximately 4x higher success rate in a quadrotor waypoint navigation scenario involving dense static obstacles.
☆ AD-NODE: Adaptive Dynamics Learning with Neural ODEs for Mobile Robots Control
Mobile robots, such as ground vehicles and quadrotors, are becoming increasingly important in various fields, from logistics to agriculture, where they automate processes in environments that are difficult to access for humans. However, to perform effectively in uncertain environments using model-based controllers, these systems require dynamics models capable of responding to environmental variations, especially when direct access to environmental information is limited. To enable such adaptivity and facilitate integration with model predictive control, we propose an adaptive dynamics model which bypasses the need for direct environmental knowledge by inferring operational environments from state-action history. The dynamics model is based on neural ordinary equations, and a two-phase training procedure is used to learn latent environment representations. We demonstrate the effectiveness of our approach through goal-reaching and path-tracking tasks on three robotic platforms of increasing complexity: a 2D differential wheeled robot with changing wheel contact conditions, a 3D quadrotor in variational wind fields, and the Sphero BOLT robot under two contact conditions for real-world deployment. Empirical results corroborate that our method can handle temporally and spatially varying environmental changes in both simulation and real-world systems.
☆ Safety-Critical Control with Bounded Inputs: A Closed-Form Solution for Backup Control Barrier Functions
Verifying the safety of controllers is critical for many applications, but is especially challenging for systems with bounded inputs. Backup control barrier functions (bCBFs) offer a structured approach to synthesizing safe controllers that are guaranteed to satisfy input bounds by leveraging the knowledge of a backup controller. While powerful, bCBFs require solving a high-dimensional quadratic program at run-time, which may be too costly for computationally-constrained systems such as aerospace vehicles. We propose an approach that optimally interpolates between a nominal controller and the backup controller, and we derive the solution to this optimization problem in closed form. We prove that this closed-form controller is guaranteed to be safe while obeying input bounds. We demonstrate the effectiveness of the approach on a double integrator and a nonlinear fixed-wing aircraft example.
comment: 8 pages, 6 figures. Code available at https://github.com/davidvwijk/OI-CBF
☆ Active Semantic Perception
We develop an approach for active semantic perception which refers to using the semantics of the scene for tasks such as exploration. We build a compact, hierarchical multi-layer scene graph that can represent large, complex indoor environments at various levels of abstraction, e.g., nodes corresponding to rooms, objects, walls, windows etc. as well as fine-grained details of their geometry. We develop a procedure based on large language models (LLMs) to sample plausible scene graphs of unobserved regions that are consistent with partial observations of the scene. These samples are used to compute an information gain of a potential waypoint for sophisticated spatial reasoning, e.g., the two doors in the living room can lead to either a kitchen or a bedroom. We evaluate this approach in complex, realistic 3D indoor environments in simulation. We show using qualitative and quantitative experiments that our approach can pin down the semantics of the environment quicker and more accurately than baseline approaches.
☆ Towards Online Robot Interaction Adaptation to Human Upper-limb Mobility Impairments in Return-to-Work Scenarios
Work environments are often inadequate and lack inclusivity for individuals with upper-body disabilities. This paper presents a novel online framework for adaptive human-robot interaction (HRI) that accommodates users' arm mobility impairments, ultimately aiming to promote active work participation. Unlike traditional human-robot collaboration approaches that assume able-bodied users, our method integrates a mobility model for specific joint limitations into a hierarchical optimal controller. This allows the robot to generate reactive, mobility-aware behaviour online and guides the user's impaired limb to exploit residual functional mobility. The framework was tested in handover tasks involving different upper-limb mobility impairments (i.e., emulated elbow and shoulder arthritis, and wrist blockage), under both standing and seated configurations with task constraints using a mobile manipulator, and complemented by quantitative and qualitative comparisons with state-of-the-art ergonomic HRI approaches. Preliminary results indicated that the framework can personalise the interaction to fit within the user's impaired range of motion and encourage joint usage based on the severity of their functional limitations.
☆ A multi-modal tactile fingertip design for robotic hands to enhance dexterous manipulation
Tactile sensing holds great promise for enhancing manipulation precision and versatility, but its adoption in robotic hands remains limited due to high sensor costs, manufacturing and integration challenges, and difficulties in extracting expressive and reliable information from signals. In this work, we present a low-cost, easy-to-make, adaptable, and compact fingertip design for robotic hands that integrates multi-modal tactile sensors. We use strain gauge sensors to capture static forces and a contact microphone sensor to measure high-frequency vibrations during contact. These tactile sensors are integrated into a compact design with a minimal sensor footprint, and all sensors are internal to the fingertip and therefore not susceptible to direct wear and tear from interactions. From sensor characterization, we show that strain gauge sensors provide repeatable 2D planar force measurements in the 0-5 N range and the contact microphone sensor has the capability to distinguish contact material properties. We apply our design to three dexterous manipulation tasks that range from zero to full visual occlusion. Given the expressiveness and reliability of tactile sensor readings, we show that different tactile sensing modalities can be used flexibly in different stages of manipulation, solely or together with visual observations to achieve improved task performance. For instance, we can precisely count and unstack a desired number of paper cups from a stack with 100\% success rate which is hard to achieve with vision only.
☆ Adaptive Dynamics Planning for Robot Navigation
Autonomous robot navigation systems often rely on hierarchical planning, where global planners compute collision-free paths without considering dynamics, and local planners enforce dynamics constraints to produce executable commands. This discontinuity in dynamics often leads to trajectory tracking failure in highly constrained environments. Recent approaches integrate dynamics within the entire planning process by gradually decreasing its fidelity, e.g., increasing integration steps and reducing collision checking resolution, for real-time planning efficiency. However, they assume that the fidelity of the dynamics should decrease according to a manually designed scheme. Such static settings fail to adapt to environmental complexity variations, resulting in computational overhead in simple environments or insufficient dynamics consideration in obstacle-rich scenarios. To overcome this limitation, we propose Adaptive Dynamics Planning (ADP), a learning-augmented paradigm that uses reinforcement learning to dynamically adjust robot dynamics properties, enabling planners to adapt across diverse environments. We integrate ADP into three different planners and further design a standalone ADP-based navigation system, benchmarking them against other baselines. Experiments in both simulation and real-world tests show that ADP consistently improves navigation success, safety, and efficiency.
comment: 8 pages, 4 figures
☆ VER: Vision Expert Transformer for Robot Learning via Foundation Distillation and Dynamic Routing
Pretrained vision foundation models (VFMs) advance robotic learning via rich visual representations, yet individual VFMs typically excel only in specific domains, limiting generality across tasks. Distilling multiple VFMs into a unified representation for policy can mitigate this limitation but often yields inflexible task-specific feature selection and requires costly full re-training to incorporate robot-domain knowledge. We propose VER, a Vision Expert transformer for Robot learning. During pretraining, VER distills multiple VFMs into a vision expert library. It then fine-tunes only a lightweight routing network (fewer than 0.4% of parameters) to dynamically select task-relevant experts from the pretrained library for downstream robot tasks. We further introduce Patchwise Expert Routing with Curriculum Top-K Annealing to improve both flexibility and precision of dynamic expert selection. Moreover, VER supports parameter-efficient finetuning for scalable expert utilization and adaptive robot-domain knowledge integration. Across 17 diverse robotic tasks and multiple policy heads, VER achieves state-of-the-art performance. We find that VER reduces large-norm outliers in task-irrelevant regions (e.g., background) and concentrates on task-critical regions. Visualizations and codes can be found in https://yixiaowang7.github.io/ver_page/.
♻ ☆ RowDetr: End-to-End Crop Row Detection Using Polynomials
Crop row detection enables autonomous robots to navigate in gps denied environments. Vision based strategies often struggle in the environments due to gaps, curved crop rows and require post-processing steps. Furthermore, labeling crop rows in under the canopy environments accurately is very difficult due to occlusions. This study introduces RowDetr, an efficient end-to-end transformer-based neural network for crop row detection in precision agriculture. RowDetr leverages a lightweight backbone and a hybrid encoder to model straight, curved, or occluded crop rows with high precision. Central to the architecture is a novel polynomial representation that enables direct parameterization of crop rows, eliminating computationally expensive post-processing. Key innovations include a PolySampler module and multi-scale deformable attention, which work together with PolyOptLoss, an energy-based loss function designed to optimize geometric alignment between predicted and the annotated crop rows, while also enhancing robustness against labeling noise. RowDetr was evaluated against other state-of-the-art end-to-end crop row detection methods like AgroNav and RolColAttention on a diverse dataset of 6,962 high-resolution images, used for training, validation, and testing across multiple crop types with annotated crop rows. The system demonstrated superior performance, achieved an F1 score up to 0.74 and a lane position deviation as low as 0.405. Furthermore, RowDetr achieves a real-time inference latency of 6.7ms, which was optimized to 3.5ms with INT8 quantization on an NVIDIA Jetson Orin AGX. This work highlighted the critical efficiency of polynomial parameterization, making RowDetr particularly suitable for deployment on edge computing devices in agricultural robotics and autonomous farming equipment. Index terms > Crop Row Detection, Under Canopy Navigation, Transformers, RT-DETR, RT-DETRv2
comment: Code will be open sourced upon publication
♻ ☆ ReLI: A Language-Agnostic Approach to Human-Robot Interaction
Adapting autonomous agents for real-world industrial, domestic, and other daily tasks is currently gaining momentum. However, in global or cross-lingual application contexts, ensuring effective interaction with the environment and executing unrestricted human-specified tasks regardless of the language remains an unsolved problem. To address this, we propose ReLI, a language-agnostic approach that enables autonomous agents to converse naturally, semantically reason about their environment, and perform downstream tasks, regardless of the task instruction's modality or linguistic origin. First, we ground large-scale pre-trained foundation models and transform them into language-to-action models that can directly provide common-sense reasoning and high-level robot control through natural, free-flow conversational interactions. Further, we perform cross-lingual adaptation of the models to ensure that ReLI generalises across the global languages. To demonstrate ReLI's robustness, we conducted extensive experiments on various short- and long-horizon tasks, including zero- and few-shot spatial navigation, scene information retrieval, and query-oriented tasks. We benchmarked the performance on $140$ languages involving $70K+$ multi-turn conversations. On average, ReLI achieved over $90\%\pm0.2$ accuracy in cross-lingual instruction parsing and task execution success. These results demonstrate its potential to advance natural human-agent interaction in the real world while championing inclusive and linguistic diversity. Demos and resources will be public at: https://linusnep.github.io/ReLI/.
♻ ☆ Pragmatic Embodied Spoken Instruction Following in Human-Robot Collaboration with Theory of Mind
Spoken language instructions are ubiquitous in agent collaboration. However, in real-world human-robot collaboration, following human spoken instructions can be challenging due to various speaker and environmental factors, such as background noise or mispronunciation. When faced with noisy auditory inputs, humans can leverage the collaborative context in the embodied environment to interpret noisy spoken instructions and take pragmatic assistive actions. In this paper, we present a cognitively inspired neurosymbolic model, Spoken Instruction Following through Theory of Mind (SIFToM), which leverages a Vision-Language Model with model-based mental inference to enable robots to pragmatically follow human instructions under diverse speech conditions. We test SIFToM in both simulated environments (VirtualHome) and real-world human-robot collaborative settings with human evaluations. Results show that SIFToM can significantly improve the performance of a lightweight base VLM (Gemini 2.5 Flash), outperforming state-of-the-art VLMs (Gemini 2.5 Pro) and approaching human-level accuracy on challenging spoken instruction following tasks.
comment: 8 pages, 7 figures
♻ ☆ HeLoM: Hierarchical Learning for Whole-Body Loco-Manipulation in Hexapod Robot
Robots in real-world environments are often required to move/manipulate objects comparable in weight to their own bodies. Compared to grasping and carrying, pushing provides a more straightforward and efficient non-prehensile manipulation strategy, avoiding complex grasp design while leveraging direct contact to regulate an object's pose. Achieving effective pushing, however, demands both sufficient manipulation forces and the ability to maintain stability, which is particularly challenging when dealing with heavy or irregular objects. To address these challenges, we propose HeLoM, a learning-based hierarchical whole-body manipulation framework for a hexapod robot that exploits coordinated multi-limb control. Inspired by the cooperative strategies of multi-legged insects, our framework leverages redundant contact points and high degrees of freedom to enable dynamic redistribution of contact forces. HeLoM's high-level planner plans pushing behaviors and target object poses, while its low-level controller maintains locomotion stability and generates dynamically consistent joint actions. Our policies trained in simulation are directly deployed on real robots without additional fine-tuning. This design allows the robot to maintain balance while exerting continuous and controllable pushing forces through coordinated foreleg interaction and supportive hind-leg propulsion. We validate the effectiveness of HeLoM through both simulation and real-world experiments. Results show that our framework can stably push boxes of varying sizes and unknown physical properties to designated goal poses in the real world.
♻ ☆ KiVi: Kinesthetic-Visuospatial Integration for Dynamic and Safe Egocentric Legged Locomotion
Vision-based locomotion has shown great promise in enabling legged robots to perceive and adapt to complex environments. However, visual information is inherently fragile, being vulnerable to occlusions, reflections, and lighting changes, which often cause instability in locomotion. Inspired by animal sensorimotor integration, we propose KiVi, a Kinesthetic-Visuospatial integration framework, where kinesthetics encodes proprioceptive sensing of body motion and visuospatial reasoning captures visual perception of surrounding terrain. Specifically, KiVi separates these pathways, leveraging proprioception as a stable backbone while selectively incorporating vision for terrain awareness and obstacle avoidance. This modality-balanced, yet integrative design, combined with memory-enhanced attention, allows the robot to robustly interpret visual cues while maintaining fallback stability through proprioception. Extensive experiments show that our method enables quadruped robots to stably traverse diverse terrains and operate reliably in unstructured outdoor environments, remaining robust to out-of-distribution (OOD) visual noise and occlusion unseen during training, thereby highlighting its effectiveness and applicability to real-world legged locomotion.
♻ ☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
♻ ☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
comment: 12 pages, 4 figures, 2 tables, 19th International Conference on Intelligent Autonomous Systems (IAS), Genoa, Italy, June 2025
♻ ☆ Tele-rehabilitation with online skill transfer and adaptation in $\mathbb{R}^3 \times \mathit{S}^3$
This paper proposes a tele-teaching framework for the domain of robot-assisted tele-rehabilitation. The system connects two robotic manipulators on therapist and patient side via bilateral teleoperation, enabling a therapist to remotely demonstrate rehabilitation exercises that are executed by the patient-side robot. A 6-DoF Dynamical Movement Primitives formulation is employed to jointly encode translational and rotational motions in $\mathbb{R}^3 \times \mathit{S}^3$ space, ensuring accurate trajectory reproduction. The framework supports smooth transitions between therapist-led guidance and patient passive training, while allowing adaptive adjustment of motion. Experiments with 7-DoF manipulators demonstrate the feasibility of the approach, highlighting its potential for personalized and remotely supervised rehabilitation.
♻ ☆ Digital-physical testbed for ship autonomy studies in the Marine Cybernetics Laboratory basin
The algorithms developed for Maritime Autonomous Surface Ships (MASS) are often challenging to test on actual vessels due to high operational costs and safety considerations. Simulations offer a cost-effective alternative and eliminate risks, but they may not accurately represent real-world dynamics for the given tasks. Utilizing small-scale model ships and robotic vessels in conjunction with a laboratory basin provides an accessible testing environment for the early stages of validation processes. However, designing and developing a model vessel for a single test can be costly and cumbersome, and researchers often lack access to such infrastructure. To address these challenges and enable streamlined testing, we have developed an in-house testbed that facilitates the development, testing, verification, and validation of MASS algorithms in a digital-physical laboratory. This infrastructure includes a set of small-scale model vessels, a simulation environment for each vessel, a comprehensive testbed environment, and a digital twin in Unity. With this, we aim to establish a full design and verification pipeline that starts with high-fidelity simulation models of each model vessel, to the model-scale testing in the laboratory basin, allowing possibilities for moving towards semi-fullscale validation with R/V milliAmpere1 and full-scale validation with R/V Gunnerus. In this work, we present our progress on the development of this testbed environment and its components, demonstrating its effectiveness in enabling ship guidance, navigation, and control (GNC), including autonomy.
Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
♻ ☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
♻ ☆ A Hierarchical Control Architecture for Space Robots in On-Orbit Servicing Operations
In-Orbit Servicing and Active Debris Removal require advanced robotic capabilities for capturing and detumbling uncooperative targets. This work presents a hierarchical control framework for autonomous robotic capture of tumbling objects in space. A simulation environment is developed, incorporating sloshing dynamics of the chaser, a rarely studied effect in space robotics. The proposed controller combines an inner Lyapunov-based robust control loop for multi-body dynamics with an outer loop addressing an extended inverse kinematics problem. Simulation results show improved robustness and adaptability compared to existing control schemes.
♻ ☆ NDOB-Based Control of a UAV with Delta-Arm Considering Manipulator Dynamics
Aerial Manipulators (AMs) provide a versatile platform for various applications, including 3D printing, architecture, and aerial grasping missions. However, their operational speed is often sacrificed to uphold precision. Existing control strategies for AMs often regard the manipulator as a disturbance and employ robust control methods to mitigate its influence. This research focuses on elevating the precision of the end-effector and enhancing the agility of aerial manipulator movements. We present a composite control scheme to address these challenges. Initially, a Nonlinear Disturbance Observer (NDOB) is utilized to compensate for internal coupling effects and external disturbances. Subsequently, manipulator dynamics are processed through a high pass filter to facilitate agile movements. By integrating the proposed control method into a fully autonomous delta-arm-based AM system, we substantiate the controller's efficacy through extensive real-world experiments. The outcomes illustrate that the end-effector can achieve accuracy at the millimeter level.
comment: 7 pages,6 figures
♻ ☆ BiDexHand: Design and Evaluation of an Open-Source 16-DoF Biomimetic Dexterous Hand ICRA 2025
Achieving human-level dexterity in robotic hands remains a fundamental challenge for enabling versatile manipulation across diverse applications. This extended abstract presents BiDexHand, a cable-driven biomimetic robotic hand that combines human-like dexterity with accessible and efficient mechanical design. The robotic hand features 16 independently actuated degrees of freedom and 5 mechanically coupled joints through novel phalange designs that replicate natural finger motion. Performance validation demonstrated success across all 33 grasp types in the GRASP Taxonomy, 9 of 11 positions in the Kapandji thumb opposition test, a measured fingertip force of 2.14\,N, and the capability to lift a 10\,lb weight. As an open-source platform supporting multiple control modes including vision-based teleoperation, BiDexHand aims to democratize access to advanced manipulation capabilities for the broader robotics research community.
comment: ICRA 2025 Dexterity Workshop, Spotlight Presentation
Humanoid Agent via Embodied Chain-of-Action Reasoning with Multimodal Foundation Models for Zero-Shot Loco-Manipulation
Humanoid loco-manipulation, which integrates whole-body locomotion with dexterous manipulation, remains a fundamental challenge in robotics. Beyond whole-body coordination and balance, a central difficulty lies in understanding human instructions and translating them into coherent sequences of embodied actions. Recent advances in foundation models provide transferable multimodal representations and reasoning capabilities, yet existing efforts remain largely restricted to either locomotion or manipulation in isolation, with limited applicability to humanoid settings. In this paper, we propose Humanoid-COA, the first humanoid agent framework that integrates foundation model reasoning with an Embodied Chain-of-Action (CoA) mechanism for zero-shot loco-manipulation. Within the perception--reasoning--action paradigm, our key contribution lies in the reasoning stage, where the proposed CoA mechanism decomposes high-level human instructions into structured sequences of locomotion and manipulation primitives through affordance analysis, spatial inference, and whole-body action reasoning. Extensive experiments on two humanoid robots, Unitree H1-2 and G1, in both an open test area and an apartment environment, demonstrate that our framework substantially outperforms prior baselines across manipulation, locomotion, and loco-manipulation tasks, achieving robust generalization to long-horizon and unstructured scenarios. Project page: https://humanoid-coa.github.io/
comment: website link: https://humanoid-coa.github.io/
♻ ☆ ToddlerBot: Open-Source ML-Compatible Humanoid Platform for Loco-Manipulation
Learning-based robotics research driven by data demands a new approach to robot hardware design-one that serves as both a platform for policy execution and a tool for embodied data collection to train policies. We introduce ToddlerBot, a low-cost, open-source humanoid robot platform designed for scalable policy learning and research in robotics and AI. ToddlerBot enables seamless acquisition of high-quality simulation and real-world data. The plug-and-play zero-point calibration and transferable motor system identification ensure a high-fidelity digital twin, enabling zero-shot policy transfer from simulation to the real world. A user-friendly teleoperation interface facilitates streamlined real-world data collection for learning motor skills from human demonstrations. Utilizing its data collection ability and anthropomorphic design, ToddlerBot is an ideal platform to perform whole-body loco-manipulation. Additionally, ToddlerBot's compact size (0.56m, 3.4kg) ensures safe operation in real-world environments. Reproducibility is achieved with an entirely 3D-printed, open-source design and commercially available components, keeping the total cost under 6,000 USD. Comprehensive documentation allows assembly and maintenance with basic technical expertise, as validated by a successful independent replication of the system. We demonstrate ToddlerBot's capabilities through arm span, payload, endurance tests, loco-manipulation tasks, and a collaborative long-horizon scenario where two robots tidy a toy session together. By advancing ML-compatibility, capability, and reproducibility, ToddlerBot provides a robust platform for scalable learning and dynamic policy execution in robotics research.
comment: Project website: https://toddlerbot.github.io/
♻ ☆ SafeFlowMatcher: Safe and Fast Planning using Flow Matching with Control Barrier Functions
Generative planners based on flow matching (FM) can produce high-quality paths in one or a few ODE steps, but their sampling dynamics offer no formal safety guarantees and can yield incomplete paths near constraints. We present SafeFlowMatcher, a planning framework that couples FM with control barrier functions (CBFs) to achieve both real-time efficiency and certified safety. SafeFlowMatcher uses a two-phase prediction-correction (PC) integrator: (i) a prediction phase integrates the learned FM once (or a few steps) to obtain a candidate path without intervention; (ii) a correction phase refines this path with a vanishing time-scaled vector field and a CBF-based quadratic program that minimally perturbs the vector field. We prove a barrier certificate for the resulting flow system, establishing forward invariance of a robust safe set and finite-time convergence to the safe set. By enforcing safety only on the executed path (rather than on all intermediate latent paths), SafeFlowMatcher avoids distributional drift and mitigates local trap problems. Across maze navigation and locomotion benchmarks, SafeFlowMatcher attains faster, smoother, and safer paths than diffusion- and FM-based baselines. Extensive ablations corroborate the contributions of the PC integrator and the barrier certificate.
comment: 10 pages, 7 figures, 4 tables
♻ ☆ In-Hand Manipulation of Articulated Tools with Dexterous Robot Hands with Sim-to-Real Transfer
Reinforcement learning (RL) and sim-to-real transfer have advanced robotic manipulation of rigid objects. Yet, policies remain brittle when applied to articulated mechanisms due to contact-rich dynamics and under-modeled joint phenomena such as friction, stiction, backlash, and clearances. We address this challenge through dexterous in-hand manipulation of articulated tools using a robotic hand with reduced articulation and kinematic redundancy relative to the human hand. Our controller augments a simulation-trained base policy with a sensor-driven refinement learned from hardware demonstrations, conditioning on proprioception and target articulation states while fusing whole-hand tactile and force feedback with the policy's internal action intent via cross-attention-based integration. This design enables online adaptation to instance-specific articulation properties, stabilizes contact interactions, regulates internal forces, and coordinates coupled-link motion under perturbations. We validate our approach across a diversity of real-world examples, including scissors, pliers, minimally invasive surgical tools, and staplers. We achieve robust transfer from simulation to hardware, improved disturbance resilience, and generalization to previously unseen articulated tools, thereby reducing reliance on precise physical modeling in contact-rich settings.
♻ ☆ PolySim: Bridging the Sim-to-Real Gap for Humanoid Control via Multi-Simulator Dynamics Randomization
Humanoid whole-body control (WBC) policies trained in simulation often suffer from the sim-to-real gap, which fundamentally arises from simulator inductive bias, the inherent assumptions and limitations of any single simulator. These biases lead to nontrivial discrepancies both across simulators and between simulation and the real world. To mitigate the effect of simulator inductive bias, the key idea is to train policies jointly across multiple simulators, encouraging the learned controller to capture dynamics that generalize beyond any single simulator's assumptions. We thus introduce PolySim, a WBC training platform that integrates multiple heterogeneous simulators. PolySim can launch parallel environments from different engines simultaneously within a single training run, thereby realizing dynamics-level domain randomization. Theoretically, we show that PolySim yields a tighter upper bound on simulator inductive bias than single-simulator training. In experiments, PolySim substantially reduces motion-tracking error in sim-to-sim evaluations; for example, on MuJoCo, it improves execution success by 52.8 over an IsaacSim baseline. PolySim further enables zero-shot deployment on a real Unitree G1 without additional fine-tuning, showing effective transfer from simulation to the real world. We will release the PolySim code upon acceptance of this work.
comment: 8 pages, 5 figures
♻ ☆ Code Generation and Conic Constraints for Model-Predictive Control on Microcontrollers with Conic-TinyMPC
Model-predictive control (MPC) is a powerful framework for controlling dynamic systems under constraints, but it remains challenging to deploy on resource-constrained platforms, especially for problems involving conic constraints. To address this, we extend recent work developing fast, structure-exploiting, cached ADMM solvers for embedded applications, to provide support for second-order cones, as well as C++ code generation from Python, MATLAB, and Julia for easy deployment. Microcontroller benchmarks show that our solver provides up to a two-order-of-magnitude speedup, ranging from 10.6x to 142.7x, over state-of-the-art embedded solvers on QP and SOCP problems, and enables us to fit order-of-magnitude larger problems in memory. We validate our solver's deployed performance through simulation and hardware experiments, including conically-constrained trajectory tracking on a 27g Crazyflie quadrotor. To get started with Conic-TinyMPC, visit our documentation, examples, and the open-source codebase at https://tinympc.org.
comment: First three authors contributed equally
♻ ☆ Learning Closed-Loop Parametric Nash Equilibria of Multi-Agent Collaborative Field Coverage
Multi-agent reinforcement learning is a challenging and active field of research due to the inherent nonstationary property and coupling between agents. A popular approach to modeling the multi-agent interactions underlying the multi-agent RL problem is the Markov Game. There is a special type of Markov Game, termed Markov Potential Game, which allows us to reduce the Markov Game to a single-objective optimal control problem where the objective function is a potential function. In this work, we prove that a multi-agent collaborative field coverage problem, which is found in many engineering applications, can be formulated as a Markov Potential Game, and we can learn a parameterized closed-loop Nash Equilibrium by solving an equivalent single-objective optimal control problem. As a result, our algorithm is 10x faster during training compared to a game-theoretic baseline and converges faster during policy execution.
comment: Updated license
♻ ☆ A Knowledge-Driven Diffusion Policy for End-to-End Autonomous Driving Based on Expert Routing
End-to-end autonomous driving remains constrained by the difficulty of producing adaptive, robust, and interpretable decision-making across diverse scenarios. Existing methods often collapse diverse driving behaviors, lack long-horizon consistency, or require task-specific engineering that limits generalization. This paper presents KDP, a knowledge-driven diffusion policy that integrates generative diffusion modeling with a sparse mixture-of-experts routing mechanism. The diffusion component generates temporally coherent action sequences, while the expert routing mechanism activates specialized and reusable experts according to context, enabling modular knowledge composition. Extensive experiments across representative driving scenarios demonstrate that KDP achieves consistently higher success rates, reduced collision risk, and smoother control compared to prevailing paradigms. Ablation studies highlight the effectiveness of sparse expert activation and the Transformer backbone, and activation analyses reveal structured specialization and cross-scenario reuse of experts. These results establish diffusion with expert routing as a scalable and interpretable paradigm for knowledge-driven end-to-end autonomous driving.
comment: https://perfectxu88.github.io/KDP-AD/
♻ ☆ Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
♻ ☆ Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
Distilling On-device Language Models for Robot Planning with Minimal Human Intervention
Large language models (LLMs) provide robots with powerful contextual reasoning abilities and a natural human interface. Yet, current LLM-enabled robots typically depend on cloud-hosted models, limiting their usability in environments with unreliable communication infrastructure, such as outdoor or industrial settings. We present PRISM, a framework for distilling small language model (SLM)-enabled robot planners that run on-device with minimal human supervision. Starting from an existing LLM-enabled planner, PRISM automatically synthesizes diverse tasks and environments, elicits plans from the LLM, and uses this synthetic dataset to distill a compact SLM as a drop-in replacement of the source model. We apply PRISM to three LLM-enabled planners for mapping and exploration, manipulation, and household assistance, and we demonstrate that PRISM improves the performance of Llama-3.2-3B from 10-20% of GPT-4o's performance to over 93% - using only synthetic data. We further demonstrate that the distilled planners generalize across heterogeneous robotic platforms (ground and aerial) and diverse environments (indoor and outdoor). We release all software, trained models, and datasets at https://zacravichandran.github.io/PRISM.
comment: Accepted to the Conference on Robot Learning (CoRL) 2025
♻ ☆ Decremental Dynamics Planning for Robot Navigation IROS 2025
Most, if not all, robot navigation systems employ a decomposed planning framework that includes global and local planning. To trade-off onboard computation and plan quality, current systems have to limit all robot dynamics considerations only within the local planner, while leveraging an extremely simplified robot representation (e.g., a point-mass holonomic model without dynamics) in the global level. However, such an artificial decomposition based on either full or zero consideration of robot dynamics can lead to gaps between the two levels, e.g., a global path based on a holonomic point-mass model may not be realizable by a non-holonomic robot, especially in highly constrained obstacle environments. Motivated by such a limitation, we propose a novel paradigm, Decremental Dynamics Planning that integrates dynamic constraints into the entire planning process, with a focus on high-fidelity dynamics modeling at the beginning and a gradual fidelity reduction as the planning progresses. To validate the effectiveness of this paradigm, we augment three different planners with DDP and show overall improved planning performance. We also develop a new DDP-based navigation system, which achieves first place in the simulation phase of the 2025 BARN Challenge. Both simulated and physical experiments validate DDP's hypothesized benefits.
comment: 7 pages. Accepted by IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Ego-to-Exo: Interfacing Third Person Visuals from Egocentric Views in Real-time for Improved ROV Teleoperation
Underwater ROVs (Remotely Operated Vehicles) are unmanned submersible vehicles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator's ability to maneuver the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that enhances the operational capabilities via increased situational awareness. This is accomplished by (i) offering on-demand "third"-person (exocentric) visuals from past egocentric views, and (ii) facilitating enhanced peripheral information with augmented ROV pose information in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. A subjective evaluation on 15 human teleoperators further confirms the effectiveness of the integrated features for improved teleoperation. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in subsea telerobotics.
comment: EgoExo++ (Journal extension), V4, 12 pages
♻ ☆ CoTaP: Compliant Task Pipeline and Reinforcement Learning of Its Controller with Compliance Modulation
Humanoid whole-body locomotion control is a critical approach for humanoid robots to leverage their inherent advantages. Learning-based control methods derived from retargeted human motion data provide an effective means of addressing this issue. However, because most current human datasets lack measured force data, and learning-based robot control is largely position-based, achieving appropriate compliance during interaction with real environments remains challenging. This paper presents Compliant Task Pipeline (CoTaP): a pipeline that leverages compliance information in the learning-based structure of humanoid robots. A two-stage dual-agent reinforcement learning framework combined with model-based compliance control for humanoid robots is proposed. In the training process, first a base policy with a position-based controller is trained; then in the distillation, the upper-body policy is combined with model-based compliance control, and the lower-body agent is guided by the base policy. In the upper-body control, adjustable task-space compliance can be specified and integrated with other controllers through compliance modulation on the symmetric positive definite (SPD) manifold, ensuring system stability. We validated the feasibility of the proposed strategy in simulation, primarily comparing the responses to external disturbances under different compliance settings.
comment: Submitted to IEEE for possible publication, under review
♻ ☆ IMPACT: Intelligent Motion Planning with Acceptable Contact Trajectories via Vision-Language Models
Motion planning involves determining a sequence of robot configurations to reach a desired pose, subject to movement and safety constraints. Traditional motion planning finds collision-free paths, but this is overly restrictive in clutter, where it may not be possible for a robot to accomplish a task without contact. In addition, contacts range from relatively benign (e.g. brushing a soft pillow) to more dangerous (e.g. toppling a glass vase), making it difficult to characterize which may be acceptable. In this paper, we propose IMPACT, a novel motion planning framework that uses Vision-Language Models (VLMs) to infer environment semantics, identifying which parts of the environment can best tolerate contact based on object properties and locations. Our approach generates an anisotropic cost map that encodes directional push safety. We pair this map with a contact-aware A* planner to find stable contact-rich paths. We perform experiments using 20 simulation and 10 real-world scenes and assess using task success rate, object displacements, and feedback from human evaluators. Our results over 3200 simulation and 200 real-world trials suggest that IMPACT enables efficient contact-rich motion planning in cluttered settings while outperforming alternative methods and ablations. Our project website is available at https://impact-planning.github.io/.
♻ ☆ TreeIRL: Safe Urban Driving with Tree Search and Inverse Reinforcement Learning
We present TreeIRL, a novel planner for autonomous driving that combines Monte Carlo tree search (MCTS) and inverse reinforcement learning (IRL) to achieve state-of-the-art performance in simulation and in real-world driving. The core idea is to use MCTS to find a promising set of safe candidate trajectories and a deep IRL scoring function to select the most human-like among them. We evaluate TreeIRL against both classical and state-of-the-art planners in large-scale simulations and on 500+ miles of real-world autonomous driving in the Las Vegas metropolitan area. Test scenarios include dense urban traffic, adaptive cruise control, cut-ins, and traffic lights. TreeIRL achieves the best overall performance, striking a balance between safety, progress, comfort, and human-likeness. To our knowledge, our work is the first demonstration of MCTS-based planning on public roads and underscores the importance of evaluating planners across a diverse set of metrics and in real-world environments. TreeIRL is highly extensible and could be further improved with reinforcement learning and imitation learning, providing a framework for exploring different combinations of classical and learning-based approaches to solve the planning bottleneck in autonomous driving.
Systems and Control 48
☆ PowerPlots: An Open Source Power Grid Visualization and Data Analysis Framework for Academic Research
Data visualization is important for developing an understanding of a complex system. PowerPlots.jl is a data visualization tool for power grids, one of the most complex systems in the world. The design of PowerPlots.jl is intended to facilitate exploration of power grid data while performing research and to facilitate communication of research findings to an audience. Several tools created to support this software also facilitate analysis of power grid data by transforming the data into graph topology or data-frame data formats that are more compatible for some applications. The high level of flexibility in PowerPlots.jl enables researchers who are developing and analyzing methods for solving novel power grid problems to better understand and communicate the complexities of their research.
Multi-Loop Design of Virtual Synchronous Machine Control for DFIG-Based Wind Farms
The displacement of synchronous generators by converter-interfaced renewable energy sources obliges wind farms to provide inertia, damping, and voltage support, above all in increasingly weak grid conditions. This paper presents a co-ordinated frequency-domain methodology for tuning all control layers of doubly-fed induction generators (DFIGs) within a wind farm operated as a Virtual Synchronous Machine (VSM). Starting from a full small-signal linearisation that preserves loop-to-loop and machine-to-machine couplings, the procedure reshapes every local open loop to explicit phase-margin targets through a single, prioritised iteration. The resulting controllers provide a step response and stability margins close to those programmed at the design stage, in spite of the cross coupling between control loops. Since controller synthesis relies exclusively on classical loop-shaping tools available in commercial simulation suites, it is readily applicable to industrial-scale projects.
comment: Submitted for evaluation to Journal of Modern Power Systems and Clean Energy
☆ Optimal participation of energy communities in electricity markets under uncertainty. A multi-stage stochastic programming approach
We propose a multi-stage stochastic programming model for the optimal participation of energy communities in electricity markets. The multi-stage aspect captures the different times at which variable renewable generation and electricity prices are observed. This results in large-scale optimization problem instances containing large scenario trees with 34 stages, to which scenario reduction techniques are applied. Case studies with real data are discussed to analyse proposed regulatory frameworks in Europe. The added value of considering stochasticity is also analysed.
Robust Cislunar Navigation via LFT-Based $\mathcal{H}_\infty$ Filtering with Bearing-Only Measurements
This paper develops a robust estimation framework for cislunar navigation that embeds the Circular Restricted Three-Body Problem (CR3BP) dynamics and bearing-only optical measurements within a Linear Fractional Transformation (LFT) representation. A full-order $\mathcal{H}_\infty$ observer is synthesized with explicit $\mathcal{L}_2$ performance bounds. The formulation yields a nonlinear estimator that operates directly on the governing equations and avoids reliance on local linearizations. Dominant nonlinearities are expressed as structured real uncertainties, while measurement fidelity is represented through range-dependent weighting with Earth-Moon distances reconstructed from line-of-sight geometry. The sensing architecture assumes passive star-tracker-class optical instruments, eliminating the need for time-of-flight ranging or precision clocks. Simulations demonstrate bounded estimation errors and smooth position tracking over multiple orbital periods, with the largest deviations observed in the out-of-plane states, consistent with the stiffness of the vertical dynamics and the limitations of angle-only observability. Application to a Near Rectilinear Halo Orbit (NRHO) illustrates that the framework can achieve robust onboard navigation with bounded estimation errors with flight-representative sensors.
☆ Steady-State Spread Bounds for Graph Diffusion via Laplacian Regularisation
We study how far a diffusion process on a graph can drift from a designed starting pattern when that pattern is produced using Laplacian regularisation. Under standard stability conditions for undirected, entrywise nonnegative graphs, we give a closed-form, instance-specific upper bound on the steady-state spread, measured as the relative change between the final and initial profiles. The bound separates two effects: (i) an irreducible term determined by the graph's maximum node degree, and (ii) a design-controlled term that shrinks as the regularisation strength increases (following an inverse square-root law). This leads to a simple design rule: given any target limit on spread, one can choose a sufficient regularisation strength in closed form. Although one motivating application is array beamforming, where the initial pattern is the squared magnitude of the beamformer weights, the result applies to any scenario that first enforces Laplacian smoothness and then evolves by linear diffusion on a graph. Overall, the guarantee is non-asymptotic, easy to compute, and certifies how much steady-state deviation can occur.
☆ A Fixed Point Framework for the Existence of EFX Allocations
We consider the problem of the existence of an envy-free allocation up to any good (EFX) for linear valuations and establish new results by connecting this problem to a fixed point framework. Specifically, we first use randomized rounding to extend the discrete EFX constraints into a continuous space and show that an EFX allocation exists if and only if the optimal value of the continuously extended objective function is nonpositive. In particular, we demonstrate that this optimization problem can be formulated as an unconstrained difference of convex (DC) program, which can be further simplified to the minimization of a piecewise linear concave function over a polytope. Leveraging this connection, we show that the proposed DC program has a nonpositive optimal objective value if and only if a well-defined continuous vector map admits a fixed point. Crucially, we prove that the reformulated fixed point problem satisfies all the conditions of Brouwer's fixed point theorem, except that self-containedness is violated by an arbitrarily small positive constant. To address this, we propose a slightly perturbed continuous map that always admits a fixed point. This fixed point serves as a proxy for the fixed point (if it exists) of the original map, and hence for an EFX allocation through an appropriate transformation. Our results offer a new approach to establishing the existence of EFX allocations through fixed point theorems. Moreover, the equivalence with DC programming enables a more efficient and systematic method for computing such allocations (if one exists) using tools from nonlinear optimization. Our findings bridge the discrete problem of finding an EFX allocation with two continuous frameworks: solving an unconstrained DC program and identifying a fixed point of a continuous vector map.
Benchmarking M-LTSF: Frequency and Noise-Based Evaluation of Multivariate Long Time Series Forecasting Models
Understanding the robustness of deep learning models for multivariate long-term time series forecasting (M-LTSF) remains challenging, as evaluations typically rely on real-world datasets with unknown noise properties. We propose a simulation-based evaluation framework that generates parameterizable synthetic datasets, where each dataset instance corresponds to a different configuration of signal components, noise types, signal-to-noise ratios, and frequency characteristics. These configurable components aim to model real-world multivariate time series data without the ambiguity of unknown noise. This framework enables fine-grained, systematic evaluation of M-LTSF models under controlled and diverse scenarios. We benchmark four representative architectures S-Mamba (state-space), iTransformer (transformer-based), R-Linear (linear), and Autoformer (decomposition-based). Our analysis reveals that all models degrade severely when lookback windows cannot capture complete periods of seasonal patters in the data. S-Mamba and Autoformer perform best on sawtooth patterns, while R-Linear and iTransformer favor sinusoidal signals. White and Brownian noise universally degrade performance with lower signal-to-noise ratio while S-Mamba shows specific trend-noise and iTransformer shows seasonal-noise vulnerability. Further spectral analysis shows that S-Mamba and iTransformer achieve superior frequency reconstruction. This controlled approach, based on our synthetic and principle-driven testbed, offers deeper insights into model-specific strengths and limitations through the aggregation of MSE scores and provides concrete guidance for model selection based on signal characteristics and noise conditions.
comment: Number of pages: 13 Number of figures: 16 Number of Tables: 1 Submitted to: IEEE Transactions on Signal Processing
☆ Rapid stabilization for a wave equation with boundary disturbance
In this paper, we study the rapid stabilization of an unstable wave equation, in which an unknown disturbance is located at the boundary condition. We address two different boundary conditions: Dirichlet- Dirichlet and Dirichlet-Neumann. In both cases, we design a feedback law, located at the same place as the unknown disturbance, that forces the exponential decay of the energy for any desired decay rate while suppressing the effects of the unknown disturbance. For the feedback design, we employ the backstepping method, Lyapunov techniques and the sign multivalued operator. The well-posedness of the closed-loop system, which is a differential inclusion, is shown with the maximal monotone operator theory.
☆ Model Predictive Control-Guided Reinforcement Learning for Implicit Balancing
In Europe, profit-seeking balance responsible parties can deviate in real time from their day-ahead nominations to assist transmission system operators in maintaining the supply-demand balance. Model predictive control (MPC) strategies to exploit these implicit balancing strategies capture arbitrage opportunities, but fail to accurately capture the price-formation process in the European imbalance markets and face high computational costs. Model-free reinforcement learning (RL) methods are fast to execute, but require data-intensive training and usually rely on real-time and historical data for decision-making. This paper proposes an MPC-guided RL method that combines the complementary strengths of both MPC and RL. The proposed method can effectively incorporate forecasts into the decision-making process (as in MPC), while maintaining the fast inference capability of RL. The performance of the proposed method is evaluated on the implicit balancing battery control problem using Belgian balancing data from 2023. First, we analyze the performance of the standalone state-of-the-art RL and MPC methods from various angles, to highlight their individual strengths and limitations. Next, we show an arbitrage profit benefit of the proposed MPC-guided RL method of 16.15% and 54.36%, compared to standalone RL and MPC.
☆ An Active Fault-Tolerant Online Control Allocation Scheme for a Dual-System UAV in Transition Flight
A novel active fault-tolerant control (AFTC) scheme for a dual-system vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV) during transition flight is proposed in this paper. The AFTC scheme is composed of a baseline control law and an online control reallocation module. First, the structured $H_{\infty}$ baseline control law is able to guarantee the stability of closed-loop systems without being reconfigured under simultaneous actuator fault conditions. Second, compared to the existing mainstream method of sliding mode control that is a discontinuous control strategy, the AFTC scheme can effectively avoid control chattering problem by adopting the structured $H_{\infty}$ baseline control law. Third, an online control allocation (CA) module is implemented to carry out a unified CA for all the available actuators. When actuator faults/failures occur, the CA matrix is updated according to fault information and real-time airspeed, which is able to redistribute the virtual control signals to the remaining healthy actuators, avoiding significant performance degradation. Based on the developed AFTC scheme, symmetric and non-symmetric actuator fault scenarios are simulated on a nonlinear six-degree-of-freedom simulator, where the cases of merely structured $H_{\infty}$ control and structured $H_{\infty}$ based AFTC are compared and analyzed. The results show that the proposed structured $H_{\infty}$ based AFTC system is capable of handling more complicated fault scenarios and model uncertainties with no need to reconfigure the baseline control law. The proposed AFTC scheme significantly improves the safety and reliability of the transition flight of dual-system VTOL UAVs.
comment: 40 pages
☆ Power Reserve Capacity from Virtual Power Plants with Reliability and Cost Guarantees
The growing penetration of renewable energy sources is expected to drive higher demand for power reserve ancillary services (AS). One solution is to increase the supply by integrating distributed energy resources (DERs) into the AS market through virtual power plants (VPPs). Several methods have been developed to assess the potential of VPPs to provide services. However, the existing approaches fail to account for AS products' requirements (reliability and technical specifications) and to provide accurate cost estimations. Here, we propose a new method to assess VPPs' potential to deliver power reserve capacity products under forecasting uncertainty. First, the maximum feasible reserve quantity is determined using a novel formulation of subset simulation for efficient uncertainty quantification. Second, the supply curve is characterized by considering explicit and opportunity costs. The method is applied to a VPP based on a representative Swiss low-voltage network with a diversified DER portfolio. We find that VPPs can reliably offer reserve products and that opportunity costs drive product pricing. Additionally, we show that the product's requirements strongly impact the reserve capacity provision capability. This approach aims to support VPP managers in developing market strategies and policymakers in designing DER-focused AS products.
comment: Submitted to IEEE Transactions on Power Systems
Robust stability of event-triggered nonlinear moving horizon estimation
In this work, we propose an event-triggered moving horizon estimation (ET-MHE) scheme for the remote state estimation of general nonlinear systems. In the presented method, whenever an event is triggered, a single measurement is transmitted and the nonlinear MHE optimization problem is subsequently solved. If no event is triggered, the current state estimate is updated using an open-loop prediction based on the system dynamics. Moreover, we introduce a novel event-triggering rule under which we demonstrate robust global exponential stability of the ET-MHE scheme, assuming a suitable detectability condition is met. In addition, we show that with the adoption of a varying horizon length, a tighter bound on the estimation error can be achieved. Finally, we validate the effectiveness of the proposed method through two illustrative examples.
Efficient Probabilistic Planning with Maximum-Coverage Distributionally Robust Backward Reachable Trees
This paper presents a new multi-query motion planning algorithm for linear Gaussian systems with the goal of reaching a Euclidean ball with high probability. We develop a new formulation for ball-shaped ambiguity sets of Gaussian distributions and leverage it to develop a distributionally robust belief roadmap construction algorithm. This algorithm synthe- sizes robust controllers which are certified to be safe for maximal size ball-shaped ambiguity sets of Gaussian distributions. Our algorithm achieves better coverage than the maximal coverage algorithm for planning over Gaussian distributions [1], and we identify mild conditions under which our algorithm achieves strictly better coverage. For the special case of no process noise or state constraints, we formally prove that our algorithm achieves maximal coverage. In addition, we present a second multi-query motion planning algorithm for linear Gaussian systems with the goal of reaching a region parameterized by the Minkowski sum of an ellipsoid and a Euclidean ball with high probability. This algorithm plans over ellipsoidal sets of maximal size ball-shaped ambiguity sets of Gaussian distributions, and provably achieves equal or better coverage than the best-known algorithm for planning over ellipsoidal ambiguity sets of Gaussian distributions [2]. We demonstrate the efficacy of both methods in a wide range of conditions via extensive simulation experiments.
☆ MPC strategies for density profile control with pellet fueling in nuclear fusion tokamaks under uncertainty
Control of the density profile based on pellet fueling for the ITER nuclear fusion tokamak involves a multi-rate nonlinear system with safety-critical constraints, input delays, and discrete actuators with parametric uncertainty. To address this challenging problem, we propose a multi-stage MPC (msMPC) approach to handle uncertainty in the presence of mixed-integer inputs. While the scenario tree of msMPC accounts for uncertainty, it also adds complexity to an already computationally intensive mixed-integer MPC (MI-MPC) problem. To achieve real-time density profile controller with discrete pellets and uncertainty handling, we systematically reduce the problem complexity by (1) reducing the identified prediction model size through dynamic mode decomposition with control, (2) applying principal component analysis to reduce the number of scenarios needed to capture the parametric uncertainty in msMPC, and (3) utilizing the penalty term homotopy for MPC (PTH-MPC) algorithm to reduce the computational burden caused by the presence of mixed-integer inputs. We compare the performance and safety of the msMPC strategy against a nominal MI-MPC in plant simulations, demonstrating the first predictive density control strategy with uncertainty handling, viable for real-time pellet fueling in ITER.
comment: IEEE CDC 2025
☆ Learning a Shape-adaptive Assist-as-needed Rehabilitation Policy from Therapist-informed Input
Therapist-in-the-loop robotic rehabilitation has shown great promise in enhancing rehabilitation outcomes by integrating the strengths of therapists and robotic systems. However, its broader adoption remains limited due to insufficient safe interaction and limited adaptation capability. This article proposes a novel telerobotics-mediated framework that enables therapists to intuitively and safely deliver assist-as-needed~(AAN) therapy based on two primary contributions. First, our framework encodes the therapist-informed corrective force into via-points in a latent space, allowing the therapist to provide only minimal assistance while encouraging patient maintaining own motion preferences. Second, a shape-adaptive ANN rehabilitation policy is learned to partially and progressively deform the reference trajectory for movement therapy based on encoded patient motion preferences and therapist-informed via-points. The effectiveness of the proposed shape-adaptive AAN strategy was validated on a telerobotic rehabilitation system using two representative tasks. The results demonstrate its practicality for remote AAN therapy and its superiority over two state-of-the-art methods in reducing corrective force and improving movement smoothness.
☆ Modeling and Managing Temporal Obligations in GUCON Using SPARQL-star and RDF-star
In the digital age, data frequently crosses organizational and jurisdictional boundaries, making effective governance essential. Usage control policies have emerged as a key paradigm for regulating data usage, safeguarding privacy, protecting intellectual property, and ensuring compliance with regulations. A central mechanism for usage control is the handling of obligations, which arise as a side effect of using and sharing data. Effective monitoring of obligations requires capturing usage traces and accounting for temporal aspects such as start times and deadlines, as obligations may evolve over times into different states, such as fulfilled, violated, or expired. While several solutions have been proposed for obligation monitoring, they often lack formal semantics or provide limited support for reasoning over obligation states. To address these limitations, we extend GUCON, a policy framework grounded in the formal semantics of SPAQRL graph patterns, to explicitly model the temporal aspects of an obligation. This extension enables the expressing of temporal obligations and supports continuous monitoring of their evolving states based on usage traces stored in temporal knowledge graphs. We demonstrate how this extended model can be represented using RDF-star and SPARQL-star and propose an Obligation State Manager that monitors obligation states and assess their compliance with respect to usage traces. Finally, we evaluate both the extended model and its prototype implementation.
☆ On Prediction-Based Properties of Discrete-Event Systems: Notions, Applications and Supervisor Synthesis
In this work, we investigate the problem of synthesizing property-enforcing supervisors for partially-observed discrete-event systems (DES). Unlike most existing approaches, where the enforced property depends solely on the executed behavior of the system, here we consider a more challenging scenario in which the property relies on predicted future behaviors that have not yet occurred. This problem arises naturally in applications involving future information, such as active prediction or intention protection. To formalize the problem, we introduce the notion of prediction-based properties, a new class of observational properties tied to the system's future information. We demonstrate that this notion is very generic and can model various practical properties, including predictability in fault prognosis and pre-opacity in intention security. We then present an effective approach for synthesizing supervisors that enforce prediction-based properties. Our method relies on a novel information structure that addresses the fundamental challenge arising from the dependency between current predictions and the control policy. The key idea is to first borrow information from future instants and then ensure information consistency. This reduces the supervisor synthesis problem to a safety game in the information space. We prove that the proposed algorithm is both sound and complete, and the resulting supervisor is maximally permissive.
☆ Design Process of a Self Adaptive Smart Serious Games Ecosystem
This paper outlines the design vision and planned evolution of Blexer v3, a modular and AI-driven rehabilitation ecosystem based on serious games. Building on insights from previous versions of the system, we propose a new architecture that aims to integrate multimodal sensing, real-time reasoning, and intelligent control. The envisioned system will include distinct modules for data collection, user state inference, and gameplay adaptation. Key features such as dynamic difficulty adjustment (DDA) and procedural content generation (PCG) are also considered to support personalized interventions. We present the complete conceptual framework of Blexer v3, which defines the modular structure and data flow of the system. This serves as the foundation for the next phase: the development of a functional prototype and its integration into clinical rehabilitation scenarios.
☆ Data-Driven Adaptive PID Control Based on Physics-Informed Neural Networks
This article proposes a data-driven PID controller design based on the principle of adaptive gain optimization, leveraging Physics-Informed Neural Networks (PINNs) generated for predictive modeling purposes. The proposed control design method utilizes gradients of the PID gain optimization, achieved through the automatic differentiation of PINNs, to apply model predictive control using a cost function based on tracking error and control inputs. By optimizing PINNs-based PID gains, the method achieves adaptive gain tuning that ensures stability while accounting for system nonlinearities. The proposed method features a systematic framework for integrating PINNs-based models of dynamical control systems into closed-loop control systems, enabling direct application to PID control design. A series of numerical experiments is conducted to demonstrate the effectiveness of the proposed method from the control perspectives based on both time and frequency domains.
comment: This work has been submitted to the IEEE Transactions on Control Systems Technology for possible publication
☆ On properties of hydraulic equilibria in district heating networks
District heating networks are an integral part of the energy system in many countries. In future smart energy systems, they are expected to enhance energy flexibility and support the integration of renewable and waste energy sources. An important aspect of these networks is the control of flow rates, which dictates the heat delivered to consumers. This paper concerns the properties of flow rates in tree-structured district heating networks. We show that under mild assumptions of monotonicity in the hydraulic network components, statements regarding the stationary flow rate distribution can be made. In particular, when all consumers in a network incrementally open their valves, an increase in total flow rate throughput is guaranteed, while if one consumer does not open their valve when others do, they will receive a reduced flow rate. These properties are illustrated numerically on a small 2-consumer network as well as on a larger 22-consumer network. Previous works have shown that these properties allow the design and use of efficient control strategies for optimal heat distribution.
comment: Accepted for presentation at the 64th IEEE Conference on Decision and Control (CDC), 2025. 6 pages, 5 figures
☆ Velocity-Form Data-Enabled Predictive Control of Soft Robots under Unknown External Payloads
Data-driven control methods such as data-enabled predictive control (DeePC) have shown strong potential in efficient control of soft robots without explicit parametric models. However, in object manipulation tasks, unknown external payloads and disturbances can significantly alter the system dynamics and behavior, leading to offset error and degraded control performance. In this paper, we present a novel velocity-form DeePC framework that achieves robust and optimal control of soft robots under unknown payloads. The proposed framework leverages input-output data in an incremental representation to mitigate performance degradation induced by unknown payloads, eliminating the need for weighted datasets or disturbance estimators. We validate the method experimentally on a planar soft robot and demonstrate its superior performance compared to standard DeePC in scenarios involving unknown payloads.
☆ A Diffusion-based Generative Machine Learning Paradigm for Contingency Screening
Contingency screening is a crucial part of electric power systems all the time. Power systems frequently encounter multiple challenging operational dilemmas that could lead to the instability of power systems. Contingency analysis is effort-consuming by utilizing traditional numerical analysis methods. It is commonly addressed by generating a whopping number of possible contingencies or manipulating network parameters to determine the worst scenarios. This paper proposes a novel approach that diverts the nature of contingency analysis from pre-defined scenario screening to proactive-unsupervised screening. The potentially risky scenarios of power systems are generated from learning how the previous ones occurred. In other words, the internal perturbation that initiates contingencies is learned prior to being self-replicated for rendering the worst scenarios. By leveraging the perturbation diffusion technique, a proposed model is built to point out the worst scenarios instead of repeatedly simulating one-by-one scenarios to define the highest-risk ones. Empirical experiments are implemented on the IEEE systems to test and validate the proposed solution.
☆ PAD-TRO: Projection-Augmented Diffusion for Direct Trajectory Optimization
Recently, diffusion models have gained popularity and attention in trajectory optimization due to their capability of modeling multi-modal probability distributions. However, addressing nonlinear equality constraints, i.e, dynamic feasi- bility, remains a great challenge in diffusion-based trajectory optimization. Recent diffusion-based trajectory optimization frameworks rely on a single-shooting style approach where the denoised control sequence is applied to forward propagate the dynamical system, which cannot explicitly enforce constraints on the states and frequently leads to sub-optimal solutions. In this work, we propose a novel direct trajectory optimization approach via model-based diffusion, which directly generates a sequence of states. To ensure dynamic feasibility, we propose a gradient-free projection mechanism that is incorporated into the reverse diffusion process. Our results show that, compared to a recent state-of-the-art baseline, our approach leads to zero dynamic feasibility error and approximately 4x higher success rate in a quadrotor waypoint navigation scenario involving dense static obstacles.
☆ A Predictive and Sampled-Data Barrier Method for Safe and Efficient Quadrotor Control
This paper proposes a cascaded control framework for quadrotor trajectory tracking with formal safety guarantees. First, we design a controller consisting of an outer-loop position model predictive control (MPC) and an inner-loop nonlinear attitude control, enabling decoupling of position safety and yaw orientation. Second, since quadrotor safety constraints often involve high relative degree, we adopt high order control barrier functions (HOCBFs) to guarantee safety. To employ HOCBFs in the MPC formulation that has formal guarantees, we extend HOCBFs to sampled-data HOCBF (SdHOCBFs) by introducing compensation terms, ensuring safety over the entire sampling interval. We show that embedding SdHOCBFs as control-affine constraints into the MPC formulation guarantees both safety and optimality while preserving convexity for real-time implementations. Finally, comprehensive simulations are conducted to demonstrate the safety guarantee and high efficiency of the proposed method compared to existing methods.
comment: 6 pages, 3 figures
Optimization via a Control-Centric Framework
Optimization plays a central role in intelligent systems and cyber-physical technologies, where the speed and reliability of convergence directly impact performance. In control theory, optimization-centric methods are standard: controllers are designed by repeatedly solving optimization problems, as in linear quadratic regulation, $H_\infty$ control, and model predictive control. In contrast, this paper develops a control-centric framework for optimization itself, where algorithms are constructed directly from Lyapunov stability principles rather than being proposed first and analyzed afterward. A key element is the stationarity vector, which encodes first-order optimality conditions and enables Lyapunov-based convergence analysis. By pairing a Lyapunov function with a selectable decay law, we obtain continuous-time dynamics with guaranteed exponential, finite-time, fixed-time, or prescribed-time convergence. Within this framework, we introduce three feedback realizations of increasing restrictiveness: the Hessian-gradient, Newton, and gradient dynamics. Each shapes the decay of the stationarity vector to achieve the desired rate. These constructions unify unconstrained optimization, extend naturally to constrained problems via Lyapunov-consistent primal-dual dynamics, and broaden the results for minimax and generalized Nash equilibrium seeking problems beyond exponential stability. The framework provides systematic design tools for optimization algorithms in control and game-theoretic problems.
comment: This work has been submitted to the IEEE for possible publication. 12 pages, 3 figures
☆ AD-NODE: Adaptive Dynamics Learning with Neural ODEs for Mobile Robots Control
Mobile robots, such as ground vehicles and quadrotors, are becoming increasingly important in various fields, from logistics to agriculture, where they automate processes in environments that are difficult to access for humans. However, to perform effectively in uncertain environments using model-based controllers, these systems require dynamics models capable of responding to environmental variations, especially when direct access to environmental information is limited. To enable such adaptivity and facilitate integration with model predictive control, we propose an adaptive dynamics model which bypasses the need for direct environmental knowledge by inferring operational environments from state-action history. The dynamics model is based on neural ordinary equations, and a two-phase training procedure is used to learn latent environment representations. We demonstrate the effectiveness of our approach through goal-reaching and path-tracking tasks on three robotic platforms of increasing complexity: a 2D differential wheeled robot with changing wheel contact conditions, a 3D quadrotor in variational wind fields, and the Sphero BOLT robot under two contact conditions for real-world deployment. Empirical results corroborate that our method can handle temporally and spatially varying environmental changes in both simulation and real-world systems.
☆ Operational Risks in Grid Integration of Large Data Center Loads: Characteristics, Stability Assessments, and Sensitivity Studies
This paper investigates the dynamic interactions between large-scale data centers and the power grid, focusing on reliability challenges arising from sudden fluctuations in demand. With the rapid growth of AI-driven workloads, such fluctuations, along with fast ramp patterns, are expected to exacerbate stressed grid conditions and system instabilities. We consider a few open-source AI data center consumption profiles from the MIT supercloud datasets, along with generating a few experimental HPC job-distribution-based inference profiles. Subsequently, we develop analytical methodologies for real-time assessment of grid stability, focusing on both transient and small-signal stability assessments. Energy-flow-like metrics for nonlinear transient stability, formulated by computing localized data center bus kinetic-like flows and coupling interactions with neighboring buses over varying time windows, help provide operators a real-time assessments of the regional grid stress in the data center hubs. On the other hand, small-signal stability metrics, constructed from analytical state matrices under variable operating conditions during a fast ramping period, enable snapshot-based assessments of data center load fluctuations, provide enhanced observability into evolving grid conditions. By quantifying the stability impacts of large data center clusters, studies conducted in the modified IEEE benchmark $68-$bus model support improved operator situational awareness to capture risks in reliable integration of large data center loads.
comment: 11 pages, 7 figures
☆ Safety-Critical Control with Bounded Inputs: A Closed-Form Solution for Backup Control Barrier Functions
Verifying the safety of controllers is critical for many applications, but is especially challenging for systems with bounded inputs. Backup control barrier functions (bCBFs) offer a structured approach to synthesizing safe controllers that are guaranteed to satisfy input bounds by leveraging the knowledge of a backup controller. While powerful, bCBFs require solving a high-dimensional quadratic program at run-time, which may be too costly for computationally-constrained systems such as aerospace vehicles. We propose an approach that optimally interpolates between a nominal controller and the backup controller, and we derive the solution to this optimization problem in closed form. We prove that this closed-form controller is guaranteed to be safe while obeying input bounds. We demonstrate the effectiveness of the approach on a double integrator and a nonlinear fixed-wing aircraft example.
comment: 8 pages, 6 figures. Code available at https://github.com/davidvwijk/OI-CBF
☆ Digital Twins for Intelligent Intersections: A Literature Review
Intelligent intersections play a pivotal role in urban mobility, demanding innovative solutions such as digital twins to enhance safety and efficiency. This literature review investigates the integration and application of digital twins for intelligent intersections, a critical area within smart urban traffic systems. The review systematically categorizes existing research into five key thematic areas: (i) Digital Twin Architectures and Frameworks; (ii) Data Processing and Simulation Techniques; (iii) Artificial Intelligence and Machine Learning for Adaptive Traffic Control; (iv) Safety and Protection of Vulnerable Road Users; and (v) Scaling from Localized Intersections to Citywide Traffic Networks. Each theme is explored comprehensively, highlighting significant advancements, current challenges, and critical insights. The findings reveal that multi-layered digital twin architectures incorporating real-time data fusion and AI-driven decision-making enhances traffic efficiency and safety. Advanced simulation techniques combined with sophisticated AI/ML algorithms demonstrate notable improvements in real-time responsiveness and predictive accuracy for traffic management. Additionally, the integration of digital twins has shown substantial promise in safeguarding vulnerable road users through proactive and adaptive safety strategies. Despite these advancements, key challenges persist, including interoperability of diverse data sources, scalability of digital twins for extensive traffic networks, and managing uncertainty within dynamic urban environments. Addressing these challenges will be essential for the future development and deployment of intelligent, adaptive, and sustainable intersection management systems.
comment: 29 pages, 2 figures, under review at Transportation Research Interdisciplinary Perspectives journal
☆ Koopman Control Factorization: Data-Driven Convex Controller Design for a Class of Nonlinear Systems
Although Koopman operators provide a global linearization for autonomous dynamical systems, nonautonomous systems are not globally linear in the inputs. State (or output) feedback controller design therefore remains nonconvex in typical formulations, even with approximations via bilinear control-affine terms. We address this gap by introducing the Koopman Control Factorization, a novel parameterization of control-affine dynamical systems combined with a feedback controller defined as a linear combination of nonlinear measurements. With this choice, the Koopman operator of the closed-loop system is a bilinear combination of the coefficients in two matrices: one representing the system, and the other the controller. We propose a set of sufficient conditions such that the factorization holds. Then, we present an algorithm that calculates the feedback matrix via semi-definite programming, producing a Lyapunov-stable closed-loop system with convex optimization. We evaluate the proposed controllers on two canonical examples of control-affine nonlinear systems (inverted pendulums), and show that our factorization and controller successfully stabilize both under properly-chosen basis functions. This manuscript introduces a broadly generalizable control synthesis method for stabilization of nonlinear systems that is quick-to-compute, verifiably stable, data-driven, and does not rely on approximations.
comment: 8 pages, 1 figure (with 4 subfigures). Submitted to the 2026 American Control Conference (ACC)
☆ A System Level Approach to LQR Control of the Diffusion Equation
The continuous-time, infinite horizon LQR problem for the diffusion equation over the unit circle with fully distributed actuation is considered. It is well-known that the solution to this problem can be obtained from the solution to an operator-valued algebraic Riccati equation. Here, it is demonstrated that this solution can be equivalently obtained by solving an $H_2$ control problem through a closed-loop design procedure that is analogous to the "System Level Synthesis" methodology previously developed for systems over a discrete spatial domain and/or over a finite time horizon. The presented extension to the continuous spatial domain and continuous and infinite-horizon time setting admits analytical solutions that may complement computational approaches for discrete or finite-horizon settings. It is further illustrated that spatio-temporal constraints on the closed-loop responses can be incorporated into this new formulation in a convex manner.
comment: 9 pages, 2 figures, Submitted to IEEE American Control Conference 2026
Robust Sensor Placement for Poisson Arrivals with False Alarm Aware Spatiotemporal Sensing
This paper studies sensor placement when detection performance varies stochastically due to environmental factors over space and time and false alarms are present, but a filter is used to attenuate the effect. We introduce a unified model that couples detection and false alarms through an availability function, which captures how false alarms reduce effective sensing and filtering responses to the disturbance. Building on this model, we give a sufficient condition under which filtering improves detection. In addition, we derive a coverage-based lower bound on the void probability. Furthermore, we prove robustness guarantees showing that performance remains stable when detection probabilities are learned from limited data. We validate the approach with numerical studies using AIS vessel-traffic data and synthetic maritime scenarios. Together, these results provide theory and practical guidance for deploying sensors in dynamic, uncertain environments.
comment: Submitted to IEEE ACC
☆ Pricing Short-Circuit Current via a Primal-Dual Formulation for Preserving Integrality Constraints SC
Synchronous Generators (SGs) currently provide important levels of Short-Circuit Current (SCC), a critical ancillary service that ensures line protections trip during short-circuit faults. Given the ongoing replacement of SGs by power-electronics-based generation, which have a hard limit for current injection, it has become relevant to optimize the procurement of SCC provided by remaining SGs. Pricing this service is however challenging due to the integrality constraints in Unit Commitment (UC). Existing methods, e.g., dispatchable pricing, restricted pricing and marginal unit pricing, attempt to address this issue but exhibit limitations in handling binary variables, resulting in SCC prices that either fail to cover the operating costs of units or lack interpretability. To overcome these pitfalls, we propose a primal-dual formulation of the SCC-constrained dispatch that preserves the binary nature of UC while effectively computing shadow prices of SCC services. Using a modified IEEE 30-bus system, a comparison is carried out between the proposed approach and the state-of-the-art pricing schemes, highlighting the advantages of the primal-dual method in preserving UC integrality for SCC pricing.
comment: 7 pages, submitted to PSCC conference 2026
♻ ☆ Sampling-based Stochastic Data-driven Predictive Control under Data Uncertainty - Extended Version
We present a stochastic constrained output-feedback data-driven predictive control scheme for linear time-invariant systems subject to bounded additive disturbances. The approach uses data-driven predictors based on an extension of Willems' fundamental lemma and requires only a single persistently exciting input-output data trajectory. Compared to current state-of-the-art approaches, we do not rely on availability of exact disturbance data. Instead, we leverage a novel parameterization of the unknown disturbance data considering consistency with the measured data and the system class. This allows for deterministic approximation of the chance constraints in a sampling-based fashion. A robust constraint on the first predicted step enables recursive feasibility, closed-loop constraint satisfaction, and robust asymptotic stability in expectation under standard assumptions. A numerical example demonstrates the efficiency of the proposed control scheme.
♻ ☆ On Fast Attitude Filtering Using Matrix Fisher Distributions with Stability Guarantee
This paper addresses two interrelated problems of the nonlinear filtering mechanism and fast attitude filtering with the matrix Fisher distribution (MFD) on the special orthogonal group. By analyzing the distribution evolution along Bayes' rule, we reveal two essential properties that enhance the performance of Bayesian attitude filters with MFDs, particularly in challenging conditions, from a theoretical viewpoint. Benefiting from the new understanding of the filtering mechanism associated with MFDs, two closed-form filters with MFDs is then proposed. These filters avoid the burdensome computations in previous MFD-based filters by introducing linearized error systems with right-invariant errors but retaining the two advantageous properties. Moreover, we leverage the two properties and closed-form filtering iteration to prove the almost-global exponential stability of the proposed filter with right-invariant error for the single-axis rotation, which, to our knowledge, is not achieved by existing directional statistics-based filters. Numerical simulations demonstrate that the proposed filters are significantly more accurate than the classic invariant Kalman filter. Besides, they are also as accurate as recent MFD-based Bayesian filters in challenging circumstances with large initial error and measurement uncertainty but consumes far less computation time (about 1/5 to 1/100 of previous MFD-based attitude filters).
♻ ☆ Chaotic Noncoherent SWIPT in Multi-Functional RIS-Aided Systems
In this letter, we investigate the design of chaotic signal-based transmit waveforms in a multi-functional reconfigurable intelligent surface (MF-RIS)-aided set-up for simultaneous wireless information and power transfer. We propose a differential chaos shift keying-based MF-RIS-aided set-up, where the MF-RIS is partitioned into three non-overlapping surfaces. The elements of the first sub-surface perform energy harvesting (EH), which in turn, provide the required power to the other two sub-surfaces responsible for transmission and reflection of the incident signal. By considering a frequency selective scenario and a realistic EH model, we characterize the chaotic MF-RIS-aided system in terms of its EH performance and the associated bit error rate. Thereafter, we characterize the harvested energy-bit error rate trade-off and derive a lower bound on the number of elements required to operate in the EH mode. Accordingly, we propose novel transmit waveform designs to demonstrate the importance of the choice of appropriate system parameters in the context of achieving self-sustainability.
comment: To appear in IEEE Wireless Communications Letters
♻ ☆ Digital-physical testbed for ship autonomy studies in the Marine Cybernetics Laboratory basin
The algorithms developed for Maritime Autonomous Surface Ships (MASS) are often challenging to test on actual vessels due to high operational costs and safety considerations. Simulations offer a cost-effective alternative and eliminate risks, but they may not accurately represent real-world dynamics for the given tasks. Utilizing small-scale model ships and robotic vessels in conjunction with a laboratory basin provides an accessible testing environment for the early stages of validation processes. However, designing and developing a model vessel for a single test can be costly and cumbersome, and researchers often lack access to such infrastructure. To address these challenges and enable streamlined testing, we have developed an in-house testbed that facilitates the development, testing, verification, and validation of MASS algorithms in a digital-physical laboratory. This infrastructure includes a set of small-scale model vessels, a simulation environment for each vessel, a comprehensive testbed environment, and a digital twin in Unity. With this, we aim to establish a full design and verification pipeline that starts with high-fidelity simulation models of each model vessel, to the model-scale testing in the laboratory basin, allowing possibilities for moving towards semi-fullscale validation with R/V milliAmpere1 and full-scale validation with R/V Gunnerus. In this work, we present our progress on the development of this testbed environment and its components, demonstrating its effectiveness in enabling ship guidance, navigation, and control (GNC), including autonomy.
♻ ☆ A Hierarchical Control Architecture for Space Robots in On-Orbit Servicing Operations
In-Orbit Servicing and Active Debris Removal require advanced robotic capabilities for capturing and detumbling uncooperative targets. This work presents a hierarchical control framework for autonomous robotic capture of tumbling objects in space. A simulation environment is developed, incorporating sloshing dynamics of the chaser, a rarely studied effect in space robotics. The proposed controller combines an inner Lyapunov-based robust control loop for multi-body dynamics with an outer loop addressing an extended inverse kinematics problem. Simulation results show improved robustness and adaptability compared to existing control schemes.
♻ ☆ Robust MPC for Large-scale Linear Systems
State-of-the-art approaches of Robust Model Predictive Control (MPC) are restricted to linear systems of relatively small scale, i.e., with no more than about 5 states. The main reason is the computational burden of determining a robust positively invariant (RPI) set, whose complexity suffers from the curse of dimensionality. The recently proposed approach of Deadbeat Robust Model Predictive Control (DRMPC) is the first that does not rely on an RPI set. Yet it comes with the full set of essential system theoretic guarantees. DRMPC is hence a viable option, in particular, for large-scale systems. This paper introduces a detailed design procedure for DRMPC. It is shown that the optimal control problem generated for DRMPC has exactly the same computational complexity as Nominal MPC. A numerical study validates its applicability to randomly generated large-scale linear systems of various dimensions.
♻ ☆ A Physics-Informed Context-Aware Approach for Anomaly Detection in Tele-driving Operations Under False Data Injection Attacks
Tele-operated driving (ToD) systems are special types of cyber-physical systems (CPSs) where the operator remotely controls the steering, acceleration, and braking actions of the vehicle. Malicious actors may inject false data in communication channels to manipulate the tele-operators driving commands to cause harm. Hence, protection of this communication is necessary for the safe operation of the target vehicle. However, according to the National Institute of Standards and Technology (NIST) cybersecurity framework, protection merely is not enough and the detection of an attack is necessary. Moreover, UN R155 mandates that security incidents across vehicle fleets be detected and logged. Thus, cyber-physical threats of ToD are modeled with an attack-centric approach in this paper. Then, an attack model with false data injection (FDI) on steering control commands is created from real vehicle data. The risk of this attack model is assessed for a last-mile delivery (LMD) application. Finally, a physics-informed context-aware anomaly detection system (PCADS) is proposed to detect such false injection attacks, and preliminary experimental results are presented to validate the model.
comment: 16 pages, 13 figures, Accepted at IEEE Access
♻ ☆ Code Generation and Conic Constraints for Model-Predictive Control on Microcontrollers with Conic-TinyMPC
Model-predictive control (MPC) is a powerful framework for controlling dynamic systems under constraints, but it remains challenging to deploy on resource-constrained platforms, especially for problems involving conic constraints. To address this, we extend recent work developing fast, structure-exploiting, cached ADMM solvers for embedded applications, to provide support for second-order cones, as well as C++ code generation from Python, MATLAB, and Julia for easy deployment. Microcontroller benchmarks show that our solver provides up to a two-order-of-magnitude speedup, ranging from 10.6x to 142.7x, over state-of-the-art embedded solvers on QP and SOCP problems, and enables us to fit order-of-magnitude larger problems in memory. We validate our solver's deployed performance through simulation and hardware experiments, including conically-constrained trajectory tracking on a 27g Crazyflie quadrotor. To get started with Conic-TinyMPC, visit our documentation, examples, and the open-source codebase at https://tinympc.org.
comment: First three authors contributed equally
♻ ☆ On-Demand Growth of Semiconductor Heterostructures Guided by Physics-Informed Machine Learning
Developing tailored semiconductor heterostructures on demand represents a critical capability for addressing the escalating performance demands in electronic and optoelectronic devices. However, traditional fabrication methods remain constrained by simulation-based design and iterative trial-and-error optimization. Here, we introduce SemiEpi, a self-driving platform designed for molecular beam epitaxy (MBE) to perform multi-step semiconductor heterostructure growth through in-situ monitoring and on-the-fly feedback control. By integrating standard MBE reactors, physics-informed machine learning (ML) models, and parameter initialization, SemiEpi identifies optimal initial conditions and proposes experiments for heterostructure growth, eliminating the need for extensive expertise in MBE processes. As a proof of concept, we demonstrate the optimization of high-density InAs quantum dot (QD) growth with a target emission wavelength of 1240 nm, showcasing the power of SemiEpi. We achieve a QD density of 5 x 10^10 cm^-2, a 1.6-fold increase in photoluminescence (PL) intensity, and a reduced full width at half maximum (FWHM) of 29.13 meV, leveraging in-situ reflective high-energy electron diffraction monitoring with feedback control for adjusting growth temperatures. Taken together, our results highlight the potential of ML-guided systems to address challenges in multi-step heterostructure growth, facilitate the development of a hardware-independent framework, and enhance process repeatability and stability, even without exhaustive knowledge of growth parameters.
comment: 5 figures
♻ ☆ DALNet: A Denoising Diffusion Probabilistic Model for High-Fidelity Day-Ahead Load Forecasting
Accurate probabilistic load forecasting is crucial for maintaining the safety and stability of power systems. However, the mainstream approach, multi-step prediction, is hindered by cumulative errors and forecasting lags, which limits its effectiveness in probabilistic day-ahead load forecasting (PDALF). To overcome these challenges, we introduce DALNet, a novel denoising diffusion model designed to generate load curves rather than relying on direct prediction. By shifting the focus to curve generation, DALNet captures the complex distribution of actual load time-series data under specific conditions with greater fidelity. To further enhance DALNet, we propose the temporal multi-scale attention block (TMSAB), a mechanism designed to integrate both positional and temporal information for improved forecasting precision. Furthermore, we utilize kernel density estimation (KDE) to reconstruct the distribution of generated load curves and employ Kullback-Leibler (KL) divergence to compare them with the actual data distribution. Experimental results demonstrate that DALNet excels in load forecasting accuracy and offers a novel perspective for other predictive tasks within power systems.
comment: 22pages
♻ ☆ Can We Ignore Labels In Out of Distribution Detection?
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
♻ ☆ Quickest Change Detection with Cost-Constrained Experiment Design
In the classical quickest change detection problem, an observer performs a single experiment to monitor a stochastic process. The goal in the classical problem is to detect a change in the statistical properties of the process, with the minimum possible delay, subject to a constraint on the rate of false alarms. This paper considers the case where, at each observation time, the decision-maker must choose between multiple experiments with varying information qualities and costs. The change can be detected using any of the experiments. The goal here is to detect the change with the minimum delay, subject to constraints on the rate of false alarms and the fraction of time each experiment is performed before the time of change. The constraint on the fraction of time can be used to control the overall cost of using the system of experiments. An algorithm called the two-experiment cumulative sum (2E-CUSUM) algorithm is first proposed to solve the problem when there are only two experiments. The algorithm for the case of multiple experiments, starting with three experiments, is then designed iteratively using the 2E-CUSUM algorithm. Two key ideas used in the design are the scaling of undershoots and the truncation of tests. The multiple-experiment algorithm can be designed to satisfy the constraints and can achieve the delay performance of the experiment with the highest quality within a constant. The important concept of data efficiency, where the observer has the choice of not performing any experiment, is explored as well.
♻ ☆ Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
♻ ☆ Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
♻ ☆ Probabilistic Simulation of Aircraft Descent via a Hybrid Physics-Informed Machine Learning Approach
This paper presents a method for generating probabilistic descent trajectories in simulations of real-world airspace. A dataset of 116,066 trajectories harvested from Mode S radar returns in UK airspace was used to train and test the model. Thirteen aircraft types with varying performance characteristics were investigated. It was found that the error in the mean prediction of time to reach the bottom of descent for the proposed method was less than that of the the Base of Aircraft Data (BADA) model by a factor of 10. Furthermore, the method was capable of generating a range of trajectories that were similar to the held out test dataset when analysed in distribution. The proposed method is hybrid, with aircraft drag and calibrated airspeed functions generated probabilistically to parameterise the BADA equations, ensuring the physical plausibility of generated trajectories.
Computational Geometry 10
☆ TopInG: Topologically Interpretable Graph Learning via Persistent Rationale Filtration ICML 2025
Graph Neural Networks (GNNs) have shown remarkable success across various scientific fields, yet their adoption in critical decision-making is often hindered by a lack of interpretability. Recently, intrinsically interpretable GNNs have been studied to provide insights into model predictions by identifying rationale substructures in graphs. However, existing methods face challenges when the underlying rationale subgraphs are complex and varied. In this work, we propose TopInG: Topologically Interpretable Graph Learning, a novel topological framework that leverages persistent homology to identify persistent rationale subgraphs. TopInG employs a rationale filtration learning approach to model an autoregressive generation process of rationale subgraphs, and introduces a self-adjusted topological constraint, termed topological discrepancy, to enforce a persistent topological distinction between rationale subgraphs and irrelevant counterparts. We provide theoretical guarantees that our loss function is uniquely optimized by the ground truth under specific conditions. Extensive experiments demonstrate TopInG's effectiveness in tackling key challenges, such as handling variform rationale subgraphs, balancing predictive performance with interpretability, and mitigating spurious correlations. Results show that our approach improves upon state-of-the-art methods on both predictive accuracy and interpretation quality.
comment: submitted to ICML 2025
☆ Discrete scalar curvature as a weighted sum of Ollivier-Ricci curvatures
We study the relationship between discrete analogues of Ricci and scalar curvature that are defined for point clouds and graphs. In the discrete setting, Ricci curvature is replaced by Ollivier-Ricci curvature. Scalar curvature can be computed as the trace of Ricci curvature for a Riemannian manifold; this motivates a new definition of a scalar version of Ollivier-Ricci curvature. We show that our definition converges to scalar curvature for nearest neighbor graphs obtained by sampling from a manifold. We also prove some new results about the convergence of Ollivier-Ricci curvature to Ricci curvature.
comment: 30 pages, 2 figures
☆ A Polynomial Space Lower Bound for Diameter Estimation in Dynamic Streams
We study the space complexity of estimating the diameter of a subset of points in an arbitrary metric space in the dynamic (turnstile) streaming model. The input is given as a stream of updates to a frequency vector $x \in \mathbb{Z}_{\geq 0}^n$, where the support of $x$ defines a multiset of points in a fixed metric space $M = ([n], \mathsf{d})$. The goal is to estimate the diameter of this multiset, defined as $\max\{\mathsf{d}(i,j) : x_i, x_j > 0\}$, to a specified approximation factor while using as little space as possible. In insertion-only streams, a simple $O(\log n)$-space algorithm achieves a 2-approximation. In sharp contrast to this, we show that in the dynamic streaming model, any algorithm achieving a constant-factor approximation to diameter requires polynomial space. Specifically, we prove that a $c$-approximation to the diameter requires $n^{\Omega(1/c)}$ space. Our lower bound relies on two conceptual contributions: (1) a new connection between dynamic streaming algorithms and linear sketches for {\em scale-invariant} functions, a class that includes diameter estimation, and (2) a connection between linear sketches for diameter and the {\em minrank} of graphs, a notion previously studied in index coding. We complement our lower bound with a nearly matching upper bound, which gives a $c$-approximation to the diameter in general metrics using $n^{O(1/c)}$ space.
comment: FOCS 2025
☆ Counting Triangulations of Fixed Cardinal Degrees
A fixed set of vertices in the plane may have multiple planar straight-line triangulations in which the degree of each vertex is the same. As such, the degree information does not completely determine the triangulation. We show that even if we know, for each vertex, the number of neighbors in each of the four cardinal directions, the triangulation is not completely determined. In fact, we show that counting such triangulations is #P-hard via a reduction from #3-regular bipartite planar vertex cover.
☆ Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.
♻ ☆ Efficient Sparsification of Simplicial Complexes via Local Densities of States
Simplicial complexes (SCs) have become a popular abstraction for analyzing complex data using tools from topological data analysis or topological signal processing. However, the analysis of many real-world datasets often leads to dense SCs, with many higher-order simplicies, which results in prohibitive computational requirements in terms of time and memory consumption. The sparsification of such complexes is thus of broad interest, i.e., the approximation of an original SC with a sparser surrogate SC (with typically only a log-linear number of simplices) that maintains the spectrum of the original SC as closely as possible. In this work, we develop a novel method for a probabilistic sparsification of SCs that uses so-called local densities of states. Using this local densities of states, we can efficiently approximate so-called generalized effective resistance of each simplex, which is proportional to the required sampling probability for the sparsification of the SC. To avoid degenerate structures in the spectrum of the corresponding Hodge Laplacian operators, we suggest a ``kernel-ignoring'' decomposition to approximate the sampling probability. Additionally, we utilize certain error estimates to characterize the asymptotic algorithmic complexity of the developed method. We demonstrate the performance of our framework on a family of Vietoris--Rips filtered simplicial complexes.
comment: 23 pages, 7 figures, 2 tables
♻ ☆ An Optimal Algorithm for Shortest Paths in Unweighted Disk Graphs
Given in the plane a set $S$ of $n$ points and a set of disks centered at these points, the disk graph $G(S)$ induced by these disks has vertex set $S$ and an edge between two vertices if their disks intersect. Note that the disks may have different radii. We consider the problem of computing shortest paths from a source point $s\in S$ to all vertices in $G(S)$ where the length of a path in $G(S)$ is defined as the number of edges in the path. The previously best algorithm solves the problem in $O(n\log^2 n)$ time. A lower bound of $\Omega(n\log n)$ is also known for this problem under the algebraic decision tree model. In this paper, we present an $O(n\log n)$ time algorithm, which matches the lower bound and thus is optimal. Another virtue of our algorithm is that it is quite simple.
comment: Presented at ESA 2025
♻ ☆ All Polyhedral Manifolds are Connected by a 2-Step Refolding
We prove that, for any two polyhedral manifolds $\mathcal P, \mathcal Q$, there is a polyhedral manifold $\mathcal I$ such that $\mathcal P, \mathcal I$ share a common unfolding and $\mathcal I,\mathcal Q$ share a common unfolding. In other words, we can unfold $\mathcal P$, refold (glue) that unfolding into $\mathcal I$, unfold $\mathcal I$, and then refold into $\mathcal Q$. Furthermore, if $\mathcal P, \mathcal Q$ have no boundary and can be embedded in 3D (without self-intersection), then so does $\mathcal I$. These results generalize to $n$ given manifolds $\mathcal P_1, \mathcal P_2, \dots, \mathcal P_n$; they all have a common unfolding with the same intermediate manifold $\mathcal I$. Allowing more than two unfold/refold steps, we obtain stronger results for two special cases: for doubly covered convex planar polygons, we achieve that all intermediate polyhedra are planar; and for tree-shaped polycubes, we achieve that all intermediate polyhedra are tree-shaped polycubes.
comment: This work was intended as a replacement of arXiv:2412.02174 and any subsequent updates will appear there
♻ ☆ The Stamp Folding Problem From a Mountain-Valley Perspective
A strip of square stamps can be folded in many ways such that all of the stamps are stacked in a single pile in the folded state. The stamp folding problem asks for the number of such foldings and has previously been studied extensively. We consider this problem with the additional restriction of fixing the mountain-valley assignment of each crease in the stamp pattern. We provide a closed form for counting the number of legal foldings on specific patterns of mountain-valley assignments, including a surprising appearance of the Catalan numbers. We describe results on upper and lower bounds for the number of ways to fold a given mountain-valley assignment on the strip of stamps, provide experimental evidence suggesting more general results, and include conjectures and open problems.
comment: Journal version
♻ ☆ Composable Coresets for Constrained Determinant Maximization and Beyond
We study algorithms for construction of composable coresets for the task of Determinant Maximization under partition constraint. Given a point set $V\subset \mathbb{R}^d$ that is partitioned into $s$ groups $V_1,\cdots, V_s$, and integers $k_1,...,k_s$, where $k=\sum_i k_i$, the goal is to pick $k_i$ points from group $V_i$ such that the overall determinant of the picked $k$ points is maximized. Determinant Maximization and its constrained variants have gained a lot of interest for modeling diversity, and have found applications in the context of data summarization. When the cardinality $k$ of the selected set is greater than the dimension $d$, we show a peeling algorithm that gives us a composable coreset of size $kd$ with a provably optimal approximation factor of $d^{O(d)}.$ When $k\leq d$, we show a simple coreset construction with optimal size and approximation factor. As a further application of our technique, we get a composable coreset for determinant maximization under the more general laminar matroid constraints, and a composable coreset for unconstrained determinant maximization in a previously unresolved regime. Our results generalize to all strongly Rayleigh distributions and to several other experimental design problems. As an application, we improve the runtime of the practical local-search based algorithm of [Anari-Vuong--COLT'22] for determinantal maximization under partition constraint from $O(n^{2^s}k^{2^s})$ to $O(n k^{2^s})$, making it only linear on the number of points $n$.
Optimization and Control 50
☆ On Improvement of Control Chart using Repetitive Sampling for Monitoring Process Mean
In the practical industry, the most commonly used application of statistical analysis for monitoring the process mean is the control chart. Control charts are generated based on the presumption that we have a sample from a stable process. The control chart then provides a graphical display to test this presumption. In the existing estimator \textcolor{red}{$Mr$}, researchers use a technique involving repetitive sampling along with an auxiliary variable for detecting and monitoring the statistical process mean. The existing control chart, namely \textcolor{red}{$Mr$}, is based on the regression estimator of the mean using a single auxiliary variable $X$. We propose the \textcolor{red}{$Mrep$} chart using a ratio-product exponential type estimator, and the \textcolor{red}{$Mrwp$} chart with a more efficient difference-cum-exponential type estimator used in quality control for improving the process mean in terms of $ARL$. Then we compare the proposed charts \textcolor{red}{$Mrep$} and \textcolor{red}{$Mrwp$} with the existing \textcolor{red}{$Mr$} chart in terms of $ARL$. Using $ARL$ as a performance measure, better results of the proposed charts are observed for detecting shifts in the mean level of the characteristic of interest. Moreover, Monte Carlo simulation in terms of repetitive sampling is used for quality control charting and statistical process control for the betterment of the process mean.
comment: 17 pages, 32 fiures
☆ A Unified Optimization Framework for Multiclass Classification with Structured Hyperplane Arrangements
In this paper, we propose a new mathematical optimization model for multiclass classification based on arrangements of hyperplanes. Our approach preserves the core support vector machine (SVM) paradigm of maximizing class separation while minimizing misclassification errors, and it is computationally more efficient than a previous formulation. We present a kernel-based extension that allows it to construct nonlinear decision boundaries. Furthermore, we show how the framework can naturally incorporate alternative geometric structures, including classification trees, $\ell_p$-SVMs, and models with discrete feature selection. To address large-scale instances, we develop a dynamic clustering matheuristic that leverages the proposed MIP formulation. Extensive computational experiments demonstrate the efficiency of the proposed model and dynamic clustering heuristic, and we report competitive classification performance on both synthetic datasets and real-world benchmarks from the UCI Machine Learning Repository, comparing our method with state-of-the-art implementations available in scikit-learn.
comment: 28 pages, 2 tables, 9 figures
☆ Optimal participation of energy communities in electricity markets under uncertainty. A multi-stage stochastic programming approach
We propose a multi-stage stochastic programming model for the optimal participation of energy communities in electricity markets. The multi-stage aspect captures the different times at which variable renewable generation and electricity prices are observed. This results in large-scale optimization problem instances containing large scenario trees with 34 stages, to which scenario reduction techniques are applied. Case studies with real data are discussed to analyse proposed regulatory frameworks in Europe. The added value of considering stochasticity is also analysed.
Robust Cislunar Navigation via LFT-Based $\mathcal{H}_\infty$ Filtering with Bearing-Only Measurements
This paper develops a robust estimation framework for cislunar navigation that embeds the Circular Restricted Three-Body Problem (CR3BP) dynamics and bearing-only optical measurements within a Linear Fractional Transformation (LFT) representation. A full-order $\mathcal{H}_\infty$ observer is synthesized with explicit $\mathcal{L}_2$ performance bounds. The formulation yields a nonlinear estimator that operates directly on the governing equations and avoids reliance on local linearizations. Dominant nonlinearities are expressed as structured real uncertainties, while measurement fidelity is represented through range-dependent weighting with Earth-Moon distances reconstructed from line-of-sight geometry. The sensing architecture assumes passive star-tracker-class optical instruments, eliminating the need for time-of-flight ranging or precision clocks. Simulations demonstrate bounded estimation errors and smooth position tracking over multiple orbital periods, with the largest deviations observed in the out-of-plane states, consistent with the stiffness of the vertical dynamics and the limitations of angle-only observability. Application to a Near Rectilinear Halo Orbit (NRHO) illustrates that the framework can achieve robust onboard navigation with bounded estimation errors with flight-representative sensors.
☆ A Backstepping-KKL observer for a cascade of a nonlinear ODE with a heat equation
We propose an observer design for a cascaded system composed of an arbitrary nonlinear ordinary differential equation (ODE) with a 1D heat equation. The nonlinear output of the ODE imposes a boundary condition on one side of the heat equation, while the measured output is on the other side. The observer design combines an infinitedimensional Kazantzis-Kravaris/Luenberger (KKL) observer for the ODE with a backstepping observer for the heat equation. This construction is the first extension of the KKL methodology to infinite-dimensional systems. We establish the convergence of the observer under a differential observability condition on the ODE. The effectiveness of the proposed approach is illustrated in numerical simulations.
☆ A Fixed Point Framework for the Existence of EFX Allocations
We consider the problem of the existence of an envy-free allocation up to any good (EFX) for linear valuations and establish new results by connecting this problem to a fixed point framework. Specifically, we first use randomized rounding to extend the discrete EFX constraints into a continuous space and show that an EFX allocation exists if and only if the optimal value of the continuously extended objective function is nonpositive. In particular, we demonstrate that this optimization problem can be formulated as an unconstrained difference of convex (DC) program, which can be further simplified to the minimization of a piecewise linear concave function over a polytope. Leveraging this connection, we show that the proposed DC program has a nonpositive optimal objective value if and only if a well-defined continuous vector map admits a fixed point. Crucially, we prove that the reformulated fixed point problem satisfies all the conditions of Brouwer's fixed point theorem, except that self-containedness is violated by an arbitrarily small positive constant. To address this, we propose a slightly perturbed continuous map that always admits a fixed point. This fixed point serves as a proxy for the fixed point (if it exists) of the original map, and hence for an EFX allocation through an appropriate transformation. Our results offer a new approach to establishing the existence of EFX allocations through fixed point theorems. Moreover, the equivalence with DC programming enables a more efficient and systematic method for computing such allocations (if one exists) using tools from nonlinear optimization. Our findings bridge the discrete problem of finding an EFX allocation with two continuous frameworks: solving an unconstrained DC program and identifying a fixed point of a continuous vector map.
☆ Rapid stabilization for a wave equation with boundary disturbance
In this paper, we study the rapid stabilization of an unstable wave equation, in which an unknown disturbance is located at the boundary condition. We address two different boundary conditions: Dirichlet- Dirichlet and Dirichlet-Neumann. In both cases, we design a feedback law, located at the same place as the unknown disturbance, that forces the exponential decay of the energy for any desired decay rate while suppressing the effects of the unknown disturbance. For the feedback design, we employ the backstepping method, Lyapunov techniques and the sign multivalued operator. The well-posedness of the closed-loop system, which is a differential inclusion, is shown with the maximal monotone operator theory.
☆ On the Feinberg-Piunovskiy Theorem and its extension to chattering policies
The Feinberg-Piunovskiy Theorem established in [14, Theorem 3.8] asserts that for a discrete-time uniformly absorbing and atomless Markov Decision Process (MDP) with Borel state space and multiple criteria, the family of deterministic stationary policies is a sufficient class of policies. In this paper, we study some related problems and some extensions. In particular dropping the atomless hypothesis, we establish that the set of chattering stationary policies is a sufficient class of policies for uniformly absorbing MDPs with measurable state space and multiple criteria. We also prove the Feinberg-Piunovskiy Theorem in the context of a measurable state space in two different ways that differ from \cite{piunovskiy19}. In particular, we show that the sufficiency of chattering stationary policies directly yields the sufficiency of deterministics stationary policies for atomless models. Our approach is partially based on the analysis of extreme points of certain convex sets of occupation measures satisfying integral type constraints. We show that for a uniformly absorbing model an extreme point of such sets is necessarily given by occupation measures induced by chattering stationary policies of order $d+1$ where $d$ is the dimension of the vector of constraints. When in addition the model $\mathsf{M}$ is atomless, then the extreme points of this constrained set of occupation measures are precisely the occupation measures generated by deterministic stationary policies satisfying these constraints.
☆ Finite elements and moving asymptotes accelerate quantum optimal control - FEMMA
Quantum optimal control is central to designing spin manipulation pulses. While GRAPE efficiently computes gradients, realistic ensemble models make optimization time-consuming. In this work, we accelerated single-spin optimal control by combining the finite element method with the method of moving asymptotes. By treating discretized time as spatial coordinates, the Liouville-von Neumann equation was reformulated as a linear system, yielding gradients solving over an order of magnitude faster than GRAPE with less than one percent relative-accuracy loss. The moving asymptotes further improves convergence, outperforming L-BFGS and approaching Newton-level efficiency.
comment: 24 pages, 6 figures
☆ Online Multiple Resource Allocation Problems with Departures via the Primal-Dual Approach
In this paper we propose primal-dual algorithms for different variants of the online resource allocation problem with departures. In the basic variant, requests (items) arrive over time to a set of resources (knapsacks) and upon arrival, the duration of time a request may occupy a resource, the demand and reward if the request can be granted, become known. %We assume that the duration of stay of a request may depend on the resource. %and that resources may have different capacity sizes. The goal of the algorithm is to decide whether to accept/reject a request upon arrival and to which resource to allocate it such that the reward obtained over time is maximized. Under some mild assumptions, we show that the proposed primal-dual algorithm achieves a competitive ratio of $O\big(\log(\bar\theta^{\max}\cdot\bar d^{\max})\big)$, where $\bar \theta^{\max}$ is the maximum value density fluctuation ratio and $\bar d^{\max}$ is the maximum duration fluctuation ratio. We prove similar results for two other variants, namely, one with an additional load balancing constraint, and the multi-dimensional variant where an admitted request consumes capacity on multiple resources. Our results show that the primal-dual approach offers a simple, unified framework for obtaining competitive ratios comparable to those previously obtained via threshold policies known for these problems. Additionally, we show that this framework allows us to incorporate additional constraints, such as load-balancing constraints, without sacrificing the competitive ratio.
☆ A Lie Theoretic Framework for Controlling Open Quantum Systems
This thesis focuses on the Lie-theoretic foundations of controlled open quantum systems. We describe Markovian open quantum system evolutions by Lie semigroups, whose corresponding infinitesimal generators lie in a special type of convex cone - a Lie wedge. The Lie wedge associated to a given control system therefore consists of all generators of the quantum dynamical semigroup that are physically realisable as a result of the interplay between the coherent and incoherent processes the quantum system is subject to. For $n$-qubit open quantum systems, we provide a parametrisation of the largest physically relevant Lie algebra (the system algebra), in which these Lie wedges are contained: the Lindblad-Kossakowski Lie algebra. This parametrisation provides several useful benefits. First, it allows us to construct explicit forms of these system Lie wedges and their respective system Lie algebras. Second, we analyse which control scenarios yield Lie wedges that are closed under Baker-Campbell-Hausdorff (BCH) multiplication and therefore generate Markovian semigroups of time-independent quantum channels. Lie wedges of this form are called Lie semialgebras, and we completely solve this open problem by proving that Lie wedges specialise to this form only when the coherent controls have no effect on both the inherent drift Hamiltonian and the incoherent part of the dynamics. Finally, this parametrisation of the Lindblad-Kossakowski Lie algebra points to an intuitive separation between unital and non-unital dissipative dynamics, where the non-unital component of the dynamics is described by affine translation operations. These translation operators are then exploited to construct purely dissipative fixed-point engineering schemes to obtain either pure or mixed states as a system's unique fixed point.
comment: PhD Thesis. Originally published 2014
☆ Parameter-free Algorithms for the Stochastically Extended Adversarial Model NeurIPS 2025
We develop the first parameter-free algorithms for the Stochastically Extended Adversarial (SEA) model, a framework that bridges adversarial and stochastic online convex optimization. Existing approaches for the SEA model require prior knowledge of problem-specific parameters, such as the diameter of the domain $D$ and the Lipschitz constant of the loss functions $G$, which limits their practical applicability. Addressing this, we develop parameter-free methods by leveraging the Optimistic Online Newton Step (OONS) algorithm to eliminate the need for these parameters. We first establish a comparator-adaptive algorithm for the scenario with unknown domain diameter but known Lipschitz constant, achieving an expected regret bound of $\tilde{O}\big(\|u\|_2^2 + \|u\|_2(\sqrt{\sigma^2_{1:T}} + \sqrt{\Sigma^2_{1:T}})\big)$, where $u$ is the comparator vector and $\sigma^2_{1:T}$ and $\Sigma^2_{1:T}$ represent the cumulative stochastic variance and cumulative adversarial variation, respectively. We then extend this to the more general setting where both $D$ and $G$ are unknown, attaining the comparator- and Lipschitz-adaptive algorithm. Notably, the regret bound exhibits the same dependence on $\sigma^2_{1:T}$ and $\Sigma^2_{1:T}$, demonstrating the efficacy of our proposed methods even when both parameters are unknown in the SEA model.
comment: Accepted to NeurIPS 2025
☆ On decomposability and subdifferential of the tensor nuclear norm
We study the decomposability and the subdifferential of the tensor nuclear norm. Both concepts are well understood and widely applied in matrices but remain unclear for higher-order tensors. We show that the tensor nuclear norm admits a full decomposability over specific subspaces and determine the largest possible subspaces that allow the full decomposability. We derive novel inclusions of the subdifferential of the tensor nuclear norm and study its subgradients in a variety of subspaces of interest. All the results hold for tensors of an arbitrary order. As an immediate application, we establish the statistical performance of the tensor robust principal component analysis, the first such result for tensors of an arbitrary order.
☆ Range of optimal values in absolute value linear programming with interval data
Absolute value linear programming problems is quite a new area of optimization problems, involving linear functions and absolute values in the description of the model. In this paper, we consider interval uncertainty of the input coefficients. Our goal is to determine the best and the worst case optimal values. For the former, we derive an explicit formula, reducing the problem to a certain optimization problem. However, the latter is more complicated, and we propose a lower and upper bound approaches to estimate the value. We also investigate the basis stability, in which situation the best case optimal value is efficiently computable. The worst case optimal value then also admits a simple characterization; however, the computational complexity remains open.
☆ Constrained Dikin-Langevin diffusion for polyhedra
Interior-point geometry offers a straightforward approach to constrained sampling and optimization on polyhedra, eliminating reflections and ad hoc projections. We exploit the Dikin log-barrier to define a Dikin--Langevin diffusion whose drift and noise are modulated by the inverse barrier Hessian. In continuous time, we establish a boundary no-flux property; trajectories started in the interior remain in $U$ almost surely, so feasibility is maintained by construction. For computation, we adopt a discretize-then-correct design: an Euler--Maruyama proposal with state-dependent covariance, followed by a Metropolis--Hastings correction that targets the exact constrained law and reduces to a Dikin random walk when $f$ is constant. Numerically, the unadjusted diffusion exhibits the expected first-order step size bias, while the MH-adjusted variant delivers strong convergence diagnostics on anisotropic, box-constrained Gaussians (rank-normalized split-$\hat{R}$ concentrated near $1$) and higher inter-well transition counts on a bimodal target, indicating superior cross-well mobility. Taken together, these results demonstrate that coupling calibrated stochasticity with interior-point preconditioning provides a practical, reflection-free approach to sampling and optimization over polyhedral domains, offering clear advantages near faces, corners, and in nonconvex landscapes.
☆ Stochastic Approximation Methods for Distortion Risk Measure Optimization
Distortion Risk Measures (DRMs) capture risk preferences in decision-making and serve as general criteria for managing uncertainty. This paper proposes gradient descent algorithms for DRM optimization based on two dual representations: the Distortion-Measure (DM) form and Quantile-Function (QF) form. The DM-form employs a three-timescale algorithm to track quantiles, compute their gradients, and update decision variables, utilizing the Generalized Likelihood Ratio and kernel-based density estimation. The QF-form provides a simpler two-timescale approach that avoids the need for complex quantile gradient estimation. A hybrid form integrates both approaches, applying the DM-form for robust performance around distortion function jumps and the QF-form for efficiency in smooth regions. Proofs of strong convergence and convergence rates for the proposed algorithms are provided. In particular, the DM-form achieves an optimal rate of $O(k^{-4/7})$, while the QF-form attains a faster rate of $O(k^{-2/3})$. Numerical experiments confirm their effectiveness and demonstrate substantial improvements over baselines in robust portfolio selection tasks. The method's scalability is further illustrated through integration into deep reinforcement learning. Specifically, a DRM-based Proximal Policy Optimization algorithm is developed and applied to multi-echelon dynamic inventory management, showcasing its practical applicability.
☆ Overlapping Schwarz Scheme for Linear-Quadratic Programs in Continuous Time
We present an optimize-then-discretize framework for solving linear-quadratic optimal control problems (OCP) governed by time-inhomogeneous ordinary differential equations (ODEs). Our method employs a modified overlapping Schwarz decomposition based on the Pontryagin Minimum Principle, partitioning the temporal domain into overlapping intervals and independently solving Hamiltonian systems in continuous time. We demonstrate that the convergence is ensured by appropriately updating the boundary conditions of the individual Hamiltonian dynamics. The cornerstone of our analysis is to prove that the exponential decay of sensitivity (EDS) exhibited in discrete-time OCPs carries over to the continuous-time setting. Unlike the discretize-then-optimize approach, our method can flexibly incorporate different numerical integration methods for solving the resulting Hamiltonian two-point boundary-value subproblems, including adaptive-time integrators. A numerical experiment on a linear-quadratic OCP illustrates the practicality of our approach in broad scientific applications.
comment: 34 pages, 2 figures
☆ Introduction to Interpolation-Based Optimization
The field of derivative-free optimization (DFO) studies algorithms for nonlinear optimization that do not rely on the availability of gradient or Hessian information. It is primarily designed for settings when functions are black-box, expensive to evaluate and/or noisy. A widely used and studied class of DFO methods for local optimization is interpolation-based optimization (IBO), also called model-based DFO, where the general principles from derivative-based nonlinear optimization algorithms are followed, but local Taylor-type approximations are replaced with alternative local models constructed by interpolation. This document provides an overview of the basic algorithms and analysis for IBO, covering worst-case complexity, approximation theory for polynomial interpolation models, and extensions to constrained and noisy problems.
☆ A Time-certified Predictor-corrector IPM Algorithm for Box-QP
Minimizing both the worst-case and average execution times of optimization algorithms is equally critical in real-time optimization-based control applications such as model predictive control (MPC). Most MPC solvers have to trade off between certified worst-case and practical average execution times. For example, our previous work [1] proposed a full-Newton path-following interior-point method (IPM) with data-independent, simple-calculated, and exact $O(\sqrt{n})$ iteration complexity, but not as efficient as the heuristic Mehrotra predictor-corrector IPM algorithm (which sacrifices global convergence). This letter proposes a new predictor-corrector IPM algorithm that preserves the same certified $O(\sqrt{n})$ iteration complexity while achieving a $5\times$ speedup over [1]. Numerical experiments and codes that validate these results are provided.
☆ Inverse Mixed-Integer Programming: Learning Constraints then Objective Functions
In mixed-integer linear programming, data-driven inverse optimization that learns the objective function and the constraints from observed data plays an important role in constructing appropriate mathematical models for various fields, including power systems and scheduling. However, to the best of our knowledge, there is no known method for learning both the objective functions and the constraints. In this paper, we propose a two-stage method for a class of problems where the objective function is expressed as a linear combination of functions and the constraints are represented by functions and thresholds. Specifically, our method first learns the constraints and then learns the objective function. On the theoretical side, we show the proposed method can solve inverse optimization problems in finite dataset, develop statistical learning theory in pseudometric spaces and sub-Gaussian distributions, and construct a statistical learning for inverse optimization. On the experimental side, we demonstrate that our method is practically applicable for scheduling problems formulated as integer linear programmings with up to 100 decision variables, which are typical in real-world settings.
comment: 33 pages
☆ Zeroth-Order Methods for Stochastic Nonconvex Nonsmooth Composite Optimization
This work aims to solve a stochastic nonconvex nonsmooth composite optimization problem. Previous works on composite optimization problem requires the major part to satisfy Lipschitz smoothness or some relaxed smoothness conditions, which excludes some machine learning examples such as regularized ReLU network and sparse support matrix machine. In this work, we focus on stochastic nonconvex composite optimization problem without any smoothness assumptions. In particular, we propose two new notions of approximate stationary points for such optimization problem and obtain finite-time convergence results of two zeroth-order algorithms to these two approximate stationary points respectively. Finally, we demonstrate that these algorithms are effective using numerical experiments.
☆ Trade-off in Estimating the Number of Byzantine Clients in Federated Learning
Federated learning has attracted increasing attention at recent large-scale optimization and machine learning research and applications, but is also vulnerable to Byzantine clients that can send any erroneous signals. Robust aggregators are commonly used to resist Byzantine clients. This usually requires to estimate the unknown number $f$ of Byzantine clients, and thus accordingly select the aggregators with proper degree of robustness (i.e., the maximum number $\hat{f}$ of Byzantine clients allowed by the aggregator). Such an estimation should have important effect on the performance, which has not been systematically studied to our knowledge. This work will fill in the gap by theoretically analyzing the worst-case error of aggregators as well as its induced federated learning algorithm for any cases of $\hat{f}$ and $f$. Specifically, we will show that underestimation ($\hat{f}
☆ Achieve Performatively Optimal Policy for Performative Reinforcement Learning
Performative reinforcement learning is an emerging dynamical decision making framework, which extends reinforcement learning to the common applications where the agent's policy can change the environmental dynamics. Existing works on performative reinforcement learning only aim at a performatively stable (PS) policy that maximizes an approximate value function. However, there is a provably positive constant gap between the PS policy and the desired performatively optimal (PO) policy that maximizes the original value function. In contrast, this work proposes a zeroth-order Frank-Wolfe algorithm (0-FW) algorithm with a zeroth-order approximation of the performative policy gradient in the Frank-Wolfe framework, and obtains \textbf{the first polynomial-time convergence to the desired PO} policy under the standard regularizer dominance condition. For the convergence analysis, we prove two important properties of the nonconvex value function. First, when the policy regularizer dominates the environmental shift, the value function satisfies a certain gradient dominance property, so that any stationary point (not PS) of the value function is a desired PO. Second, though the value function has unbounded gradient, we prove that all the sufficiently stationary points lie in a convex and compact policy subspace $\Pi_{\Delta}$, where the policy value has a constant lower bound $\Delta>0$ and thus the gradient becomes bounded and Lipschitz continuous. Experimental results also demonstrate that our 0-FW algorithm is more effective than the existing algorithms in finding the desired PO policy.
Optimization via a Control-Centric Framework
Optimization plays a central role in intelligent systems and cyber-physical technologies, where the speed and reliability of convergence directly impact performance. In control theory, optimization-centric methods are standard: controllers are designed by repeatedly solving optimization problems, as in linear quadratic regulation, $H_\infty$ control, and model predictive control. In contrast, this paper develops a control-centric framework for optimization itself, where algorithms are constructed directly from Lyapunov stability principles rather than being proposed first and analyzed afterward. A key element is the stationarity vector, which encodes first-order optimality conditions and enables Lyapunov-based convergence analysis. By pairing a Lyapunov function with a selectable decay law, we obtain continuous-time dynamics with guaranteed exponential, finite-time, fixed-time, or prescribed-time convergence. Within this framework, we introduce three feedback realizations of increasing restrictiveness: the Hessian-gradient, Newton, and gradient dynamics. Each shapes the decay of the stationarity vector to achieve the desired rate. These constructions unify unconstrained optimization, extend naturally to constrained problems via Lyapunov-consistent primal-dual dynamics, and broaden the results for minimax and generalized Nash equilibrium seeking problems beyond exponential stability. The framework provides systematic design tools for optimization algorithms in control and game-theoretic problems.
comment: This work has been submitted to the IEEE for possible publication. 12 pages, 3 figures
☆ A Neural Network Algorithm for KL Divergence Estimation with Quantitative Error Bounds AISTATS 2026
Estimating the Kullback-Leibler (KL) divergence between random variables is a fundamental problem in statistical analysis. For continuous random variables, traditional information-theoretic estimators scale poorly with dimension and/or sample size. To mitigate this challenge, a variety of methods have been proposed to estimate KL divergences and related quantities, such as mutual information, using neural networks. The existing theoretical analyses show that neural network parameters achieving low error exist. However, since they rely on non-constructive neural network approximation theorems, they do not guarantee that the existing algorithms actually achieve low error. In this paper, we propose a KL divergence estimation algorithm using a shallow neural network with randomized hidden weights and biases (i.e. a random feature method). We show that with high probability, the algorithm achieves a KL divergence estimation error of $O(m^{-1/2}+T^{-1/3})$, where $m$ is the number of neurons and $T$ is both the number of steps of the algorithm and the number of samples.
comment: Under Review for AISTATS 2026
☆ Learning-based model predictive control with moving horizon state estimation for autonomous racing
This paper addresses autonomous racing by introducing a real-time nonlinear model predictive controller (NMPC) coupled with a moving horizon estimator (MHE). The racing problem is solved by an NMPC-based off-line trajectory planner that computes the best trajectory while considering the physical limits of the vehicle and circuit constraints. The developed controller is further enhanced with a learning extension based on Gaussian process regression that improves model predictions. The proposed control, estimation, and planning schemes are evaluated on two different race tracks. Code can be found here: https://github.com/yassinekebbati/GP_Learning-based_MPC_with_MHE
☆ A System Level Approach to LQR Control of the Diffusion Equation
The continuous-time, infinite horizon LQR problem for the diffusion equation over the unit circle with fully distributed actuation is considered. It is well-known that the solution to this problem can be obtained from the solution to an operator-valued algebraic Riccati equation. Here, it is demonstrated that this solution can be equivalently obtained by solving an $H_2$ control problem through a closed-loop design procedure that is analogous to the "System Level Synthesis" methodology previously developed for systems over a discrete spatial domain and/or over a finite time horizon. The presented extension to the continuous spatial domain and continuous and infinite-horizon time setting admits analytical solutions that may complement computational approaches for discrete or finite-horizon settings. It is further illustrated that spatio-temporal constraints on the closed-loop responses can be incorporated into this new formulation in a convex manner.
comment: 9 pages, 2 figures, Submitted to IEEE American Control Conference 2026
☆ Simultaneous Learning and Optimization via Misspecified Saddle Point Problems
We study a class of misspecified saddle point (SP) problems, where the optimization objective depends on an unknown parameter that must be learned concurrently from data. Unlike existing studies that assume parameters are fully known or pre-estimated, our framework integrates optimization and learning into a unified formulation, enabling a more flexible problem class. To address this setting, we propose two algorithms based on the accelerated primal-dual (APD) by Hamedani & Aybat 2021. In particular, we first analyze the naive extension of the APD method by directly substituting the evolving parameter estimates into the primal-dual updates; then, we design a new learning-aware variant of the APD method that explicitly accounts for parameter dynamics by adjusting the momentum updates. Both methods achieve a provable convergence rate of $\mathcal{O}(\log K / K)$, while the learning-aware approach attains a tighter $\mathcal{O}(1)$ constant and further benefits from an adaptive step-size selection enabled by a backtracking strategy. Furthermore, we extend the framework to problems where the learning problem admits multiple optimal solutions, showing that our modified algorithm for a structured setting achieves an $\mathcal{O}(1/\sqrt{K})$ rate. To demonstrate practical impact, we evaluate our methods on a misspecified portfolio optimization problem and show superior empirical performance compared to state-of-the-art algorithms.
☆ OptPipe: Memory- and Scheduling-Optimized Pipeline Parallelism for LLM Training
Pipeline parallelism (PP) has become a standard technique for scaling large language model (LLM) training across multiple devices. However, despite recent progress in reducing memory consumption through activation offloading, existing approaches remain largely heuristic and coarse-grained, often overlooking the fine-grained trade-offs between memory, computation, and scheduling latency. In this work, we revisit the pipeline scheduling problem from a principled optimization perspective. We observe that prevailing strategies either rely on static rules or aggressively offload activations without fully leveraging the interaction between memory constraints and scheduling efficiency. To address this, we formulate scheduling as a constrained optimization problem that jointly accounts for memory capacity, activation reuse, and pipeline bubble minimization. Solving this model yields fine-grained schedules that reduce pipeline bubbles while adhering to strict memory budgets. Our approach complements existing offloading techniques: whereas prior approaches trade memory for time in a fixed pattern, we dynamically optimize the tradeoff with respect to model structure and hardware configuration. Experimental results demonstrate that our method consistently improves both throughput and memory utilization. In particular, we reduce idle pipeline time by up to 50% under the same per-device memory limit, and in some cases, enable the training of larger models within limited memory budgets.
comment: Use Mathematical Programming to model Pipeline Parallelism with Offloading to balance efficiency and memory requirement
♻ ☆ Learning Acceleration Algorithms for Fast Parametric Convex Optimization with Certified Robustness
We develop a machine-learning framework to learn hyperparameter sequences for accelerated first-order methods (e.g., the step size and momentum sequences in accelerated gradient descent) to quickly solve parametric convex optimization problems with certified robustness. We obtain a strong form of robustness guarantee -- certification of worst-case performance over all parameters within a set after a given number of iterations -- through regularization-based training. The regularization term is derived from the performance estimation problem (PEP) framework based on semidefinite programming, in which the hyperparameters appear as problem data. We show how to use gradient-based training to learn the hyperparameters for several first-order methods: accelerated versions of gradient descent, proximal gradient descent, and alternating direction method of multipliers. Through various numerical examples from signal processing, control, and statistics, we demonstrate that the quality of the solution can be dramatically improved within a budget of iterations, while also maintaining strong robustness guarantees. Notably, our approach is highly data-efficient in that we only use ten training instances in all of the numerical examples.
♻ ☆ Data-Driven Performance Guarantees for Classical and Learned Optimizers
We introduce a data-driven approach to analyze the performance of continuous optimization algorithms using generalization guarantees from statistical learning theory. We study classical and learned optimizers to solve families of parametric optimization problems. We build generalization guarantees for classical optimizers, using a sample convergence bound, and for learned optimizers, using the Probably Approximately Correct (PAC)-Bayes framework. To train learned optimizers, we use a gradient-based algorithm to directly minimize the PAC-Bayes upper bound. Numerical experiments in signal processing, control, and meta-learning showcase the ability of our framework to provide strong generalization guarantees for both classical and learned optimizers given a fixed budget of iterations. For classical optimizers, our bounds are much tighter than those that worst-case guarantees provide. For learned optimizers, our bounds outperform the empirical outcomes observed in their non-learned counterparts.
♻ ☆ Reducing Contextual Stochastic Bilevel Optimization via Structured Function Approximation
Contextual Stochastic Bilevel Optimization (CSBO) extends standard stochastic bilevel optimization (SBO) by incorporating context-dependent lower-level problems. CSBO problems are generally intractable since existing methods require solving a distinct lower-level problem for each sampled context, resulting in prohibitive sample and computational complexity, in addition to relying on impractical conditional sampling oracles. We propose a reduction framework that approximates the lower-level solutions using expressive basis functions, thereby decoupling the lower-level dependence on context and transforming CSBO into a standard SBO problem solvable using only joint samples from the context and noise distribution. First, we show that this reduction preserves hypergradient accuracy and yields an $\epsilon$-stationary solution to CSBO. Then, we relate the sample complexity of the reduced problem to simple metrics of the basis. This establishes sufficient criteria for a basis to yield $\epsilon$-stationary solutions with a near-optimal complexity of $\widetilde{O}(\epsilon^{-3})$, matching the best-known rate for standard SBO up to logarithmic factors. Moreover, we show that Chebyshev polynomials provide a concrete and efficient choice of basis that satisfies these criteria for a broad class of problems. Empirical results on inverse and hyperparameter optimization demonstrate that our approach outperforms CSBO baselines in convergence, sample efficiency, and memory usage.
♻ ☆ Sliding Window Codes: Near-Optimality and Q-Learning for Zero-Delay Coding
We study the problem of zero-delay coding for the transmission of a Markov source over a noisy channel with feedback and present a reinforcement learning solution which is guaranteed to achieve near-optimality. To this end, we formulate the problem as a Markov decision process (MDP) where the state is a probability-measure valued predictor/belief and the actions are quantizer maps. This MDP formulation has been used to show the optimality of certain classes of encoder policies in prior work, but their computation is prohibitively complex due to the uncountable nature of the constructed state space and the lack of minorization or strong ergodicity results. These challenges invite rigorous reinforcement learning methods, which entail several open questions: can we approximate this MDP with a finite-state one with some performance guarantee? Can we ensure convergence of a reinforcement learning algorithm for this approximate MDP? What regularity assumptions are required for the above to hold? We address these questions as follows: we present an approximation of the belief MDP using a sliding finite window of channel outputs and quantizers. Under an appropriate notion of predictor stability, we show that policies based on this finite window are near-optimal, in the sense that the lowest distortion achievable by such a policy approaches the true lowest distortion as the window length increases. We give sufficient conditions for predictor stability to hold. Finally, we propose a Q-learning algorithm which provably converges to a near-optimal policy and provide a detailed comparison of~the sliding finite window scheme with another approximation scheme which quantizes the belief MDP in a nearest neighbor fashion.
♻ ☆ Causal Hamilton-Jacobi-Bellman Equations for Anticipative Stochastic Optimal Control
We consider a stochastic optimal control problem where the controller can anticipate the evolution of the driving noise over some dynamically changing time window. The controlled state dynamics are understood as a rough differential equation. We combine the martingale optimality principle with a functional form of It\^o's formula to derive a Hamilton-Jacobi-Bellman (HJB) equation for this problem. This HJB equation is formulated in terms of Dupire's functional derivatives and involves a transport equation arising from the anticipativity of the problem.
♻ ☆ Faces of homogeneous cones and applications to homogeneous chordality
A convex cone $\mathcal{K}$ is said to be homogeneous if its group of automorphisms acts transitively on its relative interior. Important examples of homogeneous cones include symmetric cones and cones of positive semidefinite (PSD) matrices that follow a sparsity pattern given by a homogeneous chordal graph. Our goal in this paper is to elucidate the facial structure of homogeneous cones and make it as transparent as the faces of the PSD matrices. We prove that each face of a homogeneous cone $\mathcal{K}$ is mapped by an automorphism of $\mathcal{K}$ to one of its finitely many so-called principal faces. Furthermore, constructing such an automorphism can be done algorithmically by making use of a generalized Cholesky decomposition. Among other consequences, we give a proof that homogeneous cones are projectionally exposed, which strengthens the previous best result that they are amenable. Using our results, we will carefully analyze the facial structure of cones of PSD matrices satisfying homogeneous chordality and discuss consequences for the corresponding family of PSD completion problems.
comment: 35 pages. Comments welcome. Added a discussion of other theoretical frameworks for homogeneous cones and added a new example showing that one of our main results may not hold for graphs that are chordal but not homogeneous chordal. Also, some minor fixes
♻ ☆ Optimization under uncertainty: understanding orders and testing programs with specifications
One of the most ubiquitous problems in optimization is that of finding all the elements of a finite set at which a function $f$ attains its minimum (or maximum). When the codomain of $f$ is equipped with a total order, it is easy to specify, implement, and verify generic solutions to this problem. But what if $f$ is affected by uncertainties? What if one seeks values that minimize more than one objective, or if $f$ does not return a single result but a set of possible results, or even a probability distribution? Such situations are common in climate science, economics, and engineering. Developing trustworthy solution methods for optimization under uncertainty requires formulating and answering these questions rigorously, including deciding which order relations to apply in different cases. We show how functional programming can support this task, and apply it to specify and test solution methods for cases where optimization is affected by two conceptually different kinds of uncertainty: value and functorial uncertainty.
♻ ☆ Quadrature rules with few nodes supported on algebraic curves
We investigate quadrature rules for measures supported on real algebraic and rational curves, focusing on the {odd-degree} case \(2s-1\). Adopting an optimization viewpoint, we minimize suitable penalty functions over the space of quadrature rules of strength \(2s-1\), so that optimal solutions yield rules with the minimal number of nodes. For plane algebraic curves of degree \(d\), we derive explicit node bounds depending on \(d\) and the number of places at infinity, improving results of Riener--Schweighofer, and Zalar. For rational curves in arbitrary dimension of degree \(d\), we further refine these bounds using the geometry of the parametrization and recover the classical Gaussian quadrature bound when \(d=1\). Our results reveal a direct link between the algebraic complexity of the supporting curve and the minimal size of quadrature formulas, providing a unified framework that connects real algebraic geometry, polynomial optimization, and moment theory.
comment: 17 pages, comments are welcome
♻ ☆ Robust MPC for Large-scale Linear Systems
State-of-the-art approaches of Robust Model Predictive Control (MPC) are restricted to linear systems of relatively small scale, i.e., with no more than about 5 states. The main reason is the computational burden of determining a robust positively invariant (RPI) set, whose complexity suffers from the curse of dimensionality. The recently proposed approach of Deadbeat Robust Model Predictive Control (DRMPC) is the first that does not rely on an RPI set. Yet it comes with the full set of essential system theoretic guarantees. DRMPC is hence a viable option, in particular, for large-scale systems. This paper introduces a detailed design procedure for DRMPC. It is shown that the optimal control problem generated for DRMPC has exactly the same computational complexity as Nominal MPC. A numerical study validates its applicability to randomly generated large-scale linear systems of various dimensions.
♻ ☆ Revisiting the convergence rate of the Lasserre hierarchy for polynomial optimization over the hypercube
We revisit the problem of minimizing a given polynomial $f$ on the hypercube $[-1,1]^n$. Lasserre's hierarchy (also known as the moment- or sum-of-squares hierarchy) provides a sequence of lower bounds $\{f_{(r)}\}_{r \in \mathbb N}$ on the minimum value $f^*$, where $r$ refers to the allowed degrees in the sum-of-squares hierarchy. A natural question is how fast the hierarchy converges as a function of the parameter $r$. The current state-of-the-art is due to Baldi and Slot [SIAM J. on Applied Algebraic Geometry, 2024] and roughly shows a convergence rate of order $1/r$. Here we obtain closely related results via a different approach: the polynomial kernel method. We also discuss limitations of the polynomial kernel method, suggesting a lower bound of order $1/r^2$ for our approach.
comment: 24 pages, 3 figures
♻ ☆ Improving Online-to-Nonconvex Conversion for Smooth Optimization via Double Optimism
A recent breakthrough in nonconvex optimization is the online-to-nonconvex conversion framework of [Cutkosky et al., 2023], which reformulates the task of finding an $\varepsilon$-first-order stationary point as an online learning problem. When both the gradient and the Hessian are Lipschitz continuous, instantiating this framework with two different online learners achieves a complexity of $O(\varepsilon^{-1.75}\log(1/\varepsilon))$ in the deterministic case and a complexity of $O(\varepsilon^{-3.5})$ in the stochastic case. However, this approach suffers from several limitations: (i) the deterministic method relies on a complex double-loop scheme that solves a fixed-point equation to construct hint vectors for an optimistic online learner, introducing an extra logarithmic factor; (ii) the stochastic method assumes a bounded second-order moment of the stochastic gradient, which is stronger than standard variance bounds; and (iii) different online learning algorithms are used in the two settings. In this paper, we address these issues by introducing an online optimistic gradient method based on a novel doubly optimistic hint function. Specifically, we use the gradient at an extrapolated point as the hint, motivated by two optimistic assumptions: that the difference between the hint and the target gradient remains near constant, and that consecutive update directions change slowly due to smoothness. Our method eliminates the need for a double loop and removes the logarithmic factor. Furthermore, by simply replacing full gradients with stochastic gradients and under the standard assumption that their variance is bounded by $\sigma^2$, we obtain a unified algorithm with complexity $O(\varepsilon^{-1.75} + \sigma^2 \varepsilon^{-3.5})$, smoothly interpolating between the best-known deterministic rate and the optimal stochastic rate.
comment: 32 pages
♻ ☆ New global Carleman estimates and null controllability for forward/backward semi-linear parabolic SPDEs
In this paper, we study the null controllability for parabolic SPDEs involving both the state and the gradient of the state. To start with, an improved global Carleman estimate for linear forward (resp. backward) parabolic SPDEs with general random coefficients and square-integrable source terms is derived. Based on this, we further develop a new global Carleman estimate for linear forward (resp. backward) parabolic SPDEs with source terms in the Sobolev space of negative order, which enables us to deal with the global null controllability for linear backward (resp. forward) parabolic SPDEs with gradient terms. As a byproduct, a special weighted energy-type estimate for the controlled system that explicitly depends on the parameters $\lambda,\mu$ and the weighted function $\theta$ is obtained, which makes it possible to extend the previous linear null controllability to semi-linear backward (resp. forward) parabolic SPDEs by applying the fixed-point argument in an appropriate Banach space.
♻ ☆ Code Generation and Conic Constraints for Model-Predictive Control on Microcontrollers with Conic-TinyMPC
Model-predictive control (MPC) is a powerful framework for controlling dynamic systems under constraints, but it remains challenging to deploy on resource-constrained platforms, especially for problems involving conic constraints. To address this, we extend recent work developing fast, structure-exploiting, cached ADMM solvers for embedded applications, to provide support for second-order cones, as well as C++ code generation from Python, MATLAB, and Julia for easy deployment. Microcontroller benchmarks show that our solver provides up to a two-order-of-magnitude speedup, ranging from 10.6x to 142.7x, over state-of-the-art embedded solvers on QP and SOCP problems, and enables us to fit order-of-magnitude larger problems in memory. We validate our solver's deployed performance through simulation and hardware experiments, including conically-constrained trajectory tracking on a 27g Crazyflie quadrotor. To get started with Conic-TinyMPC, visit our documentation, examples, and the open-source codebase at https://tinympc.org.
comment: First three authors contributed equally
♻ ☆ Machine Learning for Inverse Problems and Data Assimilation
The aim of these notes is to demonstrate the potential for ideas in machine learning to impact on the fields of inverse problems and data assimilation. The perspective is one that is primarily aimed at researchers from inverse problems and/or data assimilation who wish to see a mathematical presentation of machine learning as it pertains to their fields. As a by-product, we include a succinct mathematical treatment of various fundamental underpinning topics in machine learning, and adjacent areas of (computational) mathematics.
comment: 305 pages
♻ ☆ Distributionally Robust Optimization with Decision-Dependent Information Discovery
We study two-stage distributionally robust optimization (DRO) problems with decision-dependent information discovery (DDID) wherein (a portion of) the uncertain parameters are revealed only if an (often costly) investment is made in the first stage. This class of problems finds many important applications in selection problems (e.g., in hiring, project portfolio optimization, or optimal sensor location). Despite the wide applicability of the problem, it has not been previously studied. We propose a framework for modeling and approximately solving DRO problems with DDID. We formulate the problem as a min-max-min-max problem and adopt the popular K-adaptability approximation scheme, which chooses K candidate recourse actions here-and-now and implements the best of those actions after the uncertain parameters that were chosen to be observed are revealed. We then present a decomposition algorithm that solves the K-adaptable formulation exactly. In particular, we devise a cutting plane algorithm that iteratively solves a relaxed version of the problem, evaluates the true objective value of the corresponding solution, generates valid cuts, and imposes them in the relaxed problem. For the evaluation problem, we develop a branch-and-cut algorithm that provably converges to an optimal solution. We showcase the effectiveness of our framework on the R&D project portfolio optimization problem and the best box problem.
♻ ☆ Duality Theory on Vector Spaces
In this paper, we study the Fenchel-Rockafellar duality and the Lagrange duality in the general frame work of vector spaces without topological structures. We utilize the geometric approach, inspired from its successful application by B. S. Mordukhovich and his coauthors in variational and convex analysis. After revisiting coderivative calculus rules and providing the subdifferential maximum rule in vector spaces, we establish conjugate calculus rules under qualifying conditions through the algebraic interior of the function's domains. Then we develop sufficient conditions which guarantee the Fenchel-Rockafellar strong duality. Finally, after deriving some necessary and sufficient conditions for optimal solutions to convex minimization problems, under a Slater condition via the algebraic interior, we then obtain a sufficient condition for the Lagrange strong duality.
comment: 21 pages. arXiv admin note: text overlap with arXiv:2106.15777
♻ ☆ Nonlinear Filtering with Brenier Optimal Transport Maps
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a stochastic dynamical system given a history of noisy partial observations. Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states, due to the weight degeneracy issue. In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step. Unlike SIR particle filters, the OT formulation does not require the analytical form of the likelihood. Moreover, it allows us to harness the approximation power of neural networks to model complex and multi-modal distributions and employ stochastic optimization algorithms to enhance scalability. Extensive numerical experiments are presented that compare the OT method to the SIR particle filter and the ensemble Kalman filter, evaluating the performance in terms of sample efficiency, high-dimensional scalability, and the ability to capture complex and multi-modal distributions.
comment: 27 pages, 17 figures, 1 Table
♻ ☆ Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
♻ ☆ Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
♻ ☆ Gradient Methods with Online Scaling Part II. Practical Aspects
Part I of this work [Gao25] establishes online scaled gradient methods (OSGM), a framework that utilizes online convex optimization to adapt stepsizes in gradient methods. This paper focuses on the practical aspects of OSGM. We leverage the OSGM framework to design new adaptive first-order methods and provide insights into their empirical behavior. The resulting method, OSGM-Best, matches the performance of quasi-Newton variants while requiring less memory and cheaper iterations. We also extend OSGM to nonconvex optimization and outline directions that connect OSGM to existing branches of optimization theory and practice.
♻ ☆ Strong bounds for large-scale Minimum Sum-of-Squares Clustering
Clustering is a fundamental technique in data analysis and machine learning, used to group similar data points together. Among various clustering methods, the Minimum Sum-of-Squares Clustering (MSSC) is one of the most widely used. MSSC aims to minimize the total squared Euclidean distance between data points and their corresponding cluster centroids. Due to the unsupervised nature of clustering, achieving global optimality is crucial, yet computationally challenging. The complexity of finding the global solution increases exponentially with the number of data points, making exact methods impractical for large-scale datasets. Even obtaining strong lower bounds on the optimal MSSC objective value is computationally prohibitive, making it difficult to assess the quality of heuristic solutions. We address this challenge by introducing a novel method to validate heuristic MSSC solutions through optimality gaps. Our approach employs a divide-and-conquer strategy, decomposing the problem into smaller instances that can be handled by an exact solver. The decomposition is guided by an auxiliary optimization problem, the "anticlustering problem", for which we design an efficient heuristic. Computational experiments demonstrate the effectiveness of the method for large-scale instances, achieving optimality gaps below 3% in most cases while maintaining reasonable computational times. These results highlight the practicality of our approach in assessing feasible clustering solutions for large datasets, bridging a critical gap in MSSC evaluation.
Computer Vision and Pattern Recognition 148
☆ Pulp Motion: Framing-aware multimodal camera and human motion generation
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.
comment: Project page: https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/
☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: 20 pages, 8 figures
☆ VChain: Chain-of-Visual-Thought for Reasoning in Video Generation
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.
comment: Project page: https://eyeline-labs.github.io/VChain Code: https://github.com/Eyeline-Labs/VChain
☆ Character Mixing for Video Generation
Imagine Mr. Bean stepping into Tom and Jerry--can we generate videos where characters interact naturally across different worlds? We study inter-character interaction in text-to-video generation, where the key challenge is to preserve each character's identity and behaviors while enabling coherent cross-context interaction. This is difficult because characters may never have coexisted and because mixing styles often causes style delusion, where realistic characters appear cartoonish or vice versa. We introduce a framework that tackles these issues with Cross-Character Embedding (CCE), which learns identity and behavioral logic across multimodal sources, and Cross-Character Augmentation (CCA), which enriches training with synthetic co-existence and mixed-style data. Together, these techniques allow natural interactions between previously uncoexistent characters without losing stylistic fidelity. Experiments on a curated benchmark of cartoons and live-action series with 10 characters show clear improvements in identity preservation, interaction quality, and robustness to style delusion, enabling new forms of generative storytelling.Additional results and videos are available on our project page: https://tingtingliao.github.io/mimix/.
☆ Factuality Matters: When Image Generation and Editing Meet Structured Visuals
While modern visual generation models excel at creating aesthetically pleasing natural images, they struggle with producing or editing structured visuals like charts, diagrams, and mathematical figures, which demand composition planning, text rendering, and multimodal reasoning for factual fidelity. To address this, we present the first comprehensive, systematic investigation of this domain, encompassing data construction, model training, and an evaluation benchmark. First, we construct a large-scale dataset of 1.3 million high-quality structured image pairs derived from executable drawing programs and augmented with chain-of-thought reasoning annotations. Building on it, we train a unified model that integrates a VLM with FLUX.1 Kontext via a lightweight connector for enhanced multimodal understanding. A three-stage training curriculum enables progressive feature alignment, knowledge infusion, and reasoning-augmented generation, further boosted by an external reasoner at inference time. Finally, we introduce StructBench, a novel benchmark for generation and editing with over 1,700 challenging instances, and an accompanying evaluation metric, StructScore, which employs a multi-round Q\&A protocol to assess fine-grained factual accuracy. Evaluations of 15 models reveal that even leading closed-source systems remain far from satisfactory. Our model attains strong editing performance, and inference-time reasoning yields consistent gains across diverse architectures. By releasing the dataset, model, and benchmark, we aim to advance unified multimodal foundations for structured visuals.
comment: Project page: https://structvisuals.github.io
☆ SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.
comment: Project page at: https://ronen94.github.io/SAEdit/
☆ Neuroplastic Modular Framework: Cross-Domain Image Classification of Garbage and Industrial Surfaces
Efficient and accurate classification of waste and industrial surface defects is essential for ensuring sustainable waste management and maintaining high standards in quality control. This paper introduces the Neuroplastic Modular Classifier, a novel hybrid architecture designed for robust and adaptive image classification in dynamic environments. The model combines a ResNet-50 backbone for localized feature extraction with a Vision Transformer (ViT) to capture global semantic context. Additionally, FAISS-based similarity retrieval is incorporated to provide a memory-like reference to previously encountered data, enriching the model's feature space. A key innovation of our architecture is the neuroplastic modular design composed of expandable, learnable blocks that dynamically grow during training when performance plateaus. Inspired by biological learning systems, this mechanism allows the model to adapt to data complexity over time, improving generalization. Beyond garbage classification, we validate the model on the Kolektor Surface Defect Dataset 2 (KolektorSDD2), which involves industrial defect detection on metal surfaces. Experimental results across domains show that the proposed architecture outperforms traditional static models in both accuracy and adaptability. The Neuroplastic Modular Classifier offers a scalable, high-performance solution for real-world image classification, with strong applicability in both environmental and industrial domains.
☆ StaMo: Unsupervised Learning of Generalizable Robot Motion from Compact State Representation
A fundamental challenge in embodied intelligence is developing expressive and compact state representations for efficient world modeling and decision making. However, existing methods often fail to achieve this balance, yielding representations that are either overly redundant or lacking in task-critical information. We propose an unsupervised approach that learns a highly compressed two-token state representation using a lightweight encoder and a pre-trained Diffusion Transformer (DiT) decoder, capitalizing on its strong generative prior. Our representation is efficient, interpretable, and integrates seamlessly into existing VLA-based models, improving performance by 14.3% on LIBERO and 30% in real-world task success with minimal inference overhead. More importantly, we find that the difference between these tokens, obtained via latent interpolation, naturally serves as a highly effective latent action, which can be further decoded into executable robot actions. This emergent capability reveals that our representation captures structured dynamics without explicit supervision. We name our method StaMo for its ability to learn generalizable robotic Motion from compact State representation, which is encoded from static images, challenging the prevalent dependence to learning latent action on complex architectures and video data. The resulting latent actions also enhance policy co-training, outperforming prior methods by 10.4% with improved interpretability. Moreover, our approach scales effectively across diverse data sources, including real-world robot data, simulation, and human egocentric video.
☆ No-reference Quality Assessment of Contrast-distorted Images using Contrast-enhanced Pseudo Reference
Contrast change is an important factor that affects the quality of images. During image capturing, unfavorable lighting conditions can cause contrast change and visual quality loss. While various methods have been proposed to assess the quality of images under different distortions such as blur and noise, contrast distortion has been largely overlooked as its visual impact and properties are different from other conventional types of distortions. In this paper, we propose a no-reference image quality assessment (NR-IQA) metric for contrast-distorted images. Using a set of contrast enhancement algorithms, we aim to generate pseudo-reference images that are visually close to the actual reference image, such that the NR problem is transformed to a Full-reference (FR) assessment with higher accuracy. To this end, a large dataset of contrast-enhanced images is produced to train a classification network that can select the most suitable contrast enhancement algorithm based on image content and distortion for pseudo-reference image generation. Finally, the evaluation is performed in the FR manner to assess the quality difference between the contrast-enhanced (pseudoreference) and degraded images. Performance evaluation of the proposed method on three databases containing contrast distortions (CCID2014, TID2013, and CSIQ), indicates the promising performance of the proposed method.
Personalizing Retrieval using Joint Embeddings or "the Return of Fluffy"
The goal of this paper is to be able to retrieve images using a compound query that combines object instance information from an image, with a natural text description of what that object is doing or where it is. For example, to retrieve an image of "Fluffy the unicorn (specified by an image) on someone's head". To achieve this we design a mapping network that can "translate" from a local image embedding (of the object instance) to a text token, such that the combination of the token and a natural language query is suitable for CLIP style text encoding, and image retrieval. Generating a text token in this manner involves a simple training procedure, that only needs to be performed once for each object instance. We show that our approach of using a trainable mapping network, termed pi-map, together with frozen CLIP text and image encoders, improves the state of the art on two benchmarks designed to assess personalized retrieval.
comment: Published as an oral in CBMI2025
☆ See the past: Time-Reversed Scene Reconstruction from Thermal Traces Using Visual Language Models
Recovering the past from present observations is an intriguing challenge with potential applications in forensics and scene analysis. Thermal imaging, operating in the infrared range, provides access to otherwise invisible information. Since humans are typically warmer (37 C -98.6 F) than their surroundings, interactions such as sitting, touching, or leaning leave residual heat traces. These fading imprints serve as passive temporal codes, allowing for the inference of recent events that exceed the capabilities of RGB cameras. This work proposes a time-reversed reconstruction framework that uses paired RGB and thermal images to recover scene states from a few seconds earlier. The proposed approach couples Visual-Language Models (VLMs) with a constrained diffusion process, where one VLM generates scene descriptions and another guides image reconstruction, ensuring semantic and structural consistency. The method is evaluated in three controlled scenarios, demonstrating the feasibility of reconstructing plausible past frames up to 120 seconds earlier, providing a first step toward time-reversed imaging from thermal traces.
☆ LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .
☆ Mitigating Diffusion Model Hallucinations with Dynamic Guidance
Diffusion models, despite their impressive demos, often produce hallucinatory samples with structural inconsistencies that lie outside of the support of the true data distribution. Such hallucinations can be attributed to excessive smoothing between modes of the data distribution. However, semantic interpolations are often desirable and can lead to generation diversity, thus we believe a more nuanced solution is required. In this work, we introduce Dynamic Guidance, which tackles this issue. Dynamic Guidance mitigates hallucinations by selectively sharpening the score function only along the pre-determined directions known to cause artifacts, while preserving valid semantic variations. To our knowledge, this is the first approach that addresses hallucinations at generation time rather than through post-hoc filtering. Dynamic Guidance substantially reduces hallucinations on both controlled and natural image datasets, significantly outperforming baselines.
☆ Fine-Tuned CNN-Based Approach for Multi-Class Mango Leaf Disease Detection
Mango is an important fruit crop in South Asia, but its cultivation is frequently hampered by leaf diseases that greatly impact yield and quality. This research examines the performance of five pre-trained convolutional neural networks, DenseNet201, InceptionV3, ResNet152V2, SeResNet152, and Xception, for multi-class identification of mango leaf diseases across eight classes using a transfer learning strategy with fine-tuning. The models were assessed through standard evaluation metrics, such as accuracy, precision, recall, F1-score, and confusion matrices. Among the architectures tested, DenseNet201 delivered the best results, achieving 99.33% accuracy with consistently strong metrics for individual classes, particularly excelling in identifying Cutting Weevil and Bacterial Canker. Moreover, ResNet152V2 and SeResNet152 provided strong outcomes, whereas InceptionV3 and Xception exhibited lower performance in visually similar categories like Sooty Mould and Powdery Mildew. The training and validation plots demonstrated stable convergence for the highest-performing models. The capability of fine-tuned transfer learning models, for precise and dependable multi-class mango leaf disease detection in intelligent agricultural applications.
comment: Double column 6 pages, 10 figures, ieee conference style
☆ RegMix: Adversarial Mutual and Generalization Regularization for Enhancing DNN Robustness
Adversarial training is the most effective defense against adversarial attacks. The effectiveness of the adversarial attacks has been on the design of its loss function and regularization term. The most widely used loss function in adversarial training is cross-entropy and mean squared error (MSE) as its regularization objective. However, MSE enforces overly uniform optimization between two output distributions during training, which limits its robustness in adversarial training scenarios. To address this issue, we revisit the idea of mutual learning (originally designed for knowledge distillation) and propose two novel regularization strategies tailored for adversarial training: (i) weighted adversarial mutual regularization and (ii) adversarial generalization regularization. In the former, we formulate a decomposed adversarial mutual Kullback-Leibler divergence (KL-divergence) loss, which allows flexible control over the optimization process by assigning unequal weights to the main and auxiliary objectives. In the latter, we introduce an additional clean target distribution into the adversarial training objective, improving generalization and enhancing model robustness. Extensive experiments demonstrate that our proposed methods significantly improve adversarial robustness compared to existing regularization-based approaches.
☆ DeepAf: One-Shot Spatiospectral Auto-Focus Model for Digital Pathology
While Whole Slide Imaging (WSI) scanners remain the gold standard for digitizing pathology samples, their high cost limits accessibility in many healthcare settings. Other low-cost solutions also face critical limitations: automated microscopes struggle with consistent focus across varying tissue morphology, traditional auto-focus methods require time-consuming focal stacks, and existing deep-learning approaches either need multiple input images or lack generalization capability across tissue types and staining protocols. We introduce a novel automated microscopic system powered by DeepAf, a novel auto-focus framework that uniquely combines spatial and spectral features through a hybrid architecture for single-shot focus prediction. The proposed network automatically regresses the distance to the optimal focal point using the extracted spatiospectral features and adjusts the control parameters for optimal image outcomes. Our system transforms conventional microscopes into efficient slide scanners, reducing focusing time by 80% compared to stack-based methods while achieving focus accuracy of 0.18 {\mu}m on the same-lab samples, matching the performance of dual-image methods (0.19 {\mu}m) with half the input requirements. DeepAf demonstrates robust cross-lab generalization with only 0.72% false focus predictions and 90% of predictions within the depth of field. Through an extensive clinical study of 536 brain tissue samples, our system achieves 0.90 AUC in cancer classification at 4x magnification, a significant achievement at lower magnification than typical 20x WSI scans. This results in a comprehensive hardware-software design enabling accessible, real-time digital pathology in resource-constrained settings while maintaining diagnostic accuracy.
☆ SkinMap: Weighted Full-Body Skin Segmentation for Robust Remote Photoplethysmography
Remote photoplethysmography (rPPG) is an innovative method for monitoring heart rate and vital signs by using a simple camera to record a person, as long as any part of their skin is visible. This low-cost, contactless approach helps in remote patient monitoring, emotion analysis, smart vehicle utilization, and more. Over the years, various techniques have been proposed to improve the accuracy of this technology, especially given its sensitivity to lighting and movement. In the unsupervised pipeline, it is necessary to first select skin regions from the video to extract the rPPG signal from the skin color changes. We introduce a novel skin segmentation technique that prioritizes skin regions to enhance the quality of the extracted signal. It can detect areas of skin all over the body, making it more resistant to movement, while removing areas such as the mouth, eyes, and hair that may cause interference. Our model is evaluated on publicly available datasets, and we also present a new dataset, called SYNC-rPPG, to better represent real-world conditions. The results indicate that our model demonstrates a prior ability to capture heartbeats in challenging conditions, such as talking and head rotation, and maintain the mean absolute error (MAE) between predicted and actual heart rates, while other methods fail to do so. In addition, we demonstrate high accuracy in detecting a diverse range of skin tones, making this technique a promising option for real-world applications.
☆ Beyond Monolithic Rewards: A Hybrid and Multi-Aspect Reward Optimization for MLLM Alignment
Aligning multimodal large language models (MLLMs) with human preferences often relies on single-signal, model-based reward methods. Such monolithic rewards often lack confidence calibration across domain-specific tasks, fail to capture diverse aspects of human preferences, and require extensive data annotation and reward model training. In this work, we propose a hybrid reward modeling framework that integrates complementary reward paradigms: (i) model-based rewards, where a learned reward model predicts scalar or vector scores from synthetic and human feedback, and (ii) rule-based rewards, where domain-specific heuristics provide explicit correctness signals with confidence. Beyond accuracy, we further incorporate multi-aspect rewards to enforce instruction adherence and introduce a generalized length-penalty reward to stabilize training and improve performance. The proposed framework provides a flexible and effective approach to aligning MLLMs through reinforcement learning policy optimization. Our experiments show consistent improvements across different multimodal benchmarks when applying hybrid and multi-aspect reward modeling. Our best performing model in the 3B family achieves an overall average improvement of ~9.5% across general and math reasoning tasks. Focusing specifically on mathematical benchmarks, the model achieves a significant average improvement of ~16%, highlighting its effectiveness in mathematical reasoning and problem solving.
☆ Attention-Enhanced Prototypical Learning for Few-Shot Infrastructure Defect Segmentation
Few-shot semantic segmentation is vital for deep learning-based infrastructure inspection applications, where labeled training examples are scarce and expensive. Although existing deep learning frameworks perform well, the need for extensive labeled datasets and the inability to learn new defect categories with little data are problematic. We present our Enhanced Feature Pyramid Network (E-FPN) framework for few-shot semantic segmentation of culvert and sewer defect categories using a prototypical learning framework. Our approach has three main contributions: (1) adaptive E-FPN encoder using InceptionSepConv blocks and depth-wise separable convolutions for efficient multi-scale feature extraction; (2) prototypical learning with masked average pooling for powerful prototype generation from small support examples; and (3) attention-based feature representation through global self-attention, local self-attention and cross-attention. Comprehensive experimentation on challenging infrastructure inspection datasets illustrates that the method achieves excellent few-shot performance, with the best configuration being 8-way 5-shot training configuration at 82.55% F1-score and 72.26% mIoU in 2-way classification testing. The self-attention method had the most significant performance improvements, providing 2.57% F1-score and 2.9% mIoU gain over baselines. Our framework addresses the critical need to rapidly respond to new defect types in infrastructure inspection systems with limited new training data that lead to more efficient and economical maintenance plans for critical infrastructure systems.
☆ SegMASt3R: Geometry Grounded Segment Matching NeurIPS 2025
Segment matching is an important intermediate task in computer vision that establishes correspondences between semantically or geometrically coherent regions across images. Unlike keypoint matching, which focuses on localized features, segment matching captures structured regions, offering greater robustness to occlusions, lighting variations, and viewpoint changes. In this paper, we leverage the spatial understanding of 3D foundation models to tackle wide-baseline segment matching, a challenging setting involving extreme viewpoint shifts. We propose an architecture that uses the inductive bias of these 3D foundation models to match segments across image pairs with up to 180 degree view-point change. Extensive experiments show that our approach outperforms state-of-the-art methods, including the SAM2 video propagator and local feature matching methods, by upto 30% on the AUPRC metric, on ScanNet++ and Replica datasets. We further demonstrate benefits of the proposed model on relevant downstream tasks, including 3D instance segmentation and image-goal navigation. Project Page: https://segmast3r.github.io/
comment: Accepted to The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025) as a Spotlight (top 3.5%)
☆ Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training
comment: The 1st version
☆ Exploring the Efficacy of Modified Transfer Learning in Identifying Parkinson's Disease Through Drawn Image Patterns
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by the death of dopaminergic neurons, leading to various movement disorder symptoms. Early diagnosis of PD is crucial to prevent adverse effects, yet traditional diagnostic methods are often cumbersome and costly. In this study, a machine learning-based approach is proposed using hand-drawn spiral and wave images as potential biomarkers for PD detection. Our methodology leverages convolutional neural networks (CNNs), transfer learning, and attention mechanisms to improve model performance and resilience against overfitting. To enhance the diversity and richness of both spiral and wave categories, the training dataset undergoes augmentation to increase the number of images. The proposed architecture comprises three phases: utilizing pre-trained CNNs, incorporating custom convolutional layers, and ensemble voting. Employing hard voting further enhances performance by aggregating predictions from multiple models. Experimental results show promising accuracy rates. For spiral images, weighted average precision, recall, and F1-score are 90%, and for wave images, they are 96.67%. After combining the predictions through ensemble hard voting, the overall accuracy is 93.3%. These findings underscore the potential of machine learning in early PD diagnosis, offering a non-invasive and cost-effective solution to improve patient outcomes.
comment: 5 pages, 11 figures, published on 2024 2nd International Conference on Information and Communication Technology (ICICT 2024)
☆ Latent Uncertainty Representations for Video-based Driver Action and Intention Recognition
Deep neural networks (DNNs) are increasingly applied to safety-critical tasks in resource-constrained environments, such as video-based driver action and intention recognition. While last layer probabilistic deep learning (LL-PDL) methods can detect out-of-distribution (OOD) instances, their performance varies. As an alternative to last layer approaches, we propose extending pre-trained DNNs with transformation layers to produce multiple latent representations to estimate the uncertainty. We evaluate our latent uncertainty representation (LUR) and repulsively trained LUR (RLUR) approaches against eight PDL methods across four video-based driver action and intention recognition datasets, comparing classification performance, calibration, and uncertainty-based OOD detection. We also contribute 28,000 frame-level action labels and 1,194 video-level intention labels for the NuScenes dataset. Our results show that LUR and RLUR achieve comparable in-distribution classification performance to other LL-PDL approaches. For uncertainty-based OOD detection, LUR matches top-performing PDL methods while being more efficient to train and easier to tune than approaches that require Markov-Chain Monte Carlo sampling or repulsive training procedures.
comment: 16 pages, 8 figures, 7 tables, under submission
☆ Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
☆ ActiveMark: on watermarking of visual foundation models via massive activations
Being trained on large and vast datasets, visual foundation models (VFMs) can be fine-tuned for diverse downstream tasks, achieving remarkable performance and efficiency in various computer vision applications. The high computation cost of data collection and training motivates the owners of some VFMs to distribute them alongside the license to protect their intellectual property rights. However, a dishonest user of the protected model's copy may illegally redistribute it, for example, to make a profit. As a consequence, the development of reliable ownership verification tools is of great importance today, since such methods can be used to differentiate between a redistributed copy of the protected model and an independent model. In this paper, we propose an approach to ownership verification of visual foundation models by fine-tuning a small set of expressive layers of a VFM along with a small encoder-decoder network to embed digital watermarks into an internal representation of a hold-out set of input images. Importantly, the watermarks embedded remain detectable in the functional copies of the protected model, obtained, for example, by fine-tuning the VFM for a particular downstream task. Theoretically and experimentally, we demonstrate that the proposed method yields a low probability of false detection of a non-watermarked model and a low probability of false misdetection of a watermarked model.
☆ SSDD: Single-Step Diffusion Decoder for Efficient Image Tokenization
Tokenizers are a key component of state-of-the-art generative image models, extracting the most important features from the signal while reducing data dimension and redundancy. Most current tokenizers are based on KL-regularized variational autoencoders (KL-VAE), trained with reconstruction, perceptual and adversarial losses. Diffusion decoders have been proposed as a more principled alternative to model the distribution over images conditioned on the latent. However, matching the performance of KL-VAE still requires adversarial losses, as well as a higher decoding time due to iterative sampling. To address these limitations, we introduce a new pixel diffusion decoder architecture for improved scaling and training stability, benefiting from transformer components and GAN-free training. We use distillation to replicate the performance of the diffusion decoder in an efficient single-step decoder. This makes SSDD the first diffusion decoder optimized for single-step reconstruction trained without adversarial losses, reaching higher reconstruction quality and faster sampling than KL-VAE. In particular, SSDD improves reconstruction FID from $0.87$ to $0.50$ with $1.4\times$ higher throughput and preserve generation quality of DiTs with $3.8\times$ faster sampling. As such, SSDD can be used as a drop-in replacement for KL-VAE, and for building higher-quality and faster generative models.
☆ Bidirectional Mammogram View Translation with Column-Aware and Implicit 3D Conditional Diffusion
Dual-view mammography, including craniocaudal (CC) and mediolateral oblique (MLO) projections, offers complementary anatomical views crucial for breast cancer diagnosis. However, in real-world clinical workflows, one view may be missing, corrupted, or degraded due to acquisition errors or compression artifacts, limiting the effectiveness of downstream analysis. View-to-view translation can help recover missing views and improve lesion alignment. Unlike natural images, this task in mammography is highly challenging due to large non-rigid deformations and severe tissue overlap in X-ray projections, which obscure pixel-level correspondences. In this paper, we propose Column-Aware and Implicit 3D Diffusion (CA3D-Diff), a novel bidirectional mammogram view translation framework based on conditional diffusion model. To address cross-view structural misalignment, we first design a column-aware cross-attention mechanism that leverages the geometric property that anatomically corresponding regions tend to lie in similar column positions across views. A Gaussian-decayed bias is applied to emphasize local column-wise correlations while suppressing distant mismatches. Furthermore, we introduce an implicit 3D structure reconstruction module that back-projects noisy 2D latents into a coarse 3D feature volume based on breast-view projection geometry. The reconstructed 3D structure is refined and injected into the denoising UNet to guide cross-view generation with enhanced anatomical awareness. Extensive experiments demonstrate that CA3D-Diff achieves superior performance in bidirectional tasks, outperforming state-of-the-art methods in visual fidelity and structural consistency. Furthermore, the synthesized views effectively improve single-view malignancy classification in screening settings, demonstrating the practical value of our method in real-world diagnostics.
comment: BIBM2025 accept, 8 pages, 4 figures
☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
Unsupervised Active Learning via Natural Feature Progressive Framework
The effectiveness of modern deep learning models is predicated on the availability of large-scale, human-annotated datasets, a process that is notoriously expensive and time-consuming. While Active Learning (AL) offers a strategic solution by labeling only the most informative and representative data, its iterative nature still necessitates significant human involvement. Unsupervised Active Learning (UAL) presents an alternative by shifting the annotation burden to a single, post-selection step. Unfortunately, prevailing UAL methods struggle to achieve state-of-the-art performance. These approaches typically rely on local, gradient-based scoring for sample importance estimation, which not only makes them vulnerable to ambiguous and noisy data but also hinders their capacity to select samples that adequately represent the full data distribution. Moreover, their use of shallow, one-shot linear selection falls short of a true UAL paradigm. In this paper, we propose the Natural Feature Progressive Framework (NFPF), a UAL method that revolutionizes how sample importance is measured. At its core, NFPF employs a Specific Feature Learning Machine (SFLM) to effectively quantify each sample's contribution to model performance. We further utilize the SFLM to define a powerful Reconstruction Difference metric for initial sample selection. Our comprehensive experiments show that NFPF significantly outperforms all established UAL methods and achieves performance on par with supervised AL methods on vision datasets. Detailed ablation studies and qualitative visualizations provide compelling evidence for NFPF's superior performance, enhanced robustness, and improved data distribution coverage.
comment: Under review at IEEE TPAMI
☆ REN: Anatomically-Informed Mixture-of-Experts for Interstitial Lung Disease Diagnosis
Mixture-of-Experts (MoE) architectures have significantly contributed to scalable machine learning by enabling specialized subnetworks to tackle complex tasks efficiently. However, traditional MoE systems lack domain-specific constraints essential for medical imaging, where anatomical structure and regional disease heterogeneity strongly influence pathological patterns. Here, we introduce Regional Expert Networks (REN), the first anatomically-informed MoE framework tailored specifically for medical image classification. REN leverages anatomical priors to train seven specialized experts, each dedicated to distinct lung lobes and bilateral lung combinations, enabling precise modeling of region-specific pathological variations. Multi-modal gating mechanisms dynamically integrate radiomics biomarkers and deep learning (DL) features (CNN, ViT, Mamba) to weight expert contributions optimally. Applied to interstitial lung disease (ILD) classification, REN achieves consistently superior performance: the radiomics-guided ensemble reached an average AUC of 0.8646 +/- 0.0467, a +12.5 percent improvement over the SwinUNETR baseline (AUC 0.7685, p = 0.031). Region-specific experts further revealed that lower-lobe models achieved AUCs of 0.88-0.90, surpassing DL counterparts (CNN: 0.76-0.79) and aligning with known disease progression patterns. Through rigorous patient-level cross-validation, REN demonstrates strong generalizability and clinical interpretability, presenting a scalable, anatomically-guided approach readily extensible to other structured medical imaging applications.
comment: 10 pages, 4 figures, 2 tables
☆ A Semantics-Aware Hierarchical Self-Supervised Approach to Classification of Remote Sensing Images
Deep learning has become increasingly important in remote sensing image classification due to its ability to extract semantic information from complex data. Classification tasks often include predefined label hierarchies that represent the semantic relationships among classes. However, these hierarchies are frequently overlooked, and most approaches focus only on fine-grained classification schemes. In this paper, we present a novel Semantics-Aware Hierarchical Consensus (SAHC) method for learning hierarchical features and relationships by integrating hierarchy-specific classification heads within a deep network architecture, each specialized in different degrees of class granularity. The proposed approach employs trainable hierarchy matrices, which guide the network through the learning of the hierarchical structure in a self-supervised manner. Furthermore, we introduce a hierarchical consensus mechanism to ensure consistent probability distributions across different hierarchical levels. This mechanism acts as a weighted ensemble being able to effectively leverage the inherent structure of the hierarchical classification task. The proposed SAHC method is evaluated on three benchmark datasets with different degrees of hierarchical complexity on different tasks, using distinct backbone architectures to effectively emphasize its adaptability. Experimental results show both the effectiveness of the proposed approach in guiding network learning and the robustness of the hierarchical consensus for remote sensing image classification tasks.
comment: 12 pages, 6 figures
☆ Comparative Analysis of YOLOv5, Faster R-CNN, SSD, and RetinaNet for Motorbike Detection in Kigali Autonomous Driving Context
In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
comment: 3 figures, 2 tables
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ BenthiCat: An opti-acoustic dataset for advancing benthic classification and habitat mapping
Benthic habitat mapping is fundamental for understanding marine ecosystems, guiding conservation efforts, and supporting sustainable resource management. Yet, the scarcity of large, annotated datasets limits the development and benchmarking of machine learning models in this domain. This paper introduces a thorough multi-modal dataset, comprising about a million side-scan sonar (SSS) tiles collected along the coast of Catalonia (Spain), complemented by bathymetric maps and a set of co-registered optical images from targeted surveys using an autonomous underwater vehicle (AUV). Approximately \num{36000} of the SSS tiles have been manually annotated with segmentation masks to enable supervised fine-tuning of classification models. All the raw sensor data, together with mosaics, are also released to support further exploration and algorithm development. To address challenges in multi-sensor data fusion for AUVs, we spatially associate optical images with corresponding SSS tiles, facilitating self-supervised, cross-modal representation learning. Accompanying open-source preprocessing and annotation tools are provided to enhance accessibility and encourage research. This resource aims to establish a standardized benchmark for underwater habitat mapping, promoting advancements in autonomous seafloor classification and multi-sensor integration.
comment: Article under review by IJRR
☆ In-Field Mapping of Grape Yield and Quality with Illumination-Invariant Deep Learning
This paper presents an end-to-end, IoT-enabled robotic system for the non-destructive, real-time, and spatially-resolved mapping of grape yield and quality (Brix, Acidity) in vineyards. The system features a comprehensive analytical pipeline that integrates two key modules: a high-performance model for grape bunch detection and weight estimation, and a novel deep learning framework for quality assessment from hyperspectral (HSI) data. A critical barrier to in-field HSI is the ``domain shift" caused by variable illumination. To overcome this, our quality assessment is powered by the Light-Invariant Spectral Autoencoder (LISA), a domain-adversarial framework that learns illumination-invariant features from uncalibrated data. We validated the system's robustness on a purpose-built HSI dataset spanning three distinct illumination domains: controlled artificial lighting (lab), and variable natural sunlight captured in the morning and afternoon. Results show the complete pipeline achieves a recall (0.82) for bunch detection and a $R^2$ (0.76) for weight prediction, while the LISA module improves quality prediction generalization by over 20% compared to the baselines. By combining these robust modules, the system successfully generates high-resolution, georeferenced data of both grape yield and quality, providing actionable, data-driven insights for precision viticulture.
comment: Accepted manuscript for the IEEE Internet of Things Journal. The final version will be available on IEEE Xplore. \c{opyright} 2025 IEEE
☆ μDeepIQA: deep learning-based fast and robust image quality assessment with local predictions for optical microscopy
Optical microscopy is one of the most widely used techniques in research studies for life sciences and biomedicine. These applications require reliable experimental pipelines to extract valuable knowledge from the measured samples and must be supported by image quality assessment (IQA) to ensure correct processing and analysis of the image data. IQA methods are implemented with variable complexity. However, while most quality metrics have a straightforward implementation, they might be time consuming and computationally expensive when evaluating a large dataset. In addition, quality metrics are often designed for well-defined image features and may be unstable for images out of the ideal domain. To overcome these limitations, recent works have proposed deep learning-based IQA methods, which can provide superior performance, increased generalizability and fast prediction. Our method, named $\mathrm{\mu}$DeepIQA, is inspired by previous studies and applies a deep convolutional neural network designed for IQA on natural images to optical microscopy measurements. We retrained the same architecture to predict individual quality metrics and global quality scores for optical microscopy data. The resulting models provide fast and stable predictions of image quality by generalizing quality estimation even outside the ideal range of standard methods. In addition, $\mathrm{\mu}$DeepIQA provides patch-wise prediction of image quality and can be used to visualize spatially varying quality in a single image. Our study demonstrates that optical microscopy-based studies can benefit from the generalizability of deep learning models due to their stable performance in the presence of outliers, the ability to assess small image patches, and rapid predictions.
comment: 16 pages, 6 figures. \mu DeepIQA is publicly available at https://git.photonicdata.science/elena.corbetta/udeepiqa
☆ ERDE: Entropy-Regularized Distillation for Early-exit
Although deep neural networks and in particular Convolutional Neural Networks have demonstrated state-of-the-art performance in image classification with relatively high efficiency, they still exhibit high computational costs, often rendering them impractical for real-time and edge applications. Therefore, a multitude of compression techniques have been developed to reduce these costs while maintaining accuracy. In addition, dynamic architectures have been introduced to modulate the level of compression at execution time, which is a desirable property in many resource-limited application scenarios. The proposed method effectively integrates two well-established optimization techniques: early exits and knowledge distillation, where a reduced student early-exit model is trained from a more complex teacher early-exit model. The primary contribution of this research lies in the approach for training the student early-exit model. In comparison to the conventional Knowledge Distillation loss, our approach incorporates a new entropy-based loss for images where the teacher's classification was incorrect. The proposed method optimizes the trade-off between accuracy and efficiency, thereby achieving significant reductions in computational complexity without compromising classification performance. The validity of this approach is substantiated by experimental results on image classification datasets CIFAR10, CIFAR100 and SVHN, which further opens new research perspectives for Knowledge Distillation in other contexts.
☆ Read the Room: Inferring Social Context Through Dyadic Interaction Recognition in Cyber-physical-social Infrastructure Systems SC
Cyber-physical systems (CPS) integrate sensing, computing, and control to improve infrastructure performance, focusing on economic goals like performance and safety. However, they often neglect potential human-centered (or ''social'') benefits. Cyber-physical-social infrastructure systems (CPSIS) aim to address this by aligning CPS with social objectives. This involves defining social benefits, understanding human interactions with each other and infrastructure, developing privacy-preserving measurement methods, modeling these interactions for prediction, linking them to social benefits, and actuating the physical environment to foster positive social outcomes. This paper delves into recognizing dyadic human interactions using real-world data, which is the backbone to measuring social behavior. This lays a foundation to address the need to enhance understanding of the deeper meanings and mutual responses inherent in human interactions. While RGB cameras are informative for interaction recognition, privacy concerns arise. Depth sensors offer a privacy-conscious alternative by analyzing skeletal movements. This study compares five skeleton-based interaction recognition algorithms on a dataset of 12 dyadic interactions. Unlike single-person datasets, these interactions, categorized into communication types like emblems and affect displays, offer insights into the cultural and emotional aspects of human interactions.
comment: ASCE International Conference on Computing in Civil Engineering 2024
☆ From Actions to Kinesics: Extracting Human Psychological States through Bodily Movements
Understanding the dynamic relationship between humans and the built environment is a key challenge in disciplines ranging from environmental psychology to reinforcement learning (RL). A central obstacle in modeling these interactions is the inability to capture human psychological states in a way that is both generalizable and privacy preserving. Traditional methods rely on theoretical models or questionnaires, which are limited in scope, static, and labor intensive. We present a kinesics recognition framework that infers the communicative functions of human activity -- known as kinesics -- directly from 3D skeleton joint data. Combining a spatial-temporal graph convolutional network (ST-GCN) with a convolutional neural network (CNN), the framework leverages transfer learning to bypass the need for manually defined mappings between physical actions and psychological categories. The approach preserves user anonymity while uncovering latent structures in bodily movements that reflect cognitive and emotional states. Our results on the Dyadic User EngagemenT (DUET) dataset demonstrate that this method enables scalable, accurate, and human-centered modeling of behavior, offering a new pathway for enhancing RL-driven simulations of human-environment interaction.
comment: The 15th International Workshop on Structural Health Monitoring (IWSHM)
☆ Detailed Aerial Mapping of Photovoltaic Power Plants Through Semantically Significant Keypoints
An accurate and up-to-date model of a photovoltaic (PV) power plant is essential for its optimal operation and maintenance. However, such a model may not be easily available. This work introduces a novel approach for PV power plant mapping based on aerial overview images. It enables the automation of the mapping process while removing the reliance on third-party data. The presented mapping method takes advantage of the structural layout of the power plants to achieve detailed modeling down to the level of individual PV modules. The approach relies on visual segmentation of PV modules in overview images and the inference of structural information in each image, assigning modules to individual benches, rows, and columns. We identify visual keypoints related to the layout and use these to merge detections from multiple images while maintaining their structural integrity. The presented method was experimentally verified and evaluated on two different power plants. The final fusion of 3D positions and semantic structures results in a compact georeferenced model suitable for power plant maintenance.
comment: 10 pages, 18 figures
☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
☆ Flow Matching for Conditional MRI-CT and CBCT-CT Image Synthesis
Generating synthetic CT (sCT) from MRI or CBCT plays a crucial role in enabling MRI-only and CBCT-based adaptive radiotherapy, improving treatment precision while reducing patient radiation exposure. To address this task, we adopt a fully 3D Flow Matching (FM) framework, motivated by recent work demonstrating FM's efficiency in producing high-quality images. In our approach, a Gaussian noise volume is transformed into an sCT image by integrating a learned FM velocity field, conditioned on features extracted from the input MRI or CBCT using a lightweight 3D encoder. We evaluated the method on the SynthRAD2025 Challenge benchmark, training separate models for MRI $\rightarrow$ sCT and CBCT $\rightarrow$ sCT across three anatomical regions: abdomen, head and neck, and thorax. Validation and testing were performed through the challenge submission system. The results indicate that the method accurately reconstructs global anatomical structures; however, preservation of fine details was limited, primarily due to the relatively low training resolution imposed by memory and runtime constraints. Future work will explore patch-based training and latent-space flow models to improve resolution and local structural fidelity.
☆ AvatarVTON: 4D Virtual Try-On for Animatable Avatars
We propose AvatarVTON, the first 4D virtual try-on framework that generates realistic try-on results from a single in-shop garment image, enabling free pose control, novel-view rendering, and diverse garment choices. Unlike existing methods, AvatarVTON supports dynamic garment interactions under single-view supervision, without relying on multi-view garment captures or physics priors. The framework consists of two key modules: (1) a Reciprocal Flow Rectifier, a prior-free optical-flow correction strategy that stabilizes avatar fitting and ensures temporal coherence; and (2) a Non-Linear Deformer, which decomposes Gaussian maps into view-pose-invariant and view-pose-specific components, enabling adaptive, non-linear garment deformations. To establish a benchmark for 4D virtual try-on, we extend existing baselines with unified modules for fair qualitative and quantitative comparisons. Extensive experiments show that AvatarVTON achieves high fidelity, diversity, and dynamic garment realism, making it well-suited for AR/VR, gaming, and digital-human applications.
☆ Visual Representations inside the Language Model
Despite interpretability work analyzing VIT encoders and transformer activations, we don't yet understand why Multimodal Language Models (MLMs) struggle on perception-heavy tasks. We offer an under-studied perspective by examining how popular MLMs (LLaVA-OneVision, Qwen2.5-VL, and Llama-3-LLaVA-NeXT) process their visual key-value tokens. We first study the flow of visual information through the language model, finding that image value tokens encode sufficient information to perform several perception-heavy tasks zero-shot: segmentation, semantic correspondence, temporal correspondence, and referring expression detection. We find that while the language model does augment the visual information received from the projection of input visual encodings-which we reveal correlates with overall MLM perception capability-it contains less visual information on several tasks than the equivalent visual encoder (SigLIP) that has not undergone MLM finetuning. Further, we find that the visual information corresponding to input-agnostic image key tokens in later layers of language models contains artifacts which reduce perception capability of the overall MLM. Next, we discuss controlling visual information in the language model, showing that adding a text prefix to the image input improves perception capabilities of visual representations. Finally, we reveal that if language models were able to better control their visual information, their perception would significantly improve; e.g., in 33.3% of Art Style questions in the BLINK benchmark, perception information present in the language model is not surfaced to the output! Our findings reveal insights into the role of key-value tokens in multimodal systems, paving the way for deeper mechanistic interpretability of MLMs and suggesting new directions for training their visual encoder and language model components.
comment: Accepted to COLM 2025
☆ Did you just see that? Arbitrary view synthesis for egocentric replay of operating room workflows from ambient sensors
Observing surgical practice has historically relied on fixed vantage points or recollections, leaving the egocentric visual perspectives that guide clinical decisions undocumented. Fixed-camera video can capture surgical workflows at the room-scale, but cannot reconstruct what each team member actually saw. Thus, these videos only provide limited insights into how decisions that affect surgical safety, training, and workflow optimization are made. Here we introduce EgoSurg, the first framework to reconstruct the dynamic, egocentric replays for any operating room (OR) staff directly from wall-mounted fixed-camera video, and thus, without intervention to clinical workflow. EgoSurg couples geometry-driven neural rendering with diffusion-based view enhancement, enabling high-visual fidelity synthesis of arbitrary and egocentric viewpoints at any moment. In evaluation across multi-site surgical cases and controlled studies, EgoSurg reconstructs person-specific visual fields and arbitrary viewpoints with high visual quality and fidelity. By transforming existing OR camera infrastructure into a navigable dynamic 3D record, EgoSurg establishes a new foundation for immersive surgical data science, enabling surgical practice to be visualized, experienced, and analyzed from every angle.
☆ A Comparative Study of Vision Transformers and CNNs for Few-Shot Rigid Transformation and Fundamental Matrix Estimation
Vision-transformers (ViTs) and large-scale convolution-neural-networks (CNNs) have reshaped computer vision through pretrained feature representations that enable strong transfer learning for diverse tasks. However, their efficiency as backbone architectures for geometric estimation tasks involving image deformations in low-data regimes remains an open question. This work considers two such tasks: 1) estimating 2D rigid transformations between pairs of images and 2) predicting the fundamental matrix for stereo image pairs, an important problem in various applications, such as autonomous mobility, robotics, and 3D scene reconstruction. Addressing this intriguing question, this work systematically compares large-scale CNNs (ResNet, EfficientNet, CLIP-ResNet) with ViT-based foundation models (CLIP-ViT variants and DINO) in various data size settings, including few-shot scenarios. These pretrained models are optimized for classification or contrastive learning, encouraging them to focus mostly on high-level semantics. The considered tasks require balancing local and global features differently, challenging the straightforward adoption of these models as the backbone. Empirical comparative analysis shows that, similar to training from scratch, ViTs outperform CNNs during refinement in large downstream-data scenarios. However, in small data scenarios, the inductive bias and smaller capacity of CNNs improve their performance, allowing them to match that of a ViT. Moreover, ViTs exhibit stronger generalization in cross-domain evaluation where the data distribution changes. These results emphasize the importance of carefully selecting model architectures for refinement, motivating future research towards hybrid architectures that balance local and global representations.
☆ Hands-Free Heritage: Automated 3D Scanning for Cultural Heritage Digitization
High-fidelity 3D scanning is essential for preserving cultural heritage artefacts, supporting documentation, analysis, and long-term conservation. However, conventional methods typically require specialized expertise and manual intervention to maintain optimal scanning conditions and coverage. We present an automated two-robot scanning system that eliminates the need for handheld or semi-automatic workflows by combining coordinated robotic manipulation with high-resolution 3D scanning. Our system parameterizes the scanning space into distinct regions, enabling coordinated motion planning between a scanner-equipped robot and a tray-handling robot. Optimized trajectory planning and waypoint distribution ensure comprehensive surface coverage, minimize occlusions, and balance reconstruction accuracy with system efficiency. Experimental results show that our approach achieves significantly lower Chamfer Distance and higher F-score compared to baseline methods, offering superior geometric accuracy, improved digitization efficiency, and reduced reliance on expert operators.
comment: 9 pages
☆ Federated Learning for Surgical Vision in Appendicitis Classification: Results of the FedSurg EndoVis 2024 Challenge
Purpose: The FedSurg challenge was designed to benchmark the state of the art in federated learning for surgical video classification. Its goal was to assess how well current methods generalize to unseen clinical centers and adapt through local fine-tuning while enabling collaborative model development without sharing patient data. Methods: Participants developed strategies to classify inflammation stages in appendicitis using a preliminary version of the multi-center Appendix300 video dataset. The challenge evaluated two tasks: generalization to an unseen center and center-specific adaptation after fine-tuning. Submitted approaches included foundation models with linear probing, metric learning with triplet loss, and various FL aggregation schemes (FedAvg, FedMedian, FedSAM). Performance was assessed using F1-score and Expected Cost, with ranking robustness evaluated via bootstrapping and statistical testing. Results: In the generalization task, performance across centers was limited. In the adaptation task, all teams improved after fine-tuning, though ranking stability was low. The ViViT-based submission achieved the strongest overall performance. The challenge highlighted limitations in generalization, sensitivity to class imbalance, and difficulties in hyperparameter tuning in decentralized training, while spatiotemporal modeling and context-aware preprocessing emerged as promising strategies. Conclusion: The FedSurg Challenge establishes the first benchmark for evaluating FL strategies in surgical video classification. Findings highlight the trade-off between local personalization and global robustness, and underscore the importance of architecture choice, preprocessing, and loss design. This benchmarking offers a reference point for future development of imbalance-aware, adaptive, and robust FL methods in clinical surgical AI.
comment: A challenge report pre-print (31 pages), including 7 tables and 8 figures
Beyond the Seen: Bounded Distribution Estimation for Open-Vocabulary Learning
Open-vocabulary learning requires modeling the data distribution in open environments, which consists of both seen-class and unseen-class data. Existing methods estimate the distribution in open environments using seen-class data, where the absence of unseen classes makes the estimation error inherently unidentifiable. Intuitively, learning beyond the seen classes is crucial for distribution estimation to bound the estimation error. We theoretically demonstrate that the distribution can be effectively estimated by generating unseen-class data, through which the estimation error is upper-bounded. Building on this theoretical insight, we propose a novel open-vocabulary learning method, which generates unseen-class data for estimating the distribution in open environments. The method consists of a class-domain-wise data generation pipeline and a distribution alignment algorithm. The data generation pipeline generates unseen-class data under the guidance of a hierarchical semantic tree and domain information inferred from the seen-class data, facilitating accurate distribution estimation. With the generated data, the distribution alignment algorithm estimates and maximizes the posterior probability to enhance generalization in open-vocabulary learning. Extensive experiments on $11$ datasets demonstrate that our method outperforms baseline approaches by up to $14\%$, highlighting its effectiveness and superiority.
☆ Progressive Gaussian Transformer with Anisotropy-aware Sampling for Open Vocabulary Occupancy Prediction
The 3D occupancy prediction task has witnessed remarkable progress in recent years, playing a crucial role in vision-based autonomous driving systems. While traditional methods are limited to fixed semantic categories, recent approaches have moved towards predicting text-aligned features to enable open-vocabulary text queries in real-world scenes. However, there exists a trade-off in text-aligned scene modeling: sparse Gaussian representation struggles to capture small objects in the scene, while dense representation incurs significant computational overhead. To address these limitations, we present PG-Occ, an innovative Progressive Gaussian Transformer Framework that enables open-vocabulary 3D occupancy prediction. Our framework employs progressive online densification, a feed-forward strategy that gradually enhances the 3D Gaussian representation to capture fine-grained scene details. By iteratively enhancing the representation, the framework achieves increasingly precise and detailed scene understanding. Another key contribution is the introduction of an anisotropy-aware sampling strategy with spatio-temporal fusion, which adaptively assigns receptive fields to Gaussians at different scales and stages, enabling more effective feature aggregation and richer scene information capture. Through extensive evaluations, we demonstrate that PG-Occ achieves state-of-the-art performance with a relative 14.3% mIoU improvement over the previous best performing method. Code and pretrained models will be released upon publication on our project page: https://yanchi-3dv.github.io/PG-Occ
comment: Project Page: https://yanchi-3dv.github.io/PG-Occ
☆ Beyond Appearance: Transformer-based Person Identification from Conversational Dynamics
This paper investigates the performance of transformer-based architectures for person identification in natural, face-to-face conversation scenario. We implement and evaluate a two-stream framework that separately models spatial configurations and temporal motion patterns of 133 COCO WholeBody keypoints, extracted from a subset of the CANDOR conversational corpus. Our experiments compare pre-trained and from-scratch training, investigate the use of velocity features, and introduce a multi-scale temporal transformer for hierarchical motion modeling. Results demonstrate that domain-specific training significantly outperforms transfer learning, and that spatial configurations carry more discriminative information than temporal dynamics. The spatial transformer achieves 95.74% accuracy, while the multi-scale temporal transformer achieves 93.90%. Feature-level fusion pushes performance to 98.03%, confirming that postural and dynamic information are complementary. These findings highlight the potential of transformer architectures for person identification in natural interactions and provide insights for future multimodal and cross-cultural studies.
☆ Anomaly-Aware YOLO: A Frugal yet Robust Approach to Infrared Small Target Detection
Infrared Small Target Detection (IRSTD) is a challenging task in defense applications, where complex backgrounds and tiny target sizes often result in numerous false alarms using conventional object detectors. To overcome this limitation, we propose Anomaly-Aware YOLO (AA-YOLO), which integrates a statistical anomaly detection test into its detection head. By treating small targets as unexpected patterns against the background, AA-YOLO effectively controls the false alarm rate. Our approach not only achieves competitive performance on several IRSTD benchmarks, but also demonstrates remarkable robustness in scenarios with limited training data, noise, and domain shifts. Furthermore, since only the detection head is modified, our design is highly generic and has been successfully applied across various YOLO backbones, including lightweight models. It also provides promising results when integrated into an instance segmentation YOLO. This versatility makes AA-YOLO an attractive solution for real-world deployments where resources are constrained. The code will be publicly released.
☆ ExposureEngine: Oriented Logo Detection and Sponsor Visibility Analytics in Sports Broadcasts
Quantifying sponsor visibility in sports broadcasts is a critical marketing task traditionally hindered by manual, subjective, and unscalable analysis methods. While automated systems offer an alternative, their reliance on axis-aligned Horizontal Bounding Box (HBB) leads to inaccurate exposuremetrics when logos appear rotated or skewed due to dynamic camera angles and perspective distortions. This paper introduces ExposureEngine, an end-to-end system designed for accurate, rotation-aware sponsor visibility analytics in sports broadcasts, demonstrated in a soccer case study. Our approach predicts Oriented Bounding Box (OBB) to provide a geometrically precise fit to each logo regardless of the orientation on-screen. To train and evaluate our detector, we developed a new dataset comprising 1,103 frames from Swedish elite soccer, featuring 670 unique sponsor logos annotated with OBBs. Our model achieves a mean Average Precision (mAP@0.5) of 0.859, with a precision of 0.96 and recall of 0.87, demonstrating robust performance in localizing logos under diverse broadcast conditions. The system integrates these detections into an analytical pipeline that calculates precise visibility metrics, such as exposure duration and on-screen coverage. Furthermore, we incorporate a language-driven agentic layer, enabling users to generate reports, summaries, and media content through natural language queries. The complete system, including the dataset and the analytics dashboard, provides a comprehensive solution for auditable and interpretable sponsor measurement in sports media. An overview of the ExposureEngine is available online: https://youtu.be/tRw6OBISuW4 .
comment: This work has been submitted to the IEEE for possible publication
Benchmark on Monocular Metric Depth Estimation in Wildlife Setting
Camera traps are widely used for wildlife monitoring, but extracting accurate distance measurements from monocular images remains challenging due to the lack of depth information. While monocular depth estimation (MDE) methods have advanced significantly, their performance in natural wildlife environments has not been systematically evaluated. This work introduces the first benchmark for monocular metric depth estimation in wildlife monitoring conditions. We evaluate four state-of-the-art MDE methods (Depth Anything V2, ML Depth Pro, ZoeDepth, and Metric3D) alongside a geometric baseline on 93 camera trap images with ground truth distances obtained using calibrated ChARUCO patterns. Our results demonstrate that Depth Anything V2 achieves the best overall performance with a mean absolute error of 0.454m and correlation of 0.962, while methods like ZoeDepth show significant degradation in outdoor natural environments (MAE: 3.087m). We find that median-based depth extraction consistently outperforms mean-based approaches across all deep learning methods. Additionally, we analyze computational efficiency, with ZoeDepth being fastest (0.17s per image) but least accurate, while Depth Anything V2 provides an optimal balance of accuracy and speed (0.22s per image). This benchmark establishes performance baselines for wildlife applications and provides practical guidance for implementing depth estimation in conservation monitoring systems.
☆ Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction NeurIPS 2025
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.
comment: Accepted by NeurIPS 2025. Code: https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes
☆ ReactDiff: Fundamental Multiple Appropriate Facial Reaction Diffusion Model
The automatic generation of diverse and human-like facial reactions in dyadic dialogue remains a critical challenge for human-computer interaction systems. Existing methods fail to model the stochasticity and dynamics inherent in real human reactions. To address this, we propose ReactDiff, a novel temporal diffusion framework for generating diverse facial reactions that are appropriate for responding to any given dialogue context. Our key insight is that plausible human reactions demonstrate smoothness, and coherence over time, and conform to constraints imposed by human facial anatomy. To achieve this, ReactDiff incorporates two vital priors (spatio-temporal facial kinematics) into the diffusion process: i) temporal facial behavioral kinematics and ii) facial action unit dependencies. These two constraints guide the model toward realistic human reaction manifolds, avoiding visually unrealistic jitters, unstable transitions, unnatural expressions, and other artifacts. Extensive experiments on the REACT2024 dataset demonstrate that our approach not only achieves state-of-the-art reaction quality but also excels in diversity and reaction appropriateness.
comment: Accepted to ACM Multimedia
☆ ID-Consistent, Precise Expression Generation with Blendshape-Guided Diffusion ICCV
Human-centric generative models designed for AI-driven storytelling must bring together two core capabilities: identity consistency and precise control over human performance. While recent diffusion-based approaches have made significant progress in maintaining facial identity, achieving fine-grained expression control without compromising identity remains challenging. In this work, we present a diffusion-based framework that faithfully reimagines any subject under any particular facial expression. Building on an ID-consistent face foundation model, we adopt a compositional design featuring an expression cross-attention module guided by FLAME blendshape parameters for explicit control. Trained on a diverse mixture of image and video data rich in expressive variation, our adapter generalizes beyond basic emotions to subtle micro-expressions and expressive transitions, overlooked by prior works. In addition, a pluggable Reference Adapter enables expression editing in real images by transferring the appearance from a reference frame during synthesis. Extensive quantitative and qualitative evaluations show that our model outperforms existing methods in tailored and identity-consistent expression generation. Code and models can be found at https://github.com/foivospar/Arc2Face.
comment: ICCVW 2025, Code: https://github.com/foivospar/Arc2Face
☆ Label-Efficient Cross-Modality Generalization for Liver Segmentation in Multi-Phase MRI
Accurate liver segmentation in multi-phase MRI is vital for liver fibrosis assessment, yet labeled data is often scarce and unevenly distributed across imaging modalities and vendor systems. We propose a label-efficient segmentation approach that promotes cross-modality generalization under real-world conditions, where GED4 hepatobiliary-phase annotations are limited, non-contrast sequences (T1WI, T2WI, DWI) are unlabeled, and spatial misalignment and missing phases are common. Our method integrates a foundation-scale 3D segmentation backbone adapted via fine-tuning, co-training with cross pseudo supervision to leverage unlabeled volumes, and a standardized preprocessing pipeline. Without requiring spatial registration, the model learns to generalize across MRI phases and vendors, demonstrating robust segmentation performance in both labeled and unlabeled domains. Our results exhibit the effectiveness of our proposed label-efficient baseline for liver segmentation in multi-phase, multi-vendor MRI and highlight the potential of combining foundation model adaptation with co-training for real-world clinical imaging tasks.
comment: 11 pages, 3 figures
☆ Watch and Learn: Learning to Use Computers from Online Videos
Computer use agents (CUAs) need to plan task workflows grounded in diverse, ever-changing applications and environments, but learning is hindered by the scarcity of large-scale, high-quality training data in the target application. Existing datasets are domain-specific, static, and costly to annotate, while current synthetic data generation methods often yield simplistic or misaligned task demonstrations. To address these limitations, we introduce Watch & Learn (W&L), a framework that converts human demonstration videos readily available on the Internet into executable UI trajectories at scale. Instead of directly generating trajectories or relying on ad hoc reasoning heuristics, we cast the problem as an inverse dynamics objective: predicting the user's action from consecutive screen states. This formulation reduces manual engineering, is easier to learn, and generalizes more robustly across applications. Concretely, we develop an inverse dynamics labeling pipeline with task-aware video retrieval, generate over 53k high-quality trajectories from raw web videos, and demonstrate that these trajectories improve CUAs both as in-context demonstrations and as supervised training data. On the challenging OSWorld benchmark, UI trajectories extracted with W&L consistently enhance both general-purpose and state-of-the-art frameworks in-context, and deliver stronger gains for open-source models under supervised training. These results highlight web-scale human demonstration videos as a practical and scalable foundation for advancing CUAs towards real-world deployment.
☆ ConceptSplit: Decoupled Multi-Concept Personalization of Diffusion Models via Token-wise Adaptation and Attention Disentanglement ICCV 2025
In recent years, multi-concept personalization for text-to-image (T2I) diffusion models to represent several subjects in an image has gained much more attention. The main challenge of this task is "concept mixing", where multiple learned concepts interfere or blend undesirably in the output image. To address this issue, in this paper, we present ConceptSplit, a novel framework to split the individual concepts through training and inference. Our framework comprises two key components. First, we introduce Token-wise Value Adaptation (ToVA), a merging-free training method that focuses exclusively on adapting the value projection in cross-attention. Based on our empirical analysis, we found that modifying the key projection, a common approach in existing methods, can disrupt the attention mechanism and lead to concept mixing. Second, we propose Latent Optimization for Disentangled Attention (LODA), which alleviates attention entanglement during inference by optimizing the input latent. Through extensive qualitative and quantitative experiments, we demonstrate that ConceptSplit achieves robust multi-concept personalization, mitigating unintended concept interference. Code is available at https://github.com/KU-VGI/ConceptSplit
comment: 14 pages, 13 figures, to be published in ICCV 2025
☆ EduPersona: Benchmarking Subjective Ability Boundaries of Virtual Student Agents
As large language models are increasingly integrated into education, virtual student agents are becoming vital for classroom simulation and teacher training. Yet their classroom-oriented subjective abilities remain largely unassessed, limiting understanding of model boundaries and hindering trustworthy deployment. We present EduPersona, a large-scale benchmark spanning two languages, three subjects, and ten persona types based on the Big Five theory. The dataset contains 1,308 authentic classroom dialogue rounds, corresponding to 12,814 teacher-student Q&A turns, and is further expanded through persona stylization into roughly 10 times larger scale (128k turns), providing a solid foundation for evaluation. Building on this resource, we decompose hard-to-quantify subjective performance into three progressive tasks: TASK1 basic coherence (whether behavior, emotion, expression, and voice align with classroom context), TASK2 student realism, and TASK3 long-term persona consistency, thereby establishing an evaluation framework grounded in educational theory and research value. We conduct systematic experiments on three representative LLMs, comparing their original versions with ten persona-fine-tuned variants trained on EduPersona. Results show consistent and significant average improvements across all tasks: TASK1 +33.6%, TASK2 +30.6%, and TASK3 +14.9%. These improvements highlight the dataset's effectiveness and research value, while also revealing the heterogeneous difficulty of persona modeling. In summary, EduPersona delivers the first classroom benchmark centered on subjective abilities, establishes a decoupled and verifiable research paradigm, and we will open-source both the dataset and the framework to support the broader research community in advancing trustworthy and human-like AI for education.
comment: Preprint, Under review
☆ Do Superpixel Segmentation Methods Influence Deforestation Image Classification?
Image segmentation is a crucial step in various visual applications, including environmental monitoring through remote sensing. In the context of the ForestEyes project, which combines citizen science and machine learning to detect deforestation in tropical forests, image segments are used for labeling by volunteers and subsequent model training. Traditionally, the Simple Linear Iterative Clustering (SLIC) algorithm is adopted as the segmentation method. However, recent studies have indicated that other superpixel-based methods outperform SLIC in remote sensing image segmentation, and might suggest that they are more suitable for the task of detecting deforested areas. In this sense, this study investigated the impact of the four best segmentation methods, together with SLIC, on the training of classifiers for the target application. Initially, the results showed little variation in performance among segmentation methods, even when selecting the top five classifiers using the PyCaret AutoML library. However, by applying a classifier fusion approach (ensemble of classifiers), noticeable improvements in balanced accuracy were observed, highlighting the importance of both the choice of segmentation method and the combination of machine learning-based models for deforestation detection tasks.
comment: 15 pages, 3 figures, paper accepted to present at CIARP 2025
☆ Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents SIGGRAPH
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.
comment: SIGGRAPH ASIA 2025 (Conference Track); Project page: https://pku-mocca.github.io/Social-Agent-Page/
☆ SFANet: Spatial-Frequency Attention Network for Deepfake Detection
Detecting manipulated media has now become a pressing issue with the recent rise of deepfakes. Most existing approaches fail to generalize across diverse datasets and generation techniques. We thus propose a novel ensemble framework, combining the strengths of transformer-based architectures, such as Swin Transformers and ViTs, and texture-based methods, to achieve better detection accuracy and robustness. Our method introduces innovative data-splitting, sequential training, frequency splitting, patch-based attention, and face segmentation techniques to handle dataset imbalances, enhance high-impact regions (e.g., eyes and mouth), and improve generalization. Our model achieves state-of-the-art performance when tested on the DFWild-Cup dataset, a diverse subset of eight deepfake datasets. The ensemble benefits from the complementarity of these approaches, with transformers excelling in global feature extraction and texturebased methods providing interpretability. This work demonstrates that hybrid models can effectively address the evolving challenges of deepfake detection, offering a robust solution for real-world applications.
☆ A Spatial-Spectral-Frequency Interactive Network for Multimodal Remote Sensing Classification
Deep learning-based methods have achieved significant success in remote sensing Earth observation data analysis. Numerous feature fusion techniques address multimodal remote sensing image classification by integrating global and local features. However, these techniques often struggle to extract structural and detail features from heterogeneous and redundant multimodal images. With the goal of introducing frequency domain learning to model key and sparse detail features, this paper introduces the spatial-spectral-frequency interaction network (S$^2$Fin), which integrates pairwise fusion modules across the spatial, spectral, and frequency domains. Specifically, we propose a high-frequency sparse enhancement transformer that employs sparse spatial-spectral attention to optimize the parameters of the high-frequency filter. Subsequently, a two-level spatial-frequency fusion strategy is introduced, comprising an adaptive frequency channel module that fuses low-frequency structures with enhanced high-frequency details, and a high-frequency resonance mask that emphasizes sharp edges via phase similarity. In addition, a spatial-spectral attention fusion module further enhances feature extraction at intermediate layers of the network. Experiments on four benchmark multimodal datasets with limited labeled data demonstrate that S$^2$Fin performs superior classification, outperforming state-of-the-art methods. The code is available at https://github.com/HaoLiu-XDU/SSFin.
☆ Pathology-CoT: Learning Visual Chain-of-Thought Agent from Expert Whole Slide Image Diagnosis Behavior
Diagnosing a whole-slide image is an interactive, multi-stage process involving changes in magnification and movement between fields. Although recent pathology foundation models are strong, practical agentic systems that decide what field to examine next, adjust magnification, and deliver explainable diagnoses are still lacking. The blocker is data: scalable, clinically aligned supervision of expert viewing behavior that is tacit and experience-based, not written in textbooks or online, and therefore absent from large language model training. We introduce the AI Session Recorder, which works with standard WSI viewers to unobtrusively record routine navigation and convert the viewer logs into standardized behavioral commands (inspect or peek at discrete magnifications) and bounding boxes. A lightweight human-in-the-loop review turns AI-drafted rationales into the Pathology-CoT dataset, a form of paired "where to look" and "why it matters" supervision produced at roughly six times lower labeling time. Using this behavioral data, we build Pathologist-o3, a two-stage agent that first proposes regions of interest and then performs behavior-guided reasoning. On gastrointestinal lymph-node metastasis detection, it achieved 84.5% precision, 100.0% recall, and 75.4% accuracy, exceeding the state-of-the-art OpenAI o3 model and generalizing across backbones. To our knowledge, this constitutes one of the first behavior-grounded agentic systems in pathology. Turning everyday viewer logs into scalable, expert-validated supervision, our framework makes agentic pathology practical and establishes a path to human-aligned, upgradeable clinical AI.
☆ SONA: Learning Conditional, Unconditional, and Mismatching-Aware Discriminator
Deep generative models have made significant advances in generating complex content, yet conditional generation remains a fundamental challenge. Existing conditional generative adversarial networks often struggle to balance the dual objectives of assessing authenticity and conditional alignment of input samples within their conditional discriminators. To address this, we propose a novel discriminator design that integrates three key capabilities: unconditional discrimination, matching-aware supervision to enhance alignment sensitivity, and adaptive weighting to dynamically balance all objectives. Specifically, we introduce Sum of Naturalness and Alignment (SONA), which employs separate projections for naturalness (authenticity) and alignment in the final layer with an inductive bias, supported by dedicated objective functions and an adaptive weighting mechanism. Extensive experiments on class-conditional generation tasks show that \ours achieves superior sample quality and conditional alignment compared to state-of-the-art methods. Furthermore, we demonstrate its effectiveness in text-to-image generation, confirming the versatility and robustness of our approach.
comment: 24 pages with 9 figures
☆ Conditional Representation Learning for Customized Tasks
Conventional representation learning methods learn a universal representation that primarily captures dominant semantics, which may not always align with customized downstream tasks. For instance, in animal habitat analysis, researchers prioritize scene-related features, whereas universal embeddings emphasize categorical semantics, leading to suboptimal results. As a solution, existing approaches resort to supervised fine-tuning, which however incurs high computational and annotation costs. In this paper, we propose Conditional Representation Learning (CRL), aiming to extract representations tailored to arbitrary user-specified criteria. Specifically, we reveal that the semantics of a space are determined by its basis, thereby enabling a set of descriptive words to approximate the basis for a customized feature space. Building upon this insight, given a user-specified criterion, CRL first employs a large language model (LLM) to generate descriptive texts to construct the semantic basis, then projects the image representation into this conditional feature space leveraging a vision-language model (VLM). The conditional representation better captures semantics for the specific criterion, which could be utilized for multiple customized tasks. Extensive experiments on classification and retrieval tasks demonstrate the superiority and generality of the proposed CRL. The code is available at https://github.com/XLearning-SCU/2025-NeurIPS-CRL.
☆ Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.
☆ Post-training quantization of vision encoders needs prefixing registers
Transformer-based vision encoders -- such as CLIP -- are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Post-training quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose $\textit{RegCache}$, a training-free algorithm to mitigate outliers in vision encoders, enabling quantization with significantly smaller accuracy drops. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.
☆ C3Editor: Achieving Controllable Consistency in 2D Model for 3D Editing
Existing 2D-lifting-based 3D editing methods often encounter challenges related to inconsistency, stemming from the lack of view-consistent 2D editing models and the difficulty of ensuring consistent editing across multiple views. To address these issues, we propose C3Editor, a controllable and consistent 2D-lifting-based 3D editing framework. Given an original 3D representation and a text-based editing prompt, our method selectively establishes a view-consistent 2D editing model to achieve superior 3D editing results. The process begins with the controlled selection of a ground truth (GT) view and its corresponding edited image as the optimization target, allowing for user-defined manual edits. Next, we fine-tune the 2D editing model within the GT view and across multiple views to align with the GT-edited image while ensuring multi-view consistency. To meet the distinct requirements of GT view fitting and multi-view consistency, we introduce separate LoRA modules for targeted fine-tuning. Our approach delivers more consistent and controllable 2D and 3D editing results than existing 2D-lifting-based methods, outperforming them in both qualitative and quantitative evaluations.
☆ 3Dify: a Framework for Procedural 3D-CG Generation Assisted by LLMs Using MCP and RAG
This paper proposes "3Dify," a procedural 3D computer graphics (3D-CG) generation framework utilizing Large Language Models (LLMs). The framework enables users to generate 3D-CG content solely through natural language instructions. 3Dify is built upon Dify, an open-source platform for AI application development, and incorporates several state-of-the-art LLM-related technologies such as the Model Context Protocol (MCP) and Retrieval-Augmented Generation (RAG). For 3D-CG generation support, 3Dify automates the operation of various Digital Content Creation (DCC) tools via MCP. When DCC tools do not support MCP-based interaction, the framework employs the Computer-Using Agent (CUA) method to automate Graphical User Interface (GUI) operations. Moreover, to enhance image generation quality, 3Dify allows users to provide feedback by selecting preferred images from multiple candidates. The LLM then learns variable patterns from these selections and applies them to subsequent generations. Furthermore, 3Dify supports the integration of locally deployed LLMs, enabling users to utilize custom-developed models and to reduce both time and monetary costs associated with external API calls by leveraging their own computational resources.
☆ TAG:Tangential Amplifying Guidance for Hallucination-Resistant Diffusion Sampling
Recent diffusion models achieve the state-of-the-art performance in image generation, but often suffer from semantic inconsistencies or hallucinations. While various inference-time guidance methods can enhance generation, they often operate indirectly by relying on external signals or architectural modifications, which introduces additional computational overhead. In this paper, we propose Tangential Amplifying Guidance (TAG), a more efficient and direct guidance method that operates solely on trajectory signals without modifying the underlying diffusion model. TAG leverages an intermediate sample as a projection basis and amplifies the tangential components of the estimated scores with respect to this basis to correct the sampling trajectory. We formalize this guidance process by leveraging a first-order Taylor expansion, which demonstrates that amplifying the tangential component steers the state toward higher-probability regions, thereby reducing inconsistencies and enhancing sample quality. TAG is a plug-and-play, architecture-agnostic module that improves diffusion sampling fidelity with minimal computational addition, offering a new perspective on diffusion guidance.
comment: 16 pages, 9 figures, 5 tables
☆ ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering
Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts, those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieve the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.
comment: 53 pages, 12 figures, 15 tables
☆ Real-time Prediction of Urban Sound Propagation with Conditioned Normalizing Flows
Accurate and fast urban noise prediction is pivotal for public health and for regulatory workflows in cities, where the Environmental Noise Directive mandates regular strategic noise maps and action plans, often needed in permission workflows, right-of-way allocation, and construction scheduling. Physics-based solvers are too slow for such time-critical, iterative "what-if" studies. We evaluate conditional Normalizing Flows (Full-Glow) for generating for generating standards-compliant urban sound-pressure maps from 2D urban layouts in real time per 256x256 map on a single RTX 4090), enabling interactive exploration directly on commodity hardware. On datasets covering Baseline, Diffraction, and Reflection regimes, our model accelerates map generation by >2000 times over a reference solver while improving NLoS accuracy by up to 24% versus prior deep models; in Baseline NLoS we reach 0.65 dB MAE with high structural fidelity. The model reproduces diffraction and interference patterns and supports instant recomputation under source or geometry changes, making it a practical engine for urban planning, compliance mapping, and operations (e.g., temporary road closures, night-work variance assessments).
☆ Asynchronous Denoising Diffusion Models for Aligning Text-to-Image Generation
Diffusion models have achieved impressive results in generating high-quality images. Yet, they often struggle to faithfully align the generated images with the input prompts. This limitation arises from synchronous denoising, where all pixels simultaneously evolve from random noise to clear images. As a result, during generation, the prompt-related regions can only reference the unrelated regions at the same noise level, failing to obtain clear context and ultimately impairing text-to-image alignment. To address this issue, we propose asynchronous diffusion models -- a novel framework that allocates distinct timesteps to different pixels and reformulates the pixel-wise denoising process. By dynamically modulating the timestep schedules of individual pixels, prompt-related regions are denoised more gradually than unrelated regions, thereby allowing them to leverage clearer inter-pixel context. Consequently, these prompt-related regions achieve better alignment in the final images. Extensive experiments demonstrate that our asynchronous diffusion models can significantly improve text-to-image alignment across diverse prompts. The code repository for this work is available at https://github.com/hu-zijing/AsynDM.
comment: 22 pages, 11 figures, 5 tables
☆ TBStar-Edit: From Image Editing Pattern Shifting to Consistency Enhancement
Recent advances in image generation and editing technologies have enabled state-of-the-art models to achieve impressive results in general domains. However, when applied to e-commerce scenarios, these general models often encounter consistency limitations. To address this challenge, we introduce TBStar-Edit, an new image editing model tailored for the e-commerce domain. Through rigorous data engineering, model architecture design and training strategy, TBStar-Edit achieves precise and high-fidelity image editing while maintaining the integrity of product appearance and layout. Specifically, for data engineering, we establish a comprehensive data construction pipeline, encompassing data collection, construction, filtering, and augmentation, to acquire high-quality, instruction-following, and strongly consistent editing data to support model training. For model architecture design, we design a hierarchical model framework consisting of a base model, pattern shifting modules, and consistency enhancement modules. For model training, we adopt a two-stage training strategy to enhance the consistency preservation: first stage for editing pattern shifting, and second stage for consistency enhancement. Each stage involves training different modules with separate datasets. Finally, we conduct extensive evaluations of TBStar-Edit on a self-proposed e-commerce benchmark, and the results demonstrate that TBStar-Edit outperforms existing general-domain editing models in both objective metrics (VIE Score) and subjective user preference.
☆ VaseVQA-3D: Benchmarking 3D VLMs on Ancient Greek Pottery
Vision-Language Models (VLMs) have achieved significant progress in multimodal understanding tasks, demonstrating strong capabilities particularly in general tasks such as image captioning and visual reasoning. However, when dealing with specialized cultural heritage domains like 3D vase artifacts, existing models face severe data scarcity issues and insufficient domain knowledge limitations. Due to the lack of targeted training data, current VLMs struggle to effectively handle such culturally significant specialized tasks. To address these challenges, we propose the VaseVQA-3D dataset, which serves as the first 3D visual question answering dataset for ancient Greek pottery analysis, collecting 664 ancient Greek vase 3D models with corresponding question-answer data and establishing a complete data construction pipeline. We further develop the VaseVLM model, enhancing model performance in vase artifact analysis through domain-adaptive training. Experimental results validate the effectiveness of our approach, where we improve by 12.8% on R@1 metrics and by 6.6% on lexical similarity compared with previous state-of-the-art on the VaseVQA-3D dataset, significantly improving the recognition and understanding of 3D vase artifacts, providing new technical pathways for digital heritage preservation research.
☆ MedCLM: Learning to Localize and Reason via a CoT-Curriculum in Medical Vision-Language Models
Bridging clinical diagnostic reasoning with AI remains a central challenge in medical imaging. We introduce MedCLM, an automated pipeline that converts detection datasets into large-scale medical visual question answering (VQA) data with Chain-of-Thought (CoT) reasoning by linking lesion boxes to organ segmentation and structured rationales. These contextual signals enable medical vision-language models to generate question-answer pairs with step-by-step reasoning. To utilize this data effectively, we propose an Integrated CoT-Curriculum Strategy composed of an Easy stage with explicit lesion boxes for visual grounding, a Medium stage that encourages implicit localization, and a Hard stage for weakly supervised reasoning. Experimental results demonstrate that MedCLM attains state-of-the-art performance on several medical VQA benchmarks, providing a scalable framework for developing clinically aligned medical vision-language models.
☆ SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_\alpha$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.
☆ REAR: Rethinking Visual Autoregressive Models via Generator-Tokenizer Consistency Regularization
Visual autoregressive (AR) generation offers a promising path toward unifying vision and language models, yet its performance remains suboptimal against diffusion models. Prior work often attributes this gap to tokenizer limitations and rasterization ordering. In this work, we identify a core bottleneck from the perspective of generator-tokenizer inconsistency, i.e., the AR-generated tokens may not be well-decoded by the tokenizer. To address this, we propose reAR, a simple training strategy introducing a token-wise regularization objective: when predicting the next token, the causal transformer is also trained to recover the visual embedding of the current token and predict the embedding of the target token under a noisy context. It requires no changes to the tokenizer, generation order, inference pipeline, or external models. Despite its simplicity, reAR substantially improves performance. On ImageNet, it reduces gFID from 3.02 to 1.86 and improves IS to 316.9 using a standard rasterization-based tokenizer. When applied to advanced tokenizers, it achieves a gFID of 1.42 with only 177M parameters, matching the performance with larger state-of-the-art diffusion models (675M).
comment: 27 pages, 23 figures, 5 tables
☆ A.I.R.: Enabling Adaptive, Iterative, and Reasoning-based Frame Selection For Video Question Answering
Effectively applying Vision-Language Models (VLMs) to Video Question Answering (VideoQA) hinges on selecting a concise yet comprehensive set of frames, as processing entire videos is computationally infeasible. However, current frame selection methods face a critical trade-off: approaches relying on lightweight similarity models, such as CLIP, often fail to capture the nuances of complex queries, resulting in inaccurate similarity scores that cannot reflect the authentic query-frame relevance, which further undermines frame selection. Meanwhile, methods that leverage a VLM for deeper analysis achieve higher accuracy but incur prohibitive computational costs. To address these limitations, we propose A.I.R., a training-free approach for Adaptive, Iterative, and Reasoning-based frame selection. We leverage a powerful VLM to perform deep, semantic analysis on complex queries, and this analysis is deployed within a cost-effective iterative loop that processes only a small batch of the most high-potential frames at a time. Extensive experiments on various VideoQA benchmarks demonstrate that our approach outperforms existing frame selection methods, significantly boosts the performance of the foundation VLM, and achieves substantial gains in computational efficiency over other VLM-based techniques.
☆ Partial Information Decomposition via Normalizing Flows in Latent Gaussian Distributions NeurIPS 2025
The study of multimodality has garnered significant interest in fields where the analysis of interactions among multiple information sources can enhance predictive modeling, data fusion, and interpretability. Partial information decomposition (PID) has emerged as a useful information-theoretic framework to quantify the degree to which individual modalities independently, redundantly, or synergistically convey information about a target variable. However, existing PID methods depend on optimizing over a joint distribution constrained by estimated pairwise probability distributions, which are costly and inaccurate for continuous and high-dimensional modalities. Our first key insight is that the problem can be solved efficiently when the pairwise distributions are multivariate Gaussians, and we refer to this problem as Gaussian PID (GPID). We propose a new gradient-based algorithm that substantially improves the computational efficiency of GPID based on an alternative formulation of the underlying optimization problem. To generalize the applicability to non-Gaussian data, we learn information-preserving encoders to transform random variables of arbitrary input distributions into pairwise Gaussian random variables. Along the way, we resolved an open problem regarding the optimality of joint Gaussian solutions for GPID. Empirical validation in diverse synthetic examples demonstrates that our proposed method provides more accurate and efficient PID estimates than existing baselines. We further evaluate a series of large-scale multimodal benchmarks to show its utility in real-world applications of quantifying PID in multimodal datasets and selecting high-performing models.
comment: NeurIPS 2025
☆ CodeFormer++: Blind Face Restoration Using Deformable Registration and Deep Metric Learning
Blind face restoration (BFR) has attracted increasing attention with the rise of generative methods. Most existing approaches integrate generative priors into the restoration pro- cess, aiming to jointly address facial detail generation and identity preservation. However, these methods often suffer from a trade-off between visual quality and identity fidelity, leading to either identity distortion or suboptimal degradation removal. In this paper, we present CodeFormer++, a novel framework that maximizes the utility of generative priors for high-quality face restoration while preserving identity. We decompose BFR into three sub-tasks: (i) identity- preserving face restoration, (ii) high-quality face generation, and (iii) dynamic fusion of identity features with realistic texture details. Our method makes three key contributions: (1) a learning-based deformable face registration module that semantically aligns generated and restored faces; (2) a texture guided restoration network to dynamically extract and transfer the texture of generated face to boost the quality of identity-preserving restored face; and (3) the integration of deep metric learning for BFR with the generation of informative positive and hard negative samples to better fuse identity- preserving and generative features. Extensive experiments on real-world and synthetic datasets demonstrate that, the pro- posed CodeFormer++ achieves superior performance in terms of both visual fidelity and identity consistency.
☆ Your Vision-Language Model Can't Even Count to 20: Exposing the Failures of VLMs in Compositional Counting
Vision-Language Models (VLMs) have become a central focus of today's AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, VLMCountBench, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color, size, and prompt refinement in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.
♻ ☆ Conformal Prediction for Long-Tailed Classification
Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we introduce a new conformal score function called prevalence-adjusted softmax that targets macro-coverage, a relaxed notion of class-conditional coverage. Second, we propose a new procedure that interpolates between marginal and class-conditional conformal prediction by linearly interpolating their conformal score thresholds. We demonstrate our methods on Pl@ntNet-300K and iNaturalist-2018, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
♻ ☆ The Telephone Game: Evaluating Semantic Drift in Unified Models
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models
♻ ☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
♻ ☆ Deep Learning Approaches with Explainable AI for Differentiating Alzheimer Disease and Mild Cognitive Impairment
Early and accurate diagnosis of Alzheimer Disease is critical for effective clinical intervention, particularly in distinguishing it from Mild Cognitive Impairment, a prodromal stage marked by subtle structural changes. In this study, we propose a hybrid deep learning ensemble framework for Alzheimer Disease classification using structural magnetic resonance imaging. Gray and white matter slices are used as inputs to three pretrained convolutional neural networks such as ResNet50, NASNet, and MobileNet, each fine tuned through an end to end process. To further enhance performance, we incorporate a stacked ensemble learning strategy with a meta learner and weighted averaging to optimally combine the base models. Evaluated on the Alzheimer Disease Neuroimaging Initiative dataset, the proposed method achieves state of the art accuracy of 99.21% for Alzheimer Disease vs. Mild Cognitive Impairment and 91.0% for Mild Cognitive Impairment vs. Normal Controls, outperforming conventional transfer learning and baseline ensemble methods. To improve interpretability in image based diagnostics, we integrate Explainable AI techniques by Gradient weighted Class Activation, which generates heatmaps and attribution maps that highlight critical regions in gray and white matter slices, revealing structural biomarkers that influence model decisions. These results highlight the frameworks potential for robust and scalable clinical decision support in neurodegenerative disease diagnostics.
comment: 18 pages, 4 figures
♻ ☆ Optimal Transport for Brain-Image Alignment: Unveiling Redundancy and Synergy in Neural Information Processing
The design of artificial neural networks (ANNs) is inspired by the structure of the human brain, and in turn, ANNs offer a potential means to interpret and understand brain signals. Existing methods primarily align brain signals with stimulus signals using Mean Squared Error (MSE), which focuses only on local point-wise alignment and ignores global matching, leading to coarse interpretations and inaccuracies in brain signal decoding. In this paper, we address these issues through optimal transport (OT) and theoretically demonstrate why OT provides a more effective alignment strategy than MSE. Specifically, we construct a transport plan between brain voxel embeddings and image embeddings, enabling more precise matching. By controlling the amount of transport, we mitigate the influence of redundant information. We apply our alignment model directly to the Brain Captioning task by feeding brain signals into a large language model (LLM) instead of images. Our approach achieves state-of-the-art performance across ten evaluation metrics, surpassing the previous best method by an average of 6.11\% in single-subject training and 3.81\% in cross-subject training. Additionally, we have uncovered several insightful conclusions that align with existing brain research. We unveil the redundancy and synergy of brain information processing through region masking and data dimensionality reduction visualization experiments. We believe our approach paves the way for a more precise understanding of brain signals in the future. The code is available at https://github.com/NKUShaw/OT-Alignment4brain-to-image.
comment: 14pages
♻ ☆ Accuracy-Robustness Trade Off via Spiking Neural Network Gradient Sparsity Trail
Spiking Neural Networks (SNNs) have attracted growing interest in both computational neuroscience and artificial intelligence, primarily due to their inherent energy efficiency and compact memory footprint. However, achieving adversarial robustness in SNNs, particularly for vision-related tasks, remains a nascent and underexplored challenge. Recent studies have proposed leveraging sparse gradients as a form of regularization to enhance robustness against adversarial perturbations. In this work, we present a surprising finding: under specific architectural configurations, SNNs exhibit natural gradient sparsity and can achieve state-of-the-art adversarial defense performance without the need for any explicit regularization. Further analysis reveals a trade-off between robustness and generalization: while sparse gradients contribute to improved adversarial resilience, they can impair the model's ability to generalize; conversely, denser gradients support better generalization but increase vulnerability to attacks.
comment: Work under peer-review
♻ ☆ Human + AI for Accelerating Ad Localization Evaluation
Adapting advertisements for multilingual audiences requires more than simple text translation; it demands preservation of visual consistency, spatial alignment, and stylistic integrity across diverse languages and formats. We introduce a structured framework that combines automated components with human oversight to address the complexities of advertisement localization. To the best of our knowledge, this is the first work to integrate scene text detection, inpainting, machine translation (MT), and text reimposition specifically for accelerating ad localization evaluation workflows. Qualitative results across six locales demonstrate that our approach produces semantically accurate and visually coherent localized advertisements, suitable for deployment in real-world workflows.
♻ ☆ OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
comment: 26 pages, 12 figures
♻ ☆ A Graph-Based Framework for Interpretable Whole Slide Image Analysis
The histopathological analysis of whole-slide images (WSIs) is fundamental to cancer diagnosis but is a time-consuming and expert-driven process. While deep learning methods show promising results, dominant patch-based methods artificially fragment tissue, ignore biological boundaries, and produce black-box predictions. We overcome these limitations with a novel framework that transforms gigapixel WSIs into biologically-informed graph representations and is interpretable by design. Our approach builds graph nodes from tissue regions that respect natural structures, not arbitrary grids. We introduce an adaptive graph coarsening technique, guided by learned embeddings, to efficiently merge homogeneous regions while preserving diagnostically critical details in heterogeneous areas. Each node is enriched with a compact, interpretable feature set capturing clinically-motivated priors. A graph attention network then performs diagnosis on this compact representation. We demonstrate strong performance on challenging cancer staging and survival prediction tasks. Crucially, our resource-efficient model ($>$13x fewer parameters and $>$300x less data) achieves results competitive with a massive foundation model, while offering full interpretability through feature attribution. Our code is publicly available at https://github.com/HistoGraph31/pix2pathology.
comment: 15 pages, 5 figures
♻ ☆ Anchors Aweigh! Sail for Optimal Unified Multi-Modal Representations
A unified representation space in multi-modal learning is essential for effectively integrating diverse data sources, such as text, images, and audio, to enhance efficiency and performance across various downstream tasks. Recent binding methods, such as ImageBind, typically rely on a single, fixed anchor modality for aligning multi-modal data. We mathematically analyze these fixed anchor binding methods and uncover significant limitations: (1) over-reliance on the choice of the anchor modality, (2) inadequate capture of intra-modal information, and (3) failure to account for cross-modal correlation among non-anchored modalities. To address these issues, we propose the need for adaptive anchor binding methods, exemplified by our framework CentroBind. The proposed method uses adaptively adjustable centroid-based anchors generated from all available modalities, leading to a balanced and rich representation space. We theoretically demonstrate that our approach captures three critical properties of multi-modal learning -- intra-modal learning, inter-modal learning, and multi-modal alignment -- while constructing a unified representation that spans all modalities. Experiments on both synthetic and real-world datasets show that adaptive anchor methods such as CentroBind consistently outperform fixed anchor binding methods, verifying our analysis.
♻ ☆ Tables Guide Vision: Learning to See the Heart through Tabular Data
Contrastive learning methods in computer vision typically rely on augmented views of the same image or multimodal pretraining strategies that align paired modalities. However, these approaches often overlook semantic relationships between distinct instances, leading to false negatives when semantically similar samples are treated as negatives. This limitation is especially critical in medical imaging domains such as cardiology, where demographic and clinical attributes play a critical role in assessing disease risk and patient outcomes. We introduce a tabular-guided contrastive learning framework that leverages clinically relevant tabular data to identify patient-level similarities and construct more meaningful pairs, enabling semantically aligned representation learning without requiring joint embeddings across modalities. Additionally, we adapt the k-NN algorithm for zero-shot prediction to overcome the lack of zero-shot capability in unimodal representations. We demonstrate the strength of our methods using a large cohort of short-axis cardiac MR images and clinical attributes, where tabular data helps to more effectively distinguish between patient subgroups. Evaluation on downstream tasks, including fine-tuning, linear probing, and zero-shot prediction of cardiovascular artery diseases and cardiac phenotypes, shows that incorporating tabular data guidance yields stronger visual representations than conventional methods that rely solely on image augmentation or combined image-tabular embeddings. Further, we show that our method can generalize to natural images by evaluating it on a car advertisement dataset. The code will be available on GitHub upon acceptance.
♻ ☆ Leveraging Foundation Models for Multimodal Graph-Based Action Recognition
Foundation models have ushered in a new era for multimodal video understanding by enabling the extraction of rich spatiotemporal and semantic representations. In this work, we introduce a novel graph-based framework that integrates a vision-language foundation, leveraging VideoMAE for dynamic visual encoding and BERT for contextual textual embedding, to address the challenge of recognizing fine-grained bimanual manipulation actions. Departing from conventional static graph architectures, our approach constructs an adaptive multimodal graph where nodes represent frames, objects, and textual annotations, and edges encode spatial, temporal, and semantic relationships. These graph structures evolve dynamically based on learned interactions, allowing for flexible and context-aware reasoning. A task-specific attention mechanism within a Graph Attention Network further enhances this reasoning by modulating edge importance based on action semantics. Through extensive evaluations on diverse benchmark datasets, we demonstrate that our method consistently outperforms state-of-the-art baselines, underscoring the strength of combining foundation models with dynamic graph-based reasoning for robust and generalizable action recognition.
♻ ☆ LaB-RAG: Label Boosted Retrieval Augmented Generation for Radiology Report Generation
In the current paradigm of image captioning, deep learning models are trained to generate text from image embeddings of latent features. We challenge the assumption that fine-tuning of large, bespoke models is required to improve model generation accuracy. Here we propose Label Boosted Retrieval Augmented Generation (LaB-RAG), a small-model-based approach to image captioning that leverages image descriptors in the form of categorical labels to boost standard retrieval augmented generation (RAG) with pretrained large language models (LLMs). We study our method in the context of radiology report generation (RRG) over MIMIC-CXR and CheXpert Plus. We argue that simple classification models combined with zero-shot embeddings can effectively transform X-rays into text-space as radiology-specific labels. In combination with standard RAG, we show that these derived text labels can be used with general-domain LLMs to generate radiology reports. Without ever training our generative language model or image embedding models specifically for the task, and without ever directly "showing" the LLM an X-ray, we demonstrate that LaB-RAG achieves better results across natural language and radiology language metrics compared with other retrieval-based RRG methods, while attaining competitive results compared to other fine-tuned vision-language RRG models. We further conduct extensive ablation experiments to better understand the components of LaB-RAG. Our results suggest broader compatibility and synergy with fine-tuned methods to further enhance RRG performance.
♻ ☆ Safe-LLaVA: A Privacy-Preserving Vision-Language Dataset and Benchmark for Biometric Safety
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language tasks. However, these models often infer and reveal sensitive biometric attributes such as race, gender, age, body weight, and eye color; even when such information is not explicitly requested. This raises critical concerns, particularly in real-world applications and socially-sensitive domains. Despite increasing awareness, no publicly available dataset or benchmark exists to comprehensively evaluate or mitigate biometric leakage in MLLMs. To address this gap, we introduce PRISM (Privacy-aware Evaluation of Responses in Sensitive Modalities), a new benchmark designed to assess MLLMs on two fronts: (1) refuse biometric-related queries and (2) implicit biometric leakage in general responses while maintaining semantic faithfulness. Further, we conduct a detailed audit of the widely used LLaVA datasets and uncover extensive biometric leakage across pretraining and instruction data. To address this, we present Safe-LLaVA dataset, the first privacy-preserving MLLM training dataset constructed by systematically removing explicit and implicit biometric information from LLaVA dataset. Our evaluations on PRISM reveal biometric leakages across MLLMs for different attributes, highlighting the detailed privacy-violations. We also fine-tune a model on Safe-LLaVA dataset and show that it substantially reduces the biometric leakages. Together, Safe-LLaVA and PRISM set a new standard for privacy-aligned development and evaluation of MLLMs.
♻ ☆ RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and contract analysis. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data, OCR outputs, and code to reproduce baselines are available to download at https://indicodatasolutions.github.io/RealKIE/.
♻ ☆ RowDetr: End-to-End Crop Row Detection Using Polynomials
Crop row detection enables autonomous robots to navigate in gps denied environments. Vision based strategies often struggle in the environments due to gaps, curved crop rows and require post-processing steps. Furthermore, labeling crop rows in under the canopy environments accurately is very difficult due to occlusions. This study introduces RowDetr, an efficient end-to-end transformer-based neural network for crop row detection in precision agriculture. RowDetr leverages a lightweight backbone and a hybrid encoder to model straight, curved, or occluded crop rows with high precision. Central to the architecture is a novel polynomial representation that enables direct parameterization of crop rows, eliminating computationally expensive post-processing. Key innovations include a PolySampler module and multi-scale deformable attention, which work together with PolyOptLoss, an energy-based loss function designed to optimize geometric alignment between predicted and the annotated crop rows, while also enhancing robustness against labeling noise. RowDetr was evaluated against other state-of-the-art end-to-end crop row detection methods like AgroNav and RolColAttention on a diverse dataset of 6,962 high-resolution images, used for training, validation, and testing across multiple crop types with annotated crop rows. The system demonstrated superior performance, achieved an F1 score up to 0.74 and a lane position deviation as low as 0.405. Furthermore, RowDetr achieves a real-time inference latency of 6.7ms, which was optimized to 3.5ms with INT8 quantization on an NVIDIA Jetson Orin AGX. This work highlighted the critical efficiency of polynomial parameterization, making RowDetr particularly suitable for deployment on edge computing devices in agricultural robotics and autonomous farming equipment. Index terms > Crop Row Detection, Under Canopy Navigation, Transformers, RT-DETR, RT-DETRv2
comment: Code will be open sourced upon publication
♻ ☆ Fast constrained sampling in pre-trained diffusion models
Large denoising diffusion models, such as Stable Diffusion, have been trained on billions of image-caption pairs to perform text-conditioned image generation. As a byproduct of this training, these models have acquired general knowledge about image statistics, which can be useful for other inference tasks. However, when confronted with sampling an image under new constraints, e.g. generating the missing parts of an image, using large pre-trained text-to-image diffusion models is inefficient and often unreliable. Previous approaches either utilized backpropagation through the denoiser network, making them significantly slower and more memory-demanding than simple text-to-image generation, or only enforced the constraint locally, failing to capture critical long-range correlations in the sampled image. In this work, we propose an algorithm that enables fast, high-quality generation under arbitrary constraints. We show that in denoising diffusion models, we can employ an approximation to Newton's optimization method that allows us to speed up inference and avoid the expensive backpropagation operations. Our approach produces results that rival or surpass the state-of-the-art training-free inference methods while requiring a fraction of the time. We demonstrate the effectiveness of our algorithm under both linear (inpainting, super-resolution) and non-linear (style-guided generation) constraints. An implementation is provided at https://github.com/cvlab-stonybrook/fast-constrained-sampling.
♻ ☆ QDFlow: A Python package for physics simulations of quantum dot devices
Recent advances in machine learning (ML) have accelerated progress in calibrating and operating quantum dot (QD) devices. However, most ML approaches rely on access to large, representative datasets designed to capture the full spectrum of data quality encountered in practice, with both high- and low-quality data for training, benchmarking, and validation, with labels capturing key features of the device state. Collating such datasets experimentally is challenging due to limited data availability, slow measurement bandwidths, and the labor-intensive nature of labeling. QDFlow is an open-source physics simulator for multi-QD arrays that generates realistic synthetic data with ground-truth labels. QDFlow combines a self-consistent Thomas-Fermi solver, a dynamic capacitance model, and flexible noise modules to simulate charge stability diagrams and ray-based data closely resembling experiments. With an extensive set of parameters that can be varied and customizable noise models, QDFlow supports the creation of large, diverse datasets for ML development, benchmarking, and quantum device research.
comment: 17 pages, 5 figures
♻ ☆ RAM-W600: A Multi-Task Wrist Dataset and Benchmark for Rheumatoid Arthritis NeurIPS 2025
Rheumatoid arthritis (RA) is a common autoimmune disease that has been the focus of research in computer-aided diagnosis (CAD) and disease monitoring. In clinical settings, conventional radiography (CR) is widely used for the screening and evaluation of RA due to its low cost and accessibility. The wrist is a critical region for the diagnosis of RA. However, CAD research in this area remains limited, primarily due to the challenges in acquiring high-quality instance-level annotations. (i) The wrist comprises numerous small bones with narrow joint spaces, complex structures, and frequent overlaps, requiring detailed anatomical knowledge for accurate annotation. (ii) Disease progression in RA often leads to osteophyte, bone erosion (BE), and even bony ankylosis, which alter bone morphology and increase annotation difficulty, necessitating expertise in rheumatology. This work presents a multi-task dataset for wrist bone in CR, including two tasks: (i) wrist bone instance segmentation and (ii) Sharp/van der Heijde (SvdH) BE scoring, which is the first public resource for wrist bone instance segmentation. This dataset comprises 1048 wrist conventional radiographs of 388 patients from six medical centers, with pixel-level instance segmentation annotations for 618 images and SvdH BE scores for 800 images. This dataset can potentially support a wide range of research tasks related to RA, including joint space narrowing (JSN) progression quantification, BE detection, bone deformity evaluation, and osteophyte detection. It may also be applied to other wrist-related tasks, such as carpal bone fracture localization. We hope this dataset will significantly lower the barrier to research on wrist RA and accelerate progress in CAD research within the RA-related domain.
comment: Accepted by NeurIPS 2025
♻ ☆ A Tale of Two Experts: Cooperative Learning for Source-Free Unsupervised Domain Adaptation
Source-Free Unsupervised Domain Adaptation (SFUDA) addresses the realistic challenge of adapting a source-trained model to a target domain without access to the source data, driven by concerns over privacy and cost. Existing SFUDA methods either exploit only the source model's predictions or fine-tune large multimodal models, yet both neglect complementary insights and the latent structure of target data. In this paper, we propose the Experts Cooperative Learning (EXCL). EXCL contains the Dual Experts framework and Retrieval-Augmentation-Interaction optimization pipeline. The Dual Experts framework places a frozen source-domain model (augmented with Conv-Adapter) and a pretrained vision-language model (with a trainable text prompt) on equal footing to mine consensus knowledge from unlabeled target samples. To effectively train these plug-in modules under purely unsupervised conditions, we introduce Retrieval-Augmented-Interaction(RAIN), a three-stage pipeline that (1) collaboratively retrieves pseudo-source and complex target samples, (2) separately fine-tunes each expert on its respective sample set, and (3) enforces learning object consistency via a shared learning result. Extensive experiments on four benchmark datasets demonstrate that our approach matches state-of-the-art performance.
♻ ☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale CCS 2025
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content. Despite increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but they suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled models trained with curated concept datasets and 771 real-world community models sourced from a public DM sharing platform. Evaluation results show that PAIA achieves over 90% detection accuracy while reducing auditing time by 18 - 40X compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: Extended version of the paper accepted at CCS 2025
♻ ☆ MMLongBench: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly NeurIPS 2025
The rapid extension of context windows in large vision-language models has given rise to long-context vision-language models (LCVLMs), which are capable of handling hundreds of images with interleaved text tokens in a single forward pass. In this work, we introduce MMLongBench, the first benchmark covering a diverse set of long-context vision-language tasks, to evaluate LCVLMs effectively and thoroughly. MMLongBench is composed of 13,331 examples spanning five different categories of downstream tasks, such as Visual RAG and Many-Shot ICL. It also provides broad coverage of image types, including various natural and synthetic images. To assess the robustness of the models to different input lengths, all examples are delivered at five standardized input lengths (8K-128K tokens) via a cross-modal tokenization scheme that combines vision patches and text tokens. Through a thorough benchmarking of 46 closed-source and open-source LCVLMs, we provide a comprehensive analysis of the current models' vision-language long-context ability. Our results show that: i) performance on a single task is a weak proxy for overall long-context capability; ii) both closed-source and open-source models face challenges in long-context vision-language tasks, indicating substantial room for future improvement; iii) models with stronger reasoning ability tend to exhibit better long-context performance. By offering wide task coverage, various image types, and rigorous length control, MMLongBench provides the missing foundation for diagnosing and advancing the next generation of LCVLMs.
comment: Accepted as a spotlight at NeurIPS 2025
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in radiance fields. Unlike mainstream implicit neural models, 3D GS uses millions of learnable 3D Gaussians for an explicit scene representation. Paired with a differentiable rendering algorithm, this approach achieves real-time rendering and unprecedented editability, making it a potential game-changer for 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ ViP$^2$-CLIP: Visual-Perception Prompting with Unified Alignment for Zero-Shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to detect anomalies without any target domain training samples, relying solely on external auxiliary data. Existing CLIP-based methods attempt to activate the model's ZSAD potential via handcrafted or static learnable prompts. The former incur high engineering costs and limited semantic coverage, whereas the latter apply identical descriptions across diverse anomaly types, thus fail to adapt to complex variations. Furthermore, since CLIP is originally pretrained on large-scale classification tasks, its anomaly segmentation quality is highly sensitive to the exact wording of class names, severely constraining prompting strategies that depend on class labels. To address these challenges, we introduce ViP$^{2}$-CLIP. The key insight of ViP$^{2}$-CLIP is a Visual-Perception Prompting (ViP-Prompt) mechanism, which fuses global and multi-scale local visual context to adaptively generate fine-grained textual prompts, eliminating manual templates and class-name priors. This design enables our model to focus on precise abnormal regions, making it particularly valuable when category labels are ambiguous or privacy-constrained. Extensive experiments on 15 industrial and medical benchmarks demonstrate that ViP$^{2}$-CLIP achieves state-of-the-art performance and robust cross-domain generalization.
♻ ☆ Graph Algorithm Unrolling with Douglas-Rachford Iterations for Image Interpolation with Guaranteed Initialization
Conventional deep neural nets (DNNs) initialize network parameters at random and then optimize each one via stochastic gradient descent (SGD), resulting in substantial risk of poor-performing local minima.Focusing on the image interpolation problem and leveraging a recent theorem that maps a (pseudo-)linear interpolator {\Theta} to a directed graph filter that is a solution to a MAP problem regularized with a graph shift variation (GSV) prior, we first initialize a directed graph adjacency matrix A based on a known interpolator {\Theta}, establishing a baseline performance.Then, towards further gain, we learn perturbation matrices P and P(2) from data to augment A, whose restoration effects are implemented via Douglas-Rachford (DR) iterations, which we unroll into a lightweight interpretable neural net.Experimental results demonstrate state-of-the-art image interpolation results, while drastically reducing network parameters.
Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Our code and data are released at https://future-item.github.io/autoimagine-site/.
comment: Published in TMLR
♻ ☆ Bias in Gender Bias Benchmarks: How Spurious Features Distort Evaluation ICCV 2025
Gender bias in vision-language foundation models (VLMs) raises concerns about their safe deployment and is typically evaluated using benchmarks with gender annotations on real-world images. However, as these benchmarks often contain spurious correlations between gender and non-gender features, such as objects and backgrounds, we identify a critical oversight in gender bias evaluation: Do spurious features distort gender bias evaluation? To address this question, we systematically perturb non-gender features across four widely used benchmarks (COCO-gender, FACET, MIAP, and PHASE) and various VLMs to quantify their impact on bias evaluation. Our findings reveal that even minimal perturbations, such as masking just 10% of objects or weakly blurring backgrounds, can dramatically alter bias scores, shifting metrics by up to 175% in generative VLMs and 43% in CLIP variants. This suggests that current bias evaluations often reflect model responses to spurious features rather than gender bias, undermining their reliability. Since creating spurious feature-free benchmarks is fundamentally challenging, we recommend reporting bias metrics alongside feature-sensitivity measurements to enable a more reliable bias assessment.
comment: ICCV 2025
♻ ☆ Medical Image Classification with KAN-Integrated Transformers and Dilated Neighborhood Attention
Convolutional networks, transformers, hybrid models, and Mamba-based architectures have demonstrated strong performance across various medical image classification tasks. However, these methods were primarily designed to classify clean images using labeled data. In contrast, real-world clinical data often involve image corruptions that are unique to multi-center studies and stem from variations in imaging equipment across manufacturers. In this paper, we introduce the Medical Vision Transformer (MedViTV2), a novel architecture incorporating Kolmogorov-Arnold Network (KAN) layers into the transformer architecture for the first time, aiming for generalized medical image classification. We have developed an efficient KAN block to reduce computational load while enhancing the accuracy of the original MedViT. Additionally, to counteract the fragility of our MedViT when scaled up, we propose an enhanced Dilated Neighborhood Attention (DiNA), an adaptation of the efficient fused dot-product attention kernel capable of capturing global context and expanding receptive fields to scale the model effectively and addressing feature collapse issues. Moreover, a hierarchical hybrid strategy is introduced to stack our Local Feature Perception and Global Feature Perception blocks in an efficient manner, which balances local and global feature perceptions to boost performance. Extensive experiments on 17 medical image classification datasets and 12 corrupted medical image datasets demonstrate that MedViTV2 achieved state-of-the-art results in 27 out of 29 experiments with reduced computational complexity. MedViTV2 is 44\% more computationally efficient than the previous version and significantly enhances accuracy, achieving improvements of 4.6\% on MedMNIST, 5.8\% on NonMNIST, and 13.4\% on the MedMNIST-C benchmark.
♻ ☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Submitted to Scientific Reports
♻ ☆ Attention, Please! Revisiting Attentive Probing Through the Lens of Efficiency
As fine-tuning becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol. Yet, the standard linear probing fails to adequately reflect the potential of models whose pre-training optimizes representations of patch tokens rather than an explicit global representation. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy vs. parameter efficiency trade-off. We present the first comprehensive study of existing methods, analyzing their design choices and benchmarking their performance. Building on this, we propose efficient probing (EP), a simple yet effective multi-query cross-attention mechanism that eliminates redundant projections and reduces the number of trainable parameters. Despite its simplicity, EP outperforms linear probing and prior attentive probing approaches across seven benchmarks, generalizes well to diverse pre-training paradigms, and delivers strong low-shot and layer-wise gains. Beyond evaluation, our analysis uncovers emerging properties of EP, such as complementary attention maps, which open new directions for leveraging probing beyond protocol design. Code available at https://github.com/billpsomas/efficient-probing.
comment: 9 main paper pages, 13 supplementary pages; Code available at https://github.com/billpsomas/efficient-probing
♻ ☆ TACO: Enhancing Multimodal In-context Learning via Task Mapping-Guided Sequence Configuration EMNLP2025
Multimodal in-context learning (ICL) has emerged as a key mechanism for harnessing the capabilities of large vision-language models (LVLMs). However, its effectiveness remains highly sensitive to the quality of input ICL sequences, particularly for tasks involving complex reasoning or open-ended generation. A major limitation is our limited understanding of how LVLMs actually exploit these sequences during inference. To bridge this gap, we systematically interpret multimodal ICL through the lens of task mapping, which reveals how local and global relationships within and among demonstrations guide model reasoning. Building on this insight, we present TACO, a lightweight transformer-based model equipped with task-aware attention that dynamically configures ICL sequences. By injecting task-mapping signals into the autoregressive decoding process, TACO creates a bidirectional synergy between sequence construction and task reasoning. Experiments on five LVLMs and nine datasets demonstrate that TACO consistently surpasses baselines across diverse ICL tasks. These results position task mapping as a novel and valuable perspective for interpreting and improving multimodal ICL.
comment: EMNLP2025 Main, 28 pages, 11 figures, 19 tables
♻ ☆ PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation ICCV 2025
Visual prompt tuning (VPT), i.e., fine-tuning some lightweight prompt tokens, provides an efficient and effective approach for adapting pre-trained models to various downstream tasks. However, most prior art indiscriminately uses a fixed prompt distribution across different tasks, neglecting the importance of each block varying depending on the task. In this paper, we introduce adaptive distribution optimization (ADO) by tackling two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through empirical analysis, we first confirm that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution built upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy derived from this formulation, comprising two steps: pruning idle prompts from prompt-saturated blocks, followed by allocating these prompts to the most prompt-needed blocks. By iteratively performing prompt relocation and VPT, our proposal can adaptively learn the optimal prompt distribution in a nested optimization-based manner, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms advanced VPT methods, e.g., PRO-VPT surpasses VPT by 1.6 pp and 2.0 pp average accuracy, leading prompt-based methods to state-of-the-art performance on VTAB-1k and FGVC benchmarks. The code is available at https://github.com/ckshang/PRO-VPT.
comment: Accepted by ICCV 2025
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.
comment: 16 pages, 9 figures
♻ ☆ UniUIR: Considering Underwater Image Restoration as An All-in-One Learner
Existing underwater image restoration (UIR) methods generally only handle color distortion or jointly address color and haze issues, but they often overlook the more complex degradations that can occur in underwater scenes. To address this limitation, we propose a Universal Underwater Image Restoration method, termed as UniUIR, considering the complex scenario of real-world underwater mixed distortions as an all-in-one manner. To decouple degradation-specific issues and explore the inter-correlations among various degradations in UIR task, we designed the Mamba Mixture-of-Experts module. This module enables each expert to identify distinct types of degradation and collaboratively extract task-specific priors while maintaining global feature representation based on linear complexity. Building upon this foundation, to enhance degradation representation and address the task conflicts that arise when handling multiple types of degradation, we introduce the spatial-frequency prior generator. This module extracts degradation prior information in both spatial and frequency domains, and adaptively selects the most appropriate task-specific prompts based on image content, thereby improving the accuracy of image restoration. Finally, to more effectively address complex, region-dependent distortions in UIR task, we incorporate depth information derived from a large-scale pre-trained depth prediction model, thereby enabling the network to perceive and leverage depth variations across different image regions to handle localized degradation. Extensive experiments demonstrate that UniUIR can produce more attractive results across qualitative and quantitative comparisons, and shows strong generalization than state-of-the-art methods.
comment: Accepted by IEEE Transactions on Image Processing. Project page at https://house-yuyu.github.io/UniUIR/
♻ ☆ Explaining Human Preferences via Metrics for Structured 3D Reconstruction ICCV 2025
"What cannot be measured cannot be improved" while likely never uttered by Lord Kelvin, summarizes effectively the driving force behind this work. This paper presents a detailed discussion of automated metrics for evaluating structured 3D reconstructions. Pitfalls of each metric are discussed, and an analysis through the lens of expert 3D modelers' preferences is presented. A set of systematic "unit tests" are proposed to empirically verify desirable properties, and context aware recommendations regarding which metric to use depending on application are provided. Finally, a learned metric distilled from human expert judgments is proposed and analyzed. The source code is available at https://github.com/s23dr/wireframe-metrics-iccv2025
comment: ICCV 2025 Highlight
♻ ☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
♻ ☆ Poisson multi-Bernoulli mixture filter for trajectory measurements
This paper presents a Poisson multi-Bernoulli mixture (PMBM) filter for multi-target filtering based on sensor measurements that are sets of trajectories in the last two-time step window. The proposed filter, the trajectory measurement PMBM (TM-PMBM) filter, propagates a PMBM density on the set of target states. In prediction, the filter obtains the PMBM density on the set of trajectories over the last two time steps. This density is then updated with the set of trajectory measurements. After the update step, the PMBM posterior on the set of two-step trajectories is marginalised to obtain a PMBM density on the set of target states. The filter provides a closed-form solution for multi-target filtering based on sets of trajectory measurements, estimating the set of target states at the end of each time window. Additionally, the paper proposes computationally lighter alternatives to the TM-PMBM filter by deriving a Poisson multi-Bernoulli (PMB) density through Kullback-Leibler divergence minimisation in an augmented space with auxiliary variables. The performance of the proposed filters are evaluated in a simulation study.
comment: 16 pages, 9 figures, journal paper
♻ ☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
comment: 12 pages, 4 figures, 2 tables, 19th International Conference on Intelligent Autonomous Systems (IAS), Genoa, Italy, June 2025
♻ ☆ A Survey of Defenses Against AI-Generated Visual Media: Detection,Disruption, and Authentication
Deep generative models have demonstrated impressive performance in various computer vision applications, including image synthesis, video generation, and medical analysis. Despite their significant advancements, these models may be used for malicious purposes, such as misinformation, deception, and copyright violation. In this paper, we provide a systematic and timely review of research efforts on defenses against AI-generated visual media, covering detection, disruption, and authentication. We review existing methods and summarize the mainstream defense-related tasks within a unified passive and proactive framework. Moreover, we survey the derivative tasks concerning the trustworthiness of defenses, such as their robustness and fairness. For each defense strategy, we formulate its general pipeline and propose a multidimensional taxonomy applicable across defense tasks, based on methodological strategies. Additionally, we summarize the commonly used evaluation datasets, criteria, and metrics. Finally, by analyzing the reviewed studies, we provide insights into current research challenges and suggest possible directions for future research.
comment: Accepted by ACM Computing Surveys
♻ ☆ SEE-DPO: Self Entropy Enhanced Direct Preference Optimization
Direct Preference Optimization (DPO) has been successfully used to align large language models (LLMs) according to human preferences, and more recently it has also been applied to improving the quality of text-to-image diffusion models. However, DPO-based methods such as SPO, Diffusion-DPO, and D3PO are highly susceptible to overfitting and reward hacking, especially when the generative model is optimized to fit out-of-distribution during prolonged training. To overcome these challenges and stabilize the training of diffusion models, we introduce a self-entropy regularization mechanism in reinforcement learning from human feedback. This enhancement improves DPO training by encouraging broader exploration and greater robustness. Our regularization technique effectively mitigates reward hacking, leading to improved stability and enhanced image quality across the latent space. Extensive experiments demonstrate that integrating human feedback with self-entropy regularization can significantly boost image diversity and specificity, achieving state-of-the-art results on key image generation metrics.
♻ ☆ Copyright Infringement Detection in Text-to-Image Diffusion Models via Differential Privacy
The widespread deployment of large vision models such as Stable Diffusion raises significant legal and ethical concerns, as these models can memorize and reproduce copyrighted content without authorization. Existing detection approaches often lack robustness and fail to provide rigorous theoretical underpinnings. To address these gaps, we formalize the concept of copyright infringement and its detection from the perspective of Differential Privacy (DP), and introduce the conditional sensitivity metric, a concept analogous to sensitivity in DP, that quantifies the deviation in a diffusion model's output caused by the inclusion or exclusion of a specific training data point. To operationalize this metric, we propose D-Plus-Minus (DPM), a novel post-hoc detection framework that identifies copyright infringement in text-to-image diffusion models. Specifically, DPM simulates inclusion and exclusion processes by fine-tuning models in two opposing directions: learning or unlearning. Besides, to disentangle concept-specific influence from the global parameter shifts induced by fine-tuning, DPM computes confidence scores over orthogonal prompt distributions using statistical metrics. Moreover, to facilitate standardized benchmarking, we also construct the Copyright Infringement Detection Dataset (CIDD), a comprehensive resource for evaluating detection across diverse categories. Our results demonstrate that DPM reliably detects infringement content without requiring access to the original training dataset or text prompts, offering an interpretable and practical solution for safeguarding intellectual property in the era of generative AI.
♻ ☆ SIA: Enhancing Safety via Intent Awareness for Vision-Language Models ICCV2025
With the growing deployment of Vision-Language Models (VLMs) in real-world applications, previously overlooked safety risks are becoming increasingly evident. In particular, seemingly innocuous multimodal inputs can combine to reveal harmful intent, leading to unsafe model outputs. While multimodal safety has received increasing attention, existing approaches often fail to address such latent risks, especially when harmfulness arises only from the interaction between modalities. We propose SIA (Safety via Intent Awareness), a training-free, intent-aware safety framework that proactively detects harmful intent in multimodal inputs and uses it to guide the generation of safe responses. SIA follows a three-stage process: (1) visual abstraction via captioning; (2) intent inference through few-shot chain-of-thought (CoT) prompting; and (3) intent-conditioned response generation. By dynamically adapting to the implicit intent inferred from an image-text pair, SIA mitigates harmful outputs without extensive retraining. Extensive experiments on safety benchmarks, including SIUO, MM-SafetyBench, and HoliSafe, show that SIA consistently improves safety and outperforms prior training-free methods.
comment: Accepted to Safe and Trustworthy Multimodal AI Systems(SafeMM-AI) Workshop at ICCV2025, Non-archival track
Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
♻ ☆ Praxis-VLM: Vision-Grounded Decision Making via Text-Driven Reinforcement Learning NeurIPS 2025
Vision Language Models exhibit impressive performance for various tasks, yet they often lack the sophisticated situational reasoning required for complex decision-making. This paper shows that VLMs can achieve surprisingly strong decision-making performance when visual scenes are replaced by textual descriptions, suggesting foundational reasoning can be effectively learned from language. Motivated by this insight, we propose Praxis-VLM, a reasoning VLM for vision-grounded decision-making. Praxis-VLM employs the GRPO algorithm on textual scenarios to instill robust reasoning capabilities, where models learn to evaluate actions and their consequences. These reasoning skills, acquired purely from text, successfully transfer to multimodal inference with visual inputs, significantly reducing reliance on scarce paired image-text training data. Experiments across diverse decision-making benchmarks demonstrate that Praxis-VLM substantially outperforms standard supervised fine-tuning, exhibiting superior performance and generalizability. Further analysis confirms that our models engage in explicit and effective reasoning, underpinning their enhanced performance and adaptability.
comment: Accepted at NeurIPS 2025
♻ ☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
♻ ☆ WetCat: Enabling Automated Skill Assessment in Wet-Lab Cataract Surgery Videos
To meet the growing demand for systematic surgical training, wet-lab environments have become indispensable platforms for hands-on practice in ophthalmology. Yet, traditional wet-lab training depends heavily on manual performance evaluations, which are labor-intensive, time-consuming, and often subject to variability. Recent advances in computer vision offer promising avenues for automated skill assessment, enhancing both the efficiency and objectivity of surgical education. Despite notable progress in ophthalmic surgical datasets, existing resources predominantly focus on real surgeries or isolated tasks, falling short of supporting comprehensive skill evaluation in controlled wet-lab settings. To address these limitations, we introduce WetCat, the first dataset of wet-lab cataract surgery videos specifically curated for automated skill assessment. WetCat comprises high-resolution recordings of surgeries performed by trainees on artificial eyes, featuring comprehensive phase annotations and semantic segmentations of key anatomical structures. These annotations are meticulously designed to facilitate skill assessment during the critical capsulorhexis and phacoemulsification phases, adhering to standardized surgical skill assessment frameworks. By focusing on these essential phases, WetCat enables the development of interpretable, AI-driven evaluation tools aligned with established clinical metrics. This dataset lays a strong foundation for advancing objective, scalable surgical education and sets a new benchmark for automated workflow analysis and skill assessment in ophthalmology training. The dataset and annotations are publicly available in Synapse.
comment: 7 pages, 7 figures, Accepted at ACMMM25
♻ ☆ CoralSCOP-LAT: Labeling and Analyzing Tool for Coral Reef Images with Dense Mask
Coral reef imagery offers critical data for monitoring ecosystem health, in particular as the ease of image datasets continues to rapidly expand. Whilst semi-automated analytical platforms for reef imagery are becoming more available, the dominant approaches face fundamental limitations. To address these challenges, we propose CoralSCOP-LAT, a coral reef image analysis and labeling tool that automatically segments and analyzes coral regions. By leveraging advanced machine learning models tailored for coral reef segmentation, CoralSCOP-LAT enables users to generate dense segmentation masks with minimal manual effort, significantly enhancing both the labeling efficiency and precision of coral reef analysis. Our extensive evaluations demonstrate that CoralSCOP-LAT surpasses existing coral reef analysis tools in terms of time efficiency, accuracy, precision, and flexibility. CoralSCOP-LAT, therefore, not only accelerates the coral reef annotation process but also assists users in obtaining high-quality coral reef segmentation and analysis outcomes. Github Page: https://github.com/ykwongaq/CoralSCOP-LAT.
comment: Ecological Informatics Page: https://www.sciencedirect.com/science/article/pii/S157495412500411X
♻ ☆ MambaMoE: Mixture-of-Spectral-Spatial-Experts State Space Model for Hyperspectral Image Classification
Mamba-based models have recently demonstrated significant potential in hyperspectral image (HSI) classification, primarily due to their ability to perform contextual modeling with linear computational complexity. However, existing Mamba-based approaches often overlook the directional modeling heterogeneity across different land-cover types, leading to limited classification performance. To address these limitations, we propose MambaMoE, a novel spectral-spatial Mixture-of-Experts (MoE) framework, which represents the first MoE-based approach in the HSI classification domain. Specifically, we design a Mixture of Mamba Expert Block (MoMEB) that performs adaptive spectral-spatial feature modeling via a sparse expert activation mechanism. Additionally, we introduce an uncertainty-guided corrective learning (UGCL) strategy that encourages the model to focus on complex regions prone to prediction ambiguity. This strategy dynamically samples supervision signals from regions with high predictive uncertainty, guiding the model to adaptively refine feature representations and thereby enhancing its focus on challenging areas. Extensive experiments conducted on multiple public HSI benchmark datasets show that MambaMoE achieves state-of-the-art performance in both classification accuracy and computational efficiency compared to existing advanced methods, particularly Mamba-based ones. The code will be available online at https://github.com/YichuXu/MambaMoE.
comment: Accepted by Information Fusion
♻ ☆ One Patch to Caption Them All: A Unified Zero-Shot Captioning Framework
Zero-shot captioners are recently proposed models that utilize common-space vision-language representations to caption images without relying on paired image-text data. To caption an image, they proceed by textually decoding a text-aligned image feature, but they limit their scope to global representations and whole-image captions. We present Patch-ioner, a unified framework for zero-shot captioning that shifts from an image-centric to a patch-centric paradigm, enabling the captioning of arbitrary regions without the need of region-level supervision. Instead of relying on global image representations, we treat individual patches as atomic captioning units and aggregate them to describe arbitrary regions, from single patches to non-contiguous areas and entire images. We analyze the key ingredients that enable current latent captioners to work in our novel proposed framework. Experiments demonstrate that backbones producing meaningful, dense visual features, such as DINO, are key to achieving state-of-the-art performance in multiple region-based captioning tasks. Compared to other baselines and state-of-the-art competitors, our models achieve better performance on zero-shot dense, region-set, and a newly introduced trace captioning task, highlighting the effectiveness of patch-wise semantic representations for scalable caption generation. Project page at https://paciosoft.com/Patch-ioner/ .
♻ ☆ Leveraging Confident Image Regions for Source-Free Domain-Adaptive Object Detection
Source-free domain-adaptive object detection is an interesting but scarcely addressed topic. It aims at adapting a source-pretrained detector to a distinct target domain without resorting to source data during adaptation. So far, there is no data augmentation scheme tailored to source-free domain-adaptive object detection. To this end, this paper presents a novel data augmentation approach that cuts out target image regions where the detector is confident, augments them along with their respective pseudo-labels, and joins them into a challenging target image to adapt the detector. As the source data is out of reach during adaptation, we implement our approach within a teacher-student learning paradigm to ensure that the model does not collapse during the adaptation procedure. We evaluated our approach on three adaptation benchmarks of traffic scenes, scoring new state-of-the-art on two of them.
♻ ☆ EMedNeXt: An Enhanced Brain Tumor Segmentation Framework for Sub-Saharan Africa using MedNeXt V2 with Deep Supervision MICCAI 2025
Brain cancer affects millions worldwide, and in nearly every clinical setting, doctors rely on magnetic resonance imaging (MRI) to diagnose and monitor gliomas. However, the current standard for tumor quantification through manual segmentation of multi-parametric MRI is time-consuming, requires expert radiologists, and is often infeasible in under-resourced healthcare systems. This problem is especially pronounced in low-income regions, where MRI scanners are of lower quality and radiology expertise is scarce, leading to incorrect segmentation and quantification. In addition, the number of acquired MRI scans in Africa is typically small. To address these challenges, the BraTS-Lighthouse 2025 Challenge focuses on robust tumor segmentation in sub-Saharan Africa (SSA), where resource constraints and image quality degradation introduce significant shifts. In this study, we present EMedNeXt -- an enhanced brain tumor segmentation framework based on MedNeXt V2 with deep supervision and optimized post-processing pipelines tailored for SSA. EMedNeXt introduces three key contributions: a larger region of interest, an improved nnU-Net v2-based architectural skeleton, and a robust model ensembling system. Evaluated on the hidden validation set, our solution achieved an average LesionWise DSC of 0.897 with an average LesionWise NSD of 0.541 and 0.84 at a tolerance of 0.5 mm and 1.0 mm, respectively.
comment: Submitted to the BraTS-Lighthouse 2025 Challenge (MICCAI 2025)
♻ ☆ Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
comment: The code is available at https://github.com/bronyayang/Law_of_Vision_Representation_in_MLLMs
♻ ☆ Depth-Sequence Transformer (DST) for Segment-Specific ICA Calcification Mapping on Non-Contrast CT
While total intracranial carotid artery calcification (ICAC) volume is an established stroke biomarker, growing evidence shows this aggregate metric ignores the critical influence of plaque location, since calcification in different segments carries distinct prognostic and procedural risks. However, a finer-grained, segment-specific quantification has remained technically infeasible. Conventional 3D models are forced to process downsampled volumes or isolated patches, sacrificing the global context required to resolve anatomical ambiguity and render reliable landmark localization. To overcome this, we reformulate the 3D challenge as a \textbf{Parallel Probabilistic Landmark Localization} task along the 1D axial dimension. We propose the \textbf{Depth-Sequence Transformer (DST)}, a framework that processes full-resolution CT volumes as sequences of 2D slices, learning to predict $N=6$ independent probability distributions that pinpoint key anatomical landmarks. Our DST framework demonstrates exceptional accuracy and robustness. Evaluated on a 100-patient clinical cohort with rigorous 5-fold cross-validation, it achieves a Mean Absolute Error (MAE) of \textbf{0.1 slices}, with \textbf{96\%} of predictions falling within a $\pm1$ slice tolerance. Furthermore, to validate its architectural power, the DST backbone establishes the best result on the public Clean-CC-CCII classification benchmark under an end-to-end evaluation protocol. Our work delivers the first practical tool for automated segment-specific ICAC analysis. The proposed framework provides a foundation for further studies on the role of location-specific biomarkers in diagnosis, prognosis, and procedural planning.
comment: Accept to IEEE BIBM 2025
♻ ☆ Divergence Minimization Preference Optimization for Diffusion Model Alignment
Diffusion models have achieved remarkable success in generating realistic and versatile images from text prompts. Inspired by the recent advancements of language models, there is an increasing interest in further improving the models by aligning with human preferences. However, we investigate alignment from a divergence minimization perspective and reveal that existing preference optimization methods are typically trapped in suboptimal mean-seeking optimization. In this paper, we introduce Divergence Minimization Preference Optimization (DMPO), a novel and principled method for aligning diffusion models by minimizing reverse KL divergence, which asymptotically enjoys the same optimization direction as original RL. We provide rigorous analysis to justify the effectiveness of DMPO and conduct comprehensive experiments to validate its empirical strength across both human evaluations and automatic metrics. Our extensive results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques, specifically consistently outperforming all baseline models across different base models and test sets, achieving the best PickScore in every case, demonstrating the method's superiority in aligning generative behavior with desired outputs. Overall, DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
♻ ☆ Do We Need All the Synthetic Data? Targeted Synthetic Image Augmentation via Diffusion Models
Synthetically augmenting training datasets with diffusion models has been an effective strategy for improving generalization of image classifiers. However, existing techniques struggle to ensure the diversity of generation and increase the size of the data by up to 10-30x to improve the in-distribution performance. In this work, we show that synthetically augmenting part of the data that is not learned early in training with faithful images-containing same features but different noise-outperforms augmenting the entire dataset. By analyzing a two-layer CNN, we prove that this strategy improves generalization by promoting homogeneity in feature learning speed without amplifying noise. Our extensive experiments show that by augmenting only 30%-40% of the data, our method boosts generalization by up to 2.8% in a variety of scenarios, including training ResNet, ViT, ConvNeXt, and Swin Transformer on CIFAR-10/100, and TinyImageNet, with various optimizers including SGD and SAM. Notably, our method applied with SGD outperforms the SOTA optimizer, SAM, on CIFAR-100 and TinyImageNet.
♻ ☆ Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models
Modern retrieval systems often struggle with upgrading to new and more powerful models due to the incompatibility of embeddings between the old and new models. This necessitates a costly process known as backfilling, which involves re-computing the embeddings for a large number of data samples. In vision, Backward-compatible Training (BT) has been proposed to ensure that the new model aligns with the old model's embeddings. This paper extends the concept of vision-only BT to the field of cross-modal retrieval, marking the first attempt to address Cross-modal BT (XBT). Our goal is to achieve backward-compatibility between Vision-Language Pretraining (VLP) models, such as CLIP, for the cross-modal retrieval task. To address XBT challenges, we propose an efficient solution: a projection module that maps the new model's embeddings to those of the old model. This module, pretrained solely with text data, significantly reduces the number of image-text pairs required for XBT learning, and, once it is pretrained, it avoids using the old model during training. Furthermore, we utilize parameter-efficient training strategies that improve efficiency and preserve the off-the-shelf new model's knowledge by avoiding any modifications. Experimental results on cross-modal retrieval datasets demonstrate the effectiveness of XBT and its potential to enable backfill-free upgrades when a new VLP model emerges.
♻ ☆ STIV: Scalable Text and Image Conditioned Video Generation
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
♻ ☆ SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks
Large Language Models (LLMs) have undergone rapid progress, largely attributed to reinforcement learning on complex reasoning tasks. In contrast, while spatial intelligence is fundamental for Vision-Language Models (VLMs) in real-world interaction, the systematic study of their complex spatial reasoning remains underexplored. To bridge this gap, we introduce SIRI-Bench, a benchmark designed to evaluate VLMs' structural spatial intelligence through spatial-grounded reasoning tasks. SIRI-Bench comprises 9,000 video-question-answer triplets, where each problem is embedded in a realistic 3D scene. The benchmark is carefully designed so that solving each problem requires both spatial comprehension and structural reasoning. To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine that employs collaborative LLM agents to translate abstract mathematical problems into faithful 3D scenes. Experimental results reveal that state-of-the-art VLMs struggle significantly on SIRI-Bench, underscoring the challenge of structural spatial reasoning. We hope that our study will bring researchers' attention to spatially grounded reasoning and advance VLMs in visual problem-solving.
comment: 14 pages
♻ ☆ FEB-Cache: Frequency-Guided Exposure Bias Reduction for Enhancing Diffusion Transformer Caching
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this issue, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing why caching damage the generation processes. In this paper, we first confirm that the cache greatly amplifies the exposure bias, resulting in a decline in the generation quality. However, directly applying noise scaling is challenging for this issue due to the non-smoothness of exposure bias. We found that this phenomenon stems from the mismatch between its frequency response characteristics and the simple cache of Attention and MLP. Since these two components exhibit unique preferences for frequency signals, which provides us with a caching strategy to separate Attention and MLP to achieve an enhanced fit of exposure bias and reduce it. Based on this, we introduced FEB-Cache, a joint caching strategy that aligns with the non-exposed bias diffusion process (which gives us a higher performance cap) of caching Attention and MLP based on the frequency-guided cache table. Our approach combines a comprehensive understanding of the caching mechanism and offers a new perspective on leveraging caching to accelerate the diffusion process. Empirical results indicate that FEB-Cache optimizes model performance while concurrently facilitating acceleration. Code is available at https://github.com/aSleepyTree/EB-Cache.
♻ ☆ Fast-RF-Shimming: Accelerate RF Shimming in 7T MRI using Deep Learning
Ultrahigh field (UHF) Magnetic Resonance Imaging (MRI) offers an elevated signal-to-noise ratio (SNR), enabling exceptionally high spatial resolution that benefits both clinical diagnostics and advanced research. However, the jump to higher fields introduces complications, particularly transmit radiofrequency (RF) field ($B_{1}^{+}$) inhomogeneities, manifesting as uneven flip angles and image intensity irregularities. These artifacts can degrade image quality and impede broader clinical adoption. Traditional RF shimming methods, such as Magnitude Least Squares (MLS) optimization, effectively mitigate $B_{1}^{+}$ inhomogeneity, but remain time-consuming. Recent machine learning approaches, including RF Shim Prediction by Iteratively Projected Ridge Regression and other deep learning architectures, suggest alternative pathways. Although these approaches show promise, challenges such as extensive training periods, limited network complexity, and practical data requirements persist. In this paper, we introduce a holistic learning-based framework called Fast-RF-Shimming, which achieves a 5000x speed-up compared to the traditional MLS method. In the initial phase, we employ random-initialized Adaptive Moment Estimation (Adam) to derive the desired reference shimming weights from multi-channel $B_{1}^{+}$ fields. Next, we train a Residual Network (ResNet) to map $B_{1}^{+}$ fields directly to the ultimate RF shimming outputs, incorporating the confidence parameter into its loss function. Finally, we design Non-uniformity Field Detector (NFD), an optional post-processing step, to ensure the extreme non-uniform outcomes are identified. Comparative evaluations with standard MLS optimization underscore notable gains in both processing speed and predictive accuracy, which indicates that our technique shows a promising solution for addressing persistent inhomogeneity challenges.
♻ ☆ TimeFormer: Capturing Temporal Relationships of Deformable 3D Gaussians for Robust Reconstruction ICCV 2025
Dynamic scene reconstruction is a long-term challenge in 3D vision. Recent methods extend 3D Gaussian Splatting to dynamic scenes via additional deformation fields and apply explicit constraints like motion flow to guide the deformation. However, they learn motion changes from individual timestamps independently, making it challenging to reconstruct complex scenes, particularly when dealing with violent movement, extreme-shaped geometries, or reflective surfaces. To address the above issue, we design a plug-and-play module called TimeFormer to enable existing deformable 3D Gaussians reconstruction methods with the ability to implicitly model motion patterns from a learning perspective. Specifically, TimeFormer includes a Cross-Temporal Transformer Encoder, which adaptively learns the temporal relationships of deformable 3D Gaussians. Furthermore, we propose a two-stream optimization strategy that transfers the motion knowledge learned from TimeFormer to the base stream during the training phase. This allows us to remove TimeFormer during inference, thereby preserving the original rendering speed. Extensive experiments in the multi-view and monocular dynamic scenes validate qualitative and quantitative improvement brought by TimeFormer. Project Page: https://patrickddj.github.io/TimeFormer/
comment: ICCV 2025
♻ ☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA. Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its "style" to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
Artificial Intelligence 84
☆ TopInG: Topologically Interpretable Graph Learning via Persistent Rationale Filtration ICML 2025
Graph Neural Networks (GNNs) have shown remarkable success across various scientific fields, yet their adoption in critical decision-making is often hindered by a lack of interpretability. Recently, intrinsically interpretable GNNs have been studied to provide insights into model predictions by identifying rationale substructures in graphs. However, existing methods face challenges when the underlying rationale subgraphs are complex and varied. In this work, we propose TopInG: Topologically Interpretable Graph Learning, a novel topological framework that leverages persistent homology to identify persistent rationale subgraphs. TopInG employs a rationale filtration learning approach to model an autoregressive generation process of rationale subgraphs, and introduces a self-adjusted topological constraint, termed topological discrepancy, to enforce a persistent topological distinction between rationale subgraphs and irrelevant counterparts. We provide theoretical guarantees that our loss function is uniquely optimized by the ground truth under specific conditions. Extensive experiments demonstrate TopInG's effectiveness in tackling key challenges, such as handling variform rationale subgraphs, balancing predictive performance with interpretability, and mitigating spurious correlations. Results show that our approach improves upon state-of-the-art methods on both predictive accuracy and interpretation quality.
comment: submitted to ICML 2025
☆ VAL-Bench: Measuring Value Alignment in Language Models
Large language models (LLMs) are increasingly used for tasks where outputs shape human decisions, so it is critical to test whether their responses reflect consistent human values. Existing benchmarks mostly track refusals or predefined safety violations, but these only check rule compliance and do not reveal whether a model upholds a coherent value system when facing controversial real-world issues. We introduce the \textbf{V}alue \textbf{AL}ignment \textbf{Bench}mark (\textbf{VAL-Bench}), which evaluates whether models maintain a stable value stance across paired prompts that frame opposing sides of public debates. VAL-Bench consists of 115K such pairs from Wikipedia's controversial sections. A well-aligned model should express similar underlying views regardless of framing, which we measure using an LLM-as-judge to score agreement or divergence between paired responses. Applied across leading open- and closed-source models, the benchmark reveals large variation in alignment and highlights trade-offs between safety strategies (e.g., refusals) and more expressive value systems. By providing a scalable, reproducible benchmark, VAL-Bench enables systematic comparison of how reliably LLMs embody human values.
☆ Do Code Models Suffer from the Dunning-Kruger Effect?
As artificial intelligence systems increasingly collaborate with humans in creative and technical domains, questions arise about the cognitive boundaries and biases that shape our shared agency. This paper investigates the Dunning-Kruger Effect (DKE), the tendency for those with limited competence to overestimate their abilities in state-of-the-art LLMs in coding tasks. By analyzing model confidence and performance across a diverse set of programming languages, we reveal that AI models mirror human patterns of overconfidence, especially in unfamiliar or low-resource domains. Our experiments demonstrate that less competent models and those operating in rare programming languages exhibit stronger DKE-like bias, suggesting that the strength of the bias is proportionate to the competence of the models.
☆ QDeepGR4J: Quantile-based ensemble of deep learning and GR4J hybrid rainfall-runoff models for extreme flow prediction with uncertainty quantification
Conceptual rainfall-runoff models aid hydrologists and climate scientists in modelling streamflow to inform water management practices. Recent advances in deep learning have unravelled the potential for combining hydrological models with deep learning models for better interpretability and improved predictive performance. In our previous work, we introduced DeepGR4J, which enhanced the GR4J conceptual rainfall-runoff model using a deep learning model to serve as a surrogate for the routing component. DeepGR4J had an improved rainfall-runoff prediction accuracy, particularly in arid catchments. Quantile regression models have been extensively used for quantifying uncertainty while aiding extreme value forecasting. In this paper, we extend DeepGR4J using a quantile regression-based ensemble learning framework to quantify uncertainty in streamflow prediction. We also leverage the uncertainty bounds to identify extreme flow events potentially leading to flooding. We further extend the model to multi-step streamflow predictions for uncertainty bounds. We design experiments for a detailed evaluation of the proposed framework using the CAMELS-Aus dataset. The results show that our proposed Quantile DeepGR4J framework improves the predictive accuracy and uncertainty interval quality (interval score) compared to baseline deep learning models. Furthermore, we carry out flood risk evaluation using Quantile DeepGR4J, and the results demonstrate its suitability as an early warning system.
☆ NASP-T: A Fuzzy Neuro-Symbolic Transformer for Logic-Constrained Aviation Safety Report Classification
Deep transformer models excel at multi-label text classification but often violate domain logic that experts consider essential, an issue of particular concern in safety-critical applications. We propose a hybrid neuro-symbolic framework that integrates Answer Set Programming (ASP) with transformer-based learning on the Aviation Safety Reporting System (ASRS) corpus. Domain knowledge is formalized as weighted ASP rules and validated using the Clingo solver. These rules are incorporated in two complementary ways: (i) as rule-based data augmentation, generating logically consistent synthetic samples that improve label diversity and coverage; and (ii) as a fuzzy-logic regularizer, enforcing rule satisfaction in a differentiable form during fine-tuning. This design preserves the interpretability of symbolic reasoning while leveraging the scalability of deep neural architectures. We further tune per-class thresholds and report both standard classification metrics and logic-consistency rates. Compared to a strong Binary Cross-Entropy (BCE) baseline, our approach improves micro- and macro-F1 scores and achieves up to an 86% reduction in rule violations on the ASRS test set. To the best of our knowledge, this constitutes the first large-scale neuro-symbolic application to ASRS reports that unifies ASP-based reasoning, rule-driven augmentation, and differentiable transformer training for trustworthy, safety-critical NLP.
☆ Adversarial Reinforcement Learning for Large Language Model Agent Safety
Large Language Model (LLM) agents can leverage tools such as Google Search to complete complex tasks. However, this tool usage introduces the risk of indirect prompt injections, where malicious instructions hidden in tool outputs can manipulate the agent, posing security risks like data leakage. Current defense strategies typically rely on fine-tuning LLM agents on datasets of known attacks. However, the generation of these datasets relies on manually crafted attack patterns, which limits their diversity and leaves agents vulnerable to novel prompt injections. To address this limitation, we propose Adversarial Reinforcement Learning for Agent Safety (ARLAS), a novel framework that leverages adversarial reinforcement learning (RL) by formulating the problem as a two-player zero-sum game. ARLAS co-trains two LLMs: an attacker that learns to autonomously generate diverse prompt injections and an agent that learns to defend against them while completing its assigned tasks. To ensure robustness against a wide range of attacks and to prevent cyclic learning, we employ a population-based learning framework that trains the agent to defend against all previous attacker checkpoints. Evaluated on BrowserGym and AgentDojo, agents fine-tuned with ARLAS achieve a significantly lower attack success rate than the original model while also improving their task success rate. Our analysis further confirms that the adversarial process generates a diverse and challenging set of attacks, leading to a more robust agent compared to the base model.
☆ UnitTenX: Generating Tests for Legacy Packages with AI Agents Powered by Formal Verification
This paper introduces UnitTenX, a state-of-the-art open-source AI multi-agent system designed to generate unit tests for legacy code, enhancing test coverage and critical value testing. UnitTenX leverages a combination of AI agents, formal methods, and Large Language Models (LLMs) to automate test generation, addressing the challenges posed by complex and legacy codebases. Despite the limitations of LLMs in bug detection, UnitTenX offers a robust framework for improving software reliability and maintainability. Our results demonstrate the effectiveness of this approach in generating high-quality tests and identifying potential issues. Additionally, our approach enhances the readability and documentation of legacy code.
☆ Physics-Informed Machine Learning in Biomedical Science and Engineering
Physics-informed machine learning (PIML) is emerging as a potentially transformative paradigm for modeling complex biomedical systems by integrating parameterized physical laws with data-driven methods. Here, we review three main classes of PIML frameworks: physics-informed neural networks (PINNs), neural ordinary differential equations (NODEs), and neural operators (NOs), highlighting their growing role in biomedical science and engineering. We begin with PINNs, which embed governing equations into deep learning models and have been successfully applied to biosolid and biofluid mechanics, mechanobiology, and medical imaging among other areas. We then review NODEs, which offer continuous-time modeling, especially suited to dynamic physiological systems, pharmacokinetics, and cell signaling. Finally, we discuss deep NOs as powerful tools for learning mappings between function spaces, enabling efficient simulations across multiscale and spatially heterogeneous biological domains. Throughout, we emphasize applications where physical interpretability, data scarcity, or system complexity make conventional black-box learning insufficient. We conclude by identifying open challenges and future directions for advancing PIML in biomedical science and engineering, including issues of uncertainty quantification, generalization, and integration of PIML and large language models.
comment: Accepted for publication in the Annual Review of Biomedical Engineering on October 2, 2025
☆ AInstein: Assessing the Feasibility of AI-Generated Approaches to Research Problems
Large language models (LLMs) demonstrate impressive capabilities across a wide range of tasks, yet it remains unclear whether such success reflects genuine reasoning or sophisticated recall. We introduce AInstein, a framework for testing whether LLMs can generate valid solutions to AI research problems using only their pretrained parametric knowledge -- without domain-specific fine-tuning, retrieval augmentation, or other external aids. Our approach extracts distilled problem statements from high-quality ICLR 2025 submissions, then tasks specialized solver agents with proposing and refining technical solutions through iterative critique loops, mimicking the cycles of proposal, review, and revision central to scientific inquiry. We evaluate AInstein on 1,214 ICLR papers stratified by acceptance tier (Oral, Spotlight, Poster), using an LLM-as-a-judge paradigm guided by a structured rubric, complemented by targeted manual checks. Performance is assessed with three metrics: Success Rate (does the solution address the problem?), Rediscovery (does it align with human-proposed methods?), and Novelty (does it yield valid, original approaches?). Our results reveal that while LLMs can rediscover feasible solutions and occasionally propose creative alternatives, their problem-solving ability remains fragile and highly sensitive to framing. These findings provide the first large-scale evidence on the extent to which LLMs can act as autonomous scientific problem-solvers, highlighting both their latent potential and their current limitations.
☆ Exploring Student Choice and the Use of Multimodal Generative AI in Programming Learning
The broad adoption of Generative AI (GenAI) is impacting Computer Science education, and recent studies found its benefits and potential concerns when students use it for programming learning. However, most existing explorations focus on GenAI tools that primarily support text-to-text interaction. With recent developments, GenAI applications have begun supporting multiple modes of communication, known as multimodality. In this work, we explored how undergraduate programming novices choose and work with multimodal GenAI tools, and their criteria for choices. We selected a commercially available multimodal GenAI platform for interaction, as it supports multiple input and output modalities, including text, audio, image upload, and real-time screen-sharing. Through 16 think-aloud sessions that combined participant observation with follow-up semi-structured interviews, we investigated student modality choices for GenAI tools when completing programming problems and the underlying criteria for modality selections. With multimodal communication emerging as the future of AI in education, this work aims to spark continued exploration on understanding student interaction with multimodal GenAI in the context of CS education.
comment: 7 pages, accepted to SIGCSE2026
☆ See the past: Time-Reversed Scene Reconstruction from Thermal Traces Using Visual Language Models
Recovering the past from present observations is an intriguing challenge with potential applications in forensics and scene analysis. Thermal imaging, operating in the infrared range, provides access to otherwise invisible information. Since humans are typically warmer (37 C -98.6 F) than their surroundings, interactions such as sitting, touching, or leaning leave residual heat traces. These fading imprints serve as passive temporal codes, allowing for the inference of recent events that exceed the capabilities of RGB cameras. This work proposes a time-reversed reconstruction framework that uses paired RGB and thermal images to recover scene states from a few seconds earlier. The proposed approach couples Visual-Language Models (VLMs) with a constrained diffusion process, where one VLM generates scene descriptions and another guides image reconstruction, ensuring semantic and structural consistency. The method is evaluated in three controlled scenarios, demonstrating the feasibility of reconstructing plausible past frames up to 120 seconds earlier, providing a first step toward time-reversed imaging from thermal traces.
☆ Teacher-Student Guided Inverse Modeling for Steel Final Hardness Estimation
Predicting the final hardness of steel after heat treatment is a challenging regression task due to the many-to-one nature of the process -- different combinations of input parameters (such as temperature, duration, and chemical composition) can result in the same hardness value. This ambiguity makes the inverse problem, estimating input parameters from a desired hardness, particularly difficult. In this work, we propose a novel solution using a Teacher-Student learning framework. First, a forward model (Teacher) is trained to predict final hardness from 13 metallurgical input features. Then, a backward model (Student) is trained to infer plausible input configurations from a target hardness value. The Student is optimized by leveraging feedback from the Teacher in an iterative, supervised loop. We evaluate our method on a publicly available tempered steel dataset and compare it against baseline regression and reinforcement learning models. Results show that our Teacher-Student framework not only achieves higher inverse prediction accuracy but also requires significantly less computational time, demonstrating its effectiveness and efficiency for inverse process modeling in materials science.
comment: Workshop paper, AIP2025: Second Workshop on AI in Production (2025). Licensed under CC BY 4.0
☆ Comparing LSTM-Based Sequence-to-Sequence Forecasting Strategies for 24-Hour Solar Proton Flux Profiles Using GOES Data ICDM 2025
Solar Proton Events (SPEs) cause significant radiation hazards to satellites, astronauts, and technological systems. Accurate forecasting of their proton flux time profiles is crucial for early warnings and mitigation. This paper explores deep learning sequence-to-sequence (seq2seq) models based on Long Short-Term Memory networks to predict 24-hour proton flux profiles following SPE onsets. We used a dataset of 40 well-connected SPEs (1997-2017) observed by NOAA GOES, each associated with a >=M-class western-hemisphere solar flare and undisturbed proton flux profiles. Using 4-fold stratified cross-validation, we evaluate seq2seq model configurations (varying hidden units and embedding dimensions) under multiple forecasting scenarios: (i) proton-only input vs. combined proton+X-ray input, (ii) original flux data vs. trend-smoothed data, and (iii) autoregressive vs. one-shot forecasting. Our major results are as follows: First, one-shot forecasting consistently yields lower error than autoregressive prediction, avoiding the error accumulation seen in iterative approaches. Second, on the original data, proton-only models outperform proton+X-ray models. However, with trend-smoothed data, this gap narrows or reverses in proton+X-ray models. Third, trend-smoothing significantly enhances the performance of proton+X-ray models by mitigating fluctuations in the X-ray channel. Fourth, while models trained on trendsmoothed data perform best on average, the best-performing model was trained on original data, suggesting that architectural choices can sometimes outweigh the benefits of data preprocessing.
comment: 7 pages; accepted as a workshop paper at ICDM 2025
Fusion-Based Neural Generalization for Predicting Temperature Fields in Industrial PET Preform Heating
Accurate and efficient temperature prediction is critical for optimizing the preheating process of PET preforms in industrial microwave systems prior to blow molding. We propose a novel deep learning framework for generalized temperature prediction. Unlike traditional models that require extensive retraining for each material or design variation, our method introduces a data-efficient neural architecture that leverages transfer learning and model fusion to generalize across unseen scenarios. By pretraining specialized neural regressor on distinct conditions such as recycled PET heat capacities or varying preform geometries and integrating their representations into a unified global model, we create a system capable of learning shared thermal dynamics across heterogeneous inputs. The architecture incorporates skip connections to enhance stability and prediction accuracy. Our approach reduces the need for large simulation datasets while achieving superior performance compared to models trained from scratch. Experimental validation on two case studies material variability and geometric diversity demonstrates significant improvements in generalization, establishing a scalable ML-based solution for intelligent thermal control in manufacturing environments. Moreover, the approach highlights how data-efficient generalization strategies can extend to other industrial applications involving complex physical modeling with limited data.
comment: Workshop paper, AIP2025: Second Workshop on AI in Production (2025). Licensed under CC BY 4.0
☆ Context Length Alone Hurts LLM Performance Despite Perfect Retrieval EMNLP 2025
Large language models (LLMs) often fail to scale their performance on long-context tasks performance in line with the context lengths they support. This gap is commonly attributed to retrieval failures -- the models' inability to identify relevant information in the long inputs. Accordingly, recent efforts often focus on evaluating and improving LLMs' retrieval performance: if retrieval is perfect, a model should, in principle, perform just as well on a long input as it does on a short one -- or should it? This paper presents findings that the answer to this question may be negative. Our systematic experiments across 5 open- and closed-source LLMs on math, question answering, and coding tasks reveal that, even when models can perfectly retrieve all relevant information, their performance still degrades substantially (13.9%--85%) as input length increases but remains well within the models' claimed lengths. This failure occurs even when the irrelevant tokens are replaced with minimally distracting whitespace, and, more surprisingly, when they are all masked and the models are forced to attend only to the relevant tokens. A similar performance drop is observed when all relevant evidence is placed immediately before the question. Our findings reveal a previously-unrealized limitation: the sheer length of the input alone can hurt LLM performance, independent of retrieval quality and without any distraction. They motivate our simple, model-agnostic mitigation strategy that transforms a long-context task into a short-context one by prompting the model to recite the retrieved evidence before attempting to solve the problem. On RULER, we observe a consistent improvement of GPT-4o up to 4% on an already strong baseline.
comment: 18 pages (9 pages of main content), 5 figures, accepted at the Findings of EMNLP 2025
☆ AutoDAN-Reasoning: Enhancing Strategies Exploration based Jailbreak Attacks with Test-Time Scaling SC
Recent advancements in jailbreaking large language models (LLMs), such as AutoDAN-Turbo, have demonstrated the power of automated strategy discovery. AutoDAN-Turbo employs a lifelong learning agent to build a rich library of attack strategies from scratch. While highly effective, its test-time generation process involves sampling a strategy and generating a single corresponding attack prompt, which may not fully exploit the potential of the learned strategy library. In this paper, we propose to further improve the attack performance of AutoDAN-Turbo through test-time scaling. We introduce two distinct scaling methods: Best-of-N and Beam Search. The Best-of-N method generates N candidate attack prompts from a sampled strategy and selects the most effective one based on a scorer model. The Beam Search method conducts a more exhaustive search by exploring combinations of strategies from the library to discover more potent and synergistic attack vectors. According to the experiments, the proposed methods significantly boost performance, with Beam Search increasing the attack success rate by up to 15.6 percentage points on Llama-3.1-70B-Instruct and achieving a nearly 60\% relative improvement against the highly robust GPT-o4-mini compared to the vanilla method.
comment: Technical report. Code is available at https://github.com/SaFoLab-WISC/AutoDAN-Reasoning
☆ What Do You Mean? Exploring How Humans and AI Interact with Symbols and Meanings in Their Interactions
Meaningful human-AI collaboration requires more than processing language, it demands a better understanding of symbols and their constructed meanings. While humans naturally interpret symbols through social interaction, AI systems treat them as patterns with compressed meanings, missing the dynamic meanings that emerge through conversation. Drawing on symbolic interactionism theory, we conducted two studies (N=37) investigated how humans and AI interact with symbols and co-construct their meanings. When AI introduced conflicting meanings and symbols in social contexts, 63% of participants reshaped their definitions. This suggests that conflicts in symbols and meanings prompt reflection and redefinition, allowing both participants and AI to have a better shared understanding of meanings and symbols. This work reveals that shared understanding emerges not from agreement but from the reciprocal exchange and reinterpretation of symbols, suggesting new paradigms for human-AI interaction design.
comment: CHI 2026 Papers
☆ MHA-RAG: Improving Efficiency, Accuracy, and Consistency by Encoding Exemplars as Soft Prompts
Adapting Foundation Models to new domains with limited training data is challenging and computationally expensive. While prior work has demonstrated the effectiveness of using domain-specific exemplars as in-context demonstrations, we investigate whether representing exemplars purely as text is the most efficient, effective, and stable approach. We explore an alternative: representing exemplars as soft prompts with an exemplar order invariant model architecture. To this end, we introduce Multi-Head Attention Retrieval-Augmented Generation (MHA-RAG), a framework with the number of attention heads serving as a simple hyperparameter to control soft prompt-generation across different tasks. Across multiple question-answering benchmarks and model scales, MHA-RAG achieves a 20-point performance gain over standard RAG, while cutting inference costs by a factor of 10X GFLOPs-delivering both higher accuracy and greater efficiency, invariant to exemplar order.
comment: 17 pages, 5 figures
☆ MT-DAO: Multi-Timescale Distributed Adaptive Optimizers with Local Updates ICLR 2026
Training large models with distributed data parallelism (DDP) requires frequent communication of gradients across workers, which can saturate bandwidth. Infrequent communication strategies (e.g., Local SGD) reduce this overhead but, when applied to adaptive optimizers, often suffer a performance gap relative to fully synchronous DDP. We trace this gap to a time-scale mismatch: the optimizer's fast-moving momentum, tuned for frequent updates, decays too quickly to smooth gradients over long intervals, leading to noise-dominated optimization. To address this, we propose MT-DAO, a family of optimizers that employs multiple slow- and fast-moving first momenta or the gradient to track update dynamics across different time scales, for which we provide the first convergence guarantees. Empirically, for language-model pre-training, this eliminates the performance gap with DDP, outperforming infrequent-communication baselines in perplexity and reducing iso-token wall-clock time by 6-27% on Ethernet interconnects. At the 720M scale, MT-DAO reaches a target perplexity in 24% fewer steps and 35% less time than the single-momentum DDP baseline. MT-DAO enables effective cross-datacenter training and training over wide geographic areas.
comment: Submitted to the ICLR 2026 Conference
☆ Physics-informed Attention-enhanced Fourier Neural Operator for Solar Magnetic Field Extrapolations ICDM 2025
We propose Physics-informed Attention-enhanced Fourier Neural Operator (PIANO) to solve the Nonlinear Force-Free Field (NLFFF) problem in solar physics. Unlike conventional approaches that rely on iterative numerical methods, our proposed PIANO directly learns the 3D magnetic field structure from 2D boundary conditions. Specifically, PIANO integrates Efficient Channel Attention (ECA) mechanisms with Dilated Convolutions (DC), which enhances the model's ability to capture multimodal input by prioritizing critical channels relevant to the magnetic field's variations. Furthermore, we apply physics-informed loss by enforcing the force-free and divergence-free conditions in the training process so that our prediction is consistent with underlying physics with high accuracy. Experimental results on the ISEE NLFFF dataset show that our PIANO not only outperforms state-of-the-art neural operators in terms of accuracy but also shows strong consistency with the physical characteristics of NLFFF data across magnetic fields reconstructed from various solar active regions. The GitHub of this project is available https://github.com/Autumnstar-cjh/PIANO
comment: 10 pages; accepted as workshop paper in ICDM 2025; https://github.com/Autumnstar-cjh/PIANO
☆ Margin Adaptive DPO: Leveraging Reward Model for Granular Control in Preference Optimization
Direct Preference Optimization (DPO) has emerged as a simple and effective method for aligning large language models. However, its reliance on a fixed temperature parameter leads to suboptimal training on diverse preference data, causing overfitting on easy examples and under-learning from informative ones. Recent methods have emerged to counter this. While IPO addresses general overfitting, its uniform regularization can be overly conservative. The more targeted approach of $\beta$-DPO suffers from its own limitations: its batch-level adaptation applies a single, compromised temperature to mixed-margin pairs, its linear update rule can produce unstable negative $\beta$ values, and its filtering mechanism discards potentially useful training signals. In this work, we introduce Margin-Adaptive Direct Preference Optimization (MADPO), a method that provides a stable, data-preserving, and instance-level solution. MADPO employs a practical two-step approach: it first trains a reward model to estimate preference margins and then uses these margins to apply a continuous, adaptive weight to the DPO loss for each individual training sample. This re-weighting scheme creates an effective target margin that is amplified for hard pairs and dampened for easy pairs, allowing for granular control over the learning signal. We provide a comprehensive theoretical analysis, proving that MADPO has a well-behaved optimization landscape and is robust to reward model estimation errors. We validate our theory with experiments on a sentiment generation task, where MADPO consistently and significantly outperforms strong baselines across datasets of varying quality. It achieves performance gains of up to +33.3\% on High Quality data and +10.5\% on Low Quality data over the next-best method. Our results establish MADPO as a more robust and principled approach to preference alignment.
☆ Integrating Bayesian methods with neural network--based model predictive control: a review
In this review, we assess the use of Bayesian methods in model predictive control (MPC), focusing on neural-network-based modeling, control design, and uncertainty quantification. We systematically analyze individual studies and how they are implemented in practice. While Bayesian approaches are increasingly adopted to capture and propagate uncertainty in MPC, reported gains in performance and robustness remain fragmented, with inconsistent baselines and limited reliability analyses. We therefore argue for standardized benchmarks, ablation studies, and transparent reporting to rigorously determine the effectiveness of Bayesian techniques for MPC.
comment: 27 pages, review article
☆ Biomedical reasoning in action: Multi-agent System for Auditable Biomedical Evidence Synthesis
We present M-Reason, a demonstration system for transparent, agent-based reasoning and evidence integration in the biomedical domain, with a focus on cancer research. M-Reason leverages recent advances in large language models (LLMs) and modular agent orchestration to automate evidence retrieval, appraisal, and synthesis across diverse biomedical data sources. Each agent specializes in a specific evidence stream, enabling parallel processing and fine-grained analysis. The system emphasizes explainability, structured reporting, and user auditability, providing complete traceability from source evidence to final conclusions. We discuss critical tradeoffs between agent specialization, system complexity, and resource usage, as well as the integration of deterministic code for validation. An open, interactive user interface allows researchers to directly observe, explore and evaluate the multi-agent workflow. Our evaluation demonstrates substantial gains in efficiency and output consistency, highlighting M-Reason's potential as both a practical tool for evidence synthesis and a testbed for robust multi-agent LLM systems in scientific research, available at https://m-reason.digitalecmt.com.
☆ DeepV: A Model-Agnostic Retrieval-Augmented Framework for Verilog Code Generation with a High-Quality Knowledge Base
As large language models (LLMs) continue to be integrated into modern technology, there has been an increased push towards code generation applications, which also naturally extends to hardware design automation. LLM-based solutions for register transfer level (RTL) code generation for intellectual property (IP) designs have grown, especially with fine-tuned LLMs, prompt engineering, and agentic approaches becoming popular in literature. However, a gap has been exposed in these techniques, as they fail to integrate novel IPs into the model's knowledge base, subsequently resulting in poorly generated code. Additionally, as general-purpose LLMs continue to improve, fine-tuned methods on older models will not be able to compete to produce more accurate and efficient designs. Although some retrieval augmented generation (RAG) techniques exist to mitigate challenges presented in fine-tuning approaches, works tend to leverage low-quality codebases, incorporate computationally expensive fine-tuning in the frameworks, or do not use RAG directly in the RTL generation step. In this work, we introduce DeepV: a model-agnostic RAG framework to generate RTL designs by enhancing context through a large, high-quality dataset without any RTL-specific training. Our framework benefits the latest commercial LLM, OpenAI's GPT-5, with a near 17% increase in performance on the VerilogEval benchmark. We host DeepV for use by the community in a Hugging Face (HF) Space: https://huggingface.co/spaces/FICS-LLM/DeepV.
comment: 22 pages, 6 figures
Dynamic Functional Connectivity Features for Brain State Classification: Insights from the Human Connectome Project
We analyze functional magnetic resonance imaging (fMRI) data from the Human Connectome Project (HCP) to match brain activities during a range of cognitive tasks. Our findings demonstrate that even basic linear machine learning models can effectively classify brain states and achieve state-of-the-art accuracy, particularly for tasks related to motor functions and language processing. Feature importance ranking allows to identify distinct sets of brain regions whose activation patterns are uniquely associated with specific cognitive functions. These discriminative features provide strong support for the hypothesis of functional specialization across cortical and subcortical areas of the human brain. Additionally, we investigate the temporal dynamics of the identified brain regions, demonstrating that the time-dependent structure of fMRI signals are essential for shaping functional connectivity between regions: uncorrelated areas are least important for classification. This temporal perspective provides deeper insights into the formation and modulation of brain neural networks involved in cognitive processing.
☆ BIRD-INTERACT: Re-imagining Text-to-SQL Evaluation for Large Language Models via Lens of Dynamic Interactions
Large language models (LLMs) have demonstrated remarkable performance on single-turn text-to-SQL tasks, but real-world database applications predominantly require multi-turn interactions to handle ambiguous queries, execution errors, and evolving user requirements. Existing multi-turn benchmarks fall short by treating conversation histories as static context or limiting evaluation to read-only operations, failing to reflect production-grade database assistant challenges. We introduce BIRD-INTERACT, a benchmark that restores this realism through: (1) a comprehensive interaction environment coupling each database with a hierarchical knowledge base, metadata files, and a function-driven user simulator, enabling models to solicit clarifications, retrieve knowledge, and recover from errors without human supervision; (2) two evaluation settings consisting of a pre-defined conversational protocol (c-Interact) and an open-ended agentic setting (a-Interact) where models autonomously decide when to query the user simulator or explore the environment; (3) a challenging task suite covering the full CRUD spectrum for business-intelligence and operational use cases, guarded by executable test cases. Each task features ambiguous and follow-up sub-tasks requiring dynamic interaction. The suite comprises BIRD-INTERACT-FULL (600 tasks, up to 11,796 interactions) for comprehensive performance assessment, and BIRD-INTERACT-LITE (300 tasks with simplified databases) for detailed behavioral analysis and rapid method development. Our empirical results highlight BIRD-INTERACT's difficulty: GPT-5 completes only 8.67% of tasks in c-Interact and 17.00% in a-Interact. Analysis via memory grafting and Interaction Test-time Scaling validates the importance of effective interaction for complex, dynamic text-to-SQL tasks.
comment: 47 pages, 26 figures, 11 tables. Submitted to arXiv; based on work from The BIRD Team and Google Cloud. Dataset and code available at https://bird-interact.github.io
☆ DeepAf: One-Shot Spatiospectral Auto-Focus Model for Digital Pathology
While Whole Slide Imaging (WSI) scanners remain the gold standard for digitizing pathology samples, their high cost limits accessibility in many healthcare settings. Other low-cost solutions also face critical limitations: automated microscopes struggle with consistent focus across varying tissue morphology, traditional auto-focus methods require time-consuming focal stacks, and existing deep-learning approaches either need multiple input images or lack generalization capability across tissue types and staining protocols. We introduce a novel automated microscopic system powered by DeepAf, a novel auto-focus framework that uniquely combines spatial and spectral features through a hybrid architecture for single-shot focus prediction. The proposed network automatically regresses the distance to the optimal focal point using the extracted spatiospectral features and adjusts the control parameters for optimal image outcomes. Our system transforms conventional microscopes into efficient slide scanners, reducing focusing time by 80% compared to stack-based methods while achieving focus accuracy of 0.18 {\mu}m on the same-lab samples, matching the performance of dual-image methods (0.19 {\mu}m) with half the input requirements. DeepAf demonstrates robust cross-lab generalization with only 0.72% false focus predictions and 90% of predictions within the depth of field. Through an extensive clinical study of 536 brain tissue samples, our system achieves 0.90 AUC in cancer classification at 4x magnification, a significant achievement at lower magnification than typical 20x WSI scans. This results in a comprehensive hardware-software design enabling accessible, real-time digital pathology in resource-constrained settings while maintaining diagnostic accuracy.
☆ RAG Makes Guardrails Unsafe? Investigating Robustness of Guardrails under RAG-style Contexts
With the increasing adoption of large language models (LLMs), ensuring the safety of LLM systems has become a pressing concern. External LLM-based guardrail models have emerged as a popular solution to screen unsafe inputs and outputs, but they are themselves fine-tuned or prompt-engineered LLMs that are vulnerable to data distribution shifts. In this paper, taking Retrieval Augmentation Generation (RAG) as a case study, we investigated how robust LLM-based guardrails are against additional information embedded in the context. Through a systematic evaluation of 3 Llama Guards and 2 GPT-oss models, we confirmed that inserting benign documents into the guardrail context alters the judgments of input and output guardrails in around 11% and 8% of cases, making them unreliable. We separately analyzed the effect of each component in the augmented context: retrieved documents, user query, and LLM-generated response. The two mitigation methods we tested only bring minor improvements. These results expose a context-robustness gap in current guardrails and motivate training and evaluation protocols that are robust to retrieval and query composition.
☆ AUREXA-SE: Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement
In this paper, we propose AUREXA-SE (Audio-Visual Unified Representation Exchange Architecture with Cross-Attention and Squeezeformer for Speech Enhancement), a progressive bimodal framework tailored for audio-visual speech enhancement (AVSE). AUREXA-SE jointly leverages raw audio waveforms and visual cues by employing a U-Net-based 1D convolutional encoder for audio and a Swin Transformer V2 for efficient and expressive visual feature extraction. Central to the architecture is a novel bidirectional cross-attention mechanism, which facilitates deep contextual fusion between modalities, enabling rich and complementary representation learning. To capture temporal dependencies within the fused embeddings, a stack of lightweight Squeezeformer blocks combining convolutional and attention modules is introduced. The enhanced embeddings are then decoded via a U-Net-style decoder for direct waveform reconstruction, ensuring perceptually consistent and intelligible speech output. Experimental evaluations demonstrate the effectiveness of AUREXA-SE, achieving significant performance improvements over noisy baselines, with STOI of 0.516, PESQ of 1.323, and SI-SDR of -4.322 dB. The source code of AUREXA-SE is available at https://github.com/mtanveer1/AVSEC-4-Challenge-2025.
☆ DP-Adam-AC: Privacy-preserving Fine-Tuning of Localizable Language Models Using Adam Optimization with Adaptive Clipping
Large language models (LLMs) such as ChatGPT have evolved into powerful and ubiquitous tools. Fine-tuning on small datasets allows LLMs to acquire specialized skills for specific tasks efficiently. Although LLMs provide great utility in both general and task-specific use cases, they are limited by two security-related concerns. First, traditional LLM hardware requirements make them infeasible to run locally on consumer-grade devices. A remote network connection with the LLM provider's server is usually required, making the system vulnerable to network attacks. Second, fine-tuning an LLM for a sensitive task may involve sensitive data. Non-private fine-tuning algorithms produce models vulnerable to training data reproduction attacks. Our work addresses these security concerns by enhancing differentially private optimization algorithms and applying them to fine-tune localizable language models. We introduce adaptable gradient clipping along with other engineering enhancements to the standard DP-Adam optimizer to create DP-Adam-AC. We use our optimizer to fine-tune examples of two localizable LLM designs, small language model (Qwen2.5-0.5B) and 1.58 bit quantization (Bitnet-b1.58-2B). We demonstrate promising improvements in loss through experimentation with two synthetic datasets.
☆ Adjusting the Output of Decision Transformer with Action Gradient
Decision Transformer (DT), which integrates reinforcement learning (RL) with the transformer model, introduces a novel approach to offline RL. Unlike classical algorithms that take maximizing cumulative discounted rewards as objective, DT instead maximizes the likelihood of actions. This paradigm shift, however, presents two key challenges: stitching trajectories and extrapolation of action. Existing methods, such as substituting specific tokens with predictive values and integrating the Policy Gradient (PG) method, address these challenges individually but fail to improve performance stably when combined due to inherent instability. To address this, we propose Action Gradient (AG), an innovative methodology that directly adjusts actions to fulfill a function analogous to that of PG, while also facilitating efficient integration with token prediction techniques. AG utilizes the gradient of the Q-value with respect to the action to optimize the action. The empirical results demonstrate that our method can significantly enhance the performance of DT-based algorithms, with some results achieving state-of-the-art levels.
☆ Beyond Monolithic Rewards: A Hybrid and Multi-Aspect Reward Optimization for MLLM Alignment
Aligning multimodal large language models (MLLMs) with human preferences often relies on single-signal, model-based reward methods. Such monolithic rewards often lack confidence calibration across domain-specific tasks, fail to capture diverse aspects of human preferences, and require extensive data annotation and reward model training. In this work, we propose a hybrid reward modeling framework that integrates complementary reward paradigms: (i) model-based rewards, where a learned reward model predicts scalar or vector scores from synthetic and human feedback, and (ii) rule-based rewards, where domain-specific heuristics provide explicit correctness signals with confidence. Beyond accuracy, we further incorporate multi-aspect rewards to enforce instruction adherence and introduce a generalized length-penalty reward to stabilize training and improve performance. The proposed framework provides a flexible and effective approach to aligning MLLMs through reinforcement learning policy optimization. Our experiments show consistent improvements across different multimodal benchmarks when applying hybrid and multi-aspect reward modeling. Our best performing model in the 3B family achieves an overall average improvement of ~9.5% across general and math reasoning tasks. Focusing specifically on mathematical benchmarks, the model achieves a significant average improvement of ~16%, highlighting its effectiveness in mathematical reasoning and problem solving.
☆ CMT-Benchmark: A Benchmark for Condensed Matter Theory Built by Expert Researchers
Large language models (LLMs) have shown remarkable progress in coding and math problem-solving, but evaluation on advanced research-level problems in hard sciences remains scarce. To fill this gap, we present CMT-Benchmark, a dataset of 50 problems covering condensed matter theory (CMT) at the level of an expert researcher. Topics span analytical and computational approaches in quantum many-body, and classical statistical mechanics. The dataset was designed and verified by a panel of expert researchers from around the world. We built the dataset through a collaborative environment that challenges the panel to write and refine problems they would want a research assistant to solve, including Hartree-Fock, exact diagonalization, quantum/variational Monte Carlo, density matrix renormalization group (DMRG), quantum/classical statistical mechanics, and model building. We evaluate LLMs by programmatically checking solutions against expert-supplied ground truth. We developed machine-grading, including symbolic handling of non-commuting operators via normal ordering. They generalize across tasks too. Our evaluations show that frontier models struggle with all of the problems in the dataset, highlighting a gap in the physical reasoning skills of current LLMs. Notably, experts identified strategies for creating increasingly difficult problems by interacting with the LLMs and exploiting common failure modes. The best model, GPT5, solves 30\% of the problems; average across 17 models (GPT, Gemini, Claude, DeepSeek, Llama) is 11.4$\pm$2.1\%. Moreover, 18 problems are solved by none of the 17 models, and 26 by at most one. These unsolved problems span Quantum Monte Carlo, Variational Monte Carlo, and DMRG. Answers sometimes violate fundamental symmetries or have unphysical scaling dimensions. We believe this benchmark will guide development toward capable AI research assistants and tutors.
comment: 19 pages, 3 figures
☆ Approximate Gaussianity Beyond Initialisation in Neural Networks
Ensembles of neural network weight matrices are studied through the training process for the MNIST classification problem, testing the efficacy of matrix models for representing their distributions, under assumptions of Gaussianity and permutation-symmetry. The general 13-parameter permutation invariant Gaussian matrix models are found to be effective models for the correlated Gaussianity in the weight matrices, beyond the range of applicability of the simple Gaussian with independent identically distributed matrix variables, and notably well beyond the initialisation step. The representation theoretic model parameters, and the graph-theoretic characterisation of the permutation invariant matrix observables give an interpretable framework for the best-fit model and for small departures from Gaussianity. Additionally, the Wasserstein distance is calculated for this class of models and used to quantify the movement of the distributions over training. Throughout the work, the effects of varied initialisation regimes, regularisation, layer depth, and layer width are tested for this formalism, identifying limits where particular departures from Gaussianity are enhanced and how more general, yet still highly-interpretable, models can be developed.
comment: 26+34 pages, 15 figures, 12 tables
☆ VER: Vision Expert Transformer for Robot Learning via Foundation Distillation and Dynamic Routing
Pretrained vision foundation models (VFMs) advance robotic learning via rich visual representations, yet individual VFMs typically excel only in specific domains, limiting generality across tasks. Distilling multiple VFMs into a unified representation for policy can mitigate this limitation but often yields inflexible task-specific feature selection and requires costly full re-training to incorporate robot-domain knowledge. We propose VER, a Vision Expert transformer for Robot learning. During pretraining, VER distills multiple VFMs into a vision expert library. It then fine-tunes only a lightweight routing network (fewer than 0.4% of parameters) to dynamically select task-relevant experts from the pretrained library for downstream robot tasks. We further introduce Patchwise Expert Routing with Curriculum Top-K Annealing to improve both flexibility and precision of dynamic expert selection. Moreover, VER supports parameter-efficient finetuning for scalable expert utilization and adaptive robot-domain knowledge integration. Across 17 diverse robotic tasks and multiple policy heads, VER achieves state-of-the-art performance. We find that VER reduces large-norm outliers in task-irrelevant regions (e.g., background) and concentrates on task-critical regions. Visualizations and codes can be found in https://yixiaowang7.github.io/ver_page/.
☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: 20 pages, 8 figures
☆ From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.
☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: The weight diffs and DIT adapters trained in the paper can be found at https://huggingface.co/diff-interpretation-tuning/loras
☆ Finish First, Perfect Later: Test-Time Token-Level Cross-Validation for Diffusion Large Language Models
Diffusion large language models (dLLMs) have recently emerged as a promising alternative to autoregressive (AR) models, offering advantages such as accelerated parallel decoding and bidirectional context modeling. However, the vanilla decoding strategy in discrete dLLMs suffers from a critical limitation: once a token is accepted, it can no longer be revised in subsequent steps. As a result, early mistakes persist across iterations, harming both intermediate predictions and final output quality. To address this issue, we propose Tolerator (Token-Level Cross-Validation Refinement), a training-free decoding strategy that leverages cross-validation among predicted tokens. Unlike existing methods that follow a single progressive unmasking procedure, Tolerator introduces a two-stage process: (i) sequence fill-up and (ii) iterative refinement by remasking and decoding a subset of tokens while treating the remaining as context. This design enables previously accepted tokens to be reconsidered and corrected when necessary, leading to more reliable diffusion decoding outputs. We evaluate Tolerator on five standard benchmarks covering language understanding, code generation, and mathematics. Experiments show that our method achieves consistent improvements over the baselines under the same computational budget. These findings suggest that decoding algorithms are crucial to realizing the full potential of diffusion large language models. Code and data are publicly available.
comment: 17 pages, 8 figures. Work in progress
☆ TeachLM: Post-Training LLMs for Education Using Authentic Learning Data
The promise of generative AI to revolutionize education is constrained by the pedagogical limits of large language models (LLMs). A major issue is the lack of access to high-quality training data that reflect the learning of actual students. Prompt engineering has emerged as a stopgap, but the ability of prompts to encode complex pedagogical strategies in rule-based natural language is inherently limited. To address this gap we introduce TeachLM - an LLM optimized for teaching through parameter-efficient fine-tuning of state-of-the-art models. TeachLM is trained on a dataset comprised of 100,000 hours of one-on-one, longitudinal student-tutor interactions maintained by Polygence, which underwent a rigorous anonymization process to protect privacy. We use parameter-efficient fine-tuning to develop an authentic student model that enables the generation of high-fidelity synthetic student-tutor dialogues. Building on this capability, we propose a novel multi-turn evaluation protocol that leverages synthetic dialogue generation to provide fast, scalable, and reproducible assessments of the dialogical capabilities of LLMs. Our evaluations demonstrate that fine-tuning on authentic learning data significantly improves conversational and pedagogical performance - doubling student talk time, improving questioning style, increasing dialogue turns by 50%, and greater personalization of instruction.
comment: 28 pages, 9 figures
☆ SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.
comment: Project page at: https://ronen94.github.io/SAEdit/
Slm-mux: Orchestrating small language models for reasoning
With the rapid development of language models, the number of small language models (SLMs) has grown significantly. Although they do not achieve state-of-the-art accuracy, they are more efficient and often excel at specific tasks. This raises a natural question: can multiple SLMs be orchestrated into a system where each contributes effectively, achieving higher accuracy than any individual model? Existing orchestration methods have primarily targeted frontier models (e.g., GPT-4) and perform suboptimally when applied to SLMs. To address this gap, we propose a three-stage approach for orchestrating SLMs. First, we introduce SLM-MUX, a multi-model architecture that effectively coordinates multiple SLMs. Building on this, we develop two optimization strategies: (i) a model selection search that identifies the most complementary SLMs from a given pool, and (ii) test-time scaling tailored to SLM-MUX. Our approach delivers strong results: Compared to existing orchestration methods, our approach achieves up to 13.4% improvement on MATH, 8.8% on GPQA, and 7.0% on GSM8K. With just two SLMS, SLM-MUX outperforms Qwen 2.5 72B on GPQA and GSM8K, and matches its performance on MATH. We further provide theoretical analyses to substantiate the advantages of our method. In summary, we demonstrate that SLMs can be effectively orchestrated into more accurate and efficient systems through the proposed approach.
☆ SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
comment: Code: https://github.com/sdc17/SwiReasoning, Website: https://swireasoning.github.io/
☆ Efficient Prediction of Pass@k Scaling in Large Language Models
Assessing the capabilities and risks of frontier AI systems is a critical area of research, and recent work has shown that repeated sampling from models can dramatically increase both. For instance, repeated sampling has been shown to increase their capabilities, such as solving difficult math and coding problems, but it has also been shown to increase their potential for harm, such as being jailbroken. Such results raise a crucial question for both capability and safety forecasting: how can one accurately predict a model's behavior when scaled to a massive number of attempts, given a vastly smaller sampling budget? This question is directly relevant to model providers, who serve hundreds of millions of users daily, and to governmental regulators, who seek to prevent harms. To answer this questions, we make three contributions. First, we find that standard methods for fitting these laws suffer from statistical shortcomings that hinder predictive accuracy, especially in data-limited scenarios. Second, we remedy these shortcomings by introducing a robust estimation framework, which uses a beta-binomial distribution to generate more accurate predictions from limited data. Third, we propose a dynamic sampling strategy that allocates a greater budget to harder problems. Combined, these innovations enable more reliable prediction of rare risks and capabilities at a fraction of the computational cost.
☆ Staircase Streaming for Low-Latency Multi-Agent Inference
Recent advances in large language models (LLMs) opened up new directions for leveraging the collective expertise of multiple LLMs. These methods, such as Mixture-of-Agents, typically employ additional inference steps to generate intermediate outputs, which are then used to produce the final response. While multi-agent inference can enhance response quality, it can significantly increase the time to first token (TTFT), posing a challenge for latency-sensitive applications and hurting user experience. To address this issue, we propose staircase streaming for low-latency multi-agent inference. Instead of waiting for the complete intermediate outputs from previous steps, we begin generating the final response as soon as we receive partial outputs from these steps. Experimental results demonstrate that staircase streaming reduces TTFT by up to 93% while maintaining response quality.
☆ HybridFlow: Quantification of Aleatoric and Epistemic Uncertainty with a Single Hybrid Model
Uncertainty quantification is critical for ensuring robustness in high-stakes machine learning applications. We introduce HybridFlow, a modular hybrid architecture that unifies the modeling of aleatoric and epistemic uncertainty by combining a Conditional Masked Autoregressive normalizing flow for estimating aleatoric uncertainty with a flexible probabilistic predictor for epistemic uncertainty. The framework supports integration with any probabilistic model class, allowing users to easily adapt HybridFlow to existing architectures without sacrificing predictive performance. HybridFlow improves upon previous uncertainty quantification frameworks across a range of regression tasks, such as depth estimation, a collection of regression benchmarks, and a scientific case study of ice sheet emulation. We also provide empirical results of the quantified uncertainty, showing that the uncertainty quantified by HybridFlow is calibrated and better aligns with model error than existing methods for quantifying aleatoric and epistemic uncertainty. HybridFlow addresses a key challenge in Bayesian deep learning, unifying aleatoric and epistemic uncertainty modeling in a single robust framework.
comment: Reviewed and published in TMLR at https://openreview.net/forum?id=xRiEdSyVjY
☆ Look-ahead Reasoning with a Learned Model in Imperfect Information Games
Test-time reasoning significantly enhances pre-trained AI agents' performance. However, it requires an explicit environment model, often unavailable or overly complex in real-world scenarios. While MuZero enables effective model learning for search in perfect information games, extending this paradigm to imperfect information games presents substantial challenges due to more nuanced look-ahead reasoning techniques and large number of states relevant for individual decisions. This paper introduces an algorithm LAMIR that learns an abstracted model of an imperfect information game directly from the agent-environment interaction. During test time, this trained model is used to perform look-ahead reasoning. The learned abstraction limits the size of each subgame to a manageable size, making theoretically principled look-ahead reasoning tractable even in games where previous methods could not scale. We empirically demonstrate that with sufficient capacity, LAMIR learns the exact underlying game structure, and with limited capacity, it still learns a valuable abstraction, which improves game playing performance of the pre-trained agents even in large games.
♻ ☆ Deep Learning Approaches with Explainable AI for Differentiating Alzheimer Disease and Mild Cognitive Impairment
Early and accurate diagnosis of Alzheimer Disease is critical for effective clinical intervention, particularly in distinguishing it from Mild Cognitive Impairment, a prodromal stage marked by subtle structural changes. In this study, we propose a hybrid deep learning ensemble framework for Alzheimer Disease classification using structural magnetic resonance imaging. Gray and white matter slices are used as inputs to three pretrained convolutional neural networks such as ResNet50, NASNet, and MobileNet, each fine tuned through an end to end process. To further enhance performance, we incorporate a stacked ensemble learning strategy with a meta learner and weighted averaging to optimally combine the base models. Evaluated on the Alzheimer Disease Neuroimaging Initiative dataset, the proposed method achieves state of the art accuracy of 99.21% for Alzheimer Disease vs. Mild Cognitive Impairment and 91.0% for Mild Cognitive Impairment vs. Normal Controls, outperforming conventional transfer learning and baseline ensemble methods. To improve interpretability in image based diagnostics, we integrate Explainable AI techniques by Gradient weighted Class Activation, which generates heatmaps and attribution maps that highlight critical regions in gray and white matter slices, revealing structural biomarkers that influence model decisions. These results highlight the frameworks potential for robust and scalable clinical decision support in neurodegenerative disease diagnostics.
comment: 18 pages, 4 figures
♻ ☆ ForTIFAI: Fending Off Recursive Training Induced Failure for AI Models
The increasing reliance on generative AI models is rapidly increasing the volume of synthetic data, with some projections suggesting that most available new data for training could be machine-generated by 2030. This shift to a mainly synthetic content presents a critical challenge: repeated training in synthetic data leads to a phenomenon known as model collapse, where model performance degrades over generations of training, eventually rendering the models ineffective. While the causes of model collapse are increasingly understood, effective mitigation strategies remain scarce. We address this challenge by leveraging a key insight: auto-regressive models tend to generate text sequences to which they assign high confidence (i.e., high log-likelihood). Based on this observation, we introduce the Truncated-Cross-Entropy (TCE) loss function. TCE mitigates collapse by selectively ignoring high-confidence tokens during training, effectively filtering out likely machine-generated artifacts from the learning process. Our experiments demonstrate that models trained with TCE not only learn effectively but also exhibit significantly increased resilience, tolerating over 2.3x more synthetic data before the onset of collapse. In addition, we provide an open-source benchmark for collapse dynamics in mixed-data settings. Our results demonstrate that confidence-aware training objectives can substantially delay collapse onset, offering a practical and generalizable tool for model robustness under synthetic-data exposure.
♻ ☆ Persona Features Control Emergent Misalignment
Understanding how language models generalize behaviors from their training to a broader deployment distribution is an important problem in AI safety. Betley et al. discovered that fine-tuning GPT-4o on intentionally insecure code causes "emergent misalignment," where models give stereotypically malicious responses to unrelated prompts. We extend this work, demonstrating emergent misalignment across diverse conditions, including reinforcement learning on reasoning models, fine-tuning on various synthetic datasets, and in models without safety training. To investigate the mechanisms behind this generalized misalignment, we apply a "model diffing" approach using sparse autoencoders to compare internal model representations before and after fine-tuning. This approach reveals several "misaligned persona" features in activation space, including a toxic persona feature which most strongly controls emergent misalignment and can be used to predict whether a model will exhibit such behavior. Additionally, we investigate mitigation strategies, discovering that fine-tuning an emergently misaligned model on just a few hundred benign samples efficiently restores alignment.
♻ ☆ Binding Affinity Prediction: From Conventional to Machine Learning-Based Approaches
Protein-ligand binding is the process by which a small molecule (drug or inhibitor) attaches to a target protein. Binding affinity, which characterizes the strength of biomolecular interactions, is essential for tackling diverse challenges in life sciences, including therapeutic design, protein engineering, enzyme optimization, and elucidating biological mechanisms. Much work has been devoted to predicting binding affinity over the past decades. Here, we review recent significant works, with a focus on methods, evaluation strategies, and benchmark datasets. We note growing use of both traditional machine learning and deep learning models for predicting binding affinity, accompanied by an increasing amount of data on proteins and small drug-like molecules. With improved predictive performance and the FDA's phasing out of animal testing, AI-driven in silico models, such as AI virtual cells (AIVCs), are poised to advance binding affinity prediction; reciprocally, progress in building binding affinity predictors can refine AIVCs. Future efforts in binding affinity prediction and AI-driven in silico models can enhance the simulation of temporal dynamics, cell-type specificity, and multi-omics integration to support more accurate and personalized outcomes.
♻ ☆ AutoPDL: Automatic Prompt Optimization for LLM Agents
The performance of large language models (LLMs) depends on how they are prompted, with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Manually tuning this combination is tedious, error-prone, and specific to a given LLM and task. Therefore, this paper proposes AutoPDL, an automated approach to discovering good LLM agent configurations. Our approach frames this as a structured AutoML problem over a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, using successive halving to efficiently navigate this space. We introduce a library implementing common prompting patterns using the PDL prompt programming language. AutoPDL solutions are human-readable, editable, and executable PDL programs that use this library. This approach also enables source-to-source optimization, allowing human-in-the-loop refinement and reuse. Evaluations across three tasks and seven LLMs (ranging from 3B to 70B parameters) show consistent accuracy gains ($9.21\pm15.46$ percentage points), up to 67.5pp, and reveal that selected prompting strategies vary across models and tasks.
comment: Presented at AutoML 2025 (Methods Track); to be published in proceedings
♻ ☆ Optimal Transport for Brain-Image Alignment: Unveiling Redundancy and Synergy in Neural Information Processing
The design of artificial neural networks (ANNs) is inspired by the structure of the human brain, and in turn, ANNs offer a potential means to interpret and understand brain signals. Existing methods primarily align brain signals with stimulus signals using Mean Squared Error (MSE), which focuses only on local point-wise alignment and ignores global matching, leading to coarse interpretations and inaccuracies in brain signal decoding. In this paper, we address these issues through optimal transport (OT) and theoretically demonstrate why OT provides a more effective alignment strategy than MSE. Specifically, we construct a transport plan between brain voxel embeddings and image embeddings, enabling more precise matching. By controlling the amount of transport, we mitigate the influence of redundant information. We apply our alignment model directly to the Brain Captioning task by feeding brain signals into a large language model (LLM) instead of images. Our approach achieves state-of-the-art performance across ten evaluation metrics, surpassing the previous best method by an average of 6.11\% in single-subject training and 3.81\% in cross-subject training. Additionally, we have uncovered several insightful conclusions that align with existing brain research. We unveil the redundancy and synergy of brain information processing through region masking and data dimensionality reduction visualization experiments. We believe our approach paves the way for a more precise understanding of brain signals in the future. The code is available at https://github.com/NKUShaw/OT-Alignment4brain-to-image.
comment: 14pages
♻ ☆ PACER: Physics Informed and Uncertainty Aware Climate Emulator
Physics based numerical climate models serve as critical tools for evaluating the effects of climate change and projecting future climate scenarios. However, the reliance on numerical simulations of physical equations renders them computationally intensive and inefficient. While deep learning methodologies have made significant progress in weather forecasting, they are still unstable for longer roll-out climate emulation task. Here, we propose PACER, a relatively lightweight 2.1M parameter Physics Informed Uncertainty Aware Climate EmulatoR. PACER is trained across is trained across varying spatial resolutions and physics based climate models, enabling faithful and stable emulation of temperature fields at multiple surface levels over a 10 year horizon. We propose an auto-regressive ODE-SDE framework for climate emulation that integrates the fundamental physical law of advection, while being trained under a negative log-likelihood objective to enable principled uncertainty quantification of stochastic variability. We show PACER's emulation performance across 20 climate models outperforming relevant baselines and advancing towards explicit physics infusion in ML emulator.
♻ ☆ Can We Ignore Labels In Out of Distribution Detection?
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
♻ ☆ Adaptive Margin RLHF via Preference over Preferences
Margin-based optimization is fundamental to improving generalization and robustness in classification tasks. In the context of reward model learning from preferences within Reinforcement Learning from Human Feedback (RLHF), existing methods typically rely on no margins, fixed margins, or margins that are simplistic functions of preference ratings. However, such formulations often fail to account for the varying strengths of different preferences, for example some preferences are associated with larger margins between responses, or they rely on noisy margin information derived from ratings. We argue that modeling the strength of preferences can lead to better generalization and more faithful alignment. Furthermore, many existing methods that use adaptive margins assume access to accurate preference scores, which can be difficult for humans to provide reliably. We propose an approach that leverages preferences over preferences, that is annotations indicating which of two preferences reflects a stronger distinction. We use this ordinal signal to infer adaptive margins on a per-datapoint basis. We introduce an extension to Direct Preference Optimization (DPO), DPO-PoP, that incorporates adaptive margins from preference-over-preference supervision, enabling improved discriminative and generative performance. Empirically, our method outperforms vanilla DPO, DPO with fixed margins, and DPO with ground-truth margins on the UltraFeedback dataset. Additionally, we show that there is a tradeoff between discriminative and generative performance: improving test classification accuracy, particularly by correctly labeling weaker preferences at the expense of stronger ones, can lead to a decline in generative quality. To navigate this tradeoff, we propose two sampling strategies to gather preference-over-preference labels: one favoring discriminative performance and one favoring generative performance.
♻ ☆ Discerning What Matters: A Multi-Dimensional Assessment of Moral Competence in LLMs
Moral competence is the ability to act in accordance with moral principles. As large language models (LLMs) are increasingly deployed in situations demanding moral competence, there is increasing interest in evaluating this ability empirically. We review existing literature and identify three significant shortcoming: (i) Over-reliance on prepackaged moral scenarios with explicitly highlighted moral features; (ii) Focus on verdict prediction rather than moral reasoning; and (iii) Inadequate testing of models' (in)ability to recognize when additional information is needed. Grounded in philosophical research on moral skill, we then introduce a novel method for assessing moral competence in LLMs. Our approach moves beyond simple verdict comparisons to evaluate five dimensions of moral competence: identifying morally relevant features, weighting their importance, assigning moral reasons to these features, synthesizing coherent moral judgments, and recognizing information gaps. We conduct two experiments comparing six leading LLMs against non-expert humans and professional philosophers. In our first experiment using ethical vignettes standard to existing work, LLMs generally outperformed non-expert humans across multiple dimensions of moral reasoning. However, our second experiment, featuring novel scenarios designed to test moral sensitivity by embedding relevant features among irrelevant details, revealed a striking reversal: several LLMs performed significantly worse than humans. Our findings suggest that current evaluations may substantially overestimate LLMs' moral reasoning capabilities by eliminating the task of discerning moral relevance from noisy information, which we take to be a prerequisite for genuine moral skill. This work provides a more nuanced framework for assessing AI moral competence and highlights important directions for improving moral competence in advanced AI systems.
♻ ☆ Accuracy-Robustness Trade Off via Spiking Neural Network Gradient Sparsity Trail
Spiking Neural Networks (SNNs) have attracted growing interest in both computational neuroscience and artificial intelligence, primarily due to their inherent energy efficiency and compact memory footprint. However, achieving adversarial robustness in SNNs, particularly for vision-related tasks, remains a nascent and underexplored challenge. Recent studies have proposed leveraging sparse gradients as a form of regularization to enhance robustness against adversarial perturbations. In this work, we present a surprising finding: under specific architectural configurations, SNNs exhibit natural gradient sparsity and can achieve state-of-the-art adversarial defense performance without the need for any explicit regularization. Further analysis reveals a trade-off between robustness and generalization: while sparse gradients contribute to improved adversarial resilience, they can impair the model's ability to generalize; conversely, denser gradients support better generalization but increase vulnerability to attacks.
comment: Work under peer-review
♻ ☆ SciSciGPT: Advancing Human-AI Collaboration in the Science of Science
The increasing availability of large-scale datasets has fueled rapid progress across many scientific fields, creating unprecedented opportunities for research and discovery while posing significant analytical challenges. Recent advances in large language models (LLMs) and AI agents have opened new possibilities for human-AI collaboration, offering powerful tools to navigate this complex research landscape. In this paper, we introduce SciSciGPT, an open-source, prototype AI collaborator that uses the science of science as a testbed to explore the potential of LLM-powered research tools. SciSciGPT automates complex workflows, supports diverse analytical approaches, accelerates research prototyping and iteration, and facilitates reproducibility. Through case studies, we demonstrate its ability to streamline a wide range of empirical and analytical research tasks while highlighting its broader potential to advance research. We further propose an LLM Agent capability maturity model for human-AI collaboration, envisioning a roadmap to further improve and expand upon frameworks like SciSciGPT. As AI capabilities continue to evolve, frameworks like SciSciGPT may play increasingly pivotal roles in scientific research and discovery, unlocking further opportunities. At the same time, these new advances also raise critical challenges, from ensuring transparency and ethical use to balancing human and AI contributions. Addressing these issues may shape the future of scientific inquiry and inform how we train the next generation of scientists to thrive in an increasingly AI-integrated research ecosystem.
♻ ☆ Generative transformations and patterns in LLM-native approaches for software verification and falsification
The emergence of prompting as the dominant paradigm for leveraging Large Language Models (LLMs) has led to a proliferation of LLM-native software, where application behavior arises from complex, stochastic data transformations. However, the engineering of such systems remains largely exploratory and ad-hoc, hampered by the absence of conceptual frameworks, ex-ante methodologies, design guidelines, and specialized benchmarks. We argue that a foundational step towards a more disciplined engineering practice is a systematic understanding of the core functional units--generative transformations--and their compositional patterns within LLM-native applications. Focusing on the rich domain of software verification and falsification, we conduct a secondary study of over 100 research proposals to address this gap. We first present a fine-grained taxonomy of generative transformations, abstracting prompt-based interactions into conceptual signatures. This taxonomy serves as a scaffolding to identify recurrent transformation relationship patterns--analogous to software design patterns--that characterize solution approaches in the literature. Our analysis not only validates the utility of the taxonomy but also surfaces strategic gaps and cross-dimensional relationships, offering a structured foundation for future research in modular and compositional LLM application design, benchmarking, and the development of reliable LLM-native systems.
♻ ☆ Human + AI for Accelerating Ad Localization Evaluation
Adapting advertisements for multilingual audiences requires more than simple text translation; it demands preservation of visual consistency, spatial alignment, and stylistic integrity across diverse languages and formats. We introduce a structured framework that combines automated components with human oversight to address the complexities of advertisement localization. To the best of our knowledge, this is the first work to integrate scene text detection, inpainting, machine translation (MT), and text reimposition specifically for accelerating ad localization evaluation workflows. Qualitative results across six locales demonstrate that our approach produces semantically accurate and visually coherent localized advertisements, suitable for deployment in real-world workflows.
♻ ☆ OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
comment: 26 pages, 12 figures
♻ ☆ Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
OpenAI's o3-preview reasoning model exceeded human accuracy on the ARC-AGI benchmark, but does that mean state-of-the-art models recognize and reason with the abstractions that the task creators intended? We investigate models' abstraction abilities on ConceptARC. We evaluate models under settings that vary the input modality (textual vs. visual), whether the model is permitted to use external Python tools, and, for reasoning models, the amount of reasoning effort. In addition to measuring output accuracy, we perform fine-grained evaluation of the natural-language rules that models generate to explain their solutions. This dual evaluation lets us assess whether models solve tasks using the abstractions ConceptARC was designed to elicit, rather than relying on surface-level patterns. Our results show that, while some models using text-based representations match human output accuracy, the best models' rules are often based on surface-level ``shortcuts'' and capture intended abstractions far less often than humans. Thus their capabilities for general abstract reasoning may be overestimated by evaluations based on accuracy alone. In the visual modality, AI models' output accuracy drops sharply, yet our rule-level analysis reveals that models might be underestimated, as they still exhibit a substantial share of rules that capture intended abstractions, but are often unable to correctly apply these rules. In short, our results show that models still lag humans in abstract reasoning, and that using accuracy alone to evaluate abstract reasoning on ARC-like tasks may overestimate abstract-reasoning capabilities in textual modalities and underestimate it in visual modalities. We believe that our evaluation framework offers a more faithful picture of multimodal models' abstract reasoning abilities and a more principled way to track progress toward human-like, abstraction-centered intelligence.
comment: 10 pages, 4 figures
♻ ☆ How Malicious AI Swarms Can Threaten Democracy: The Fusion of Agentic AI and LLMs Marks a New Frontier in Information Warfare
Public opinion manipulation has entered a new phase, amplifying its roots in rhetoric and propaganda. Advances in large language models (LLMs) and autonomous agents now let influence campaigns reach unprecedented scale and precision. Researchers warn AI could foster mass manipulation. Generative tools can expand propaganda output without sacrificing credibility and inexpensively create election falsehoods that are rated as more human-like than those written by humans. Techniques meant to refine AI reasoning, such as chain-of-thought prompting, can just as effectively be used to generate more convincing falsehoods. Enabled by these capabilities, another disruptive threat is emerging: swarms of collaborative, malicious AI agents. Fusing LLM reasoning with multi-agent architectures, these systems are capable of coordinating autonomously, infiltrating communities, and fabricating consensus cheaply. By adaptively mimicking human social dynamics, they threaten democracy.
comment: 15 pages, 1 figure
♻ ☆ Pref-GUIDE: Continual Policy Learning from Real-Time Human Feedback via Preference-Based Learning
Training reinforcement learning agents with human feedback is crucial when task objectives are difficult to specify through dense reward functions. While prior methods rely on offline trajectory comparisons to elicit human preferences, such data is unavailable in online learning scenarios where agents must adapt on the fly. Recent approaches address this by collecting real-time scalar feedback to guide agent behavior and train reward models for continued learning after human feedback becomes unavailable. However, scalar feedback is often noisy and inconsistent, limiting the accuracy and generalization of learned rewards. We propose Pref-GUIDE, a framework that transforms real-time scalar feedback into preference-based data to improve reward model learning for continual policy training. Pref-GUIDE Individual mitigates temporal inconsistency by comparing agent behaviors within short windows and filtering ambiguous feedback. Pref-GUIDE Voting further enhances robustness by aggregating reward models across a population of users to form consensus preferences. Across three challenging environments, Pref-GUIDE significantly outperforms scalar-feedback baselines, with the voting variant exceeding even expert-designed dense rewards. By reframing scalar feedback as structured preferences with population feedback, Pref-GUIDE offers a scalable and principled approach for harnessing human input in online reinforcement learning.
♻ ☆ A Graph-Based Framework for Interpretable Whole Slide Image Analysis
The histopathological analysis of whole-slide images (WSIs) is fundamental to cancer diagnosis but is a time-consuming and expert-driven process. While deep learning methods show promising results, dominant patch-based methods artificially fragment tissue, ignore biological boundaries, and produce black-box predictions. We overcome these limitations with a novel framework that transforms gigapixel WSIs into biologically-informed graph representations and is interpretable by design. Our approach builds graph nodes from tissue regions that respect natural structures, not arbitrary grids. We introduce an adaptive graph coarsening technique, guided by learned embeddings, to efficiently merge homogeneous regions while preserving diagnostically critical details in heterogeneous areas. Each node is enriched with a compact, interpretable feature set capturing clinically-motivated priors. A graph attention network then performs diagnosis on this compact representation. We demonstrate strong performance on challenging cancer staging and survival prediction tasks. Crucially, our resource-efficient model ($>$13x fewer parameters and $>$300x less data) achieves results competitive with a massive foundation model, while offering full interpretability through feature attribution. Our code is publicly available at https://github.com/HistoGraph31/pix2pathology.
comment: 15 pages, 5 figures
♻ ☆ Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
♻ ☆ Artificial intelligence for context-aware visual change detection in software test automation
Automated software testing is integral to the software development process, streamlining workflows and ensuring product reliability. Visual testing, particularly for user interface (UI) and user experience (UX) validation, plays a vital role in maintaining software quality. However, conventional techniques such as pixel-wise comparison and region-based visual change detection often fail to capture contextual similarities, subtle variations, and spatial relationships between UI elements. In this paper, we propose a novel graph-based approach for context-aware visual change detection in software test automation. Our method leverages a machine learning model (YOLOv5) to detect UI controls from software screenshots and constructs a graph that models their contextual and spatial relationships. This graph structure is then used to identify correspondences between UI elements across software versions and to detect meaningful changes. The proposed method incorporates a recursive similarity computation that combines structural, visual, and textual cues, offering a robust and holistic model of UI changes. We evaluate our approach on a curated dataset of real-world software screenshots and demonstrate that it reliably detects both simple and complex UI changes. Our method significantly outperforms pixel-wise and region-based baselines, especially in scenarios requiring contextual understanding. We also discuss current limitations related to dataset diversity, baseline complexity, and model generalization, and outline planned future improvements. Overall, our work advances the state of the art in visual change detection and provides a practical solution for enhancing the reliability and maintainability of evolving software interfaces.
Distilling On-device Language Models for Robot Planning with Minimal Human Intervention
Large language models (LLMs) provide robots with powerful contextual reasoning abilities and a natural human interface. Yet, current LLM-enabled robots typically depend on cloud-hosted models, limiting their usability in environments with unreliable communication infrastructure, such as outdoor or industrial settings. We present PRISM, a framework for distilling small language model (SLM)-enabled robot planners that run on-device with minimal human supervision. Starting from an existing LLM-enabled planner, PRISM automatically synthesizes diverse tasks and environments, elicits plans from the LLM, and uses this synthetic dataset to distill a compact SLM as a drop-in replacement of the source model. We apply PRISM to three LLM-enabled planners for mapping and exploration, manipulation, and household assistance, and we demonstrate that PRISM improves the performance of Llama-3.2-3B from 10-20% of GPT-4o's performance to over 93% - using only synthetic data. We further demonstrate that the distilled planners generalize across heterogeneous robotic platforms (ground and aerial) and diverse environments (indoor and outdoor). We release all software, trained models, and datasets at https://zacravichandran.github.io/PRISM.
comment: Accepted to the Conference on Robot Learning (CoRL) 2025
♻ ☆ Extracting PAC Decision Trees from Black Box Binary Classifiers: The Gender Bias Case Study on BERT-based Language Models AAAI 2025
Decision trees are a popular machine learning method, known for their inherent explainability. In Explainable AI, decision trees can be used as surrogate models for complex black box AI models or as approximations of parts of such models. A key challenge of this approach is determining how accurately the extracted decision tree represents the original model and to what extent it can be trusted as an approximation of their behavior. In this work, we investigate the use of the Probably Approximately Correct (PAC) framework to provide a theoretical guarantee of fidelity for decision trees extracted from AI models. Based on theoretical results from the PAC framework, we adapt a decision tree algorithm to ensure a PAC guarantee under certain conditions. We focus on binary classification and conduct experiments where we extract decision trees from BERT-based language models with PAC guarantees. Our results indicate occupational gender bias in these models.
comment: This is a revision of the version published at AAAI 2025. We fixed an issue in Theorem 8 and run again all the experiments. We also fixed small grammar mistakes found while producing this revised version
♻ ☆ Illusion or Algorithm? Investigating Memorization, Emergence, and Symbolic Processing in In-Context Learning
Large-scale Transformer language models (LMs) trained solely on next-token prediction with web-scale data can solve a wide range of tasks after seeing just a few examples. The mechanism behind this capability, known as in-context learning (ICL), remains both controversial and poorly understood. Some studies argue that it is merely the result of memorizing vast amounts of data, while others contend that it reflects a fundamental, symbolic algorithmic development in LMs. In this work, we introduce a suite of investigative tasks and a novel method to systematically investigate ICL by leveraging the full Pythia scaling suite, including interim checkpoints that capture progressively larger amount of training data. By carefully exploring ICL performance on downstream tasks and simultaneously conducting a mechanistic analysis of the residual stream's subspace, we demonstrate that ICL extends beyond mere "memorization" of the training corpus, yet does not amount to the implementation of an independent symbolic algorithm. Our results also clarify several aspects of ICL, including the influence of training dynamics, model capabilities, and elements of mechanistic interpretability. Overall, our work advances the understanding of ICL and its implications, offering model developers insights into potential improvements and providing AI security practitioners with a basis for more informed guidelines.
comment: TMLR
♻ ☆ Data and Context Matter: Towards Generalizing AI-based Software Vulnerability Detection
AI-based solutions demonstrate remarkable results in identifying vulnerabilities in software, but research has consistently found that this performance does not generalize to unseen codebases. In this paper, we specifically investigate the impact of model architecture, parameter configuration, and quality of training data on the ability of these systems to generalize. For this purpose, we introduce VulGate, a high quality state of the art dataset that mitigates the shortcomings of prior datasets, by removing mislabeled and duplicate samples, updating new vulnerabilities, incorporating additional metadata, integrating hard samples, and including dedicated test sets. We undertake a series of experiments to demonstrate that improved dataset diversity and quality substantially enhances vulnerability detection. We also introduce and benchmark multiple encoder-only and decoder-only models. We find that encoder-based models outperform other models in terms of accuracy and generalization. Our model achieves \textbf{6.8\%} improvement in recall on the benchmark BigVul dataset and outperforms others on unseen projects, demonstrating enhanced generalizability. Our results highlight the role of data quality and model selection in the development of robust vulnerability detection systems. Our findings suggest a direction for future systems with high cross-project effectiveness.
♻ ☆ IMPACT: Intelligent Motion Planning with Acceptable Contact Trajectories via Vision-Language Models
Motion planning involves determining a sequence of robot configurations to reach a desired pose, subject to movement and safety constraints. Traditional motion planning finds collision-free paths, but this is overly restrictive in clutter, where it may not be possible for a robot to accomplish a task without contact. In addition, contacts range from relatively benign (e.g. brushing a soft pillow) to more dangerous (e.g. toppling a glass vase), making it difficult to characterize which may be acceptable. In this paper, we propose IMPACT, a novel motion planning framework that uses Vision-Language Models (VLMs) to infer environment semantics, identifying which parts of the environment can best tolerate contact based on object properties and locations. Our approach generates an anisotropic cost map that encodes directional push safety. We pair this map with a contact-aware A* planner to find stable contact-rich paths. We perform experiments using 20 simulation and 10 real-world scenes and assess using task success rate, object displacements, and feedback from human evaluators. Our results over 3200 simulation and 200 real-world trials suggest that IMPACT enables efficient contact-rich motion planning in cluttered settings while outperforming alternative methods and ablations. Our project website is available at https://impact-planning.github.io/.
♻ ☆ Learning The Minimum Action Distance
This paper presents a state representation framework for Markov decision processes (MDPs) that can be learned solely from state trajectories, requiring neither reward signals nor the actions executed by the agent. We propose learning the minimum action distance (MAD), defined as the minimum number of actions required to transition between states, as a fundamental metric that captures the underlying structure of an environment. MAD naturally enables critical downstream tasks such as goal-conditioned reinforcement learning and reward shaping by providing a dense, geometrically meaningful measure of progress. Our self-supervised learning approach constructs an embedding space where the distances between embedded state pairs correspond to their MAD, accommodating both symmetric and asymmetric approximations. We evaluate the framework on a comprehensive suite of environments with known MAD values, encompassing both deterministic and stochastic dynamics, as well as discrete and continuous state spaces, and environments with noisy observations. Empirical results demonstrate that the proposed approach not only efficiently learns accurate MAD representations across these diverse settings but also significantly outperforms existing state representation methods in terms of representation quality.
♻ ☆ TreeIRL: Safe Urban Driving with Tree Search and Inverse Reinforcement Learning
We present TreeIRL, a novel planner for autonomous driving that combines Monte Carlo tree search (MCTS) and inverse reinforcement learning (IRL) to achieve state-of-the-art performance in simulation and in real-world driving. The core idea is to use MCTS to find a promising set of safe candidate trajectories and a deep IRL scoring function to select the most human-like among them. We evaluate TreeIRL against both classical and state-of-the-art planners in large-scale simulations and on 500+ miles of real-world autonomous driving in the Las Vegas metropolitan area. Test scenarios include dense urban traffic, adaptive cruise control, cut-ins, and traffic lights. TreeIRL achieves the best overall performance, striking a balance between safety, progress, comfort, and human-likeness. To our knowledge, our work is the first demonstration of MCTS-based planning on public roads and underscores the importance of evaluating planners across a diverse set of metrics and in real-world environments. TreeIRL is highly extensible and could be further improved with reinforcement learning and imitation learning, providing a framework for exploring different combinations of classical and learning-based approaches to solve the planning bottleneck in autonomous driving.
♻ ☆ A Generative Approach to LLM Harmfulness Mitigation with Red Flag Tokens
Many safety post-training methods for large language models (LLMs) are designed to modify the model's behaviour from producing unsafe answers to issuing refusals. However, such distribution shifts are often brittle and degrade performance on desirable tasks. To address these pitfalls, we propose augmenting the model's vocabulary with a special red flag token, and training the model to insert this token whenever harmful content is generated or imminent. This approach enables the model to explicitly learn the concept of harmfulness in its representations, with minimal impact on utility due to the marginal change in the generated distribution of natural language. Moreover, because the token is embedded in the model's vocabulary, we can naturally leverage the LLMs' generalization capabilities, such as in-context learning (ICL) and out-of-distribution generalization to languages that are not formally supported (e.g., Japanese for Llama3). In particular, we demonstrate that through ICL alone, the model can learn to initiate reflective reasoning upon generating the red flag token at inference, which steers the response away from harmful continuations or enables self-correction when the flag is raised falsely. This approach is orthogonal and complementary to existing safety technique (such as safety classifiers or standard safety training) and easier to evaluate in comparison to natural language refusals, as it does not require a human or automated judge to assess the harmlessness of the answers.
comment: 15 pages, 6 figures
♻ ☆ Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training ACL 2025
As large language models (LLMs) become increasingly prevalent, concerns about their reliability, particularly due to hallucinations - factually inaccurate or irrelevant outputs - have grown. Our research investigates the relationship between the uncertainty in training dynamics and the emergence of hallucinations. Using models from the Pythia suite and several hallucination detection metrics, we analyze hallucination trends and identify significant variance during training. To address this, we propose Sensitivity Dropout (SenD), a novel training protocol designed to reduce hallucination variance during training by deterministically dropping embedding indices with significant variability. In addition, we develop an unsupervised hallucination detection metric, Efficient EigenScore (EES), which approximates the traditional EigenScore in 2x speed. This metric is integrated into our training protocol, allowing SenD to be both computationally scalable and effective at reducing hallucination variance. SenD improves test-time reliability of Pythia and Meta's Llama models by up to 17% and enhances factual accuracy in Wikipedia, Medical, Legal, and Coding domains without affecting downstream task performance.
comment: Accepted to ACL 2025, accepted to Safe Generative AI Workshop @ NeurIPS 2024. Camera-ready version for ACL 2025 (to appear). Submitted July 2025
♻ ☆ What Makes AI Applications Acceptable or Unacceptable? A Predictive Moral Framework
As artificial intelligence rapidly transforms society, developers and policymakers struggle to anticipate which applications will face public moral resistance. We propose that these judgments are not idiosyncratic but systematic and predictable. In a large, preregistered study (N = 587, U.S. representative sample), we used a comprehensive taxonomy of 100 AI applications spanning personal and organizational contexts-including both functional uses and the moral treatment of AI itself. In participants' collective judgment, applications ranged from highly unacceptable to fully acceptable. We found this variation was strongly predictable: five core moral qualities-perceived risk, benefit, dishonesty, unnaturalness, and reduced accountability-collectively explained over 90% of the variance in acceptability ratings. The framework demonstrated strong predictive power across all domains and successfully predicted individual-level judgments for held-out applications. These findings reveal that a structured moral psychology underlies public evaluation of new technologies, offering a powerful tool for anticipating public resistance and guiding responsible innovation in AI.
comment: 15 pages + supplementary materials, 3 figures
♻ ☆ BanglaLlama: LLaMA for Bangla Language
Bangla is a language spoken by approximately 240 million native speakers and around 300 million people worldwide. Despite being the 5th largest spoken language in the world, Bangla is still a "low-resource" language, and existing pretrained language models often struggle to perform well on Bangla Language Processing (BLP) tasks. This paper addresses this gap by: (1) introducing two high-quality translated Bangla-instruction datasets totaling 224k samples - Bangla-Orca (172k) and Bangla-Alpaca (52k); and (2) leveraging these datasets to develop BanglaLlama, an open-source family of Bangla-specific LLMs, consisting of five base and instruct variants. We present our methodology, two large datasets, and comprehensive benchmarking results showcasing the effectiveness of our dataset and model on multiple benchmarks. We believe our proposed datasets and models will serve as the new standard baseline for future research focused on this widely spoken yet "low-resource" language.
♻ ☆ MALT: Improving Reasoning with Multi-Agent LLM Training
Large Language Models (LLMs) often produce answers with a single chain-of-thought, which restricts their ability to explore reasoning paths or self-correct flawed outputs in complex tasks. In this paper, we introduce MALT (Multi-Agent LLM Training), a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps using a sequential pipeline of heterogeneous agents. During data generation, each agent is repeatedly sampled to form a multi-agent search tree, where final outputs are graded against ground-truth data. We then apply value iteration to propagate reward signals back to each role-conditioned model, automatically producing multi-agent post-training data without human or teacher-model supervision. Our off-policy approach allows each agent to specialize by learning from correct and incorrect trajectories, ultimately improving the end-to-end reasoning chain. On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively, making it an important advance towards multi-agent cooperative training.
comment: Published at COLM 2025
♻ ☆ Using cognitive models to reveal value trade-offs in language models
Value trade-offs are an integral part of human decision-making and language use, however, current tools for interpreting such dynamic and multi-faceted notions of values in LLMs are limited. In cognitive science, so-called "cognitive models" provide formal accounts of such trade-offs in humans, by modeling the weighting of a speaker's competing utility functions in choosing an action or utterance. Here we use a leading cognitive model of polite speech to systematically evaluate value trade-offs in two encompassing model settings: degrees of reasoning "effort" in frontier black-box models, and RL post-training dynamics of open-source models. Our results highlight patterns of higher informational utility than social utility in reasoning models' default behavior, and demonstrate that these patterns shift in predictable ways when models are prompted to prioritize certain goals over others. Our findings from LLMs' training dynamics suggest large shifts in utility values early on in training with persistent effects of the choice of base model and pretraining data, compared to feedback dataset or alignment method. Our framework offers a flexible tool for probing value trade-offs across diverse model types, providing insights for generating hypotheses about other social behaviors such as sycophancy and for shaping training regimes that better control trade-offs between values during model development.
comment: 10 pages, 5 figures
♻ ☆ Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning
Tokenization is a necessary component within the current architecture of many language models, including the transformer-based large language models (LLMs) of Generative AI, yet its impact on the model's cognition is often overlooked. We argue that LLMs demonstrate that the Distributional Hypothesis (DH) is sufficient for reasonably human-like language performance, and that the emergence of human-meaningful linguistic units among tokens and current structural constraints motivate changes to existing, linguistically-agnostic tokenization techniques, particularly with respect to their roles as (1) semantic primitives and as (2) vehicles for conveying salient distributional patterns from human language to the model. We explore tokenizations from a BPE tokenizer; extant model vocabularies obtained from Hugging Face and tiktoken; and the information in exemplar token vectors as they move through the layers of a RoBERTa (large) model. Besides creating sub-optimal semantic building blocks and obscuring the model's access to the necessary distributional patterns, we describe how tokens and pretraining can act as a backdoor for bias and other unwanted content, which current alignment practices may not remediate. Additionally, we relay evidence that the tokenization algorithm's objective function impacts the LLM's cognition, despite being arguably meaningfully insulated from the main system intelligence. [First uploaded to arXiv in December, 2024.]
♻ ☆ From paintbrush to pixel: A review of deep neural networks in AI-generated art
This paper delves into the fascinating field of AI-generated art and explores the various deep neural network architectures and models that have been utilized to create it. From the classic convolutional networks to the cutting-edge diffusion models, we examine the key players in the field. We explain the general structures and working principles of these neural networks. Then, we showcase examples of milestones, starting with the dreamy landscapes of DeepDream and moving on to the most recent developments, including Stable Diffusion and DALL-E 3, which produce mesmerizing images. We provide a detailed comparison of these models, highlighting their strengths and limitations, and examining the remarkable progress that deep neural networks have made so far in a short period of time. With a unique blend of technical explanations and insights into the current state of AI-generated art, this paper exemplifies how art and computer science interact.
♻ ☆ Rethinking Exact Unlearning under Exposure: Extracting Forgotten Data under Exact Unlearning in Large Language Model
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
Machine Learning 182
☆ TopInG: Topologically Interpretable Graph Learning via Persistent Rationale Filtration ICML 2025
Graph Neural Networks (GNNs) have shown remarkable success across various scientific fields, yet their adoption in critical decision-making is often hindered by a lack of interpretability. Recently, intrinsically interpretable GNNs have been studied to provide insights into model predictions by identifying rationale substructures in graphs. However, existing methods face challenges when the underlying rationale subgraphs are complex and varied. In this work, we propose TopInG: Topologically Interpretable Graph Learning, a novel topological framework that leverages persistent homology to identify persistent rationale subgraphs. TopInG employs a rationale filtration learning approach to model an autoregressive generation process of rationale subgraphs, and introduces a self-adjusted topological constraint, termed topological discrepancy, to enforce a persistent topological distinction between rationale subgraphs and irrelevant counterparts. We provide theoretical guarantees that our loss function is uniquely optimized by the ground truth under specific conditions. Extensive experiments demonstrate TopInG's effectiveness in tackling key challenges, such as handling variform rationale subgraphs, balancing predictive performance with interpretability, and mitigating spurious correlations. Results show that our approach improves upon state-of-the-art methods on both predictive accuracy and interpretation quality.
comment: submitted to ICML 2025
☆ From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.
☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: The weight diffs and DIT adapters trained in the paper can be found at https://huggingface.co/diff-interpretation-tuning/loras
☆ MICROTRIPS: MICRO-geography TRavel Intelligence and Pattern Synthesis
This study presents a novel small-area estimation framework to enhance urban transportation planning through detailed characterization of travel behavior. Our approach improves on the four-step travel model by employing publicly available microdata files and machine learning methods to predict travel behavior for a representative, synthetic population at small geographic areas. This approach enables high-resolution estimation of trip generation, trip distribution, mode choice, and route assignment. Validation using ACS/PUMS work-commute datasets demonstrates that our framework achieves higher accuracy compared to conventional approaches. The resulting granular insights enable the tailoring of interventions to address localized situations and support a range of policy applications and targeted interventions, including the optimal placement of micro-fulfillment centers, effective curb-space management, and the design of more inclusive transportation solutions particularly for vulnerable communities.
ResMimic: From General Motion Tracking to Humanoid Whole-body Loco-Manipulation via Residual Learning
Humanoid whole-body loco-manipulation promises transformative capabilities for daily service and warehouse tasks. While recent advances in general motion tracking (GMT) have enabled humanoids to reproduce diverse human motions, these policies lack the precision and object awareness required for loco-manipulation. To this end, we introduce ResMimic, a two-stage residual learning framework for precise and expressive humanoid control from human motion data. First, a GMT policy, trained on large-scale human-only motion, serves as a task-agnostic base for generating human-like whole-body movements. An efficient but precise residual policy is then learned to refine the GMT outputs to improve locomotion and incorporate object interaction. To further facilitate efficient training, we design (i) a point-cloud-based object tracking reward for smoother optimization, (ii) a contact reward that encourages accurate humanoid body-object interactions, and (iii) a curriculum-based virtual object controller to stabilize early training. We evaluate ResMimic in both simulation and on a real Unitree G1 humanoid. Results show substantial gains in task success, training efficiency, and robustness over strong baselines. Videos are available at https://resmimic.github.io/ .
comment: 9 pages, 8 figures
☆ Boomerang Distillation Enables Zero-Shot Model Size Interpolation
Large language models (LLMs) are typically deployed under diverse memory and compute constraints. Existing approaches build model families by training each size independently, which is prohibitively expensive and provides only coarse-grained size options. In this work, we identify a novel phenomenon that we call boomerang distillation: starting from a large base model (the teacher), one first distills down to a small student and then progressively reconstructs intermediate-sized models by re-incorporating blocks of teacher layers into the student without any additional training. This process produces zero-shot interpolated models of many intermediate sizes whose performance scales smoothly between the student and teacher, often matching or surpassing pretrained or distilled models of the same size. We further analyze when this type of interpolation succeeds, showing that alignment between teacher and student through pruning and distillation is essential. Boomerang distillation thus provides a simple and efficient way to generate fine-grained model families, dramatically reducing training cost while enabling flexible adaptation across deployment environments. The code and models are available at https://github.com/dcml-lab/boomerang-distillation.
comment: 10 pages, 7 figures in main text
☆ ResCP: Reservoir Conformal Prediction for Time Series Forecasting
Conformal prediction offers a powerful framework for building distribution-free prediction intervals for exchangeable data. Existing methods that extend conformal prediction to sequential data rely on fitting a relatively complex model to capture temporal dependencies. However, these methods can fail if the sample size is small and often require expensive retraining when the underlying data distribution changes. To overcome these limitations, we propose Reservoir Conformal Prediction (ResCP), a novel training-free conformal prediction method for time series. Our approach leverages the efficiency and representation learning capabilities of reservoir computing to dynamically reweight conformity scores. In particular, we compute similarity scores among reservoir states and use them to adaptively reweight the observed residuals at each step. With this approach, ResCP enables us to account for local temporal dynamics when modeling the error distribution without compromising computational scalability. We prove that, under reasonable assumptions, ResCP achieves asymptotic conditional coverage, and we empirically demonstrate its effectiveness across diverse forecasting tasks.
☆ Modeling Student Learning with 3.8 Million Program Traces
As programmers write code, they often edit and retry multiple times, creating rich "interaction traces" that reveal how they approach coding tasks and provide clues about their level of skill development. For novice programmers in particular, these traces reflect the diverse reasoning processes they employ to code, such as exploratory behavior to understand how a programming concept works, re-strategizing in response to bugs, and personalizing stylistic choices. In this work, we explore what can be learned from training language models on such reasoning traces: not just about code, but about coders, and particularly students learning to program. We introduce a dataset of over 3.8 million programming reasoning traces from users of Pencil Code, a free online educational platform used by students to learn simple programming concepts. Compared to models trained only on final programs or synthetically-generated traces, we find that models trained on real traces are stronger at modeling diverse student behavior. Through both behavioral and probing analyses, we also find that many properties of code traces, such as goal backtracking or number of comments, can be predicted from learned representations of the students who write them. Building on this result, we show that we can help students recover from mistakes by steering code generation models to identify a sequence of edits that will results in more correct code while remaining close to the original student's style. Together, our results suggest that many properties of code are properties of individual students and that training on edit traces can lead to models that are more steerable, more predictive of student behavior while programming, and better at generating programs in their final states. Code and data is available at https://github.com/meghabyte/pencilcode-public
☆ HybridFlow: Quantification of Aleatoric and Epistemic Uncertainty with a Single Hybrid Model
Uncertainty quantification is critical for ensuring robustness in high-stakes machine learning applications. We introduce HybridFlow, a modular hybrid architecture that unifies the modeling of aleatoric and epistemic uncertainty by combining a Conditional Masked Autoregressive normalizing flow for estimating aleatoric uncertainty with a flexible probabilistic predictor for epistemic uncertainty. The framework supports integration with any probabilistic model class, allowing users to easily adapt HybridFlow to existing architectures without sacrificing predictive performance. HybridFlow improves upon previous uncertainty quantification frameworks across a range of regression tasks, such as depth estimation, a collection of regression benchmarks, and a scientific case study of ice sheet emulation. We also provide empirical results of the quantified uncertainty, showing that the uncertainty quantified by HybridFlow is calibrated and better aligns with model error than existing methods for quantifying aleatoric and epistemic uncertainty. HybridFlow addresses a key challenge in Bayesian deep learning, unifying aleatoric and epistemic uncertainty modeling in a single robust framework.
comment: Reviewed and published in TMLR at https://openreview.net/forum?id=xRiEdSyVjY
☆ KEEP: Integrating Medical Ontologies with Clinical Data for Robust Code Embeddings
Machine learning in healthcare requires effective representation of structured medical codes, but current methods face a trade off: knowledge graph based approaches capture formal relationships but miss real world patterns, while data driven methods learn empirical associations but often overlook structured knowledge in medical terminologies. We present KEEP (Knowledge preserving and Empirically refined Embedding Process), an efficient framework that bridges this gap by combining knowledge graph embeddings with adaptive learning from clinical data. KEEP first generates embeddings from knowledge graphs, then employs regularized training on patient records to adaptively integrate empirical patterns while preserving ontological relationships. Importantly, KEEP produces final embeddings without task specific auxiliary or end to end training enabling KEEP to support multiple downstream applications and model architectures. Evaluations on structured EHR from UK Biobank and MIMIC IV demonstrate that KEEP outperforms both traditional and Language Model based approaches in capturing semantic relationships and predicting clinical outcomes. Moreover, KEEP's minimal computational requirements make it particularly suitable for resource constrained environments.
☆ A Unified Optimization Framework for Multiclass Classification with Structured Hyperplane Arrangements
In this paper, we propose a new mathematical optimization model for multiclass classification based on arrangements of hyperplanes. Our approach preserves the core support vector machine (SVM) paradigm of maximizing class separation while minimizing misclassification errors, and it is computationally more efficient than a previous formulation. We present a kernel-based extension that allows it to construct nonlinear decision boundaries. Furthermore, we show how the framework can naturally incorporate alternative geometric structures, including classification trees, $\ell_p$-SVMs, and models with discrete feature selection. To address large-scale instances, we develop a dynamic clustering matheuristic that leverages the proposed MIP formulation. Extensive computational experiments demonstrate the efficiency of the proposed model and dynamic clustering heuristic, and we report competitive classification performance on both synthetic datasets and real-world benchmarks from the UCI Machine Learning Repository, comparing our method with state-of-the-art implementations available in scikit-learn.
comment: 28 pages, 2 tables, 9 figures
☆ Test-Time Scaling in Diffusion LLMs via Hidden Semi-Autoregressive Experts
Diffusion-based large language models (dLLMs) are trained flexibly to model extreme dependence in the data distribution; however, how to best utilize this information at inference time remains an open problem. In this work, we uncover an interesting property of these models: dLLMs trained on textual data implicitly learn a mixture of semi-autoregressive experts, where different generation orders reveal different specialized behaviors. We show that committing to any single, fixed inference time schedule, a common practice, collapses performance by failing to leverage this latent ensemble. To address this, we introduce HEX (Hidden semiautoregressive EXperts for test-time scaling), a training-free inference method that ensembles across heterogeneous block schedules. By doing a majority vote over diverse block-sized generation paths, HEX robustly avoids failure modes associated with any single fixed schedule. On reasoning benchmarks such as GSM8K, it boosts accuracy by up to 3.56X (from 24.72% to 88.10%), outperforming top-K margin inference and specialized fine-tuned methods like GRPO, without additional training. HEX even yields significant gains on MATH benchmark from 16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and TruthfulQA from 28.36% to 57.46%. Our results establish a new paradigm for test-time scaling in diffusion-based LLMs (dLLMs), revealing that the sequence in which masking is performed plays a critical role in determining performance during inference.
Graph-Aware Diffusion for Signal Generation
We study the problem of generating graph signals from unknown distributions defined over given graphs, relevant to domains such as recommender systems or sensor networks. Our approach builds on generative diffusion models, which are well established in vision and graph generation but remain underexplored for graph signals. Existing methods lack generality, either ignoring the graph structure in the forward process or designing graph-aware mechanisms tailored to specific domains. We adopt a forward process that incorporates the graph through the heat equation. Rather than relying on the standard formulation, we consider a time-warped coefficient to mitigate the exponential decay of the drift term, yielding a graph-aware generative diffusion model (GAD). We analyze its forward dynamics, proving convergence to a Gaussian Markov random field with covariance parametrized by the graph Laplacian, and interpret the backward dynamics as a sequence of graph-signal denoising problems. Finally, we demonstrate the advantages of GAD on synthetic data, real traffic speed measurements, and a temperature sensor network.
☆ Causal Abstractions, Categorically Unified
We present a categorical framework for relating causal models that represent the same system at different levels of abstraction. We define a causal abstraction as natural transformations between appropriate Markov functors, which concisely consolidate desirable properties a causal abstraction should exhibit. Our approach unifies and generalizes previously considered causal abstractions, and we obtain categorical proofs and generalizations of existing results on causal abstractions. Using string diagrammatical tools, we can explicitly describe the graphs that serve as consistent abstractions of a low-level graph under interventions. We discuss how methods from mechanistic interpretability, such as circuit analysis and sparse autoencoders, fit within our categorical framework. We also show how applying do-calculus on a high-level graphical abstraction of an acyclic-directed mixed graph (ADMG), when unobserved confounders are present, gives valid results on the low-level graph, thus generalizing an earlier statement by Anand et al. (2023). We argue that our framework is more suitable for modeling causal abstractions compared to existing categorical frameworks. Finally, we discuss how notions such as $\tau$-consistency and constructive $\tau$-abstractions can be recovered with our framework.
☆ Inoculation Prompting: Instructing LLMs to misbehave at train-time improves test-time alignment
Large language models are sometimes trained with imperfect oversight signals, leading to undesired behaviors such as reward hacking and sycophancy. Improving oversight quality can be expensive or infeasible, motivating methods that improve learned behavior despite an imperfect training signal. We introduce Inoculation Prompting (IP), a simple but counterintuitive technique that prevents learning of an undesired behavior by modifying training prompts to explicitly request it. For example, to inoculate against reward hacking, we modify the prompts used in supervised fine-tuning to request code that only works on provided test cases but fails on other inputs. Across four settings we find that IP reduces the learning of undesired behavior without substantially reducing the learning of desired capabilities. We also show that prompts which more strongly elicit the undesired behavior prior to fine-tuning more effectively inoculate against the behavior when used during training; this serves as a heuristic to identify promising inoculation prompts. Overall, IP is a simple yet effective way to control how models generalize from fine-tuning, preventing learning of undesired behaviors without substantially disrupting desired capabilities.
☆ Rethinking Langevin Thompson Sampling from A Stochastic Approximation Perspective
Most existing approximate Thompson Sampling (TS) algorithms for multi-armed bandits use Stochastic Gradient Langevin Dynamics (SGLD) or its variants in each round to sample from the posterior, relaxing the need for conjugacy assumptions between priors and reward distributions in vanilla TS. However, they often require approximating a different posterior distribution in different round of the bandit problem. This requires tricky, round-specific tuning of hyperparameters such as dynamic learning rates, causing challenges in both theoretical analysis and practical implementation. To alleviate this non-stationarity, we introduce TS-SA, which incorporates stochastic approximation (SA) within the TS framework. In each round, TS-SA constructs a posterior approximation only using the most recent reward(s), performs a Langevin Monte Carlo (LMC) update, and applies an SA step to average noisy proposals over time. This can be interpreted as approximating a stationary posterior target throughout the entire algorithm, which further yields a fixed step-size, a unified convergence analysis framework, and improved posterior estimates through temporal averaging. We establish near-optimal regret bounds for TS-SA, with a simplified and more intuitive theoretical analysis enabled by interpreting the entire algorithm as a simulation of a stationary SGLD process. Our empirical results demonstrate that even a single-step Langevin update with certain warm-up outperforms existing methods substantially on bandit tasks.
comment: 39 pages, 3 figures, 2 tables
☆ Think Then Embed: Generative Context Improves Multimodal Embedding
There is a growing interest in Universal Multimodal Embeddings (UME), where models are required to generate task-specific representations. While recent studies show that Multimodal Large Language Models (MLLMs) perform well on such tasks, they treat MLLMs solely as encoders, overlooking their generative capacity. However, such an encoding paradigm becomes less effective as instructions become more complex and require compositional reasoning. Inspired by the proven effectiveness of chain-of-thought reasoning, we propose a general Think-Then-Embed (TTE) framework for UME, composed of a reasoner and an embedder. The reasoner MLLM first generates reasoning traces that explain complex queries, followed by an embedder that produces representations conditioned on both the original query and the intermediate reasoning. This explicit reasoning step enables more nuanced understanding of complex multimodal instructions. Our contributions are threefold. First, by leveraging a powerful MLLM reasoner, we achieve state-of-the-art performance on the MMEB-V2 benchmark, surpassing proprietary models trained on massive in-house datasets. Second, to reduce the dependency on large MLLM reasoners, we finetune a smaller MLLM reasoner using high-quality embedding-centric reasoning traces, achieving the best performance among open-source models with a 7% absolute gain over recently proposed models. Third, we investigate strategies for integrating the reasoner and embedder into a unified model for improved efficiency without sacrificing performance.
☆ Curiosity-Driven Co-Development of Action and Language in Robots Through Self-Exploration
Human infants acquire language and action co-developmentally, achieving remarkable generalization capabilities from only a minimal number of learning examples. In contrast, recent large language models require exposure to billions of training tokens to achieve such generalization. What mechanisms underlie such efficient developmental learning in humans? This study addresses this question through simulation experiments in which robots learn to perform various actions corresponding to imperative sentences (e.g., \textit{push red cube}) via trials of self-guided exploration. Our approach integrates the active inference framework with reinforcement learning, enabling curiosity-driven developmental learning. The simulations yielded several nontrivial findings: i) Curiosity-driven exploration combined with motor noise substantially outperforms learning without curiosity. ii) Simpler, prerequisite-like actions emerge earlier in development, while more complex actions involving these prerequisites develop later. iii) Rote pairing of sentences and actions occurs before the emergence of compositional generalization. iv) Generalization is drastically improved as the number of compositional elements increases. These results shed light into possible mechanisms underlying efficient co-developmental learning in infants and provide computational parallels to findings in developmental psychology.
comment: 26 pages, 14 pages of supplementary material
☆ Latent Uncertainty Representations for Video-based Driver Action and Intention Recognition
Deep neural networks (DNNs) are increasingly applied to safety-critical tasks in resource-constrained environments, such as video-based driver action and intention recognition. While last layer probabilistic deep learning (LL-PDL) methods can detect out-of-distribution (OOD) instances, their performance varies. As an alternative to last layer approaches, we propose extending pre-trained DNNs with transformation layers to produce multiple latent representations to estimate the uncertainty. We evaluate our latent uncertainty representation (LUR) and repulsively trained LUR (RLUR) approaches against eight PDL methods across four video-based driver action and intention recognition datasets, comparing classification performance, calibration, and uncertainty-based OOD detection. We also contribute 28,000 frame-level action labels and 1,194 video-level intention labels for the NuScenes dataset. Our results show that LUR and RLUR achieve comparable in-distribution classification performance to other LL-PDL approaches. For uncertainty-based OOD detection, LUR matches top-performing PDL methods while being more efficient to train and easier to tune than approaches that require Markov-Chain Monte Carlo sampling or repulsive training procedures.
comment: 16 pages, 8 figures, 7 tables, under submission
☆ Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
comment: 16 pages, 6 figures
☆ Power Transform Revisited: Numerically Stable, and Federated
Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches.
comment: 25 pages
☆ Adaptive Memory Momentum via a Model-Based Framework for Deep Learning Optimization
The vast majority of modern deep learning models are trained with momentum-based first-order optimizers. The momentum term governs the optimizer's memory by determining how much each past gradient contributes to the current convergence direction. Fundamental momentum methods, such as Nesterov Accelerated Gradient and the Heavy Ball method, as well as more recent optimizers such as AdamW and Lion, all rely on the momentum coefficient that is customarily set to $\beta = 0.9$ and kept constant during model training, a strategy widely used by practitioners, yet suboptimal. In this paper, we introduce an \textit{adaptive memory} mechanism that replaces constant momentum with a dynamic momentum coefficient that is adjusted online during optimization. We derive our method by approximating the objective function using two planes: one derived from the gradient at the current iterate and the other obtained from the accumulated memory of the past gradients. To the best of our knowledge, such a proximal framework was never used for momentum-based optimization. Our proposed approach is novel, extremely simple to use, and does not rely on extra assumptions or hyperparameter tuning. We implement adaptive memory variants of both SGD and AdamW across a wide range of learning tasks, from simple convex problems to large-scale deep learning scenarios, demonstrating that our approach can outperform standard SGD and Adam with hand-tuned momentum coefficients. Finally, our work opens doors for new ways of inducing adaptivity in optimization.
☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
☆ Federated Computation of ROC and PR Curves
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves are fundamental tools for evaluating machine learning classifiers, offering detailed insights into the trade-offs between true positive rate vs. false positive rate (ROC) or precision vs. recall (PR). However, in Federated Learning (FL) scenarios, where data is distributed across multiple clients, computing these curves is challenging due to privacy and communication constraints. Specifically, the server cannot access raw prediction scores and class labels, which are used to compute the ROC and PR curves in a centralized setting. In this paper, we propose a novel method for approximating ROC and PR curves in a federated setting by estimating quantiles of the prediction score distribution under distributed differential privacy. We provide theoretical bounds on the Area Error (AE) between the true and estimated curves, demonstrating the trade-offs between approximation accuracy, privacy, and communication cost. Empirical results on real-world datasets demonstrate that our method achieves high approximation accuracy with minimal communication and strong privacy guarantees, making it practical for privacy-preserving model evaluation in federated systems.
comment: 23 pages
☆ StructuralDecompose: A Modular Framework for Robust Time Series Decomposition in R
We present StructuralDecompose, an R package for modular and interpretable time series decomposition. Unlike existing approaches that treat decomposition as a monolithic process, StructuralDecompose separates the analysis into distinct components: changepoint detection, anomaly detection, smoothing, and decomposition. This design provides flexibility and robust- ness, allowing users to tailor methods to specific time series characteristics. We demonstrate the package on simulated and real-world datasets, benchmark its performance against state-of-the- art tools such as Rbeast and autostsm, and discuss its role in interpretable machine learning workflows.
comment: 8 pages, 4 figures. Part of the R package StructuralDecompose (https://cran.r-project.org/web/packages/StructuralDecompose/index.html)
☆ Pivotal CLTs for Pseudolikelihood via Conditional Centering in Dependent Random Fields
In this paper, we study fluctuations of conditionally centered statistics of the form $$N^{-1/2}\sum_{i=1}^N c_i(g(\sigma_i)-\mathbb{E}_N[g(\sigma_i)|\sigma_j,j\neq i])$$ where $(\sigma_1,\ldots ,\sigma_N)$ are sampled from a dependent random field, and $g$ is some bounded function. Our first main result shows that under weak smoothness assumptions on the conditional means (which cover both sparse and dense interactions), the above statistic converges to a Gaussian \emph{scale mixture} with a random scale determined by a \emph{quadratic variance} and an \emph{interaction component}. We also show that under appropriate studentization, the limit becomes a pivotal Gaussian. We leverage this theory to develop a general asymptotic framework for maximum pseudolikelihood (MPLE) inference in dependent random fields. We apply our results to Ising models with pairwise as well as higher-order interactions and exponential random graph models (ERGMs). In particular, we obtain a joint central limit theorem for the inverse temperature and magnetization parameters via the joint MPLE (to our knowledge, the first such result in dense, irregular regimes), and we derive conditionally centered edge CLTs and marginal MPLE CLTs for ERGMs without restricting to the ``sub-critical" region. Our proof is based on a method of moments approach via combinatorial decision-tree pruning, which may be of independent interest.
comment: 73 pages, 1 figure
☆ Embracing Discrete Search: A Reasonable Approach to Causal Structure Learning
We present FLOP (Fast Learning of Order and Parents), a score-based causal discovery algorithm for linear models. It pairs fast parent selection with iterative Cholesky-based score updates, cutting run-times over prior algorithms. This makes it feasible to fully embrace discrete search, enabling iterated local search with principled order initialization to find graphs with scores at or close to the global optimum. The resulting structures are highly accurate across benchmarks, with near-perfect recovery in standard settings. This performance calls for revisiting discrete search over graphs as a reasonable approach to causal discovery.
☆ Feasibility-Aware Decision-Focused Learning for Predicting Parameters in the Constraints
When some parameters of a constrained optimization problem (COP) are uncertain, this gives rise to a predict-then-optimize (PtO) problem, comprising two stages -- the prediction of the unknown parameters from contextual information and the subsequent optimization using those predicted parameters. Decision-focused learning (DFL) implements the first stage by training a machine learning (ML) model to optimize the quality of the decisions made using the predicted parameters. When parameters in the constraints of a COP are predicted, the predicted parameters can lead to infeasible solutions. Therefore, it is important to simultaneously manage both feasibility and decision quality. We develop a DFL framework for predicting constraint parameters in a generic COP. While prior works typically assume that the underlying optimization problem is a linear program (LP) or integer linear program (ILP), our approach makes no such assumption. We derive two novel loss functions based on maximum likelihood estimation (MLE): the first one penalizes infeasibility (by penalizing when the predicted parameters lead to infeasible solutions), and the second one penalizes suboptimal decisions (by penalizing when the true optimal solution is infeasible under the predicted parameters). We introduce a single tunable parameter to form a weighted average of the two losses, allowing decision-makers to balance suboptimality and feasibility. We experimentally demonstrate that adjusting this parameter provides a decision-maker the control over the trade-off between the two. Moreover, across several COP instances, we find that for a single value of the tunable parameter, our method matches the performance of the existing baselines on suboptimality and feasibility.
☆ Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper) ACL 2025
The wording of natural language prompts has been shown to influence the performance of large language models (LLMs), yet the role of politeness and tone remains underexplored. In this study, we investigate how varying levels of prompt politeness affect model accuracy on multiple-choice questions. We created a dataset of 50 base questions spanning mathematics, science, and history, each rewritten into five tone variants: Very Polite, Polite, Neutral, Rude, and Very Rude, yielding 250 unique prompts. Using ChatGPT 4o, we evaluated responses across these conditions and applied paired sample t-tests to assess statistical significance. Contrary to expectations, impolite prompts consistently outperformed polite ones, with accuracy ranging from 80.8% for Very Polite prompts to 84.8% for Very Rude prompts. These findings differ from earlier studies that associated rudeness with poorer outcomes, suggesting that newer LLMs may respond differently to tonal variation. Our results highlight the importance of studying pragmatic aspects of prompting and raise broader questions about the social dimensions of human-AI interaction.
comment: 5 pages, 3 tables; includes Limitations and Ethical Considerations sections; short paper under submission to Findings of ACL 2025
☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
Unsupervised Active Learning via Natural Feature Progressive Framework
The effectiveness of modern deep learning models is predicated on the availability of large-scale, human-annotated datasets, a process that is notoriously expensive and time-consuming. While Active Learning (AL) offers a strategic solution by labeling only the most informative and representative data, its iterative nature still necessitates significant human involvement. Unsupervised Active Learning (UAL) presents an alternative by shifting the annotation burden to a single, post-selection step. Unfortunately, prevailing UAL methods struggle to achieve state-of-the-art performance. These approaches typically rely on local, gradient-based scoring for sample importance estimation, which not only makes them vulnerable to ambiguous and noisy data but also hinders their capacity to select samples that adequately represent the full data distribution. Moreover, their use of shallow, one-shot linear selection falls short of a true UAL paradigm. In this paper, we propose the Natural Feature Progressive Framework (NFPF), a UAL method that revolutionizes how sample importance is measured. At its core, NFPF employs a Specific Feature Learning Machine (SFLM) to effectively quantify each sample's contribution to model performance. We further utilize the SFLM to define a powerful Reconstruction Difference metric for initial sample selection. Our comprehensive experiments show that NFPF significantly outperforms all established UAL methods and achieves performance on par with supervised AL methods on vision datasets. Detailed ablation studies and qualitative visualizations provide compelling evidence for NFPF's superior performance, enhanced robustness, and improved data distribution coverage.
comment: Under review at IEEE TPAMI
☆ ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
comment: Our code is available at: https://github.com/shiwenqin/ONNX-Net
☆ MARS: Optimizing Dual-System Deep Research via Multi-Agent Reinforcement Learning
Large Reasoning Models (LRMs) often exhibit a tendency for overanalysis in simple tasks, where the models excessively utilize System 2-type, deliberate reasoning, leading to inefficient token generation. Furthermore, these models face challenges in adapting their reasoning capabilities to rapidly changing environments due to the static nature of their pretraining data. To address these issues, advancing Large Language Models (LLMs) for complex reasoning tasks requires innovative approaches that bridge intuitive and deliberate cognitive processes, akin to human cognition's dual-system dynamic. This paper introduces a Multi-Agent System for Deep ReSearch (MARS) enabling seamless integration of System 1's fast, intuitive thinking with System 2's deliberate reasoning within LLMs. MARS strategically integrates multiple external tools, such as Google Search, Google Scholar, and Python Interpreter, to access up-to-date information and execute complex computations, while creating a specialized division of labor where System 1 efficiently processes and summarizes high-volume external information, providing distilled insights that expand System 2's reasoning context without overwhelming its capacity. Furthermore, we propose a multi-agent reinforcement learning framework extending Group Relative Policy Optimization to simultaneously optimize both systems with multi-turn tool interactions, bin-packing optimization, and sample balancing strategies that enhance collaborative efficiency. Extensive experiments demonstrate MARS achieves substantial improvements of 3.86% on the challenging Humanity's Last Exam (HLE) benchmark and an average gain of 8.9% across 7 knowledge-intensive tasks, validating the effectiveness of our dual-system paradigm for complex reasoning in dynamic information environments.
comment: Ongoing Work
☆ The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.
comment: Comments: 14 pages, 14 figures, 5 tables. Code available at: https://github.com/sirraya-tech/Sirraya_LSD_Code
☆ Egalitarian Gradient Descent: A Simple Approach to Accelerated Grokking
Grokking is the phenomenon whereby, unlike the training performance, which peaks early in the training process, the test/generalization performance of a model stagnates over arbitrarily many epochs and then suddenly jumps to usually close to perfect levels. In practice, it is desirable to reduce the length of such plateaus, that is to make the learning process "grok" faster. In this work, we provide new insights into grokking. First, we show both empirically and theoretically that grokking can be induced by asymmetric speeds of (stochastic) gradient descent, along different principal (i.e singular directions) of the gradients. We then propose a simple modification that normalizes the gradients so that dynamics along all the principal directions evolves at exactly the same speed. Then, we establish that this modified method, which we call egalitarian gradient descent (EGD) and can be seen as a carefully modified form of natural gradient descent, groks much faster. In fact, in some cases the stagnation is completely removed. Finally, we empirically show that on classical arithmetic problems such as modular addition and sparse parity problem which this stagnation has been widely observed and intensively studied, that our proposed method eliminates the plateaus.
☆ Federated Self-Supervised Learning for Automatic Modulation Classification under Non-IID and Class-Imbalanced Data
Training automatic modulation classification (AMC) models on centrally aggregated data raises privacy concerns, incurs communication overhead, and often fails to confer robustness to channel shifts. Federated learning (FL) avoids central aggregation by training on distributed clients but remains sensitive to class imbalance, non-IID client distributions, and limited labeled samples. We propose FedSSL-AMC, which trains a causal, time-dilated CNN with triplet-loss self-supervision on unlabeled I/Q sequences across clients, followed by per-client SVMs on small labeled sets. We establish convergence of the federated representation learning procedure and a separability guarantee for the downstream classifier under feature noise. Experiments on synthetic and over-the-air datasets show consistent gains over supervised FL baselines under heterogeneous SNR, carrier-frequency offsets, and non-IID label partitions.
☆ Set to Be Fair: Demographic Parity Constraints for Set-Valued Classification
Set-valued classification is used in multiclass settings where confusion between classes can occur and lead to misleading predictions. However, its application may amplify discriminatory bias motivating the development of set-valued approaches under fairness constraints. In this paper, we address the problem of set-valued classification under demographic parity and expected size constraints. We propose two complementary strategies: an oracle-based method that minimizes classification risk while satisfying both constraints, and a computationally efficient proxy that prioritizes constraint satisfaction. For both strategies, we derive closed-form expressions for the (optimal) fair set-valued classifiers and use these to build plug-in, data-driven procedures for empirical predictions. We establish distribution-free convergence rates for violations of the size and fairness constraints for both methods, and under mild assumptions we also provide excess-risk bounds for the oracle-based approach. Empirical results demonstrate the effectiveness of both strategies and highlight the efficiency of our proxy method.
☆ Comparative Analysis of YOLOv5, Faster R-CNN, SSD, and RetinaNet for Motorbike Detection in Kigali Autonomous Driving Context
In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
comment: 3 figures, 2 tables
☆ Glocal Information Bottleneck for Time Series Imputation
Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.
☆ How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning NeurIPS 2025
Spatio-temporal forecasting is essential for real-world applications such as traffic management and urban computing. Although recent methods have shown improved accuracy, they often fail to account for dynamic deviations between current inputs and historical patterns. These deviations contain critical signals that can significantly affect model performance. To fill this gap, we propose ST-SSDL, a Spatio-Temporal time series forecasting framework that incorporates a Self-Supervised Deviation Learning scheme to capture and utilize such deviations. ST-SSDL anchors each input to its historical average and discretizes the latent space using learnable prototypes that represent typical spatio-temporal patterns. Two auxiliary objectives are proposed to refine this structure: a contrastive loss that enhances inter-prototype discriminability and a deviation loss that regularizes the distance consistency between input representations and corresponding prototypes to quantify deviation. Optimized jointly with the forecasting objective, these components guide the model to organize its hidden space and improve generalization across diverse input conditions. Experiments on six benchmark datasets show that ST-SSDL consistently outperforms state-of-the-art baselines across multiple metrics. Visualizations further demonstrate its ability to adaptively respond to varying levels of deviation in complex spatio-temporal scenarios. Our code and datasets are available at https://github.com/Jimmy-7664/ST-SSDL.
comment: Accepted at NeurIPS 2025
☆ DP-HYPE: Distributed Differentially Private Hyperparameter Search
The tuning of hyperparameters in distributed machine learning can substantially impact model performance. When the hyperparameters are tuned on sensitive data, privacy becomes an important challenge and to this end, differential privacy has emerged as the de facto standard for provable privacy. A standard setting when performing distributed learning tasks is that clients agree on a shared setup, i.e., find a compromise from a set of hyperparameters, like the learning rate of the model to be trained. Yet, prior work on differentially private hyperparameter tuning either uses computationally expensive cryptographic protocols, determines hyperparameters separately for each client, or applies differential privacy locally, which can lead to undesirable utility-privacy trade-offs. In this work, we present our algorithm DP-HYPE, which performs a distributed and privacy-preserving hyperparameter search by conducting a distributed voting based on local hyperparameter evaluations of clients. In this way, DP-HYPE selects hyperparameters that lead to a compromise supported by the majority of clients, while maintaining scalability and independence from specific learning tasks. We prove that DP-HYPE preserves the strong notion of differential privacy called client-level differential privacy and, importantly, show that its privacy guarantees do not depend on the number of hyperparameters. We also provide bounds on its utility guarantees, that is, the probability of reaching a compromise, and implement DP-HYPE as a submodule in the popular Flower framework for distributed machine learning. In addition, we evaluate performance on multiple benchmark data sets in iid as well as multiple non-iid settings and demonstrate high utility of DP-HYPE even under small privacy budgets.
☆ Focused Skill Discovery: Learning to Control Specific State Variables while Minimizing Side Effects
Skills are essential for unlocking higher levels of problem solving. A common approach to discovering these skills is to learn ones that reliably reach different states, thus empowering the agent to control its environment. However, existing skill discovery algorithms often overlook the natural state variables present in many reinforcement learning problems, meaning that the discovered skills lack control of specific state variables. This can significantly hamper exploration efficiency, make skills more challenging to learn with, and lead to negative side effects in downstream tasks when the goal is under-specified. We introduce a general method that enables these skill discovery algorithms to learn focused skills -- skills that target and control specific state variables. Our approach improves state space coverage by a factor of three, unlocks new learning capabilities, and automatically avoids negative side effects in downstream tasks.
comment: Reinforcement Learning Journal 2025
Benchmarking M-LTSF: Frequency and Noise-Based Evaluation of Multivariate Long Time Series Forecasting Models
Understanding the robustness of deep learning models for multivariate long-term time series forecasting (M-LTSF) remains challenging, as evaluations typically rely on real-world datasets with unknown noise properties. We propose a simulation-based evaluation framework that generates parameterizable synthetic datasets, where each dataset instance corresponds to a different configuration of signal components, noise types, signal-to-noise ratios, and frequency characteristics. These configurable components aim to model real-world multivariate time series data without the ambiguity of unknown noise. This framework enables fine-grained, systematic evaluation of M-LTSF models under controlled and diverse scenarios. We benchmark four representative architectures S-Mamba (state-space), iTransformer (transformer-based), R-Linear (linear), and Autoformer (decomposition-based). Our analysis reveals that all models degrade severely when lookback windows cannot capture complete periods of seasonal patters in the data. S-Mamba and Autoformer perform best on sawtooth patterns, while R-Linear and iTransformer favor sinusoidal signals. White and Brownian noise universally degrade performance with lower signal-to-noise ratio while S-Mamba shows specific trend-noise and iTransformer shows seasonal-noise vulnerability. Further spectral analysis shows that S-Mamba and iTransformer achieve superior frequency reconstruction. This controlled approach, based on our synthetic and principle-driven testbed, offers deeper insights into model-specific strengths and limitations through the aggregation of MSE scores and provides concrete guidance for model selection based on signal characteristics and noise conditions.
comment: Number of pages: 13 Number of figures: 16 Number of Tables: 1 Submitted to: IEEE Transactions on Signal Processing
☆ HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA
☆ SocialHarmBench: Revealing LLM Vulnerabilities to Socially Harmful Requests
Large language models (LLMs) are increasingly deployed in contexts where their failures can have direct sociopolitical consequences. Yet, existing safety benchmarks rarely test vulnerabilities in domains such as political manipulation, propaganda and disinformation generation, or surveillance and information control. We introduce SocialHarmBench, a dataset of 585 prompts spanning 7 sociopolitical categories and 34 countries, designed to surface where LLMs most acutely fail in politically charged contexts. Our evaluations reveal several shortcomings: open-weight models exhibit high vulnerability to harmful compliance, with Mistral-7B reaching attack success rates as high as 97% to 98% in domains such as historical revisionism, propaganda, and political manipulation. Moreover, temporal and geographic analyses show that LLMs are most fragile when confronted with 21st-century or pre-20th-century contexts, and when responding to prompts tied to regions such as Latin America, the USA, and the UK. These findings demonstrate that current safeguards fail to generalize to high-stakes sociopolitical settings, exposing systematic biases and raising concerns about the reliability of LLMs in preserving human rights and democratic values. We share the SocialHarmBench benchmark at https://huggingface.co/datasets/psyonp/SocialHarmBench.
☆ Revealing Interconnections between Diseases: from Statistical Methods to Large Language Models
Identifying disease interconnections through manual analysis of large-scale clinical data is labor-intensive, subjective, and prone to expert disagreement. While machine learning (ML) shows promise, three critical challenges remain: (1) selecting optimal methods from the vast ML landscape, (2) determining whether real-world clinical data (e.g., electronic health records, EHRs) or structured disease descriptions yield more reliable insights, (3) the lack of "ground truth," as some disease interconnections remain unexplored in medicine. Large language models (LLMs) demonstrate broad utility, yet they often lack specialized medical knowledge. To address these gaps, we conduct a systematic evaluation of seven approaches for uncovering disease relationships based on two data sources: (i) sequences of ICD-10 codes from MIMIC-IV EHRs and (ii) the full set of ICD-10 codes, both with and without textual descriptions. Our framework integrates the following: (i) a statistical co-occurrence analysis and a masked language modeling (MLM) approach using real clinical data; (ii) domain-specific BERT variants (Med-BERT and BioClinicalBERT); (iii) a general-purpose BERT and document retrieval; and (iv) four LLMs (Mistral, DeepSeek, Qwen, and YandexGPT). Our graph-based comparison of the obtained interconnection matrices shows that the LLM-based approach produces interconnections with the lowest diversity of ICD code connections to different diseases compared to other methods, including text-based and domain-based approaches. This suggests an important implication: LLMs have limited potential for discovering new interconnections. In the absence of ground truth databases for medical interconnections between ICD codes, our results constitute a valuable medical disease ontology that can serve as a foundational resource for future clinical research and artificial intelligence applications in healthcare.
☆ RL Is a Hammer and LLMs Are Nails: A Simple Reinforcement Learning Recipe for Strong Prompt Injection
Prompt injection poses a serious threat to the reliability and safety of LLM agents. Recent defenses against prompt injection, such as Instruction Hierarchy and SecAlign, have shown notable robustness against static attacks. However, to more thoroughly evaluate the robustness of these defenses, it is arguably necessary to employ strong attacks such as automated red-teaming. To this end, we introduce RL-Hammer, a simple recipe for training attacker models that automatically learn to perform strong prompt injections and jailbreaks via reinforcement learning. RL-Hammer requires no warm-up data and can be trained entirely from scratch. To achieve high ASRs against industrial-level models with defenses, we propose a set of practical techniques that enable highly effective, universal attacks. Using this pipeline, RL-Hammer reaches a 98% ASR against GPT-4o and a $72\%$ ASR against GPT-5 with the Instruction Hierarchy defense. We further discuss the challenge of achieving high diversity in attacks, highlighting how attacker models tend to reward-hack diversity objectives. Finally, we show that RL-Hammer can evade multiple prompt injection detectors. We hope our work advances automatic red-teaming and motivates the development of stronger, more principled defenses. Code is available at https://github.com/facebookresearch/rl-injector.
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ Flow-Matching Based Refiner for Molecular Conformer Generation
Low-energy molecular conformers generation (MCG) is a foundational yet challenging problem in drug discovery. Denoising-based methods include diffusion and flow-matching methods that learn mappings from a simple base distribution to the molecular conformer distribution. However, these approaches often suffer from error accumulation during sampling, especially in the low SNR steps, which are hard to train. To address these challenges, we propose a flow-matching refiner for the MCG task. The proposed method initializes sampling from mixed-quality outputs produced by upstream denoising models and reschedules the noise scale to bypass the low-SNR phase, thereby improving sample quality. On the GEOM-QM9 and GEOM-Drugs benchmark datasets, the generator-refiner pipeline improves quality with fewer total denoising steps while preserving diversity.
☆ BenthiCat: An opti-acoustic dataset for advancing benthic classification and habitat mapping
Benthic habitat mapping is fundamental for understanding marine ecosystems, guiding conservation efforts, and supporting sustainable resource management. Yet, the scarcity of large, annotated datasets limits the development and benchmarking of machine learning models in this domain. This paper introduces a thorough multi-modal dataset, comprising about a million side-scan sonar (SSS) tiles collected along the coast of Catalonia (Spain), complemented by bathymetric maps and a set of co-registered optical images from targeted surveys using an autonomous underwater vehicle (AUV). Approximately \num{36000} of the SSS tiles have been manually annotated with segmentation masks to enable supervised fine-tuning of classification models. All the raw sensor data, together with mosaics, are also released to support further exploration and algorithm development. To address challenges in multi-sensor data fusion for AUVs, we spatially associate optical images with corresponding SSS tiles, facilitating self-supervised, cross-modal representation learning. Accompanying open-source preprocessing and annotation tools are provided to enhance accessibility and encourage research. This resource aims to establish a standardized benchmark for underwater habitat mapping, promoting advancements in autonomous seafloor classification and multi-sensor integration.
comment: Article under review by IJRR
☆ Less is More: Recursive Reasoning with Tiny Networks
Hierarchical Reasoning Model (HRM) is a novel approach using two small neural networks recursing at different frequencies. This biologically inspired method beats Large Language models (LLMs) on hard puzzle tasks such as Sudoku, Maze, and ARC-AGI while trained with small models (27M parameters) on small data (around 1000 examples). HRM holds great promise for solving hard problems with small networks, but it is not yet well understood and may be suboptimal. We propose Tiny Recursive Model (TRM), a much simpler recursive reasoning approach that achieves significantly higher generalization than HRM, while using a single tiny network with only 2 layers. With only 7M parameters, TRM obtains 45% test-accuracy on ARC-AGI-1 and 8% on ARC-AGI-2, higher than most LLMs (e.g., Deepseek R1, o3-mini, Gemini 2.5 Pro) with less than 0.01% of the parameters.
☆ Video Game Level Design as a Multi-Agent Reinforcement Learning Problem AAAI
Procedural Content Generation via Reinforcement Learning (PCGRL) offers a method for training controllable level designer agents without the need for human datasets, using metrics that serve as proxies for level quality as rewards. Existing PCGRL research focuses on single generator agents, but are bottlenecked by the need to frequently recalculate heuristics of level quality and the agent's need to navigate around potentially large maps. By framing level generation as a multi-agent problem, we mitigate the efficiency bottleneck of single-agent PCGRL by reducing the number of reward calculations relative to the number of agent actions. We also find that multi-agent level generators are better able to generalize to out-of-distribution map shapes, which we argue is due to the generators' learning more local, modular design policies. We conclude that treating content generation as a distributed, multi-agent task is beneficial for generating functional artifacts at scale.
comment: 11 pages, 7 tables, 5 figures, published as full technical paper at the AAAI conference on Artificial Intelligence and Interactive Digital Entertainment 2025
A Clinical-grade Universal Foundation Model for Intraoperative Pathology
Intraoperative pathology is pivotal to precision surgery, yet its clinical impact is constrained by diagnostic complexity and the limited availability of high-quality frozen-section data. While computational pathology has made significant strides, the lack of large-scale, prospective validation has impeded its routine adoption in surgical workflows. Here, we introduce CRISP, a clinical-grade foundation model developed on over 100,000 frozen sections from eight medical centers, specifically designed to provide Clinical-grade Robust Intraoperative Support for Pathology (CRISP). CRISP was comprehensively evaluated on more than 15,000 intraoperative slides across nearly 100 retrospective diagnostic tasks, including benign-malignant discrimination, key intraoperative decision-making, and pan-cancer detection, etc. The model demonstrated robust generalization across diverse institutions, tumor types, and anatomical sites-including previously unseen sites and rare cancers. In a prospective cohort of over 2,000 patients, CRISP sustained high diagnostic accuracy under real-world conditions, directly informing surgical decisions in 92.6% of cases. Human-AI collaboration further reduced diagnostic workload by 35%, avoided 105 ancillary tests and enhanced detection of micrometastases with 87.5% accuracy. Together, these findings position CRISP as a clinical-grade paradigm for AI-driven intraoperative pathology, bridging computational advances with surgical precision and accelerating the translation of artificial intelligence into routine clinical practice.
Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.
☆ ERDE: Entropy-Regularized Distillation for Early-exit
Although deep neural networks and in particular Convolutional Neural Networks have demonstrated state-of-the-art performance in image classification with relatively high efficiency, they still exhibit high computational costs, often rendering them impractical for real-time and edge applications. Therefore, a multitude of compression techniques have been developed to reduce these costs while maintaining accuracy. In addition, dynamic architectures have been introduced to modulate the level of compression at execution time, which is a desirable property in many resource-limited application scenarios. The proposed method effectively integrates two well-established optimization techniques: early exits and knowledge distillation, where a reduced student early-exit model is trained from a more complex teacher early-exit model. The primary contribution of this research lies in the approach for training the student early-exit model. In comparison to the conventional Knowledge Distillation loss, our approach incorporates a new entropy-based loss for images where the teacher's classification was incorrect. The proposed method optimizes the trade-off between accuracy and efficiency, thereby achieving significant reductions in computational complexity without compromising classification performance. The validity of this approach is substantiated by experimental results on image classification datasets CIFAR10, CIFAR100 and SVHN, which further opens new research perspectives for Knowledge Distillation in other contexts.
☆ Synthesising Counterfactual Explanations via Label-Conditional Gaussian Mixture Variational Autoencoders
Counterfactual explanations (CEs) provide recourse recommendations for individuals affected by algorithmic decisions. A key challenge is generating CEs that are robust against various perturbation types (e.g. input and model perturbations) while simultaneously satisfying other desirable properties. These include plausibility, ensuring CEs reside on the data manifold, and diversity, providing multiple distinct recourse options for single inputs. Existing methods, however, mostly struggle to address these multifaceted requirements in a unified, model-agnostic manner. We address these limitations by proposing a novel generative framework. First, we introduce the Label-conditional Gaussian Mixture Variational Autoencoder (L-GMVAE), a model trained to learn a structured latent space where each class label is represented by a set of Gaussian components with diverse, prototypical centroids. Building on this, we present LAPACE (LAtent PAth Counterfactual Explanations), a model-agnostic algorithm that synthesises entire paths of CE points by interpolating from inputs' latent representations to those learned latent centroids. This approach inherently ensures robustness to input changes, as all paths for a given target class converge to the same fixed centroids. Furthermore, the generated paths provide a spectrum of recourse options, allowing users to navigate the trade-off between proximity and plausibility while also encouraging robustness against model changes. In addition, user-specified actionability constraints can also be easily incorporated via lightweight gradient optimisation through the L-GMVAE's decoder. Comprehensive experiments show that LAPACE is computationally efficient and achieves competitive performance across eight quantitative metrics.
☆ LEGOMem: Modular Procedural Memory for Multi-agent LLM Systems for Workflow Automation
We introduce LEGOMem, a modular procedural memory framework for multi-agent large language model (LLM) systems in workflow automation. LEGOMem decomposes past task trajectories into reusable memory units and flexibly allocates them across orchestrators and task agents to support planning and execution. To explore the design space of memory in multi-agent systems, we use LEGOMem as a lens and conduct a systematic study of procedural memory in multi-agent systems, examining where memory should be placed, how it should be retrieved, and which agents benefit most. Experiments on the OfficeBench benchmark show that orchestrator memory is critical for effective task decomposition and delegation, while fine-grained agent memory improves execution accuracy. We find that even teams composed of smaller language models can benefit substantially from procedural memory, narrowing the performance gap with stronger agents by leveraging prior execution traces for more accurate planning and tool use. These results position LEGOMem as both a practical framework for memory-augmented agent systems and a research tool for understanding memory design in multi-agent workflow automation.
☆ Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recently, several approaches for learning CAs have been proposed, but all assume fixed and well-specified exogenous distributions, making them vulnerable to environmental shifts and misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical results, for both empirical and Gaussian environments, leading to principled selection of the level of robustness via the radius of these sets. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural model and intervention mapping misspecification.
☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
☆ Bond-Centered Molecular Fingerprint Derivatives: A BBBP Dataset Study
Bond Centered FingerPrint (BCFP) are a complementary, bond-centric alternative to Extended-Connectivity Fingerprints (ECFP). We introduce a static BCFP that mirrors the bond-convolution used by directed message-passing GNNs like ChemProp, and evaluate it with a fast rapid Random Forest model on Brain-Blood Barrier Penetration (BBBP) classification task. Across stratified cross-validation, concatenating ECFP with BCFP consistently improves AUROC and AUPRC over either descriptor alone, as confirmed by Turkey HSD multiple-comparison analysis. Among radii, r = 1 performs best; r = 2 does not yield statistically separable gains under the same test. We further propose BCFP-Sort&Slice, a simple feature-combination scheme that preserves the out-of-vocabulary (OOV) count information native to ECFP count vectors while enabling compact unhashed concatenation of BCFP variants. We also outperform the MGTP prediction on our BBBP evaluation, using such composite new features bond and atom features. These results show that lightweight, bond-centered descriptors can complement atom-centered circular fingerprints and provide strong, fast baselines for BBBP prediction.
comment: 14 pages, 10 figures, 1 table
☆ On the Hardness of Learning Regular Expressions
Despite the theoretical significance and wide practical use of regular expressions, the computational complexity of learning them has been largely unexplored. We study the computational hardness of improperly learning regular expressions in the PAC model and with membership queries. We show that PAC learning is hard even under the uniform distribution on the hypercube, and also prove hardness of distribution-free learning with membership queries. Furthermore, if regular expressions are extended with complement or intersection, we establish hardness of learning with membership queries even under the uniform distribution. We emphasize that these results do not follow from existing hardness results for learning DFAs or NFAs, since the descriptive complexity of regular languages can differ exponentially between DFAs, NFAs, and regular expressions.
☆ On Predicting Post-Click Conversion Rate via Counterfactual Inference ICDM
Accurately predicting conversion rate (CVR) is essential in various recommendation domains such as online advertising systems and e-commerce. These systems utilize user interaction logs, which consist of exposures, clicks, and conversions. CVR prediction models are typically trained solely based on clicked samples, as conversions can only be determined following clicks. However, the sparsity of clicked instances necessitates the collection of a substantial amount of logs for effective model training. Recent works address this issue by devising frameworks that leverage non-clicked samples. While these frameworks aim to reduce biases caused by the discrepancy between clicked and non-clicked samples, they often rely on heuristics. Against this background, we propose a method to counterfactually generate conversion labels for non-clicked samples by using causality as a guiding principle, attempting to answer the question, "Would the user have converted if he or she had clicked the recommended item?" Our approach is named the Entire Space Counterfactual Inference Multi-task Model (ESCIM). We initially train a structural causal model (SCM) of user sequential behaviors and conduct a hypothetical intervention (i.e., click) on non-clicked items to infer counterfactual CVRs. We then introduce several approaches to transform predicted counterfactual CVRs into binary counterfactual conversion labels for the non-clicked samples. Finally, the generated samples are incorporated into the training process. Extensive experiments on public datasets illustrate the superiority of the proposed algorithm. Online A/B testing further empirically validates the effectiveness of our proposed algorithm in real-world scenarios. In addition, we demonstrate the improved performance of the proposed method on latent conversion data, showcasing its robustness and superior generalization capabilities.
comment: This work has been accepted for publication at the IEEE International Conference on Data Mining (ICDM) 2025
☆ A Noise Resilient Approach for Robust Hurst Exponent Estimation
Understanding signal behavior across scales is vital in areas such as natural phenomena analysis and financial modeling. A key property is self-similarity, quantified by the Hurst exponent (H), which reveals long-term dependencies. Wavelet-based methods are effective for estimating H due to their multi-scale analysis capability, but additive noise in real-world measurements often degrades accuracy. We propose Noise-Controlled ALPHEE (NC-ALPHEE), an enhancement of the Average Level-Pairwise Hurst Exponent Estimator (ALPHEE), incorporating noise mitigation and generating multiple level-pairwise estimates from signal energy pairs. A neural network (NN) combines these estimates, replacing traditional averaging. This adaptive learning maintains ALPHEE's behavior in noise-free cases while improving performance in noisy conditions. Extensive simulations show that in noise-free data, NC-ALPHEE matches ALPHEE's accuracy using both averaging and NN-based methods. Under noise, however, traditional averaging deteriorates and requires impractical level restrictions, while NC-ALPHEE consistently outperforms existing techniques without such constraints. NC-ALPHEE offers a robust, adaptive approach for H estimation, significantly enhancing the reliability of wavelet-based methods in noisy environments.
☆ Learning on the Job: Test-Time Curricula for Targeted Reinforcement Learning
Humans are good at learning on the job: We learn how to solve the tasks we face as we go along. Can a model do the same? We propose an agent that assembles a task-specific curriculum, called test-time curriculum (TTC-RL), and applies reinforcement learning to continue training the model for its target task. The test-time curriculum avoids time-consuming human curation of datasets by automatically selecting the most task-relevant data from a large pool of available training data. Our experiments demonstrate that reinforcement learning on a test-time curriculum consistently improves the model on its target tasks, across a variety of evaluations and models. Notably, on challenging math and coding benchmarks, TTC-RL improves the pass@1 of Qwen3-8B by approximately 1.8x on AIME25 and 2.1x on CodeElo. Moreover, we find that TTC-RL significantly raises the performance ceiling compared to the initial model, increasing pass@8 on AIME25 from 40% to 62% and on CodeElo from 28% to 43%. Our findings show the potential of test-time curricula in extending the test-time scaling paradigm to continual training on thousands of task-relevant experiences during test-time.
☆ QDeepGR4J: Quantile-based ensemble of deep learning and GR4J hybrid rainfall-runoff models for extreme flow prediction with uncertainty quantification
Conceptual rainfall-runoff models aid hydrologists and climate scientists in modelling streamflow to inform water management practices. Recent advances in deep learning have unravelled the potential for combining hydrological models with deep learning models for better interpretability and improved predictive performance. In our previous work, we introduced DeepGR4J, which enhanced the GR4J conceptual rainfall-runoff model using a deep learning model to serve as a surrogate for the routing component. DeepGR4J had an improved rainfall-runoff prediction accuracy, particularly in arid catchments. Quantile regression models have been extensively used for quantifying uncertainty while aiding extreme value forecasting. In this paper, we extend DeepGR4J using a quantile regression-based ensemble learning framework to quantify uncertainty in streamflow prediction. We also leverage the uncertainty bounds to identify extreme flow events potentially leading to flooding. We further extend the model to multi-step streamflow predictions for uncertainty bounds. We design experiments for a detailed evaluation of the proposed framework using the CAMELS-Aus dataset. The results show that our proposed Quantile DeepGR4J framework improves the predictive accuracy and uncertainty interval quality (interval score) compared to baseline deep learning models. Furthermore, we carry out flood risk evaluation using Quantile DeepGR4J, and the results demonstrate its suitability as an early warning system.
☆ NASP-T: A Fuzzy Neuro-Symbolic Transformer for Logic-Constrained Aviation Safety Report Classification
Deep transformer models excel at multi-label text classification but often violate domain logic that experts consider essential, an issue of particular concern in safety-critical applications. We propose a hybrid neuro-symbolic framework that integrates Answer Set Programming (ASP) with transformer-based learning on the Aviation Safety Reporting System (ASRS) corpus. Domain knowledge is formalized as weighted ASP rules and validated using the Clingo solver. These rules are incorporated in two complementary ways: (i) as rule-based data augmentation, generating logically consistent synthetic samples that improve label diversity and coverage; and (ii) as a fuzzy-logic regularizer, enforcing rule satisfaction in a differentiable form during fine-tuning. This design preserves the interpretability of symbolic reasoning while leveraging the scalability of deep neural architectures. We further tune per-class thresholds and report both standard classification metrics and logic-consistency rates. Compared to a strong Binary Cross-Entropy (BCE) baseline, our approach improves micro- and macro-F1 scores and achieves up to an 86% reduction in rule violations on the ASRS test set. To the best of our knowledge, this constitutes the first large-scale neuro-symbolic application to ASRS reports that unifies ASP-based reasoning, rule-driven augmentation, and differentiable transformer training for trustworthy, safety-critical NLP.
☆ A Probabilistic Basis for Low-Rank Matrix Learning
Low rank inference on matrices is widely conducted by optimizing a cost function augmented with a penalty proportional to the nuclear norm $\Vert \cdot \Vert_*$. However, despite the assortment of computational methods for such problems, there is a surprising lack of understanding of the underlying probability distributions being referred to. In this article, we study the distribution with density $f(X)\propto e^{-\lambda\Vert X\Vert_*}$, finding many of its fundamental attributes to be analytically tractable via differential geometry. We use these facts to design an improved MCMC algorithm for low rank Bayesian inference as well as to learn the penalty parameter $\lambda$, obviating the need for hyperparameter tuning when this is difficult or impossible. Finally, we deploy these to improve the accuracy and efficiency of low rank Bayesian matrix denoising and completion algorithms in numerical experiments.
☆ Prior-Aligned Meta-RL: Thompson Sampling with Learned Priors and Guarantees in Finite-Horizon MDPs
We study meta-reinforcement learning in finite-horizon MDPs where related tasks share similar structures in their optimal action-value functions. Specifically, we posit a linear representation $Q^*_h(s,a)=\Phi_h(s,a)\,\theta^{(k)}_h$ and place a Gaussian meta-prior $ \mathcal{N}(\theta^*_h,\Sigma^*_h)$ over the task-specific parameters $\theta^{(k)}_h$. Building on randomized value functions, we propose two Thompson-style algorithms: (i) MTSRL, which learns only the prior mean and performs posterior sampling with the learned mean and known covariance; and (ii) $\text{MTSRL}^{+}$, which additionally estimates the covariance and employs prior widening to control finite-sample estimation error. Further, we develop a prior-alignment technique that couples the posterior under the learned prior with a meta-oracle that knows the true prior, yielding meta-regret guarantees: we match prior-independent Thompson sampling in the small-task regime and strictly improve with more tasks once the prior is learned. Concretely, for known covariance we obtain $\tilde{O}(H^{4}S^{3/2}\sqrt{ANK})$ meta-regret, and with learned covariance $\tilde{O}(H^{4}S^{3/2}\sqrt{AN^3K})$; both recover a better behavior than prior-independent after $K \gtrsim \tilde{O}(H^2)$ and $K \gtrsim \tilde{O}(N^2H^2)$, respectively. Simulations on a stateful recommendation environment (with feature and prior misspecification) show that after brief exploration, MTSRL/MTSRL\(^+\) track the meta-oracle and substantially outperform prior-independent RL and bandit-only meta-baselines. Our results give the first meta-regret guarantees for Thompson-style RL with learned Q-priors, and provide practical recipes (warm-start via RLSVI, OLS aggregation, covariance widening) for experiment-rich settings.
☆ AD-NODE: Adaptive Dynamics Learning with Neural ODEs for Mobile Robots Control
Mobile robots, such as ground vehicles and quadrotors, are becoming increasingly important in various fields, from logistics to agriculture, where they automate processes in environments that are difficult to access for humans. However, to perform effectively in uncertain environments using model-based controllers, these systems require dynamics models capable of responding to environmental variations, especially when direct access to environmental information is limited. To enable such adaptivity and facilitate integration with model predictive control, we propose an adaptive dynamics model which bypasses the need for direct environmental knowledge by inferring operational environments from state-action history. The dynamics model is based on neural ordinary equations, and a two-phase training procedure is used to learn latent environment representations. We demonstrate the effectiveness of our approach through goal-reaching and path-tracking tasks on three robotic platforms of increasing complexity: a 2D differential wheeled robot with changing wheel contact conditions, a 3D quadrotor in variational wind fields, and the Sphero BOLT robot under two contact conditions for real-world deployment. Empirical results corroborate that our method can handle temporally and spatially varying environmental changes in both simulation and real-world systems.
☆ Adversarial Reinforcement Learning for Large Language Model Agent Safety
Large Language Model (LLM) agents can leverage tools such as Google Search to complete complex tasks. However, this tool usage introduces the risk of indirect prompt injections, where malicious instructions hidden in tool outputs can manipulate the agent, posing security risks like data leakage. Current defense strategies typically rely on fine-tuning LLM agents on datasets of known attacks. However, the generation of these datasets relies on manually crafted attack patterns, which limits their diversity and leaves agents vulnerable to novel prompt injections. To address this limitation, we propose Adversarial Reinforcement Learning for Agent Safety (ARLAS), a novel framework that leverages adversarial reinforcement learning (RL) by formulating the problem as a two-player zero-sum game. ARLAS co-trains two LLMs: an attacker that learns to autonomously generate diverse prompt injections and an agent that learns to defend against them while completing its assigned tasks. To ensure robustness against a wide range of attacks and to prevent cyclic learning, we employ a population-based learning framework that trains the agent to defend against all previous attacker checkpoints. Evaluated on BrowserGym and AgentDojo, agents fine-tuned with ARLAS achieve a significantly lower attack success rate than the original model while also improving their task success rate. Our analysis further confirms that the adversarial process generates a diverse and challenging set of attacks, leading to a more robust agent compared to the base model.
☆ Refereed Learning
We initiate an investigation of learning tasks in a setting where the learner is given access to two competing provers, only one of which is honest. Specifically, we consider the power of such learners in assessing purported properties of opaque models. Following prior work that considers the power of competing provers in different settings, we call this setting refereed learning. After formulating a general definition of refereed learning tasks, we show refereed learning protocols that obtain a level of accuracy that far exceeds what is obtainable at comparable cost without provers, or even with a single prover. We concentrate on the task of choosing the better one out of two black-box models, with respect to some ground truth. While we consider a range of parameters, perhaps our most notable result is in the high-precision range: For all $\varepsilon>0$ and ambient dimension $d$, our learner makes only one query to the ground truth function, communicates only $(1+\frac{1}{\varepsilon^2})\cdot\text{poly}(d)$ bits with the provers, and outputs a model whose loss is within a multiplicative factor of $(1+\varepsilon)$ of the best model's loss. Obtaining comparable loss with a single prover would require the learner to access the ground truth at almost all of the points in the domain. To obtain this bound, we develop a technique that allows the learner to sample, using the provers, from a distribution that is not efficiently samplable to begin with. We find this technique to be of independent interest. We also present lower bounds that demonstrate the optimality of our protocols in a number of respects, including prover complexity, number of samples, and need for query access.
☆ Physics-Informed Machine Learning in Biomedical Science and Engineering
Physics-informed machine learning (PIML) is emerging as a potentially transformative paradigm for modeling complex biomedical systems by integrating parameterized physical laws with data-driven methods. Here, we review three main classes of PIML frameworks: physics-informed neural networks (PINNs), neural ordinary differential equations (NODEs), and neural operators (NOs), highlighting their growing role in biomedical science and engineering. We begin with PINNs, which embed governing equations into deep learning models and have been successfully applied to biosolid and biofluid mechanics, mechanobiology, and medical imaging among other areas. We then review NODEs, which offer continuous-time modeling, especially suited to dynamic physiological systems, pharmacokinetics, and cell signaling. Finally, we discuss deep NOs as powerful tools for learning mappings between function spaces, enabling efficient simulations across multiscale and spatially heterogeneous biological domains. Throughout, we emphasize applications where physical interpretability, data scarcity, or system complexity make conventional black-box learning insufficient. We conclude by identifying open challenges and future directions for advancing PIML in biomedical science and engineering, including issues of uncertainty quantification, generalization, and integration of PIML and large language models.
comment: Accepted for publication in the Annual Review of Biomedical Engineering on October 2, 2025
☆ Draft, Verify, and Improve: Toward Training-Aware Speculative Decoding
Autoregressive (AR) decoding is a major latency bottleneck for large language models. Speculative decoding (SD) accelerates AR by letting a drafter propose multi-token blocks that a verifier accepts or rejects. However, many SD systems require heavy offline training or extra components. These choices raise data/compute cost and can yield brittle drafters under distribution drift. We introduce \emph{Draft, Verify, \& Improve (DVI)}, a training-aware self-speculative framework that combines inference with continual online learning. We partition an LLM into a drafter and a verifier, and during generation, verifier accept/reject decisions are converted into supervision signals and used to update the drafter head. A simple \emph{KL$\rightarrow$RL} schedule bootstraps calibration via online distillation and then adds reward-masked cross-entropy with a on-policy policy-gradient term, preserving lossless, single model deployment. On Spec-Bench, DVI achieves a $2.16\times$ wall-time speedup, on par with SoTA approaches like EAGLE-2, while orders of magnitude less data for training, and ablations show that DVI outperforms KL-only online distillation. DVI demonstrates that \emph{training-aware} self-speculation can deliver state-of-the-art, lossless speedups with minimal training overhead.
☆ Correlating Cross-Iteration Noise for DP-SGD using Model Curvature
Differentially private stochastic gradient descent (DP-SGD) offers the promise of training deep learning models while mitigating many privacy risks. However, there is currently a large accuracy gap between DP-SGD and normal SGD training. This has resulted in different lines of research investigating orthogonal ways of improving privacy-preserving training. One such line of work, known as DP-MF, correlates the privacy noise across different iterations of stochastic gradient descent -- allowing later iterations to cancel out some of the noise added to earlier iterations. In this paper, we study how to improve this noise correlation. We propose a technique called NoiseCurve that uses model curvature, estimated from public unlabeled data, to improve the quality of this cross-iteration noise correlation. Our experiments on various datasets, models, and privacy parameters show that the noise correlations computed by NoiseCurve offer consistent and significant improvements in accuracy over the correlation scheme used by DP-MF.
☆ Aligning Language Models with Clinical Expertise: DPO for Heart Failure Nursing Documentation in Critical Care
Nursing documentation in intensive care units (ICUs) provides essential clinical intelligence but often suffers from inconsistent terminology, informal styles, and lack of standardization, challenges that are particularly critical in heart failure care. This study applies Direct Preference Optimization (DPO) to adapt Mistral-7B, a locally deployable language model, using 8,838 heart failure nursing notes from the MIMIC-III database and 21,210 preference pairs derived from expert-verified GPT outputs, model generations, and original notes. Evaluation across BLEU, ROUGE, BERTScore, Perplexity, and expert qualitative assessments demonstrates that DPO markedly enhances documentation quality. Specifically, BLEU increased by 84% (0.173 to 0.318), BERTScore improved by 7.6% (0.828 to 0.891), and expert ratings rose across accuracy (+14.4 points), completeness (+14.5 points), logical consistency (+14.1 points), readability (+11.1 points), and structural clarity (+6.0 points). These results indicate that DPO can align lightweight clinical language models with expert standards, supporting privacy-preserving, AI-assisted documentation within electronic health record systems to reduce administrative burden and improve ICU patient safety.
☆ Comparing LSTM-Based Sequence-to-Sequence Forecasting Strategies for 24-Hour Solar Proton Flux Profiles Using GOES Data ICDM 2025
Solar Proton Events (SPEs) cause significant radiation hazards to satellites, astronauts, and technological systems. Accurate forecasting of their proton flux time profiles is crucial for early warnings and mitigation. This paper explores deep learning sequence-to-sequence (seq2seq) models based on Long Short-Term Memory networks to predict 24-hour proton flux profiles following SPE onsets. We used a dataset of 40 well-connected SPEs (1997-2017) observed by NOAA GOES, each associated with a >=M-class western-hemisphere solar flare and undisturbed proton flux profiles. Using 4-fold stratified cross-validation, we evaluate seq2seq model configurations (varying hidden units and embedding dimensions) under multiple forecasting scenarios: (i) proton-only input vs. combined proton+X-ray input, (ii) original flux data vs. trend-smoothed data, and (iii) autoregressive vs. one-shot forecasting. Our major results are as follows: First, one-shot forecasting consistently yields lower error than autoregressive prediction, avoiding the error accumulation seen in iterative approaches. Second, on the original data, proton-only models outperform proton+X-ray models. However, with trend-smoothed data, this gap narrows or reverses in proton+X-ray models. Third, trend-smoothing significantly enhances the performance of proton+X-ray models by mitigating fluctuations in the X-ray channel. Fourth, while models trained on trendsmoothed data perform best on average, the best-performing model was trained on original data, suggesting that architectural choices can sometimes outweigh the benefits of data preprocessing.
comment: 7 pages; accepted as a workshop paper at ICDM 2025
☆ Scalable In-context Ranking with Generative Models
In-context Ranking (ICR) is an emerging paradigm for Information Retrieval (IR), which leverages contextual understanding of LLMs by directly incorporating the task description, candidate documents, and the query into the model's input prompt and tasking the LLM to identify relevant document(s). While it is effective, efficiency is a significant challenge in this paradigm, especially as the candidate list grows due to quadratic/super-linear scaling of attention operation with context length. To this end, this paper first identifies inherent and exploitable structures in the attention of LLMs finetuned for ICR: (1) inter-document block sparsity: attention is dense within each document block but sparse across different documents in the context; and (2) query-document block relevance: the attention scores from certain query tokens to a document block in middle layers strongly correlate with that document's actual relevance. Motivated by these observations, we introduce BlockRank (Blockwise In-context Ranking), a novel method that adapts the attention operation in an LLM by (a) architecturally enforcing the observed inter-document block sparsity, reducing attention complexity from quadratic to linear without loss in performance, and (b) optimizing query-document block relevance for true relevant documents during fine-tuning using an auxiliary contrastive training objective, improving retrieval in attention. Experiments on BEIR, MSMarco and NQ with Mistral-7B demonstrate that FLARE Mistral matches or outperforms existing SOTA listwise rankers and controlled fine-tuned baseline while being significantly more efficient at inference (4.7x for 100 MSMarco documents in context) and scaling gracefully to long-context shortlists, around 500 documents in-context (approximately 100K context length) within a second, presenting a scalable and effective solution for ICR.
Fusion-Based Neural Generalization for Predicting Temperature Fields in Industrial PET Preform Heating
Accurate and efficient temperature prediction is critical for optimizing the preheating process of PET preforms in industrial microwave systems prior to blow molding. We propose a novel deep learning framework for generalized temperature prediction. Unlike traditional models that require extensive retraining for each material or design variation, our method introduces a data-efficient neural architecture that leverages transfer learning and model fusion to generalize across unseen scenarios. By pretraining specialized neural regressor on distinct conditions such as recycled PET heat capacities or varying preform geometries and integrating their representations into a unified global model, we create a system capable of learning shared thermal dynamics across heterogeneous inputs. The architecture incorporates skip connections to enhance stability and prediction accuracy. Our approach reduces the need for large simulation datasets while achieving superior performance compared to models trained from scratch. Experimental validation on two case studies material variability and geometric diversity demonstrates significant improvements in generalization, establishing a scalable ML-based solution for intelligent thermal control in manufacturing environments. Moreover, the approach highlights how data-efficient generalization strategies can extend to other industrial applications involving complex physical modeling with limited data.
comment: Workshop paper, AIP2025: Second Workshop on AI in Production (2025). Licensed under CC BY 4.0
☆ A Neural Network Algorithm for KL Divergence Estimation with Quantitative Error Bounds AISTATS 2026
Estimating the Kullback-Leibler (KL) divergence between random variables is a fundamental problem in statistical analysis. For continuous random variables, traditional information-theoretic estimators scale poorly with dimension and/or sample size. To mitigate this challenge, a variety of methods have been proposed to estimate KL divergences and related quantities, such as mutual information, using neural networks. The existing theoretical analyses show that neural network parameters achieving low error exist. However, since they rely on non-constructive neural network approximation theorems, they do not guarantee that the existing algorithms actually achieve low error. In this paper, we propose a KL divergence estimation algorithm using a shallow neural network with randomized hidden weights and biases (i.e. a random feature method). We show that with high probability, the algorithm achieves a KL divergence estimation error of $O(m^{-1/2}+T^{-1/3})$, where $m$ is the number of neurons and $T$ is both the number of steps of the algorithm and the number of samples.
comment: Under Review for AISTATS 2026
☆ Physics-Informed Neural Networks with Fourier Features and Attention-Driven Decoding NeurIPS 2025
Physics-Informed Neural Networks (PINNs) are a useful framework for approximating partial differential equation solutions using deep learning methods. In this paper, we propose a principled redesign of the PINNsformer, a Transformer-based PINN architecture. We present the Spectral PINNSformer (S-Pformer), a refinement of encoder-decoder PINNSformers that addresses two key issues; 1. the redundancy (i.e. increased parameter count) of the encoder, and 2. the mitigation of spectral bias. We find that the encoder is unnecessary for capturing spatiotemporal correlations when relying solely on self-attention, thereby reducing parameter count. Further, we integrate Fourier feature embeddings to explicitly mitigate spectral bias, enabling adaptive encoding of multiscale behaviors in the frequency domain. Our model outperforms encoder-decoder PINNSformer architectures across all benchmarks, achieving or outperforming MLP performance while reducing parameter count significantly.
comment: 16 pages, 6 figures. Accepted at NeurIPS 2025 AI4Science workshop
☆ Minima and Critical Points of the Bethe Free Energy Are Invariant Under Deformation Retractions of Factor Graphs
In graphical models, factor graphs, and more generally energy-based models, the interactions between variables are encoded by a graph, a hypergraph, or, in the most general case, a partially ordered set (poset). Inference on such probabilistic models cannot be performed exactly due to cycles in the underlying structures of interaction. Instead, one resorts to approximate variational inference by optimizing the Bethe free energy. Critical points of the Bethe free energy correspond to fixed points of the associated Belief Propagation algorithm. A full characterization of these critical points for general graphs, hypergraphs, and posets with a finite number of variables is still an open problem. We show that, for hypergraphs and posets with chains of length at most 1, changing the poset of interactions of the probabilistic model to one with the same homotopy type induces a bijection between the critical points of the associated free energy. This result extends and unifies classical results that assume specific forms of collapsibility to prove uniqueness of the critical points of the Bethe free energy.
☆ KVLinC : KV Cache Quantization with Hadamard Rotation and Linear Correction
Quantizing the key-value (KV) cache is a promising strategy for improving the inference efficiency of large language models (LLMs). However, aggressive quantization to very low precision (e.g., 2 bits) introduces significant errors in the stored key and value tensors, which propagate through the dot-product attention mechanism and ultimately degrade generation quality. To address this, we propose KVLinC, a framework to mitigate attention errors introduced by KV cache quantization in the extreme low-precision regime. KVLinC combines a Hadamard rotation, which reduces quantization error in values, with lightweight linear correction adapters that explicitly compensate for errors introduced by quantized keys. Across extensive evaluations on the LLaMA, Qwen2.5, and Qwen3 model families, KVLinC consistently matches or surpasses strong baselines while achieving higher KV-cache compression. Furthermore, we implement a custom attention kernel that results in upto 2.55x faster inference compared to Flash Attention baseline, enabling efficient long-context LLM inference.
comment: 14 pages, 7 figures, 6 tables
☆ LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .
☆ MT-DAO: Multi-Timescale Distributed Adaptive Optimizers with Local Updates ICLR 2026
Training large models with distributed data parallelism (DDP) requires frequent communication of gradients across workers, which can saturate bandwidth. Infrequent communication strategies (e.g., Local SGD) reduce this overhead but, when applied to adaptive optimizers, often suffer a performance gap relative to fully synchronous DDP. We trace this gap to a time-scale mismatch: the optimizer's fast-moving momentum, tuned for frequent updates, decays too quickly to smooth gradients over long intervals, leading to noise-dominated optimization. To address this, we propose MT-DAO, a family of optimizers that employs multiple slow- and fast-moving first momenta or the gradient to track update dynamics across different time scales, for which we provide the first convergence guarantees. Empirically, for language-model pre-training, this eliminates the performance gap with DDP, outperforming infrequent-communication baselines in perplexity and reducing iso-token wall-clock time by 6-27% on Ethernet interconnects. At the 720M scale, MT-DAO reaches a target perplexity in 24% fewer steps and 35% less time than the single-momentum DDP baseline. MT-DAO enables effective cross-datacenter training and training over wide geographic areas.
comment: Submitted to the ICLR 2026 Conference
☆ Mitigating Diffusion Model Hallucinations with Dynamic Guidance
Diffusion models, despite their impressive demos, often produce hallucinatory samples with structural inconsistencies that lie outside of the support of the true data distribution. Such hallucinations can be attributed to excessive smoothing between modes of the data distribution. However, semantic interpolations are often desirable and can lead to generation diversity, thus we believe a more nuanced solution is required. In this work, we introduce Dynamic Guidance, which tackles this issue. Dynamic Guidance mitigates hallucinations by selectively sharpening the score function only along the pre-determined directions known to cause artifacts, while preserving valid semantic variations. To our knowledge, this is the first approach that addresses hallucinations at generation time rather than through post-hoc filtering. Dynamic Guidance substantially reduces hallucinations on both controlled and natural image datasets, significantly outperforming baselines.
☆ Physics-informed Attention-enhanced Fourier Neural Operator for Solar Magnetic Field Extrapolations ICDM 2025
We propose Physics-informed Attention-enhanced Fourier Neural Operator (PIANO) to solve the Nonlinear Force-Free Field (NLFFF) problem in solar physics. Unlike conventional approaches that rely on iterative numerical methods, our proposed PIANO directly learns the 3D magnetic field structure from 2D boundary conditions. Specifically, PIANO integrates Efficient Channel Attention (ECA) mechanisms with Dilated Convolutions (DC), which enhances the model's ability to capture multimodal input by prioritizing critical channels relevant to the magnetic field's variations. Furthermore, we apply physics-informed loss by enforcing the force-free and divergence-free conditions in the training process so that our prediction is consistent with underlying physics with high accuracy. Experimental results on the ISEE NLFFF dataset show that our PIANO not only outperforms state-of-the-art neural operators in terms of accuracy but also shows strong consistency with the physical characteristics of NLFFF data across magnetic fields reconstructed from various solar active regions. The GitHub of this project is available https://github.com/Autumnstar-cjh/PIANO
comment: 10 pages; accepted as workshop paper in ICDM 2025; https://github.com/Autumnstar-cjh/PIANO
☆ Margin Adaptive DPO: Leveraging Reward Model for Granular Control in Preference Optimization
Direct Preference Optimization (DPO) has emerged as a simple and effective method for aligning large language models. However, its reliance on a fixed temperature parameter leads to suboptimal training on diverse preference data, causing overfitting on easy examples and under-learning from informative ones. Recent methods have emerged to counter this. While IPO addresses general overfitting, its uniform regularization can be overly conservative. The more targeted approach of $\beta$-DPO suffers from its own limitations: its batch-level adaptation applies a single, compromised temperature to mixed-margin pairs, its linear update rule can produce unstable negative $\beta$ values, and its filtering mechanism discards potentially useful training signals. In this work, we introduce Margin-Adaptive Direct Preference Optimization (MADPO), a method that provides a stable, data-preserving, and instance-level solution. MADPO employs a practical two-step approach: it first trains a reward model to estimate preference margins and then uses these margins to apply a continuous, adaptive weight to the DPO loss for each individual training sample. This re-weighting scheme creates an effective target margin that is amplified for hard pairs and dampened for easy pairs, allowing for granular control over the learning signal. We provide a comprehensive theoretical analysis, proving that MADPO has a well-behaved optimization landscape and is robust to reward model estimation errors. We validate our theory with experiments on a sentiment generation task, where MADPO consistently and significantly outperforms strong baselines across datasets of varying quality. It achieves performance gains of up to +33.3\% on High Quality data and +10.5\% on Low Quality data over the next-best method. Our results establish MADPO as a more robust and principled approach to preference alignment.
☆ Tensor-on-tensor Regression Neural Networks for Process Modeling with High-dimensional Data
Modern sensing and metrology systems now stream terabytes of heterogeneous, high-dimensional (HD) data profiles, images, and dense point clouds, whose natural representation is multi-way tensors. Understanding such data requires regression models that preserve tensor geometry, yet remain expressive enough to capture the pronounced nonlinear interactions that dominate many industrial and mechanical processes. Existing tensor-based regressors meet the first requirement but remain essentially linear. Conversely, conventional neural networks offer nonlinearity only after flattening, thereby discarding spatial structure and incurring prohibitive parameter counts. This paper introduces a Tensor-on-Tensor Regression Neural Network (TRNN) that unifies these two paradigms.
☆ RegMix: Adversarial Mutual and Generalization Regularization for Enhancing DNN Robustness
Adversarial training is the most effective defense against adversarial attacks. The effectiveness of the adversarial attacks has been on the design of its loss function and regularization term. The most widely used loss function in adversarial training is cross-entropy and mean squared error (MSE) as its regularization objective. However, MSE enforces overly uniform optimization between two output distributions during training, which limits its robustness in adversarial training scenarios. To address this issue, we revisit the idea of mutual learning (originally designed for knowledge distillation) and propose two novel regularization strategies tailored for adversarial training: (i) weighted adversarial mutual regularization and (ii) adversarial generalization regularization. In the former, we formulate a decomposed adversarial mutual Kullback-Leibler divergence (KL-divergence) loss, which allows flexible control over the optimization process by assigning unequal weights to the main and auxiliary objectives. In the latter, we introduce an additional clean target distribution into the adversarial training objective, improving generalization and enhancing model robustness. Extensive experiments demonstrate that our proposed methods significantly improve adversarial robustness compared to existing regularization-based approaches.
☆ Gamma Mixture Modeling for Cosine Similarity in Small Language Models
We study the cosine similarity of sentence transformer embeddings and observe that they are well modeled by gamma mixtures. From a fixed corpus, we measure similarities between all document embeddings and a reference query embedding. Empirically we find that these distributions are often well captured by a gamma distribution shifted and truncated to [-1,1], and in many cases, by a gamma mixture. We propose a heuristic model in which a hierarchical clustering of topics naturally leads to a gamma-mixture structure in the similarity scores. Finally, we outline an expectation-maximization algorithm for fitting shifted gamma mixtures, which provides a practical tool for modeling similarity distributions.
comment: 16 pages, 8 figures
☆ DP-Adam-AC: Privacy-preserving Fine-Tuning of Localizable Language Models Using Adam Optimization with Adaptive Clipping
Large language models (LLMs) such as ChatGPT have evolved into powerful and ubiquitous tools. Fine-tuning on small datasets allows LLMs to acquire specialized skills for specific tasks efficiently. Although LLMs provide great utility in both general and task-specific use cases, they are limited by two security-related concerns. First, traditional LLM hardware requirements make them infeasible to run locally on consumer-grade devices. A remote network connection with the LLM provider's server is usually required, making the system vulnerable to network attacks. Second, fine-tuning an LLM for a sensitive task may involve sensitive data. Non-private fine-tuning algorithms produce models vulnerable to training data reproduction attacks. Our work addresses these security concerns by enhancing differentially private optimization algorithms and applying them to fine-tune localizable language models. We introduce adaptable gradient clipping along with other engineering enhancements to the standard DP-Adam optimizer to create DP-Adam-AC. We use our optimizer to fine-tune examples of two localizable LLM designs, small language model (Qwen2.5-0.5B) and 1.58 bit quantization (Bitnet-b1.58-2B). We demonstrate promising improvements in loss through experimentation with two synthetic datasets.
☆ Computing frustration and near-monotonicity in deep neural networks
For the signed graph associated to a deep neural network, one can compute the frustration level, i.e., test how close or distant the graph is to structural balance. For all the pretrained deep convolutional neural networks we consider, we find that the frustration is always less than expected from null models. From a statistical physics point of view, and in particular in reference to an Ising spin glass model, the reduced frustration indicates that the amount of disorder encoded in the network is less than in the null models. From a functional point of view, low frustration (i.e., proximity to structural balance) means that the function representing the network behaves near-monotonically, i.e., more similarly to a monotone function than in the null models. Evidence of near-monotonic behavior along the partial order determined by frustration is observed for all networks we consider. This confirms that the class of deep convolutional neural networks tends to have a more ordered behavior than expected from null models, and suggests a novel form of implicit regularization.
☆ Adjusting the Output of Decision Transformer with Action Gradient
Decision Transformer (DT), which integrates reinforcement learning (RL) with the transformer model, introduces a novel approach to offline RL. Unlike classical algorithms that take maximizing cumulative discounted rewards as objective, DT instead maximizes the likelihood of actions. This paradigm shift, however, presents two key challenges: stitching trajectories and extrapolation of action. Existing methods, such as substituting specific tokens with predictive values and integrating the Policy Gradient (PG) method, address these challenges individually but fail to improve performance stably when combined due to inherent instability. To address this, we propose Action Gradient (AG), an innovative methodology that directly adjusts actions to fulfill a function analogous to that of PG, while also facilitating efficient integration with token prediction techniques. AG utilizes the gradient of the Q-value with respect to the action to optimize the action. The empirical results demonstrate that our method can significantly enhance the performance of DT-based algorithms, with some results achieving state-of-the-art levels.
☆ Decoding Partial Differential Equations: Cross-Modal Adaptation of Decoder-only Models to PDEs
Large language models have shown great success on natural language tasks in recent years, but they have also shown great promise when adapted to new modalities, e.g., for scientific machine learning tasks. Even though decoder-only models are more popular within NLP and scale exceedingly well at generating natural language, most proposed approaches for cross-modal adaptation focus on encoder-only models, raising the question of how model architecture affects these approaches. In this paper, we therefore perform a series of ablation studies to answer this question, systematically comparing encoder-only and decoder-only models on cross-modal adaptation for time-dependent simulation tasks based on partial differential equations (PDEs). We find that decoder-only models are far worse than encoder-only models, when existing approaches are applied unmodified. In contrast to several other domains, scaling decoder-only models also does not help. To harness the potential of decoder-only models in this context, we introduce two novel approaches, Parallel Flipping and Sequence Doubling, attempting to mimic bidirectionality in autoregressive models. Both our methods improve overall performance using decoder-only models for all tasks and all cross-model adaptation methods, closing the gap to encoder-only model performance. We hope that our findings broaden the spectrum of models used on cross-modal adaptation tasks to further scientific ML.
☆ ECLipsE-Gen-Local: Efficient Compositional Local Lipschitz Estimates for Deep Neural Networks
The Lipschitz constant is a key measure for certifying the robustness of neural networks to input perturbations. However, computing the exact constant is NP-hard, and standard approaches to estimate the Lipschitz constant involve solving a large matrix semidefinite program (SDP) that scales poorly with network size. Further, there is a potential to efficiently leverage local information on the input region to provide tighter Lipschitz estimates. We address this problem here by proposing a compositional framework that yields tight yet scalable Lipschitz estimates for deep feedforward neural networks. Specifically, we begin by developing a generalized SDP framework that is highly flexible, accommodating heterogeneous activation function slope, and allowing Lipschitz estimates with respect to arbitrary input-output pairs and arbitrary choices of sub-networks of consecutive layers. We then decompose this generalized SDP into a sequence of small sub-problems, with computational complexity that scales linearly with respect to the network depth. We also develop a variant that achieves near-instantaneous computation through closed-form solutions to each sub-problem. All our algorithms are accompanied by theoretical guarantees on feasibility and validity. Next, we develop a series of algorithms, termed as ECLipsE-Gen-Local, that effectively incorporate local information on the input. Our experiments demonstrate that our algorithms achieve substantial speedups over a multitude of benchmarks while producing significantly tighter Lipschitz bounds than global approaches. Moreover, we show that our algorithms provide strict upper bounds for the Lipschitz constant with values approaching the exact Jacobian from autodiff when the input region is small enough. Finally, we demonstrate the practical utility of our approach by showing that our Lipschitz estimates closely align with network robustness.
☆ Let it Calm: Exploratory Annealed Decoding for Verifiable Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) is a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs), yet its success hinges on effective exploration. An ideal exploration strategy must navigate two fundamental challenges: it must preserve sample quality while also ensuring training stability. While standard fixed-temperature sampling is simple, it struggles to balance these competing demands, as high temperatures degrade sample quality and low temperatures limit discovery. In this work, we propose a simpler and more effective strategy, Exploratory Annealed Decoding (EAD), grounded in the insight that exploration is most impactful on early tokens which define a sequence's semantic direction. EAD implements an intuitive **explore-at-the-beginning, exploit-at-the-end** strategy by annealing the sampling temperature from high to low during generation. This dynamic schedule encourages meaningful, high-level diversity at the start, then gradually lowers the temperature to preserve sample quality and keep the sampling distribution close to the target policy, which is essential for stable training. We demonstrate that EAD is a lightweight, plug-and-play method that significantly improves sample efficiency, consistently outperforming fixed-temperature sampling across various RLVR algorithms and model sizes. Our work suggests that aligning exploration with the natural dynamics of sequential generation offers a robust path to improving LLM reasoning.
comment: Codebase: https://github.com/yangalan123/EAD-RLVR
Stratum: System-Hardware Co-Design with Tiered Monolithic 3D-Stackable DRAM for Efficient MoE Serving
As Large Language Models (LLMs) continue to evolve, Mixture of Experts (MoE) architecture has emerged as a prevailing design for achieving state-of-the-art performance across a wide range of tasks. MoE models use sparse gating to activate only a handful of expert sub-networks per input, achieving billion-parameter capacity with inference costs akin to much smaller models. However, such models often pose challenges for hardware deployment due to the massive data volume introduced by the MoE layers. To address the challenges of serving MoE models, we propose Stratum, a system-hardware co-design approach that combines the novel memory technology Monolithic 3D-Stackable DRAM (Mono3D DRAM), near-memory processing (NMP), and GPU acceleration. The logic and Mono3D DRAM dies are connected through hybrid bonding, whereas the Mono3D DRAM stack and GPU are interconnected via silicon interposer. Mono3D DRAM offers higher internal bandwidth than HBM thanks to the dense vertical interconnect pitch enabled by its monolithic structure, which supports implementations of higher-performance near-memory processing. Furthermore, we tackle the latency differences introduced by aggressive vertical scaling of Mono3D DRAM along the z-dimension by constructing internal memory tiers and assigning data across layers based on access likelihood, guided by topic-based expert usage prediction to boost NMP throughput. The Stratum system achieves up to 8.29x improvement in decoding throughput and 7.66x better energy efficiency across various benchmarks compared to GPU baselines.
☆ Simultaneous Learning and Optimization via Misspecified Saddle Point Problems
We study a class of misspecified saddle point (SP) problems, where the optimization objective depends on an unknown parameter that must be learned concurrently from data. Unlike existing studies that assume parameters are fully known or pre-estimated, our framework integrates optimization and learning into a unified formulation, enabling a more flexible problem class. To address this setting, we propose two algorithms based on the accelerated primal-dual (APD) by Hamedani & Aybat 2021. In particular, we first analyze the naive extension of the APD method by directly substituting the evolving parameter estimates into the primal-dual updates; then, we design a new learning-aware variant of the APD method that explicitly accounts for parameter dynamics by adjusting the momentum updates. Both methods achieve a provable convergence rate of $\mathcal{O}(\log K / K)$, while the learning-aware approach attains a tighter $\mathcal{O}(1)$ constant and further benefits from an adaptive step-size selection enabled by a backtracking strategy. Furthermore, we extend the framework to problems where the learning problem admits multiple optimal solutions, showing that our modified algorithm for a structured setting achieves an $\mathcal{O}(1/\sqrt{K})$ rate. To demonstrate practical impact, we evaluate our methods on a misspecified portfolio optimization problem and show superior empirical performance compared to state-of-the-art algorithms.
☆ CMT-Benchmark: A Benchmark for Condensed Matter Theory Built by Expert Researchers
Large language models (LLMs) have shown remarkable progress in coding and math problem-solving, but evaluation on advanced research-level problems in hard sciences remains scarce. To fill this gap, we present CMT-Benchmark, a dataset of 50 problems covering condensed matter theory (CMT) at the level of an expert researcher. Topics span analytical and computational approaches in quantum many-body, and classical statistical mechanics. The dataset was designed and verified by a panel of expert researchers from around the world. We built the dataset through a collaborative environment that challenges the panel to write and refine problems they would want a research assistant to solve, including Hartree-Fock, exact diagonalization, quantum/variational Monte Carlo, density matrix renormalization group (DMRG), quantum/classical statistical mechanics, and model building. We evaluate LLMs by programmatically checking solutions against expert-supplied ground truth. We developed machine-grading, including symbolic handling of non-commuting operators via normal ordering. They generalize across tasks too. Our evaluations show that frontier models struggle with all of the problems in the dataset, highlighting a gap in the physical reasoning skills of current LLMs. Notably, experts identified strategies for creating increasingly difficult problems by interacting with the LLMs and exploiting common failure modes. The best model, GPT5, solves 30\% of the problems; average across 17 models (GPT, Gemini, Claude, DeepSeek, Llama) is 11.4$\pm$2.1\%. Moreover, 18 problems are solved by none of the 17 models, and 26 by at most one. These unsolved problems span Quantum Monte Carlo, Variational Monte Carlo, and DMRG. Answers sometimes violate fundamental symmetries or have unphysical scaling dimensions. We believe this benchmark will guide development toward capable AI research assistants and tutors.
comment: 19 pages, 3 figures
☆ Approximate Gaussianity Beyond Initialisation in Neural Networks
Ensembles of neural network weight matrices are studied through the training process for the MNIST classification problem, testing the efficacy of matrix models for representing their distributions, under assumptions of Gaussianity and permutation-symmetry. The general 13-parameter permutation invariant Gaussian matrix models are found to be effective models for the correlated Gaussianity in the weight matrices, beyond the range of applicability of the simple Gaussian with independent identically distributed matrix variables, and notably well beyond the initialisation step. The representation theoretic model parameters, and the graph-theoretic characterisation of the permutation invariant matrix observables give an interpretable framework for the best-fit model and for small departures from Gaussianity. Additionally, the Wasserstein distance is calculated for this class of models and used to quantify the movement of the distributions over training. Throughout the work, the effects of varied initialisation regimes, regularisation, layer depth, and layer width are tested for this formalism, identifying limits where particular departures from Gaussianity are enhanced and how more general, yet still highly-interpretable, models can be developed.
comment: 26+34 pages, 15 figures, 12 tables
☆ VER: Vision Expert Transformer for Robot Learning via Foundation Distillation and Dynamic Routing
Pretrained vision foundation models (VFMs) advance robotic learning via rich visual representations, yet individual VFMs typically excel only in specific domains, limiting generality across tasks. Distilling multiple VFMs into a unified representation for policy can mitigate this limitation but often yields inflexible task-specific feature selection and requires costly full re-training to incorporate robot-domain knowledge. We propose VER, a Vision Expert transformer for Robot learning. During pretraining, VER distills multiple VFMs into a vision expert library. It then fine-tunes only a lightweight routing network (fewer than 0.4% of parameters) to dynamically select task-relevant experts from the pretrained library for downstream robot tasks. We further introduce Patchwise Expert Routing with Curriculum Top-K Annealing to improve both flexibility and precision of dynamic expert selection. Moreover, VER supports parameter-efficient finetuning for scalable expert utilization and adaptive robot-domain knowledge integration. Across 17 diverse robotic tasks and multiple policy heads, VER achieves state-of-the-art performance. We find that VER reduces large-norm outliers in task-irrelevant regions (e.g., background) and concentrates on task-critical regions. Visualizations and codes can be found in https://yixiaowang7.github.io/ver_page/.
☆ A Data-Driven Prism: Multi-View Source Separation with Diffusion Model Priors NeurIPS 2025
A common challenge in the natural sciences is to disentangle distinct, unknown sources from observations. Examples of this source separation task include deblending galaxies in a crowded field, distinguishing the activity of individual neurons from overlapping signals, and separating seismic events from an ambient background. Traditional analyses often rely on simplified source models that fail to accurately reproduce the data. Recent advances have shown that diffusion models can directly learn complex prior distributions from noisy, incomplete data. In this work, we show that diffusion models can solve the source separation problem without explicit assumptions about the source. Our method relies only on multiple views, or the property that different sets of observations contain different linear transformations of the unknown sources. We show that our method succeeds even when no source is individually observed and the observations are noisy, incomplete, and vary in resolution. The learned diffusion models enable us to sample from the source priors, evaluate the probability of candidate sources, and draw from the joint posterior of the source distribution given an observation. We demonstrate the effectiveness of our method on a range of synthetic problems as well as real-world galaxy observations.
comment: Accepted to main conference of NeurIPS 2025. Code available at https://github.com/swagnercarena/ddprism
☆ Efficient Prediction of Pass@k Scaling in Large Language Models
Assessing the capabilities and risks of frontier AI systems is a critical area of research, and recent work has shown that repeated sampling from models can dramatically increase both. For instance, repeated sampling has been shown to increase their capabilities, such as solving difficult math and coding problems, but it has also been shown to increase their potential for harm, such as being jailbroken. Such results raise a crucial question for both capability and safety forecasting: how can one accurately predict a model's behavior when scaled to a massive number of attempts, given a vastly smaller sampling budget? This question is directly relevant to model providers, who serve hundreds of millions of users daily, and to governmental regulators, who seek to prevent harms. To answer this questions, we make three contributions. First, we find that standard methods for fitting these laws suffer from statistical shortcomings that hinder predictive accuracy, especially in data-limited scenarios. Second, we remedy these shortcomings by introducing a robust estimation framework, which uses a beta-binomial distribution to generate more accurate predictions from limited data. Third, we propose a dynamic sampling strategy that allocates a greater budget to harder problems. Combined, these innovations enable more reliable prediction of rare risks and capabilities at a fraction of the computational cost.
♻ ☆ MALT: Improving Reasoning with Multi-Agent LLM Training
Large Language Models (LLMs) often produce answers with a single chain-of-thought, which restricts their ability to explore reasoning paths or self-correct flawed outputs in complex tasks. In this paper, we introduce MALT (Multi-Agent LLM Training), a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps using a sequential pipeline of heterogeneous agents. During data generation, each agent is repeatedly sampled to form a multi-agent search tree, where final outputs are graded against ground-truth data. We then apply value iteration to propagate reward signals back to each role-conditioned model, automatically producing multi-agent post-training data without human or teacher-model supervision. Our off-policy approach allows each agent to specialize by learning from correct and incorrect trajectories, ultimately improving the end-to-end reasoning chain. On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively, making it an important advance towards multi-agent cooperative training.
comment: Published at COLM 2025
♻ ☆ Learning Penalty for Optimal Partitioning via Automatic Feature Extraction
Changepoint detection identifies significant shifts in data sequences, making it important in areas like finance, genetics, and healthcare. The Optimal Partitioning algorithms efficiently detect these changes, using a penalty parameter to limit the changepoints count. Determining the optimal value for this penalty can be challenging. Traditionally, this process involved manually extracting statistical features, such as sequence length or variance to make the prediction. This study proposes a novel approach that uses recurrent networks to learn this penalty directly from raw sequences by automatically extracting features. Experiments conducted on 20 benchmark genomic datasets show that this novel method generally outperforms traditional ones in changepoint detection accuracy.
comment: 9 Figures
♻ ☆ Conformal Prediction for Long-Tailed Classification
Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we introduce a new conformal score function called prevalence-adjusted softmax that targets macro-coverage, a relaxed notion of class-conditional coverage. Second, we propose a new procedure that interpolates between marginal and class-conditional conformal prediction by linearly interpolating their conformal score thresholds. We demonstrate our methods on Pl@ntNet-300K and iNaturalist-2018, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
♻ ☆ PENEX: AdaBoost-Inspired Neural Network Regularization
AdaBoost sequentially fits so-called weak learners to minimize an exponential loss, which penalizes mislabeled data points more severely than other loss functions like cross-entropy. Paradoxically, AdaBoost generalizes well in practice as the number of weak learners grows. In the present work, we introduce Penalized Exponential Loss (PENEX), a new formulation of the multi-class exponential loss that is theoretically grounded and, in contrast to the existing formulation, amenable to optimization via first-order methods. We demonstrate both empirically and theoretically that PENEX implicitly maximizes margins of data points. Also, we show that gradient increments on PENEX implicitly parameterize weak learners in the boosting framework. Across computer vision and language tasks, we show that PENEX exhibits a regularizing effect often better than established methods with similar computational cost. Our results highlight PENEX's potential as an AdaBoost-inspired alternative for effective training and fine-tuning of deep neural networks.
♻ ☆ Diffusion^2: Turning 3D Environments into Radio Frequency Heatmaps
Modeling radio frequency (RF) signal propagation is essential for understanding the environment, as RF signals offer valuable insights beyond the capabilities of RGB cameras, which are limited by the visible-light spectrum, lens coverage, and occlusions. It is also useful for supporting wireless diagnosis, deployment, and optimization. However, accurately predicting RF signals in complex environments remains a challenge due to interactions with obstacles such as absorption and reflection. We introduce Diffusion^2, a diffusion-based approach that uses 3D point clouds to model the propagation of RF signals across a wide range of frequencies, from Wi-Fi to millimeter waves. To effectively capture RF-related features from 3D data, we present the RF-3D Encoder, which encapsulates the complexities of 3D geometry along with signal-specific details. These features undergo multi-scale embedding to simulate the actual RF signal dissemination process. Our evaluation, based on synthetic and real-world measurements, demonstrates that Diffusion^2 accurately estimates the behavior of RF signals in various frequency bands and environmental conditions, with an error margin of just 1.9 dB and 27x faster than existing methods, marking a significant advancement in the field. Refer to https://rfvision-project.github.io/ for more information.
♻ ☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
♻ ☆ Learning-Augmented Robust Algorithmic Recourse
Algorithmic recourse provides individuals who receive undesirable outcomes from machine learning systems with minimum-cost improvements to achieve a desirable outcome. However, machine learning models often get updated, so the recourse may not lead to the desired outcome. The robust recourse framework chooses recourses that are less sensitive to adversarial model changes, but this comes at a higher cost. To address this, we initiate the study of learning-augmented algorithmic recourse and evaluate the extent to which a designer equipped with a prediction of the future model can reduce the cost of recourse when the prediction is accurate (consistency) while also limiting the cost even when the prediction is inaccurate (robustness). We propose a novel algorithm, study the robustness-consistency trade-off, and analyze how prediction accuracy affects performance.
♻ ☆ Rethinking Exact Unlearning under Exposure: Extracting Forgotten Data under Exact Unlearning in Large Language Model
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and contract analysis. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data, OCR outputs, and code to reproduce baselines are available to download at https://indicodatasolutions.github.io/RealKIE/.
♻ ☆ Reinforced Generation of Combinatorial Structures: Applications to Complexity Theory
We explore whether techniques from AI can help discover new combinatorial structures that improve on known limits on efficient algorithms. Specifically, we use AlphaEvolve (an LLM coding agent) to study two settings: a) Average-case hardness for MAX-CUT and MAX-Independent Set: We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ nodes, using AlphaEvolve. Additionally, via analytical arguments we strengthen the upper bounds to settle the computational hardness of these questions up to an error in the third decimal place. b) Worst-case Hardness of Approximation for MAX-k-CUT: We obtain new inapproximability results, proving that it is NP-hard to approximate MAX-4-CUT and MAX-3-CUT within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of improving the SOTA of $16/17$ that relies on a custom PCP, rather than a gadget reduction from "standard" H{\aa}stad-style PCPs. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (often requiring exponential time). In both settings above, our results were enabled by using AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$). We conclude with a discussion of norms by which to assess the assistance from AI in developing proofs.
♻ ☆ Fast constrained sampling in pre-trained diffusion models
Large denoising diffusion models, such as Stable Diffusion, have been trained on billions of image-caption pairs to perform text-conditioned image generation. As a byproduct of this training, these models have acquired general knowledge about image statistics, which can be useful for other inference tasks. However, when confronted with sampling an image under new constraints, e.g. generating the missing parts of an image, using large pre-trained text-to-image diffusion models is inefficient and often unreliable. Previous approaches either utilized backpropagation through the denoiser network, making them significantly slower and more memory-demanding than simple text-to-image generation, or only enforced the constraint locally, failing to capture critical long-range correlations in the sampled image. In this work, we propose an algorithm that enables fast, high-quality generation under arbitrary constraints. We show that in denoising diffusion models, we can employ an approximation to Newton's optimization method that allows us to speed up inference and avoid the expensive backpropagation operations. Our approach produces results that rival or surpass the state-of-the-art training-free inference methods while requiring a fraction of the time. We demonstrate the effectiveness of our algorithm under both linear (inpainting, super-resolution) and non-linear (style-guided generation) constraints. An implementation is provided at https://github.com/cvlab-stonybrook/fast-constrained-sampling.
♻ ☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection or prompting strategy). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I (false positive), Type II (false negative), Type S (wrong sign), or Type M (exaggerated effect) errors. We call this phenomenon where configuration choices lead to incorrect conclusions LLM hacking. We find that intentional LLM hacking is strikingly simple. By replicating 37 data annotation tasks from 21 published social science studies, we show that, with just a handful of prompt paraphrases, virtually anything can be presented as statistically significant. Beyond intentional manipulation, our analysis of 13 million labels from 18 different LLMs across 2361 realistic hypotheses shows that there is also a high risk of accidental LLM hacking, even when following standard research practices. We find incorrect conclusions in approximately 31% of hypotheses for state-of-the-art LLMs, and in half the hypotheses for smaller language models. While higher task performance and stronger general model capabilities reduce LLM hacking risk, even highly accurate models remain susceptible. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of LLM-based findings near significance thresholds. We analyze 21 mitigation techniques and find that human annotations provide crucial protection against false positives. Common regression estimator correction techniques can restore valid inference but trade off Type I vs. Type II errors. We publish a list of practical recommendations to prevent LLM hacking.
♻ ☆ In-Context Learning for Pure Exploration
We study the problem active sequential hypothesis testing, also known as pure exploration: given a new task, the learner adaptively collects data from the environment to efficiently determine an underlying correct hypothesis. A classical instance of this problem is the task of identifying the best arm in a multi-armed bandit problem (a.k.a. BAI, Best-Arm Identification), where actions index hypotheses. Another important case is generalized search, a problem of determining the correct label through a sequence of strategically selected queries that indirectly reveal information about the label. In this work, we introduce In-Context Pure Exploration (ICPE), which meta-trains Transformers to map observation histories to query actions and a predicted hypothesis, yielding a model that transfers in-context. At inference time, ICPE actively gathers evidence on new tasks and infers the true hypothesis without parameter updates. Across deterministic, stochastic, and structured benchmarks, including BAI and generalized search, ICPE is competitive with adaptive baselines while requiring no explicit modeling of information structure. Our results support Transformers as practical architectures for general sequential testing.
♻ ☆ Cooperative Decentralized Backdoor Attacks on Vertical Federated Learning
Federated learning (FL) is vulnerable to backdoor attacks, where adversaries alter model behavior on target classification labels by embedding triggers into data samples. While these attacks have received considerable attention in horizontal FL, they are less understood for vertical FL (VFL), where devices hold different features of the samples, and only the server holds the labels. In this work, we propose a novel backdoor attack on VFL which (i) does not rely on gradient information from the server and (ii) considers potential collusion among multiple adversaries for sample selection and trigger embedding. Our label inference model augments variational autoencoders with metric learning, which adversaries can train locally. A consensus process over the adversary graph topology determines which datapoints to poison. We further propose methods for trigger splitting across the adversaries, with an intensity-based implantation scheme skewing the server towards the trigger. Our convergence analysis reveals the impact of backdoor perturbations on VFL indicated by a stationarity gap for the trained model, which we verify empirically as well. We conduct experiments comparing our attack with recent backdoor VFL approaches, finding that ours obtains significantly higher success rates for the same main task performance despite not using server information. Additionally, our results verify the impact of collusion on attack performance.
comment: This paper is currently under review in the IEEE/ACM Transactions on Networking Special Issue on AI and Networking
♻ ☆ QDFlow: A Python package for physics simulations of quantum dot devices
Recent advances in machine learning (ML) have accelerated progress in calibrating and operating quantum dot (QD) devices. However, most ML approaches rely on access to large, representative datasets designed to capture the full spectrum of data quality encountered in practice, with both high- and low-quality data for training, benchmarking, and validation, with labels capturing key features of the device state. Collating such datasets experimentally is challenging due to limited data availability, slow measurement bandwidths, and the labor-intensive nature of labeling. QDFlow is an open-source physics simulator for multi-QD arrays that generates realistic synthetic data with ground-truth labels. QDFlow combines a self-consistent Thomas-Fermi solver, a dynamic capacitance model, and flexible noise modules to simulate charge stability diagrams and ray-based data closely resembling experiments. With an extensive set of parameters that can be varied and customizable noise models, QDFlow supports the creation of large, diverse datasets for ML development, benchmarking, and quantum device research.
comment: 17 pages, 5 figures
♻ ☆ Data-Driven Performance Guarantees for Classical and Learned Optimizers
We introduce a data-driven approach to analyze the performance of continuous optimization algorithms using generalization guarantees from statistical learning theory. We study classical and learned optimizers to solve families of parametric optimization problems. We build generalization guarantees for classical optimizers, using a sample convergence bound, and for learned optimizers, using the Probably Approximately Correct (PAC)-Bayes framework. To train learned optimizers, we use a gradient-based algorithm to directly minimize the PAC-Bayes upper bound. Numerical experiments in signal processing, control, and meta-learning showcase the ability of our framework to provide strong generalization guarantees for both classical and learned optimizers given a fixed budget of iterations. For classical optimizers, our bounds are much tighter than those that worst-case guarantees provide. For learned optimizers, our bounds outperform the empirical outcomes observed in their non-learned counterparts.
♻ ☆ Critical Points of Random Neural Networks
This work investigates the expected number of critical points of random neural networks with different activation functions as the depth increases in the infinite-width limit. Under suitable regularity conditions, we derive precise asymptotic formulas for the expected number of critical points of fixed index and those exceeding a given threshold. Our analysis reveals three distinct regimes depending on the value of the first derivative of the covariance evaluated at 1: the expected number of critical points may converge, grow polynomially, or grow exponentially with depth. The theoretical predictions are supported by numerical experiments. Moreover, we provide numerical evidence suggesting that, when the regularity condition is not satisfied (e.g. for neural networks with ReLU as activation function), the number of critical points increases as the map resolution increases, indicating a potential divergence in the number of critical points.
♻ ☆ Physics-informed Value Learner for Offline Goal-Conditioned Reinforcement Learning
Offline Goal-Conditioned Reinforcement Learning (GCRL) holds great promise for domains such as autonomous navigation and locomotion, where collecting interactive data is costly and unsafe. However, it remains challenging in practice due to the need to learn from datasets with limited coverage of the state-action space and to generalize across long-horizon tasks. To improve on these challenges, we propose a \emph{Physics-informed (Pi)} regularized loss for value learning, derived from the Eikonal Partial Differential Equation (PDE) and which induces a geometric inductive bias in the learned value function. Unlike generic gradient penalties that are primarily used to stabilize training, our formulation is grounded in continuous-time optimal control and encourages value functions to align with cost-to-go structures. The proposed regularizer is broadly compatible with temporal-difference-based value learning and can be integrated into existing Offline GCRL algorithms. When combined with Hierarchical Implicit Q-Learning (HIQL), the resulting method, Eikonal-regularized HIQL (Eik-HIQL), yields significant improvements in both performance and generalization, with pronounced gains in stitching regimes and large-scale navigation tasks.
♻ ☆ Another look at inference after prediction
From structural biology to epidemiology, predictions from machine learning (ML) models increasingly complement costly gold-standard data to enable faster, more affordable, and scalable scientific inquiry. In response, prediction-based (PB) inference has emerged to accommodate statistical analysis using a large volume of predictions together with a small amount of gold-standard data. The goals of PB inference are two-fold: (i) to mitigate bias from errors in predictions and (ii) to improve efficiency relative to classical inference using only the gold-standard data. While early PB inference methods focused on bias, their ability to enhance efficiency remains a focus of ongoing research. We revisit a foundational PB inference method and show that a simple modification can be applied to guarantee provable improvements in efficiency. In doing so, we establish new connections between augmented inverse probability weighted estimators (AIPW) and several recently proposed PB inference methods with a similar focus. The utility of our proposal, which leverages prediction-based outcomes to enhance efficiency, is demonstrated through extensive simulation studies and an application to real data from the UK Biobank. Further, we contextualize PB inference by drawing connections to historical literature from economics and statistics, highlighting how classic methods directly inform this contemporary problem.
♻ ☆ Multi-Turn Human-LLM Interaction Through the Lens of a Two-Way Intelligibility Protocol NeurIPS 2025
Our interest is in the design of software systems involving a human-expert interacting -- using natural language -- with a large language model (LLM) on data analysis tasks. For complex problems, it is possible that LLMs can harness human expertise and creativity to find solutions that were otherwise elusive. On one level, this interaction takes place through multiple turns of prompts from the human and responses from the LLM. Here we investigate a more structured approach based on an abstract protocol described in [3] for interaction between agents. The protocol is motivated by a notion of "two-way intelligibility" and is modelled by a pair of communicating finite-state machines. We provide an implementation of the protocol, and provide empirical evidence of using the implementation to mediate interactions between an LLM and a human-agent in two areas of scientific interest (radiology and drug design). We conduct controlled experiments with a human proxy (a database), and uncontrolled experiments with human subjects. The results provide evidence in support of the protocol's capability of capturing one- and two-way intelligibility in human-LLM interaction; and for the utility of two-way intelligibility in the design of human-machine systems. Our code is available at https://github.com/karannb/interact.
comment: Multi-Turn Interactions in Large Language Models (MTI-LLM) Workshop at NeurIPS 2025
♻ ☆ A Deterministic Information Bottleneck Method for Clustering Mixed-Type Data
In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The proposed approach extends the Information Bottleneck principle to heterogeneous data through generalised product kernels, integrating continuous, nominal, and ordinal variables within a unified optimization framework. We address the following challenges: developing a systematic bandwidth selection strategy that equalises contributions across variable types, and proposing an adaptive hyperparameter updating scheme that ensures a valid solution into a predetermined number of potentially imbalanced clusters. Through simulations on 28,800 synthetic data sets and ten publicly available benchmarks, we demonstrate that the proposed method, named DIBmix, achieves superior performance compared to four established methods (KAMILA, K-Prototypes, FAMD with K-Means, and PAM with Gower's dissimilarity). Results show DIBmix particularly excels when clusters exhibit size imbalances, data contain low or moderate cluster overlap, and categorical and continuous variables are equally represented. The method presents a significant advantage over traditional centroid-based algorithms, establishing DIBmix as a competitive and theoretically grounded alternative for mixed-type data clustering.
comment: 33 pages
♻ ☆ CHARME: A chain-based reinforcement learning approach for the minor embedding problem
Quantum annealing (QA) has great potential to solve combinatorial optimization problems efficiently. However, the effectiveness of QA algorithms is heavily based on the embedding of problem instances, represented as logical graphs, into the quantum processing unit (QPU) whose topology is in the form of a limited connectivity graph, known as the minor embedding problem. Because the minor embedding problem is an NP-hard problem~\mbox{\cite{Goodrich2018}}, existing methods for the minor embedding problem suffer from scalability issues when faced with larger problem sizes. In this paper, we propose a novel approach utilizing Reinforcement Learning (RL) techniques to address the minor embedding problem, named CHARME. CHARME includes three key components: a Graph Neural Network (GNN) architecture for policy modeling, a state transition algorithm that ensures solution validity, and an order exploration strategy for effective training. Through comprehensive experiments on synthetic and real-world instances, we demonstrate the efficiency of our proposed order exploration strategy as well as our proposed RL framework, CHARME. In particular, CHARME yields superior solutions in terms of qubit usage compared to fast embedding methods such as Minorminer and ATOM. Moreover, our method surpasses the OCT-based approach, known for its slower runtime but high-quality solutions, in several cases. In addition, our proposed exploration enhances the efficiency of the training of the CHARME framework by providing better solutions compared to the greedy strategy.
♻ ☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale CCS 2025
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content. Despite increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but they suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled models trained with curated concept datasets and 771 real-world community models sourced from a public DM sharing platform. Evaluation results show that PAIA achieves over 90% detection accuracy while reducing auditing time by 18 - 40X compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: Extended version of the paper accepted at CCS 2025
♻ ☆ AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
♻ ☆ Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
♻ ☆ H3Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
Alignment of pretrained LLMs using instruction-based datasets is critical for creating fine-tuned models that reflect human preference. A growing number of alignment-based fine-tuning algorithms and benchmarks emerged recently, fueling the efforts on effective alignments of pre-trained LLMs to ensure helpful, harmless, and honest answers from both open-source and closed-source LLMs. This paper tackles this problem by developing an alignment fusion approach, coined as $H^3$Fusion, with three unique characteristics. First, $H^3$Fusion ensembles multiple individually aligned LLMs to create a final fine-tuned alignment model with enhanced capabilities beyond those of individual models, delivering robust alignment through promoting helpful, harmless, honest fusion. Second, $H^3$Fusion leverages the mixture-of-experts (MoE) methodology in two steps. We first freeze the multi-head attention weights of each individual model while tuning the FFN layer during alignment fusion. Then we merge the aligned model weights with an expert router according to the type of input instruction and dynamically select a subset of experts that are best suited for producing the output response. Finally, we boost the performance of the resulting $H^3$3Fusion model by introducing gating loss and regularization terms. The former penalizes the selection errors of the expert-router, and the latter mediates the expert weights drifting during fine-tuning and dynamically adjusts the fusion behavior of the resulting model by canalizing the activations on the experts. Extensive evaluations on three benchmark datasets show that $H^3$3Fusion is more helpful, less harmful, and more honest from two aspects: it outperforms each individually aligned model by $11.37\%$, and it provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by $13.77\%$. Code is available at github.com/sftekin/h3fusion.
♻ ☆ Summaries as Centroids for Interpretable and Scalable Text Clustering
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
♻ ☆ Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations (``clients'') under the coordination of a central server. Prolonged training times caused by slow clients may hinder the performance of FL; while asynchronous communication is a promising solution, highly heterogeneous client response times under non-IID local data may introduce significant bias to the global model, particularly in client-driven setups where sampling is infeasible. To address this issue, we propose \underline{A}synch\underline{R}onous \underline{E}xact \underline{A}veraging (\textsc{AREA}), a stochastic (sub)gradient method that leverages asynchrony for scalability and uses client-side memory to correct the bias induced by uneven participation, without client sampling or prior knowledge of client latencies. \textsc{AREA} communicates model residuals rather than gradient estimates, reducing exposure to gradient inversion, and is compatible with secure aggregation. Under standard assumptions and unbounded, heterogeneous delays with finite mean, AREA achieves optimal convergence rates: $\mathcal{O}(1/K)$ in the strongly convex, smooth regime and $\mathcal{O}(1/\sqrt{K})$ in the convex, nonsmooth regime. For strongly convex, smooth objectives, we demonstrate theoretically and empirically that AREA accommodates larger step sizes than existing methods, enabling fast convergence without adversely impacting model generalization. In the convex, nonsmooth setting, to our knowledge we are the first to obtain rates that scale with the average client update frequency rather than the minimum or maximum, indicating increased robustness to outliers.
♻ ☆ The Syntax and Semantics of einsum
In 2011, einsum was introduced to NumPy as a practical and convenient notation for tensor expressions in machine learning, quantum circuit simulation, and other fields. It has since been implemented in additional Python frameworks such as PyTorch and TensorFlow, as well as in other programming languages such as Julia. Despite its practical success, the einsum notation still lacks a solid theoretical basis, and is not unified across the different frameworks, limiting opportunities for formal reasoning and systematic optimization. In this work, we discuss the terminology of tensor expressions and provide a formal definition of the einsum language. Based on this definition, we formalize and prove important equivalence rules for tensor expressions and highlight their relevance in practical applications.
comment: 21 pages, 1 figure. Includes formal definitions, proofs of algebraic properties, and nesting/denesting rules for the einsum notation
♻ ☆ Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning NeurIPS 2025
Membership inference attacks (MIAs) are used to test practical privacy of machine learning models. MIAs complement formal guarantees from differential privacy (DP) under a more realistic adversary model. We analyse MIA vulnerability of fine-tuned neural networks both empirically and theoretically, the latter using a simplified model of fine-tuning. We show that the vulnerability of non-DP models when measured as the attacker advantage at a fixed false positive rate reduces according to a simple power law as the number of examples per class increases. A similar power-law applies even for the most vulnerable points, but the dataset size needed for adequate protection of the most vulnerable points is very large.
comment: Accepted to NeurIPS 2025; 47 pages, 13 figures
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation ICCV 2025
Visual prompt tuning (VPT), i.e., fine-tuning some lightweight prompt tokens, provides an efficient and effective approach for adapting pre-trained models to various downstream tasks. However, most prior art indiscriminately uses a fixed prompt distribution across different tasks, neglecting the importance of each block varying depending on the task. In this paper, we introduce adaptive distribution optimization (ADO) by tackling two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through empirical analysis, we first confirm that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution built upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy derived from this formulation, comprising two steps: pruning idle prompts from prompt-saturated blocks, followed by allocating these prompts to the most prompt-needed blocks. By iteratively performing prompt relocation and VPT, our proposal can adaptively learn the optimal prompt distribution in a nested optimization-based manner, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms advanced VPT methods, e.g., PRO-VPT surpasses VPT by 1.6 pp and 2.0 pp average accuracy, leading prompt-based methods to state-of-the-art performance on VTAB-1k and FGVC benchmarks. The code is available at https://github.com/ckshang/PRO-VPT.
comment: Accepted by ICCV 2025
♻ ☆ DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, while potentially improving output diversity.
♻ ☆ Joint Diffusion models in Continual Learning
In this work, we introduce JDCL - a new method for continual learning with generative rehearsal based on joint diffusion models. Neural networks suffer from catastrophic forgetting defined as abrupt loss in the model's performance when retrained with additional data coming from a different distribution. Generative-replay-based continual learning methods try to mitigate this issue by retraining a model with a combination of new and rehearsal data sampled from a generative model. In this work, we propose to extend this idea by combining a continually trained classifier with a diffusion-based generative model into a single - jointly optimized neural network. We show that such shared parametrization, combined with the knowledge distillation technique allows for stable adaptation to new tasks without catastrophic forgetting. We evaluate our approach on several benchmarks, where it outperforms recent state-of-the-art generative replay techniques. Additionally, we extend our method to the semi-supervised continual learning setup, where it outperforms competing buffer-based replay techniques, and evaluate, in a self-supervised manner, the quality of trained representations.
♻ ☆ Fine-Grained AI Model Caching and Downloading With Coordinated Multipoint Broadcasting in Multi-Cell Edge Networks
6G networks are envisioned to support on-demand AI model downloading to accommodate diverse inference requirements of end users. By proactively caching models at edge nodes, users can retrieve the requested models with low latency for on-device AI inference. However, the substantial size of contemporary AI models poses significant challenges for edge caching under limited storage capacity, as well as for the concurrent delivery of heterogeneous models over wireless channels. To address these challenges, we propose a fine-grained AI model caching and downloading system that exploits parameter reusability, stemming from the common practice of fine-tuning task-specific models from a shared pre-trained model with frozen parameters. This system selectively caches model parameter blocks (PBs) at edge nodes, eliminating redundant storage of reusable parameters across different cached models. Additionally, it incorporates coordinated multipoint (CoMP) broadcasting to simultaneously deliver reusable PBs to multiple users, thereby enhancing downlink spectrum utilization. Under this arrangement, we formulate a model downloading delay minimization problem to jointly optimize PB caching, migration (among edge nodes), and broadcasting beamforming. To tackle this intractable problem, we develop a distributed multi-agent learning framework that enables edge nodes to explicitly learn mutual influence among their actions, thereby facilitating cooperation. Furthermore, a data augmentation approach is proposed to adaptively generate synthetic training samples through a predictive model, boosting sample efficiency and accelerating policy learning. Both theoretical analysis and simulation experiments validate the superior convergence performance of the proposed learning framework.
♻ ☆ The Logical Implication Steering Method for Conditional Interventions on Transformer Generation
The field of mechanistic interpretability in pre-trained transformer models has demonstrated substantial evidence supporting the ''linear representation hypothesis'', which is the idea that high level concepts are encoded as vectors in the space of activations of a model. Studies also show that model generation behavior can be steered toward a given concept by adding the concept's vector to the corresponding activations. We show how to leverage these properties to build a form of logical implication into models, enabling transparent and interpretable adjustments that induce a chosen generation behavior in response to the presence of any given concept. Our method, Logical Implication Model Steering (LIMS), unlocks new hand engineered reasoning capabilities by integrating neuro-symbolic logic into pre-trained transformer models.
♻ ☆ Deep Learning Approaches with Explainable AI for Differentiating Alzheimer Disease and Mild Cognitive Impairment
Early and accurate diagnosis of Alzheimer Disease is critical for effective clinical intervention, particularly in distinguishing it from Mild Cognitive Impairment, a prodromal stage marked by subtle structural changes. In this study, we propose a hybrid deep learning ensemble framework for Alzheimer Disease classification using structural magnetic resonance imaging. Gray and white matter slices are used as inputs to three pretrained convolutional neural networks such as ResNet50, NASNet, and MobileNet, each fine tuned through an end to end process. To further enhance performance, we incorporate a stacked ensemble learning strategy with a meta learner and weighted averaging to optimally combine the base models. Evaluated on the Alzheimer Disease Neuroimaging Initiative dataset, the proposed method achieves state of the art accuracy of 99.21% for Alzheimer Disease vs. Mild Cognitive Impairment and 91.0% for Mild Cognitive Impairment vs. Normal Controls, outperforming conventional transfer learning and baseline ensemble methods. To improve interpretability in image based diagnostics, we integrate Explainable AI techniques by Gradient weighted Class Activation, which generates heatmaps and attribution maps that highlight critical regions in gray and white matter slices, revealing structural biomarkers that influence model decisions. These results highlight the frameworks potential for robust and scalable clinical decision support in neurodegenerative disease diagnostics.
comment: 18 pages, 4 figures
♻ ☆ ForTIFAI: Fending Off Recursive Training Induced Failure for AI Models
The increasing reliance on generative AI models is rapidly increasing the volume of synthetic data, with some projections suggesting that most available new data for training could be machine-generated by 2030. This shift to a mainly synthetic content presents a critical challenge: repeated training in synthetic data leads to a phenomenon known as model collapse, where model performance degrades over generations of training, eventually rendering the models ineffective. While the causes of model collapse are increasingly understood, effective mitigation strategies remain scarce. We address this challenge by leveraging a key insight: auto-regressive models tend to generate text sequences to which they assign high confidence (i.e., high log-likelihood). Based on this observation, we introduce the Truncated-Cross-Entropy (TCE) loss function. TCE mitigates collapse by selectively ignoring high-confidence tokens during training, effectively filtering out likely machine-generated artifacts from the learning process. Our experiments demonstrate that models trained with TCE not only learn effectively but also exhibit significantly increased resilience, tolerating over 2.3x more synthetic data before the onset of collapse. In addition, we provide an open-source benchmark for collapse dynamics in mixed-data settings. Our results demonstrate that confidence-aware training objectives can substantially delay collapse onset, offering a practical and generalizable tool for model robustness under synthetic-data exposure.
♻ ☆ Persona Features Control Emergent Misalignment
Understanding how language models generalize behaviors from their training to a broader deployment distribution is an important problem in AI safety. Betley et al. discovered that fine-tuning GPT-4o on intentionally insecure code causes "emergent misalignment," where models give stereotypically malicious responses to unrelated prompts. We extend this work, demonstrating emergent misalignment across diverse conditions, including reinforcement learning on reasoning models, fine-tuning on various synthetic datasets, and in models without safety training. To investigate the mechanisms behind this generalized misalignment, we apply a "model diffing" approach using sparse autoencoders to compare internal model representations before and after fine-tuning. This approach reveals several "misaligned persona" features in activation space, including a toxic persona feature which most strongly controls emergent misalignment and can be used to predict whether a model will exhibit such behavior. Additionally, we investigate mitigation strategies, discovering that fine-tuning an emergently misaligned model on just a few hundred benign samples efficiently restores alignment.
♻ ☆ AutoPDL: Automatic Prompt Optimization for LLM Agents
The performance of large language models (LLMs) depends on how they are prompted, with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Manually tuning this combination is tedious, error-prone, and specific to a given LLM and task. Therefore, this paper proposes AutoPDL, an automated approach to discovering good LLM agent configurations. Our approach frames this as a structured AutoML problem over a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, using successive halving to efficiently navigate this space. We introduce a library implementing common prompting patterns using the PDL prompt programming language. AutoPDL solutions are human-readable, editable, and executable PDL programs that use this library. This approach also enables source-to-source optimization, allowing human-in-the-loop refinement and reuse. Evaluations across three tasks and seven LLMs (ranging from 3B to 70B parameters) show consistent accuracy gains ($9.21\pm15.46$ percentage points), up to 67.5pp, and reveal that selected prompting strategies vary across models and tasks.
comment: Presented at AutoML 2025 (Methods Track); to be published in proceedings
♻ ☆ Optimal Transport for Brain-Image Alignment: Unveiling Redundancy and Synergy in Neural Information Processing
The design of artificial neural networks (ANNs) is inspired by the structure of the human brain, and in turn, ANNs offer a potential means to interpret and understand brain signals. Existing methods primarily align brain signals with stimulus signals using Mean Squared Error (MSE), which focuses only on local point-wise alignment and ignores global matching, leading to coarse interpretations and inaccuracies in brain signal decoding. In this paper, we address these issues through optimal transport (OT) and theoretically demonstrate why OT provides a more effective alignment strategy than MSE. Specifically, we construct a transport plan between brain voxel embeddings and image embeddings, enabling more precise matching. By controlling the amount of transport, we mitigate the influence of redundant information. We apply our alignment model directly to the Brain Captioning task by feeding brain signals into a large language model (LLM) instead of images. Our approach achieves state-of-the-art performance across ten evaluation metrics, surpassing the previous best method by an average of 6.11\% in single-subject training and 3.81\% in cross-subject training. Additionally, we have uncovered several insightful conclusions that align with existing brain research. We unveil the redundancy and synergy of brain information processing through region masking and data dimensionality reduction visualization experiments. We believe our approach paves the way for a more precise understanding of brain signals in the future. The code is available at https://github.com/NKUShaw/OT-Alignment4brain-to-image.
comment: 14pages
♻ ☆ PACER: Physics Informed and Uncertainty Aware Climate Emulator
Physics based numerical climate models serve as critical tools for evaluating the effects of climate change and projecting future climate scenarios. However, the reliance on numerical simulations of physical equations renders them computationally intensive and inefficient. While deep learning methodologies have made significant progress in weather forecasting, they are still unstable for longer roll-out climate emulation task. Here, we propose PACER, a relatively lightweight 2.1M parameter Physics Informed Uncertainty Aware Climate EmulatoR. PACER is trained across is trained across varying spatial resolutions and physics based climate models, enabling faithful and stable emulation of temperature fields at multiple surface levels over a 10 year horizon. We propose an auto-regressive ODE-SDE framework for climate emulation that integrates the fundamental physical law of advection, while being trained under a negative log-likelihood objective to enable principled uncertainty quantification of stochastic variability. We show PACER's emulation performance across 20 climate models outperforming relevant baselines and advancing towards explicit physics infusion in ML emulator.
♻ ☆ Nonlinear Filtering with Brenier Optimal Transport Maps
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a stochastic dynamical system given a history of noisy partial observations. Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states, due to the weight degeneracy issue. In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step. Unlike SIR particle filters, the OT formulation does not require the analytical form of the likelihood. Moreover, it allows us to harness the approximation power of neural networks to model complex and multi-modal distributions and employ stochastic optimization algorithms to enhance scalability. Extensive numerical experiments are presented that compare the OT method to the SIR particle filter and the ensemble Kalman filter, evaluating the performance in terms of sample efficiency, high-dimensional scalability, and the ability to capture complex and multi-modal distributions.
comment: 27 pages, 17 figures, 1 Table
♻ ☆ Can We Ignore Labels In Out of Distribution Detection?
Out-of-distribution (OOD) detection methods have recently become more prominent, serving as a core element in safety-critical autonomous systems. One major purpose of OOD detection is to reject invalid inputs that could lead to unpredictable errors and compromise safety. Due to the cost of labeled data, recent works have investigated the feasibility of self-supervised learning (SSL) OOD detection, unlabeled OOD detection, and zero shot OOD detection. In this work, we identify a set of conditions for a theoretical guarantee of failure in unlabeled OOD detection algorithms from an information-theoretic perspective. These conditions are present in all OOD tasks dealing with real-world data: I) we provide theoretical proof of unlabeled OOD detection failure when there exists zero mutual information between the learning objective and the in-distribution labels, a.k.a. 'label blindness', II) we define a new OOD task - Adjacent OOD detection - that tests for label blindness and accounts for a previously ignored safety gap in all OOD detection benchmarks, and III) we perform experiments demonstrating that existing unlabeled OOD methods fail under conditions suggested by our label blindness theory and analyze the implications for future research in unlabeled OOD methods.
♻ ☆ Uncertainty-Guided Model Selection for Tabular Foundation Models in Biomolecule Efficacy Prediction NeurIPS 2025
In-context learners like TabPFN are promising for biomolecule efficacy prediction, where established molecular feature sets and relevant experimental results can serve as powerful contextual examples. However, their performance is highly sensitive to the provided context, making strategies like post-hoc ensembling of models trained on different data subsets a viable approach. An open question is how to select the best models for the ensemble without access to ground truth labels. In this study, we investigate an uncertainty-guided strategy for model selection. We demonstrate on an siRNA knockdown efficacy task that a TabPFN model using straightforward sequence-based features can surpass specialized state-of-the-art predictors. We also show that the model's predicted inter-quantile range (IQR), a measure of its uncertainty, has a negative correlation with true prediction error. We developed the OligoICP method, which selects and averages an ensemble of models with the lowest mean IQR for siRNA efficacy prediction, achieving superior performance compared to naive ensembling or using a single model trained on all available data. This finding highlights model uncertainty as a powerful, label-free heuristic for optimizing biomolecule efficacy predictions.
comment: Accepted by NeurIPS 2025 workshop: 2nd Workshop on Multi-modal Foundation Models and Large Language Models for Life Sciences
♻ ☆ Model-free generalized fiducial inference
Conformal prediction (CP) was developed to provide finite-sample probabilistic prediction guarantees. While CP algorithms are a relatively general-purpose approach to uncertainty quantification, with finite-sample guarantees, they lack versatility. Namely, the CP approach does not {\em prescribe} how to quantify the degree to which a data set provides evidence in support of (or against) an arbitrary event from a general class of events. In this paper, tools are offered from imprecise probability theory to build a formal connection between CP and generalized fiducial (GF) inference. These new insights establish a more general inferential lens from which CP can be understood, and demonstrate the pragmatism of fiducial ideas. The formal connection establishes a context in which epistemically-derived GF probability matches aleatoric/frequentist probability. Beyond this fact, it is illustrated how tools from imprecise probability theory, namely lower and upper probability functions, can be applied in the context of the imprecise GF distribution to provide posterior-like, prescriptive inference that is not possible within the CP framework alone. In addition to the primary CP generalization that is contributed, fundamental connections are synthesized between this new model-free GF and three other areas of contemporary research: nonparametric predictive inference (NPI), conformal predictive systems/distributions, and inferential models (IMs).
♻ ☆ Adaptive Margin RLHF via Preference over Preferences
Margin-based optimization is fundamental to improving generalization and robustness in classification tasks. In the context of reward model learning from preferences within Reinforcement Learning from Human Feedback (RLHF), existing methods typically rely on no margins, fixed margins, or margins that are simplistic functions of preference ratings. However, such formulations often fail to account for the varying strengths of different preferences, for example some preferences are associated with larger margins between responses, or they rely on noisy margin information derived from ratings. We argue that modeling the strength of preferences can lead to better generalization and more faithful alignment. Furthermore, many existing methods that use adaptive margins assume access to accurate preference scores, which can be difficult for humans to provide reliably. We propose an approach that leverages preferences over preferences, that is annotations indicating which of two preferences reflects a stronger distinction. We use this ordinal signal to infer adaptive margins on a per-datapoint basis. We introduce an extension to Direct Preference Optimization (DPO), DPO-PoP, that incorporates adaptive margins from preference-over-preference supervision, enabling improved discriminative and generative performance. Empirically, our method outperforms vanilla DPO, DPO with fixed margins, and DPO with ground-truth margins on the UltraFeedback dataset. Additionally, we show that there is a tradeoff between discriminative and generative performance: improving test classification accuracy, particularly by correctly labeling weaker preferences at the expense of stronger ones, can lead to a decline in generative quality. To navigate this tradeoff, we propose two sampling strategies to gather preference-over-preference labels: one favoring discriminative performance and one favoring generative performance.
♻ ☆ Solar Irradiation Forecasting using Genetic Algorithms
Renewable energy forecasting is attaining greater importance due to its constant increase in contribution to the electrical power grids. Solar energy is one of the most significant contributors to renewable energy and is dependent on solar irradiation. For the effective management of electrical power grids, forecasting models that predict solar irradiation, with high accuracy, are needed. In the current study, Machine Learning techniques such as Linear Regression, Extreme Gradient Boosting and Genetic Algorithm Optimization are used to forecast solar irradiation. The data used for training and validation is recorded from across three different geographical stations in the United States that are part of the SURFRAD network. A Global Horizontal Index (GHI) is predicted for the models built and compared. Genetic Algorithm Optimization is applied to XGB to further improve the accuracy of solar irradiation prediction.
comment: 9 pages, 4 figures
♻ ☆ FinP: Fairness-in-Privacy in Federated Learning by Addressing Disparities in Privacy Risk
Ensuring fairness in machine learning extends to the critical dimension of privacy, particularly in human-centric federated learning (FL) settings where decentralized data necessitates an equitable distribution of privacy risk across clients. This paper introduces FinP, a novel framework specifically designed to address disparities in privacy risk by mitigating disproportionate vulnerability to source inference attacks (SIA). FinP employs a two-pronged strategy: (1) server-side adaptive aggregation, which dynamically adjusts client contributions to the global model to foster fairness, and (2) client-side regularization, which enhances the privacy robustness of individual clients. This comprehensive approach directly tackles both the symptoms and underlying causes of privacy unfairness in FL. Extensive evaluations on the Human Activity Recognition (HAR) and CIFAR-10 datasets demonstrate FinP's effectiveness, achieving improvement in fairness-in-privacy on HAR and CIFAR-10 with minimal impact on utility. FinP improved group fairness with respect to disparity in privacy risk using equal opportunity in CIFAR-10 by 57.14% compared to the state-of-the-art. Furthermore, FinP significantly mitigates SIA risks on CIFAR-10, underscoring its potential to establish fairness in privacy within FL systems without compromising utility.
♻ ☆ Intent-Aware Schema Generation And Refinement For Literature Review Tables EMNLP
The increasing volume of academic literature makes it essential for researchers to organize, compare, and contrast collections of documents. Large language models (LLMs) can support this process by generating schemas defining shared aspects along which to compare papers. However, progress on schema generation has been slow due to: (i) ambiguity in reference-based evaluations, and (ii) lack of editing/refinement methods. Our work is the first to address both issues. First, we present an approach for augmenting unannotated table corpora with \emph{synthesized intents}, and apply it to create a dataset for studying schema generation conditioned on a given information need, thus reducing ambiguity. With this dataset, we show how incorporating table intents significantly improves baseline performance in reconstructing reference schemas. We start by comprehensively benchmarking several single-shot schema generation methods, including prompted LLM workflows and fine-tuned models, showing that smaller, open-weight models can be fine-tuned to be competitive with state-of-the-art prompted LLMs. Next, we propose several LLM-based schema refinement techniques and show that these can further improve schemas generated by these methods.
comment: To Appear at EMNLP Findings 2025
♻ ☆ Generative transformations and patterns in LLM-native approaches for software verification and falsification
The emergence of prompting as the dominant paradigm for leveraging Large Language Models (LLMs) has led to a proliferation of LLM-native software, where application behavior arises from complex, stochastic data transformations. However, the engineering of such systems remains largely exploratory and ad-hoc, hampered by the absence of conceptual frameworks, ex-ante methodologies, design guidelines, and specialized benchmarks. We argue that a foundational step towards a more disciplined engineering practice is a systematic understanding of the core functional units--generative transformations--and their compositional patterns within LLM-native applications. Focusing on the rich domain of software verification and falsification, we conduct a secondary study of over 100 research proposals to address this gap. We first present a fine-grained taxonomy of generative transformations, abstracting prompt-based interactions into conceptual signatures. This taxonomy serves as a scaffolding to identify recurrent transformation relationship patterns--analogous to software design patterns--that characterize solution approaches in the literature. Our analysis not only validates the utility of the taxonomy but also surfaces strategic gaps and cross-dimensional relationships, offering a structured foundation for future research in modular and compositional LLM application design, benchmarking, and the development of reliable LLM-native systems.
♻ ☆ Human + AI for Accelerating Ad Localization Evaluation
Adapting advertisements for multilingual audiences requires more than simple text translation; it demands preservation of visual consistency, spatial alignment, and stylistic integrity across diverse languages and formats. We introduce a structured framework that combines automated components with human oversight to address the complexities of advertisement localization. To the best of our knowledge, this is the first work to integrate scene text detection, inpainting, machine translation (MT), and text reimposition specifically for accelerating ad localization evaluation workflows. Qualitative results across six locales demonstrate that our approach produces semantically accurate and visually coherent localized advertisements, suitable for deployment in real-world workflows.
♻ ☆ Cross-Domain Graph Data Scaling: A Showcase with Diffusion Models NeurIPS'25
Models for natural language and images benefit from data scaling behavior: the more data fed into the model, the better they perform. This 'better with more' phenomenon enables the effectiveness of large-scale pre-training on vast amounts of data. However, current graph pre-training methods struggle to scale up data due to heterogeneity across graphs. To achieve effective data scaling, we aim to develop a general model that is able to capture diverse data patterns of graphs and can be utilized to adaptively help the downstream tasks. To this end, we propose UniAug, a universal graph structure augmentor built on a diffusion model. We first pre-train a discrete diffusion model on thousands of graphs across domains to learn the graph structural patterns. In the downstream phase, we provide adaptive enhancement by conducting graph structure augmentation with the help of the pre-trained diffusion model via guided generation. By leveraging the pre-trained diffusion model for structure augmentation, we consistently achieve performance improvements across various downstream tasks in a plug-and-play manner. To the best of our knowledge, this study represents the first demonstration of a data-scaling graph structure augmentor on graphs across domains.
comment: NeurIPS'25
♻ ☆ OpenFake: An Open Dataset and Platform Toward Real-World Deepfake Detection
Deepfakes, synthetic media created using advanced AI techniques, pose a growing threat to information integrity, particularly in politically sensitive contexts. This challenge is amplified by the increasing realism of modern generative models, which our human perception study confirms are often indistinguishable from real images. Yet, existing deepfake detection benchmarks rely on outdated generators or narrowly scoped datasets (e.g., single-face imagery), limiting their utility for real-world detection. To address these gaps, we present OpenFake, a large politically grounded dataset specifically crafted for benchmarking against modern generative models with high realism, and designed to remain extensible through an innovative crowdsourced adversarial platform that continually integrates new hard examples. OpenFake comprises nearly four million total images: three million real images paired with descriptive captions and almost one million synthetic counterparts from state-of-the-art proprietary and open-source models. Detectors trained on OpenFake achieve near-perfect in-distribution performance, strong generalization to unseen generators, and high accuracy on a curated in-the-wild social media test set, significantly outperforming models trained on existing datasets. Overall, we demonstrate that with high-quality and continually updated benchmarks, automatic deepfake detection is both feasible and effective in real-world settings.
comment: 26 pages, 12 figures
♻ ☆ How Malicious AI Swarms Can Threaten Democracy: The Fusion of Agentic AI and LLMs Marks a New Frontier in Information Warfare
Public opinion manipulation has entered a new phase, amplifying its roots in rhetoric and propaganda. Advances in large language models (LLMs) and autonomous agents now let influence campaigns reach unprecedented scale and precision. Researchers warn AI could foster mass manipulation. Generative tools can expand propaganda output without sacrificing credibility and inexpensively create election falsehoods that are rated as more human-like than those written by humans. Techniques meant to refine AI reasoning, such as chain-of-thought prompting, can just as effectively be used to generate more convincing falsehoods. Enabled by these capabilities, another disruptive threat is emerging: swarms of collaborative, malicious AI agents. Fusing LLM reasoning with multi-agent architectures, these systems are capable of coordinating autonomously, infiltrating communities, and fabricating consensus cheaply. By adaptively mimicking human social dynamics, they threaten democracy.
comment: 15 pages, 1 figure
♻ ☆ Pref-GUIDE: Continual Policy Learning from Real-Time Human Feedback via Preference-Based Learning
Training reinforcement learning agents with human feedback is crucial when task objectives are difficult to specify through dense reward functions. While prior methods rely on offline trajectory comparisons to elicit human preferences, such data is unavailable in online learning scenarios where agents must adapt on the fly. Recent approaches address this by collecting real-time scalar feedback to guide agent behavior and train reward models for continued learning after human feedback becomes unavailable. However, scalar feedback is often noisy and inconsistent, limiting the accuracy and generalization of learned rewards. We propose Pref-GUIDE, a framework that transforms real-time scalar feedback into preference-based data to improve reward model learning for continual policy training. Pref-GUIDE Individual mitigates temporal inconsistency by comparing agent behaviors within short windows and filtering ambiguous feedback. Pref-GUIDE Voting further enhances robustness by aggregating reward models across a population of users to form consensus preferences. Across three challenging environments, Pref-GUIDE significantly outperforms scalar-feedback baselines, with the voting variant exceeding even expert-designed dense rewards. By reframing scalar feedback as structured preferences with population feedback, Pref-GUIDE offers a scalable and principled approach for harnessing human input in online reinforcement learning.
♻ ☆ A Graph-Based Framework for Interpretable Whole Slide Image Analysis
The histopathological analysis of whole-slide images (WSIs) is fundamental to cancer diagnosis but is a time-consuming and expert-driven process. While deep learning methods show promising results, dominant patch-based methods artificially fragment tissue, ignore biological boundaries, and produce black-box predictions. We overcome these limitations with a novel framework that transforms gigapixel WSIs into biologically-informed graph representations and is interpretable by design. Our approach builds graph nodes from tissue regions that respect natural structures, not arbitrary grids. We introduce an adaptive graph coarsening technique, guided by learned embeddings, to efficiently merge homogeneous regions while preserving diagnostically critical details in heterogeneous areas. Each node is enriched with a compact, interpretable feature set capturing clinically-motivated priors. A graph attention network then performs diagnosis on this compact representation. We demonstrate strong performance on challenging cancer staging and survival prediction tasks. Crucially, our resource-efficient model ($>$13x fewer parameters and $>$300x less data) achieves results competitive with a massive foundation model, while offering full interpretability through feature attribution. Our code is publicly available at https://github.com/HistoGraph31/pix2pathology.
comment: 15 pages, 5 figures
♻ ☆ Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.
comment: Preprint Version, Accepted: October, 2024 (One-minute YouTube summary: https://youtu.be/q3e0LYS2IYQ, DOI: https://doi.org/10.2514/1.G007671)
♻ ☆ DynaGuard: A Dynamic Guardian Model With User-Defined Policies
Guardian models play a crucial role in ensuring the safety and ethical behavior of user-facing AI applications by enforcing guardrails and detecting harmful content. While standard guardian models are limited to predefined, static harm categories, we introduce DynaGuard, a suite of dynamic guardian models offering novel flexibility by evaluating text based on user-defined policies, and DynaBench, a dataset for training and evaluating dynamic guardian models. Our models provide both rapid detection of policy violations and a chain-of-thought reasoning option that articulate and justify model outputs. Critically, DynaGuard not only surpasses static models in detection accuracy on traditional safety categories, but is competitive with frontier reasoning models on free-form policy violations, all in a fraction of the time. This makes DynaGuard an critical tool for language model guardrails.
comment: 22 Pages
♻ ☆ Anchors Aweigh! Sail for Optimal Unified Multi-Modal Representations
A unified representation space in multi-modal learning is essential for effectively integrating diverse data sources, such as text, images, and audio, to enhance efficiency and performance across various downstream tasks. Recent binding methods, such as ImageBind, typically rely on a single, fixed anchor modality for aligning multi-modal data. We mathematically analyze these fixed anchor binding methods and uncover significant limitations: (1) over-reliance on the choice of the anchor modality, (2) inadequate capture of intra-modal information, and (3) failure to account for cross-modal correlation among non-anchored modalities. To address these issues, we propose the need for adaptive anchor binding methods, exemplified by our framework CentroBind. The proposed method uses adaptively adjustable centroid-based anchors generated from all available modalities, leading to a balanced and rich representation space. We theoretically demonstrate that our approach captures three critical properties of multi-modal learning -- intra-modal learning, inter-modal learning, and multi-modal alignment -- while constructing a unified representation that spans all modalities. Experiments on both synthetic and real-world datasets show that adaptive anchor methods such as CentroBind consistently outperform fixed anchor binding methods, verifying our analysis.
♻ ☆ Multilingual Dataset Integration Strategies for Robust Audio Deepfake Detection: A SAFE Challenge System
The SAFE Challenge evaluates synthetic speech detection across three tasks: unmodified audio, processed audio with compression artifacts, and laundered audio designed to evade detection. We systematically explore self-supervised learning (SSL) front-ends, training data compositions, and audio length configurations for robust deepfake detection. Our AASIST-based approach incorporates WavLM large frontend with RawBoost augmentation, trained on a multilingual dataset of 256,600 samples spanning 9 languages and over 70 TTS systems from CodecFake, MLAAD v5, SpoofCeleb, Famous Figures, and MAILABS. Through extensive experimentation with different SSL front-ends, three training data versions, and two audio lengths, we achieved second place in both Task 1 (unmodified audio detection) and Task 3 (laundered audio detection), demonstrating strong generalization and robustness.
comment: Accepted @ IEEE ASRU 2025
♻ ☆ Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
♻ ☆ SoftAdaClip: A Smooth Clipping Strategy for Fair and Private Model Training
Differential privacy (DP) provides strong protection for sensitive data, but often reduces model performance and fairness, especially for underrepresented groups. One major reason is gradient clipping in DP-SGD, which can disproportionately suppress learning signals for minority subpopulations. Although adaptive clipping can enhance utility, it still relies on uniform hard clipping, which may restrict fairness. To address this, we introduce SoftAdaClip, a differentially private training method that replaces hard clipping with a smooth, tanh-based transformation to preserve relative gradient magnitudes while bounding sensitivity. We evaluate SoftAdaClip on various datasets, including MIMIC-III (clinical text), GOSSIS-eICU (structured healthcare), and Adult Income (tabular data). Our results show that SoftAdaClip reduces subgroup disparities by up to 87% compared to DP-SGD and up to 48% compared to Adaptive-DPSGD, and these reductions in subgroup disparities are statistically significant. These findings underscore the importance of integrating smooth transformations with adaptive mechanisms to achieve fair and private model training.
Distilling On-device Language Models for Robot Planning with Minimal Human Intervention
Large language models (LLMs) provide robots with powerful contextual reasoning abilities and a natural human interface. Yet, current LLM-enabled robots typically depend on cloud-hosted models, limiting their usability in environments with unreliable communication infrastructure, such as outdoor or industrial settings. We present PRISM, a framework for distilling small language model (SLM)-enabled robot planners that run on-device with minimal human supervision. Starting from an existing LLM-enabled planner, PRISM automatically synthesizes diverse tasks and environments, elicits plans from the LLM, and uses this synthetic dataset to distill a compact SLM as a drop-in replacement of the source model. We apply PRISM to three LLM-enabled planners for mapping and exploration, manipulation, and household assistance, and we demonstrate that PRISM improves the performance of Llama-3.2-3B from 10-20% of GPT-4o's performance to over 93% - using only synthetic data. We further demonstrate that the distilled planners generalize across heterogeneous robotic platforms (ground and aerial) and diverse environments (indoor and outdoor). We release all software, trained models, and datasets at https://zacravichandran.github.io/PRISM.
comment: Accepted to the Conference on Robot Learning (CoRL) 2025
♻ ☆ MatLLMSearch: Crystal Structure Discovery with Evolution-Guided Large Language Models
Crystal structure generation is fundamental to materials science, enabling the discovery of novel materials with desired properties. While existing approaches leverage Large Language Models (LLMs) through extensive fine-tuning on materials databases, we show that pre-trained LLMs can inherently generate novel and stable crystal structures without additional fine-tuning. Our framework employs LLMs as intelligent proposal agents within an evolutionary pipeline that guides them to perform implicit crossover and mutation operations while maintaining chemical validity. We demonstrate that MatLLMSearch achieves a 78.38% metastable rate validated by machine learning interatomic potentials and 31.7% DFT-verified stability, outperforming specialized models such as CrystalTextLLM. Beyond crystal structure generation, we further demonstrate that our framework adapts to diverse materials design tasks, including crystal structure prediction and multi-objective optimization of properties such as deformation energy and bulk modulus, all without fine-tuning. These results establish our framework as a versatile and effective framework for consistent high-quality materials discovery, offering training-free generation of novel stable structures with reduced overhead and broader accessibility.
comment: Preprint, 25 pages
♻ ☆ Gradient Methods with Online Scaling Part II. Practical Aspects
Part I of this work [Gao25] establishes online scaled gradient methods (OSGM), a framework that utilizes online convex optimization to adapt stepsizes in gradient methods. This paper focuses on the practical aspects of OSGM. We leverage the OSGM framework to design new adaptive first-order methods and provide insights into their empirical behavior. The resulting method, OSGM-Best, matches the performance of quasi-Newton variants while requiring less memory and cheaper iterations. We also extend OSGM to nonconvex optimization and outline directions that connect OSGM to existing branches of optimization theory and practice.
♻ ☆ Extracting PAC Decision Trees from Black Box Binary Classifiers: The Gender Bias Case Study on BERT-based Language Models AAAI 2025
Decision trees are a popular machine learning method, known for their inherent explainability. In Explainable AI, decision trees can be used as surrogate models for complex black box AI models or as approximations of parts of such models. A key challenge of this approach is determining how accurately the extracted decision tree represents the original model and to what extent it can be trusted as an approximation of their behavior. In this work, we investigate the use of the Probably Approximately Correct (PAC) framework to provide a theoretical guarantee of fidelity for decision trees extracted from AI models. Based on theoretical results from the PAC framework, we adapt a decision tree algorithm to ensure a PAC guarantee under certain conditions. We focus on binary classification and conduct experiments where we extract decision trees from BERT-based language models with PAC guarantees. Our results indicate occupational gender bias in these models.
comment: This is a revision of the version published at AAAI 2025. We fixed an issue in Theorem 8 and run again all the experiments. We also fixed small grammar mistakes found while producing this revised version
♻ ☆ Generalizing Supervised Contrastive learning: A Projection Perspective
Self-supervised contrastive learning (SSCL) has emerged as a powerful paradigm for representation learning and has been studied from multiple perspectives, including mutual information and geometric viewpoints. However, supervised contrastive (SupCon) approaches have received comparatively little attention in this context: for instance, while InfoNCE used in SSCL is known to form a lower bound on mutual information (MI), the relationship between SupCon and MI remains unexplored. To address this gap, we introduce ProjNCE, a generalization of the InfoNCE loss that unifies supervised and self-supervised contrastive objectives by incorporating projection functions and an adjustment term for negative pairs. We prove that ProjNCE constitutes a valid MI bound and affords greater flexibility in selecting projection strategies for class embeddings. Building on this flexibility, we further explore the centroid-based class embeddings in SupCon by exploring a variety of projection methods. Extensive experiments on image and audio datasets demonstrate that ProjNCE consistently outperforms both SupCon and standard cross-entropy training. Our work thus refines SupCon along two complementary perspectives--information-theoretic and projection viewpoints--and offers broadly applicable improvements whenever SupCon serves as the foundational contrastive objective.
♻ ☆ Probabilistic Variational Contrastive Learning
Deterministic embeddings learned by contrastive learning (CL) methods such as SimCLR and SupCon achieve state-of-the-art performance but lack a principled mechanism for uncertainty quantification. We propose Variational Contrastive Learning (VCL), a decoder-free framework that maximizes the evidence lower bound (ELBO) by interpreting the InfoNCE loss as a surrogate reconstruction term and adding a KL divergence regularizer to a uniform prior on the unit hypersphere. We model the approximate posterior $q_\theta(z|x)$ as a projected normal distribution, enabling the sampling of probabilistic embeddings. Our two instantiation--VSimCLR and VSupCon--replace deterministic embeddings with samples from $q_\theta(z|x)$ and incorporate a normalized KL term into the loss. Experiments on multiple benchmarks demonstrate that VCL mitigates dimensional collapse, enhances mutual information with class labels, and matches or outperforms deterministic baselines in classification accuracy, all the while providing meaningful uncertainty estimates through the posterior model. VCL thus equips contrastive learning with a probabilistic foundation, serving as a new basis for contrastive approaches.
♻ ☆ IMPACT: Intelligent Motion Planning with Acceptable Contact Trajectories via Vision-Language Models
Motion planning involves determining a sequence of robot configurations to reach a desired pose, subject to movement and safety constraints. Traditional motion planning finds collision-free paths, but this is overly restrictive in clutter, where it may not be possible for a robot to accomplish a task without contact. In addition, contacts range from relatively benign (e.g. brushing a soft pillow) to more dangerous (e.g. toppling a glass vase), making it difficult to characterize which may be acceptable. In this paper, we propose IMPACT, a novel motion planning framework that uses Vision-Language Models (VLMs) to infer environment semantics, identifying which parts of the environment can best tolerate contact based on object properties and locations. Our approach generates an anisotropic cost map that encodes directional push safety. We pair this map with a contact-aware A* planner to find stable contact-rich paths. We perform experiments using 20 simulation and 10 real-world scenes and assess using task success rate, object displacements, and feedback from human evaluators. Our results over 3200 simulation and 200 real-world trials suggest that IMPACT enables efficient contact-rich motion planning in cluttered settings while outperforming alternative methods and ablations. Our project website is available at https://impact-planning.github.io/.
♻ ☆ TimeSeriesScientist: A General-Purpose AI Agent for Time Series Analysis
Time series forecasting is central to decision-making in domains as diverse as energy, finance, climate, and public health. In practice, forecasters face thousands of short, noisy series that vary in frequency, quality, and horizon, where the dominant cost lies not in model fitting, but in the labor-intensive preprocessing, validation, and ensembling required to obtain reliable predictions. Prevailing statistical and deep learning models are tailored to specific datasets or domains and generalize poorly. A general, domain-agnostic framework that minimizes human intervention is urgently in demand. In this paper, we introduce TimeSeriesScientist (TSci), the first LLM-driven agentic framework for general time series forecasting. The framework comprises four specialized agents: Curator performs LLM-guided diagnostics augmented by external tools that reason over data statistics to choose targeted preprocessing; Planner narrows the hypothesis space of model choice by leveraging multi-modal diagnostics and self-planning over the input; Forecaster performs model fitting and validation and, based on the results, adaptively selects the best model configuration as well as ensemble strategy to make final predictions; and Reporter synthesizes the whole process into a comprehensive, transparent report. With transparent natural-language rationales and comprehensive reports, TSci transforms the forecasting workflow into a white-box system that is both interpretable and extensible across tasks. Empirical results on eight established benchmarks demonstrate that TSci consistently outperforms both statistical and LLM-based baselines, reducing forecast error by an average of 10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous report that makes the forecasting workflow more transparent and interpretable.
♻ ☆ Learning The Minimum Action Distance
This paper presents a state representation framework for Markov decision processes (MDPs) that can be learned solely from state trajectories, requiring neither reward signals nor the actions executed by the agent. We propose learning the minimum action distance (MAD), defined as the minimum number of actions required to transition between states, as a fundamental metric that captures the underlying structure of an environment. MAD naturally enables critical downstream tasks such as goal-conditioned reinforcement learning and reward shaping by providing a dense, geometrically meaningful measure of progress. Our self-supervised learning approach constructs an embedding space where the distances between embedded state pairs correspond to their MAD, accommodating both symmetric and asymmetric approximations. We evaluate the framework on a comprehensive suite of environments with known MAD values, encompassing both deterministic and stochastic dynamics, as well as discrete and continuous state spaces, and environments with noisy observations. Empirical results demonstrate that the proposed approach not only efficiently learns accurate MAD representations across these diverse settings but also significantly outperforms existing state representation methods in terms of representation quality.
♻ ☆ TreeIRL: Safe Urban Driving with Tree Search and Inverse Reinforcement Learning
We present TreeIRL, a novel planner for autonomous driving that combines Monte Carlo tree search (MCTS) and inverse reinforcement learning (IRL) to achieve state-of-the-art performance in simulation and in real-world driving. The core idea is to use MCTS to find a promising set of safe candidate trajectories and a deep IRL scoring function to select the most human-like among them. We evaluate TreeIRL against both classical and state-of-the-art planners in large-scale simulations and on 500+ miles of real-world autonomous driving in the Las Vegas metropolitan area. Test scenarios include dense urban traffic, adaptive cruise control, cut-ins, and traffic lights. TreeIRL achieves the best overall performance, striking a balance between safety, progress, comfort, and human-likeness. To our knowledge, our work is the first demonstration of MCTS-based planning on public roads and underscores the importance of evaluating planners across a diverse set of metrics and in real-world environments. TreeIRL is highly extensible and could be further improved with reinforcement learning and imitation learning, providing a framework for exploring different combinations of classical and learning-based approaches to solve the planning bottleneck in autonomous driving.
♻ ☆ A Generative Approach to LLM Harmfulness Mitigation with Red Flag Tokens
Many safety post-training methods for large language models (LLMs) are designed to modify the model's behaviour from producing unsafe answers to issuing refusals. However, such distribution shifts are often brittle and degrade performance on desirable tasks. To address these pitfalls, we propose augmenting the model's vocabulary with a special red flag token, and training the model to insert this token whenever harmful content is generated or imminent. This approach enables the model to explicitly learn the concept of harmfulness in its representations, with minimal impact on utility due to the marginal change in the generated distribution of natural language. Moreover, because the token is embedded in the model's vocabulary, we can naturally leverage the LLMs' generalization capabilities, such as in-context learning (ICL) and out-of-distribution generalization to languages that are not formally supported (e.g., Japanese for Llama3). In particular, we demonstrate that through ICL alone, the model can learn to initiate reflective reasoning upon generating the red flag token at inference, which steers the response away from harmful continuations or enables self-correction when the flag is raised falsely. This approach is orthogonal and complementary to existing safety technique (such as safety classifiers or standard safety training) and easier to evaluate in comparison to natural language refusals, as it does not require a human or automated judge to assess the harmlessness of the answers.
comment: 15 pages, 6 figures
♻ ☆ Strong bounds for large-scale Minimum Sum-of-Squares Clustering
Clustering is a fundamental technique in data analysis and machine learning, used to group similar data points together. Among various clustering methods, the Minimum Sum-of-Squares Clustering (MSSC) is one of the most widely used. MSSC aims to minimize the total squared Euclidean distance between data points and their corresponding cluster centroids. Due to the unsupervised nature of clustering, achieving global optimality is crucial, yet computationally challenging. The complexity of finding the global solution increases exponentially with the number of data points, making exact methods impractical for large-scale datasets. Even obtaining strong lower bounds on the optimal MSSC objective value is computationally prohibitive, making it difficult to assess the quality of heuristic solutions. We address this challenge by introducing a novel method to validate heuristic MSSC solutions through optimality gaps. Our approach employs a divide-and-conquer strategy, decomposing the problem into smaller instances that can be handled by an exact solver. The decomposition is guided by an auxiliary optimization problem, the "anticlustering problem", for which we design an efficient heuristic. Computational experiments demonstrate the effectiveness of the method for large-scale instances, achieving optimality gaps below 3% in most cases while maintaining reasonable computational times. These results highlight the practicality of our approach in assessing feasible clustering solutions for large datasets, bridging a critical gap in MSSC evaluation.
♻ ☆ BanglaLlama: LLaMA for Bangla Language
Bangla is a language spoken by approximately 240 million native speakers and around 300 million people worldwide. Despite being the 5th largest spoken language in the world, Bangla is still a "low-resource" language, and existing pretrained language models often struggle to perform well on Bangla Language Processing (BLP) tasks. This paper addresses this gap by: (1) introducing two high-quality translated Bangla-instruction datasets totaling 224k samples - Bangla-Orca (172k) and Bangla-Alpaca (52k); and (2) leveraging these datasets to develop BanglaLlama, an open-source family of Bangla-specific LLMs, consisting of five base and instruct variants. We present our methodology, two large datasets, and comprehensive benchmarking results showcasing the effectiveness of our dataset and model on multiple benchmarks. We believe our proposed datasets and models will serve as the new standard baseline for future research focused on this widely spoken yet "low-resource" language.
♻ ☆ A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices--including decoding parameters, random seeds, prompt formatting, and even hardware and software configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that most reinforcement learning (RL) approaches yield only modest improvements--far below prior claims--and are prone to overfitting, especially on small-scale benchmarks like AIME'24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization in the settings we study. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
comment: Accepted to COLM 2025
♻ ☆ Attribute Fusion-based Classifier on Framework of Belief Structure
Dempster-Shafer Theory (DST) provides a powerful framework for modeling uncertainty and has been widely applied to multi-attribute classification tasks. However, traditional DST-based attribute fusion-based classifiers suffer from oversimplified membership function modeling and limited exploitation of the belief structure brought by basic probability assignment (BPA), reducing their effectiveness in complex real-world scenarios. This paper presents an enhanced attribute fusion-based classifier that addresses these limitations through two key innovations. First, we adopt a selective modeling strategy that utilizes both single Gaussian and Gaussian Mixture Models (GMMs) for membership function construction, with model selection guided by cross-validation and a tailored evaluation metric. Second, we introduce a novel method to transform the possibility distribution into a BPA by combining simple BPAs derived from normalized possibility distributions, enabling a much richer and more flexible representation of uncertain information. Furthermore, we apply the belief structure-based BPA generation method to the evidential K-Nearest Neighbors (EKNN) classifier, enhancing its ability to incorporate uncertainty information into decision-making. Comprehensive experiments on benchmark datasets are conducted to evaluate the performance of the proposed attribute fusion-based classifier and the enhanced evidential K-Nearest Neighbors classifier in comparison with both evidential classifiers and conventional machine learning classifiers. The results demonstrate that the proposed classifier outperforms the best existing evidential classifier, achieving an average accuracy improvement of 4.86%, while maintaining low variance, thus confirming its superior effectiveness and robustness.
Graphics 7
☆ Pulp Motion: Framing-aware multimodal camera and human motion generation
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.
comment: Project page: https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/
☆ SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.
comment: Project page at: https://ronen94.github.io/SAEdit/
☆ Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
☆ Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents SIGGRAPH
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.
comment: SIGGRAPH ASIA 2025 (Conference Track); Project page: https://pku-mocca.github.io/Social-Agent-Page/
☆ C3Editor: Achieving Controllable Consistency in 2D Model for 3D Editing
Existing 2D-lifting-based 3D editing methods often encounter challenges related to inconsistency, stemming from the lack of view-consistent 2D editing models and the difficulty of ensuring consistent editing across multiple views. To address these issues, we propose C3Editor, a controllable and consistent 2D-lifting-based 3D editing framework. Given an original 3D representation and a text-based editing prompt, our method selectively establishes a view-consistent 2D editing model to achieve superior 3D editing results. The process begins with the controlled selection of a ground truth (GT) view and its corresponding edited image as the optimization target, allowing for user-defined manual edits. Next, we fine-tune the 2D editing model within the GT view and across multiple views to align with the GT-edited image while ensuring multi-view consistency. To meet the distinct requirements of GT view fitting and multi-view consistency, we introduce separate LoRA modules for targeted fine-tuning. Our approach delivers more consistent and controllable 2D and 3D editing results than existing 2D-lifting-based methods, outperforming them in both qualitative and quantitative evaluations.
☆ 3Dify: a Framework for Procedural 3D-CG Generation Assisted by LLMs Using MCP and RAG
This paper proposes "3Dify," a procedural 3D computer graphics (3D-CG) generation framework utilizing Large Language Models (LLMs). The framework enables users to generate 3D-CG content solely through natural language instructions. 3Dify is built upon Dify, an open-source platform for AI application development, and incorporates several state-of-the-art LLM-related technologies such as the Model Context Protocol (MCP) and Retrieval-Augmented Generation (RAG). For 3D-CG generation support, 3Dify automates the operation of various Digital Content Creation (DCC) tools via MCP. When DCC tools do not support MCP-based interaction, the framework employs the Computer-Using Agent (CUA) method to automate Graphical User Interface (GUI) operations. Moreover, to enhance image generation quality, 3Dify allows users to provide feedback by selecting preferred images from multiple candidates. The LLM then learns variable patterns from these selections and applies them to subsequent generations. Furthermore, 3Dify supports the integration of locally deployed LLMs, enabling users to utilize custom-developed models and to reduce both time and monetary costs associated with external API calls by leveraging their own computational resources.
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in radiance fields. Unlike mainstream implicit neural models, 3D GS uses millions of learnable 3D Gaussians for an explicit scene representation. Paired with a differentiable rendering algorithm, this approach achieves real-time rendering and unprecedented editability, making it a potential game-changer for 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
Robotics 26
☆ Reliable and Scalable Robot Policy Evaluation with Imperfect Simulators
Rapid progress in imitation learning, foundation models, and large-scale datasets has led to robot manipulation policies that generalize to a wide-range of tasks and environments. However, rigorous evaluation of these policies remains a challenge. Typically in practice, robot policies are often evaluated on a small number of hardware trials without any statistical assurances. We present SureSim, a framework to augment large-scale simulation with relatively small-scale real-world testing to provide reliable inferences on the real-world performance of a policy. Our key idea is to formalize the problem of combining real and simulation evaluations as a prediction-powered inference problem, in which a small number of paired real and simulation evaluations are used to rectify bias in large-scale simulation. We then leverage non-asymptotic mean estimation algorithms to provide confidence intervals on mean policy performance. Using physics-based simulation, we evaluate both diffusion policy and multi-task fine-tuned \(\pi_0\) on a joint distribution of objects and initial conditions, and find that our approach saves over \(20-25\%\) of hardware evaluation effort to achieve similar bounds on policy performance.
☆ Stability-Aware Retargeting for Humanoid Multi-Contact Teleoperation
Teleoperation is a powerful method to generate reference motions and enable humanoid robots to perform a broad range of tasks. However, teleoperation becomes challenging when using hand contacts and non-coplanar surfaces, often leading to motor torque saturation or loss of stability through slipping. We propose a centroidal stability-based retargeting method that dynamically adjusts contact points and posture during teleoperation to enhance stability in these difficult scenarios. Central to our approach is an efficient analytical calculation of the stability margin gradient. This gradient is used to identify scenarios for which stability is highly sensitive to teleoperation setpoints and inform the local adjustment of these setpoints. We validate the framework in simulation and hardware by teleoperating manipulation tasks on a humanoid, demonstrating increased stability margins. We also demonstrate empirically that higher stability margins correlate with improved impulse resilience and joint torque margin.
☆ RAP: 3D Rasterization Augmented End-to-End Planning
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.
☆ A KL-regularization framework for learning to plan with adaptive priors
Effective exploration remains a central challenge in model-based reinforcement learning (MBRL), particularly in high-dimensional continuous control tasks where sample efficiency is crucial. A prominent line of recent work leverages learned policies as proposal distributions for Model-Predictive Path Integral (MPPI) planning. Initial approaches update the sampling policy independently of the planner distribution, typically maximizing a learned value function with deterministic policy gradient and entropy regularization. However, because the states encountered during training depend on the MPPI planner, aligning the sampling policy with the planner improves the accuracy of value estimation and long-term performance. To this end, recent methods update the sampling policy by minimizing KL divergence to the planner distribution or by introducing planner-guided regularization into the policy update. In this work, we unify these MPPI-based reinforcement learning methods under a single framework by introducing Policy Optimization-Model Predictive Control (PO-MPC), a family of KL-regularized MBRL methods that integrate the planner's action distribution as a prior in policy optimization. By aligning the learned policy with the planner's behavior, PO-MPC allows more flexibility in the policy updates to trade off Return maximization and KL divergence minimization. We clarify how prior approaches emerge as special cases of this family, and we explore previously unstudied variations. Our experiments show that these extended configurations yield significant performance improvements, advancing the state of the art in MPPI-based RL.
comment: Preprint
☆ Integrated Planning and Control on Manifolds: Factor Graph Representation and Toolkit
Model predictive control (MPC) faces significant limitations when applied to systems evolving on nonlinear manifolds, such as robotic attitude dynamics and constrained motion planning, where traditional Euclidean formulations struggle with singularities, over-parameterization, and poor convergence. To overcome these challenges, this paper introduces FactorMPC, a factor-graph based MPC toolkit that unifies system dynamics, constraints, and objectives into a modular, user-friendly, and efficient optimization structure. Our approach natively supports manifold-valued states with Gaussian uncertainties modeled in tangent spaces. By exploiting the sparsity and probabilistic structure of factor graphs, the toolkit achieves real-time performance even for high-dimensional systems with complex constraints. The velocity-extended on-manifold control barrier function (CBF)-based obstacle avoidance factors are designed for safety-critical applications. By bridging graphical models with safety-critical MPC, our work offers a scalable and geometrically consistent framework for integrated planning and control. The simulations and experimental results on the quadrotor demonstrate superior trajectory tracking and obstacle avoidance performance compared to baseline methods. To foster research reproducibility, we have provided open-source implementation offering plug-and-play factors.
☆ ContextVLA: Vision-Language-Action Model with Amortized Multi-Frame Context
Leveraging temporal context is crucial for success in partially observable robotic tasks. However, prior work in behavior cloning has demonstrated inconsistent performance gains when using multi-frame observations. In this paper, we introduce ContextVLA, a policy model that robustly improves robotic task performance by effectively leveraging multi-frame observations. Our approach is motivated by the key observation that Vision-Language-Action models (VLA), i.e., policy models built upon a Vision-Language Model (VLM), more effectively utilize multi-frame observations for action generation. This suggests that VLMs' inherent temporal understanding capability enables them to extract more meaningful context from multi-frame observations. However, the high dimensionality of video inputs introduces significant computational overhead, making VLA training and inference inefficient. To address this, ContextVLA compresses past observations into a single context token, allowing the policy to efficiently leverage temporal context for action generation. Our experiments show that ContextVLA consistently improves over single-frame VLAs and achieves the benefits of full multi-frame training but with reduced training and inference times.
comment: Project page: https://huiwon-jang.github.io/contextvla
Flexible Locomotion Learning with Diffusion Model Predictive Control
Legged locomotion demands controllers that are both robust and adaptable, while remaining compatible with task and safety considerations. However, model-free reinforcement learning (RL) methods often yield a fixed policy that can be difficult to adapt to new behaviors at test time. In contrast, Model Predictive Control (MPC) provides a natural approach to flexible behavior synthesis by incorporating different objectives and constraints directly into its optimization process. However, classical MPC relies on accurate dynamics models, which are often difficult to obtain in complex environments and typically require simplifying assumptions. We present Diffusion-MPC, which leverages a learned generative diffusion model as an approximate dynamics prior for planning, enabling flexible test-time adaptation through reward and constraint based optimization. Diffusion-MPC jointly predicts future states and actions; at each reverse step, we incorporate reward planning and impose constraint projection, yielding trajectories that satisfy task objectives while remaining within physical limits. To obtain a planning model that adapts beyond imitation pretraining, we introduce an interactive training algorithm for diffusion based planner: we execute our reward-and-constraint planner in environment, then filter and reweight the collected trajectories by their realized returns before updating the denoiser. Our design enables strong test-time adaptability, allowing the planner to adjust to new reward specifications without retraining. We validate Diffusion-MPC on real world, demonstrating strong locomotion and flexible adaptation.
comment: 9 pages, 8 figures
☆ Zenbo Patrol: A Social Assistive Robot Based on Multimodal Deep Learning for Real-time Illegal Parking Recognition and Notification
In the study, the social robot act as a patrol to recognize and notify illegal parking in real-time. Dual-model pipeline method and large multimodal model were compared, and the GPT-4o multimodal model was adopted in license plate recognition without preprocessing. For moving smoothly on a flat ground, the robot navigated in a simulated parking lot in the experiments. The robot changes angle view of the camera automatically to capture the images around with the format of license plate number. From the captured images of the robot, the numbers on the plate are recognized through the GPT-4o model, and identifies legality of the numbers. When an illegal parking is detected, the robot sends Line messages to the system manager immediately. The contribution of the work is that a novel multimodal deep learning method has validated with high accuracy in license plate recognition, and a social assistive robot is also provided for solving problems in a real scenario, and can be applied in an indoor parking lot.
☆ Using Robotics to Improve Transcatheter Edge-to-Edge Repair of the Mitral Valve
Transcatheter valve repair presents significant challenges due to the mechanical limitations and steep learning curve associated with manual catheter systems. This paper investigates the use of robotics to facilitate transcatheter procedures in the context of mitral valve edge-to-edge repair. The complex handle-based control of a clinical repair device is replaced by intuitive robotic joint-based control via a game controller. Manual versus robotic performance is analyzed by decomposing the overall device delivery task into motion-specific steps and comparing capabilities on a step-by-step basis in a phantom model of the heart and vasculature. Metrics include procedure duration and clip placement accuracy. Results demonstrate that the robotic system can reduce procedural time and motion errors while also improving accuracy of clip placement. These findings suggest that robotic assistance can address key limitations of manual systems, offering a more reliable and user-friendly platform for complex transcatheter procedures.
comment: 7 pages, 9 figures
☆ VBM-NET: Visual Base Pose Learning for Mobile Manipulation using Equivariant TransporterNet and GNNs
In Mobile Manipulation, selecting an optimal mobile base pose is essential for successful object grasping. Previous works have addressed this problem either through classical planning methods or by learning state-based policies. They assume access to reliable state information, such as the precise object poses and environment models. In this work, we study base pose planning directly from top-down orthographic projections of the scene, which provide a global overview of the scene while preserving spatial structure. We propose VBM-NET, a learning-based method for base pose selection using such top-down orthographic projections. We use equivariant TransporterNet to exploit spatial symmetries and efficiently learn candidate base poses for grasping. Further, we use graph neural networks to represent a varying number of candidate base poses and use Reinforcement Learning to determine the optimal base pose among them. We show that VBM-NET can produce comparable solutions to the classical methods in significantly less computation time. Furthermore, we validate sim-to-real transfer by successfully deploying a policy trained in simulation to real-world mobile manipulation.
☆ Learning to Capture Rocks using an Excavator: A Reinforcement Learning Approach with Guiding Reward Formulation
Rock capturing with standard excavator buckets is a challenging task typically requiring the expertise of skilled operators. Unlike soil digging, it involves manipulating large, irregular rocks in unstructured environments where complex contact interactions with granular material make model-based control impractical. Existing autonomous excavation methods focus mainly on continuous media or rely on specialized grippers, limiting their applicability to real-world construction sites. This paper introduces a fully data-driven control framework for rock capturing that eliminates the need for explicit modeling of rock or soil properties. A model-free reinforcement learning agent is trained in the AGX Dynamics simulator using the Proximal Policy Optimization (PPO) algorithm and a guiding reward formulation. The learned policy outputs joint velocity commands directly to the boom, arm, and bucket of a CAT365 excavator model. Robustness is enhanced through extensive domain randomization of rock geometry, density, and mass, as well as the initial configurations of the bucket, rock, and goal position. To the best of our knowledge, this is the first study to develop and evaluate an RL-based controller for the rock capturing task. Experimental results show that the policy generalizes well to unseen rocks and varying soil conditions, achieving high success rates comparable to those of human participants while maintaining machine stability. These findings demonstrate the feasibility of learning-based excavation strategies for discrete object manipulation without requiring specialized hardware or detailed material models.
HEHA: Hierarchical Planning for Heterogeneous Multi-Robot Exploration of Unknown Environments
This paper considers the path planning problem for autonomous exploration of an unknown environment using multiple heterogeneous robots such as drones, wheeled, and legged robots, which have different capabilities to traverse complex terrains. A key challenge there is to intelligently allocate the robots to the unknown areas to be explored and determine the visiting order of those spaces subject to traversablity constraints, which leads to a large scale constrained optimization problem that needs to be quickly and iteratively solved every time when new space are explored. To address the challenge, we propose HEHA (Hierarchical Exploration with Heterogeneous Agents) by leveraging a recent hierarchical method that decompose the exploration into global planning and local planning. The major contribution in HEHA is its global planning, where we propose a new routing algorithm PEAF (Partial Anytime Focal search) that can quickly find bounded sub-optimal solutions to minimize the maximum path length among the agents subject to traversability constraints. Additionally, the local planner in HEHA also considers heterogeneity to avoid repeated and duplicated exploration among the robots. The experimental results show that, our HEHA can reduce up to 30% of the exploration time than the baselines.
comment: 5 Figures
☆ From Shadow to Light: Toward Safe and Efficient Policy Learning Across MPC, DeePC, RL, and LLM Agents
One of the main challenges in modern control applications, particularly in robot and vehicle motion control, is achieving accurate, fast, and safe movement. To address this, optimal control policies have been developed to enforce safety while ensuring high performance. Since basic first-principles models of real systems are often available, model-based controllers are widely used. Model predictive control (MPC) is a leading approach that optimizes performance while explicitly handling safety constraints. However, obtaining accurate models for complex systems is difficult, which motivates data-driven alternatives. ML-based MPC leverages learned models to reduce reliance on hand-crafted dynamics, while reinforcement learning (RL) can learn near-optimal policies directly from interaction data. Data-enabled predictive control (DeePC) goes further by bypassing modeling altogether, directly learning safe policies from raw input-output data. Recently, large language model (LLM) agents have also emerged, translating natural language instructions into structured formulations of optimal control problems. Despite these advances, data-driven policies face significant limitations. They often suffer from slow response times, high computational demands, and large memory needs, making them less practical for real-world systems with fast dynamics, limited onboard computing, or strict memory constraints. To address this, various technique, such as reduced-order modeling, function-approximated policy learning, and convex relaxations, have been proposed to reduce computational complexity. In this paper, we present eight such approaches and demonstrate their effectiveness across real-world applications, including robotic arms, soft robots, and vehicle motion control.
☆ Feedback Matters: Augmenting Autonomous Dissection with Visual and Topological Feedback
Autonomous surgical systems must adapt to highly dynamic environments where tissue properties and visual cues evolve rapidly. Central to such adaptability is feedback: the ability to sense, interpret, and respond to changes during execution. While feedback mechanisms have been explored in surgical robotics, ranging from tool and tissue tracking to error detection, existing methods remain limited in handling the topological and perceptual challenges of tissue dissection. In this work, we propose a feedback-enabled framework for autonomous tissue dissection that explicitly reasons about topological changes from endoscopic images after each dissection action. This structured feedback guides subsequent actions, enabling the system to localize dissection progress and adapt policies online. To improve the reliability of such feedback, we introduce visibility metrics that quantify tissue exposure and formulate optimal controller designs that actively manipulate tissue to maximize visibility. Finally, we integrate these feedback mechanisms with both planning-based and learning-based dissection methods, and demonstrate experimentally that they significantly enhance autonomy, reduce errors, and improve robustness in complex surgical scenarios.
☆ SITCOM: Scaling Inference-Time COMpute for VLAs NeurIPS 2025
Learning robust robotic control policies remains a major challenge due to the high cost of collecting labeled data, limited generalization to unseen environments, and difficulties in planning over long horizons. While Vision-Language-Action (VLA) models offer a promising solution by grounding natural language instructions into single-step control commands, they often lack mechanisms for lookahead and struggle with compounding errors in dynamic tasks. In this project, we introduce Scaling Inference-Time COMpute for VLAs (SITCOM), a framework that augments any pretrained VLA with model-based rollouts and reward-based trajectory selection, inspired by Model Predictive Control algorithm. SITCOM leverages a learned dynamics model to simulate multi-step action rollouts to select the best candidate plan for real-world execution, transforming one-shot VLAs into robust long-horizon planners. We develop an efficient transformer-based dynamics model trained on large-scale BridgeV2 data and fine-tuned on SIMPLER environments to bridge the Real2Sim gap, and score candidate rollouts using rewards from simulator. Through comprehensive evaluation across multiple tasks and settings in the SIMPLER environment, we demonstrate that SITCOM when combined with a good reward function can significantly improve task completion rate from 48% to 72% using trained dynamics model.
comment: Accepted at the NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI (SpaVLE). *Equal contribution
♻ ☆ Learning Geometry-Aware Nonprehensile Pushing and Pulling with Dexterous Hands
Nonprehensile manipulation, such as pushing and pulling, enables robots to move, align, or reposition objects that may be difficult to grasp due to their geometry, size, or relationship to the robot or the environment. Much of the existing work in nonprehensile manipulation relies on parallel-jaw grippers or tools such as rods and spatulas. In contrast, multi-fingered dexterous hands offer richer contact modes and versatility for handling diverse objects to provide stable support over the objects, which compensates for the difficulty of modeling the dynamics of nonprehensile manipulation. Therefore, we propose Geometry-aware Dexterous Pushing and Pulling (GD2P) for nonprehensile manipulation with dexterous robotic hands. We study pushing and pulling by framing the problem as synthesizing and learning pre-contact dexterous hand poses that lead to effective manipulation. We generate diverse hand poses via contact-guided sampling, filter them using physics simulation, and train a diffusion model conditioned on object geometry to predict viable poses. At test time, we sample hand poses and use standard motion planners to select and execute pushing and pulling actions. We perform 840 real-world experiments with an Allegro Hand, comparing our method to baselines. The results indicate that GD2P offers a scalable route for training dexterous nonprehensile manipulation policies. We further demonstrate GD2P on a LEAP Hand, highlighting its applicability to different hand morphologies. Our pre-trained models and dataset, including 1.3 million hand poses across 2.3k objects, will be open-source to facilitate further research. Our project website is available at: geodex2p.github.io.
comment: Typos corrected
♻ ☆ A Benchmarking Study of Vision-Based Robotic Grasping Algorithms: A Comparative Analysis
We present a benchmarking study of vision-based robotic grasping algorithms and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithms strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using the same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: Accepted in IEEE Robotics and Automation Magazine 2025. Previously this version with slight modifications appeared as arXiv:2503.11163, which was submitted as a new work by accident. We have requested for removal of arXiv:2503.11163 from the other account, while simultaneously submitting this version as a revision to arXiv:2307.11622. We are stressing that this submission is intentional
♻ ☆ CHOICE: Coordinated Human-Object Interaction in Cluttered Environments for Pick-and-Place Actions
Animating human-scene interactions such as pick-and-place tasks in cluttered, complex layouts is a challenging task, with objects of a wide variation of geometries and articulation under scenarios with various obstacles. The main difficulty lies in the sparsity of the motion data compared to the wide variation of the objects and environments as well as the poor availability of transition motions between different tasks, increasing the complexity of the generalization to arbitrary conditions. To cope with this issue, we develop a system that tackles the interaction synthesis problem as a hierarchical goal-driven task. Firstly, we develop a bimanual scheduler that plans a set of keyframes for simultaneously controlling the two hands to efficiently achieve the pick-and-place task from an abstract goal signal such as the target object selected by the user. Next, we develop a neural implicit planner that generates guidance hand trajectories under diverse object shape/types and obstacle layouts. Finally, we propose a linear dynamic model for our DeepPhase controller that incorporates a Kalman filter to enable smooth transitions in the frequency domain, resulting in a more realistic and effective multi-objective control of the character.Our system can produce a wide range of natural pick-and-place movements with respect to the geometry of objects, the articulation of containers and the layout of the objects in the scene.
comment: ACM Transaction on Graphics 2025;21 pages, 15 figures; Webpage: https://lujintaozju.github.io/publications/CHOICE/
♻ ☆ Time-Optimized Safe Navigation in Unstructured Environments through Learning Based Depth Completion
Quadrotors hold significant promise for several applications such as agriculture, search and rescue, and infrastructure inspection. Achieving autonomous operation requires systems to navigate safely through complex and unfamiliar environments. This level of autonomy is particularly challenging due to the complexity of such environments and the need for real-time decision making especially for platforms constrained by size, weight, and power (SWaP), which limits flight time and precludes the use of bulky sensors like Light Detection and Ranging (LiDAR) for mapping. Furthermore, computing globally optimal, collision-free paths and translating them into time-optimized, safe trajectories in real time adds significant computational complexity. To address these challenges, we present a fully onboard, real-time navigation system that relies solely on lightweight onboard sensors. Our system constructs a dense 3D map of the environment using a novel visual depth estimation approach that fuses stereo and monocular learning-based depth, yielding longer-range, denser, and less noisy depth maps than conventional stereo methods. Building on this map, we introduce a novel planning and trajectory generation framework capable of rapidly computing time-optimal global trajectories. As the map is incrementally updated with new depth information, our system continuously refines the trajectory to maintain safety and optimality. Both our planner and trajectory generator outperforms state-of-the-art methods in terms of computational efficiency and guarantee obstacle-free trajectories. We validate our system through robust autonomous flight experiments in diverse indoor and outdoor environments, demonstrating its effectiveness for safe navigation in previously unknown settings.
♻ ☆ INGRID: Intelligent Generative Robotic Design Using Large Language Models
The integration of large language models (LLMs) into robotic systems has accelerated progress in embodied artificial intelligence, yet current approaches remain constrained by existing robotic architectures, particularly serial mechanisms. This hardware dependency fundamentally limits the scope of robotic intelligence. Here, we present INGRID (Intelligent Generative Robotic Design), a framework that enables the automated design of parallel robotic mechanisms through deep integration with reciprocal screw theory and kinematic synthesis methods. We decompose the design challenge into four progressive tasks: constraint analysis, kinematic joint generation, chain construction, and complete mechanism design. INGRID demonstrates the ability to generate novel parallel mechanisms with both fixed and variable mobility, discovering kinematic configurations not previously documented in the literature. We validate our approach through three case studies demonstrating how INGRID assists users in designing task-specific parallel robots based on desired mobility requirements. By bridging the gap between mechanism theory and machine learning, INGRID enables researchers without specialized robotics training to create custom parallel mechanisms, thereby decoupling advances in robotic intelligence from hardware constraints. This work establishes a foundation for mechanism intelligence, where AI systems actively design robotic hardware, potentially transforming the development of embodied AI systems.
comment: We are revising it
♻ ☆ Viewpoint-Agnostic Manipulation Policies with Strategic Vantage Selection
Since vision-based manipulation policies are typically trained from data gathered from a single viewpoint, their performance drops when the view changes during deployment. Naively aggregating demonstrations from numerous random views is not only costly but also known to destabilize learning, as excessive visual diversity acts as noise. We present Vantage, a viewpoint selection framework to fine-tune any pre-trained policy on a small, strategically set of camera poses to induce viewpoint-agnostic behavior. Instead of relying on costly brute-force search over viewpoints, Vantage formulates camera placement as an information gain optimization problem in a continuous space. This approach balances exploration of novel poses with exploitation of promising ones, while also providing theoretical guarantees about convergence and robustness. Across manipulation tasks and policy families, Vantage consistently improves success under viewpoint shifts compared to fixed, grid, or random data selection strategies with only a handful of fine-tuning steps. Experiments conducted on simulated and real-world setups show that Vantage increases the task success rate by 25% for diffusion policies, and yields robust gains in dynamic-camera settings.
♻ ☆ Training-free Task-oriented Grasp Generation
This paper presents a training-free pipeline for task-oriented grasp generation that combines pre-trained grasp generation models with vision-language models (VLMs). Unlike traditional approaches that focus solely on stable grasps, our method incorporates task-specific requirements by leveraging the semantic reasoning capabilities of VLMs. We evaluate five querying strategies, each utilizing different visual representations of candidate grasps, and demonstrate significant improvements over a baseline method in both grasp success and task compliance rates, with absolute gains of up to 36.9\% in overall success rate. Our results underline the potential of VLMs to enhance task-oriented manipulation, providing insights for future research in robotic grasping and human-robot interaction.
comment: Jiaming Wang, Diwen Liu, and Jizhuo Chen contributed equally
♻ ☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
♻ ☆ ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its potential utility for tasks such as robotics manipulation. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together, but only a single view of depth measurements is provided. Most of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns, and typically two, risking generalization failures if not designed and trained carefully. The shape representations used in the prior work also mainly focus on point clouds and signed distance fields (SDFs). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from pose-annotated data. Moreover, we construct and adopt a novel mesh-based object active shape model (ASM), which additionally maintains vertex connectivity compared to the commonly used point-based object ASM. Our algorithm, ShapeICP, is based on the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. Although not using pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on pose data for training, opening up a new solution space for researchers to consider.
♻ ☆ Universal Adversarial Perturbation Attacks On Modern Behavior Cloning Policies
Learning from Demonstration (LfD) algorithms have shown promising results in robotic manipulation tasks, but their vulnerability to offline universal perturbation attacks remains underexplored. This paper presents a comprehensive study of adversarial attacks on both classic and recently proposed algorithms, including Behavior Cloning (BC), LSTM-GMM, Implicit Behavior Cloning (IBC), Diffusion Policy (DP), and Vector-Quantizied Behavior Transformer (VQ-BET). We study the vulnerability of these methods to universal adversarial perturbations. Our experiments on several simulated robotic manipulation tasks reveal that most of the current methods are highly vulnerable to adversarial perturbations. We also show that these attacks are often transferable across algorithms, architectures, and tasks, raising concerning security vulnerabilities to black-box attacks. To the best of our knowledge, we are the first to present a systematic study of the vulnerabilities of different LfD algorithms to both white-box and black-box attacks. Our findings highlight the vulnerabilities of modern BC algorithms, paving the way for future work in addressing such limitations.
♻ ☆ Rough Stochastic Pontryagin Maximum Principle and an Indirect Shooting Method
We derive first-order Pontryagin optimality conditions for stochastic optimal control with deterministic controls for systems modeled by rough differential equations (RDE) driven by Gaussian rough paths. This Pontryagin Maximum Principle (PMP) applies to systems following stochastic differential equations (SDE) driven by Brownian motion, yet it does not rely on forward-backward SDEs and involves the same Hamiltonian as the deterministic PMP. The proof consists of first deriving various integrable error bounds for solutions to nonlinear and linear RDEs by leveraging recent results on Gaussian rough paths. The PMP then follows using standard techniques based on needle-like variations. As an application, we propose the first indirect shooting method for nonlinear stochastic optimal control and show that it converges 10x faster than a direct method on a stabilization task.
comment: Revisions to the presentation and proofs
Systems and Control 14
☆ Geometry of Distance Protection
Distance relays detect faults on transmission lines. They face uncertainty from the fault's location and resistance, as well as the current from the line's remote terminal. In this paper, we aggregate this uncertainty with the Minkowski sum. This allows us to explicitly model the power grid surrounding the relay's line, and in turn accommodate any mix of synchronous machines and inverter-based resources. To make the relay's task easier, inverters can inject perturbations, or auxiliary signals, such as negative-sequence current. We use Farkas' lemma to construct an optimization for designing inverter auxiliary signals.
☆ Reliable and Scalable Robot Policy Evaluation with Imperfect Simulators
Rapid progress in imitation learning, foundation models, and large-scale datasets has led to robot manipulation policies that generalize to a wide-range of tasks and environments. However, rigorous evaluation of these policies remains a challenge. Typically in practice, robot policies are often evaluated on a small number of hardware trials without any statistical assurances. We present SureSim, a framework to augment large-scale simulation with relatively small-scale real-world testing to provide reliable inferences on the real-world performance of a policy. Our key idea is to formalize the problem of combining real and simulation evaluations as a prediction-powered inference problem, in which a small number of paired real and simulation evaluations are used to rectify bias in large-scale simulation. We then leverage non-asymptotic mean estimation algorithms to provide confidence intervals on mean policy performance. Using physics-based simulation, we evaluate both diffusion policy and multi-task fine-tuned \(\pi_0\) on a joint distribution of objects and initial conditions, and find that our approach saves over \(20-25\%\) of hardware evaluation effort to achieve similar bounds on policy performance.
☆ A Hybrid GNN-IZR Framework for Fast and Empirically Robust AC Power Flow Analysis in Radial Distribution Systems
The Alternating Current Power Flow (ACPF) problem forces a trade-off between the speed of data-driven models and the reliability of analytical solvers. This paper introduces a hybrid framework that synergizes a Graph Neural Network (GNN) with the Implicit Z-Bus Recursive (IZR) method, a robust, non-iterative solver for radial distribution networks. The framework employs a physics-informed GNN for rapid initial predictions and invokes the IZR solver as a failsafe for stressed cases identified by a two-stage trigger. A failure is defined as any solution with a maximum power mismatch exceeding 0.1 p.u., a significant operational deviation. On a challenging test set of 7,500 stressed scenarios for the IEEE 33-bus system, the GNN-only model failed on 13.11 % of cases. In contrast, the hybrid framework identified all potential failures, delegating them to the IZR solver to achieve a 0.00 % failure rate, empirically matching the 100 % success rate of the analytical solver on this specific test set. An expanded ablation study confirms that both physics-informed training and Z-bus sensitivity features are critical, collaboratively reducing the GNN's failure rate from 98.72 % (data-only) to 13.11 %. The hybrid approach demonstrates a pragmatic path to achieving the empirical reliability of an analytical solver while leveraging GNN speed, enabling a significant increase in the number of scenarios analyzable in near real-time.
☆ Adaptive Federated Learning via Dynamical System Model
Hyperparameter selection is critical for stable and efficient convergence of heterogeneous federated learning, where clients differ in computational capabilities, and data distributions are non-IID. Tuning hyperparameters is a manual and computationally expensive process as the hyperparameter space grows combinatorially with the number of clients. To address this, we introduce an end-to-end adaptive federated learning method in which both clients and central agents adaptively select their local learning rates and momentum parameters. Our approach models federated learning as a dynamical system, allowing us to draw on principles from numerical simulation and physical design. Through this perspective, selecting momentum parameters equates to critically damping the system for fast, stable convergence, while learning rates for clients and central servers are adaptively selected to satisfy accuracy properties from numerical simulation. The result is an adaptive, momentum-based federated learning algorithm in which the learning rates for clients and servers are dynamically adjusted and controlled by a single, global hyperparameter. By designing a fully integrated solution for both adaptive client updates and central agent aggregation, our method is capable of handling key challenges of heterogeneous federated learning, including objective inconsistency and client drift. Importantly, our approach achieves fast convergence while being insensitive to the choice of the global hyperparameter, making it well-suited for rapid prototyping and scalable deployment. Compared to state-of-the-art adaptive methods, our framework is shown to deliver superior convergence for heterogeneous federated learning while eliminating the need for hyperparameter tuning both client and server updates.
☆ Learning to Capture Rocks using an Excavator: A Reinforcement Learning Approach with Guiding Reward Formulation
Rock capturing with standard excavator buckets is a challenging task typically requiring the expertise of skilled operators. Unlike soil digging, it involves manipulating large, irregular rocks in unstructured environments where complex contact interactions with granular material make model-based control impractical. Existing autonomous excavation methods focus mainly on continuous media or rely on specialized grippers, limiting their applicability to real-world construction sites. This paper introduces a fully data-driven control framework for rock capturing that eliminates the need for explicit modeling of rock or soil properties. A model-free reinforcement learning agent is trained in the AGX Dynamics simulator using the Proximal Policy Optimization (PPO) algorithm and a guiding reward formulation. The learned policy outputs joint velocity commands directly to the boom, arm, and bucket of a CAT365 excavator model. Robustness is enhanced through extensive domain randomization of rock geometry, density, and mass, as well as the initial configurations of the bucket, rock, and goal position. To the best of our knowledge, this is the first study to develop and evaluate an RL-based controller for the rock capturing task. Experimental results show that the policy generalizes well to unseen rocks and varying soil conditions, achieving high success rates comparable to those of human participants while maintaining machine stability. These findings demonstrate the feasibility of learning-based excavation strategies for discrete object manipulation without requiring specialized hardware or detailed material models.
☆ DADS Under Unknown Input Coefficients
This short note shows that the Deadzone-Adapted Disturbance Suppression (DADS) adaptive control scheme is applicable to systems with unknown input coefficients. We study time-invariant, control-affine systems that satisfy the matching condition for which no bounds for the disturbance and the unknown parameters are known. The input coefficients can be time-varying as well as the unknown parameters. The only thing assumed for the input coefficients is their sign. The adaptive control design is Lyapunov-based and can be accomplished for every system for which a smooth globally stabilizing feedback exists when the disturbances are absent and all unknown parameters are known. The design is given by simple, explicit formulas. The proposed controllers guarantee an attenuation of the plant state to an assignable small level, despite unknown bounds on the parameters and disturbance, without a drift of the gain, state, and input.
comment: 23 pages, 10 figures
☆ From Shadow to Light: Toward Safe and Efficient Policy Learning Across MPC, DeePC, RL, and LLM Agents
One of the main challenges in modern control applications, particularly in robot and vehicle motion control, is achieving accurate, fast, and safe movement. To address this, optimal control policies have been developed to enforce safety while ensuring high performance. Since basic first-principles models of real systems are often available, model-based controllers are widely used. Model predictive control (MPC) is a leading approach that optimizes performance while explicitly handling safety constraints. However, obtaining accurate models for complex systems is difficult, which motivates data-driven alternatives. ML-based MPC leverages learned models to reduce reliance on hand-crafted dynamics, while reinforcement learning (RL) can learn near-optimal policies directly from interaction data. Data-enabled predictive control (DeePC) goes further by bypassing modeling altogether, directly learning safe policies from raw input-output data. Recently, large language model (LLM) agents have also emerged, translating natural language instructions into structured formulations of optimal control problems. Despite these advances, data-driven policies face significant limitations. They often suffer from slow response times, high computational demands, and large memory needs, making them less practical for real-world systems with fast dynamics, limited onboard computing, or strict memory constraints. To address this, various technique, such as reduced-order modeling, function-approximated policy learning, and convex relaxations, have been proposed to reduce computational complexity. In this paper, we present eight such approaches and demonstrate their effectiveness across real-world applications, including robotic arms, soft robots, and vehicle motion control.
☆ A Conformal Prediction-Based Chance-Constrained Programming Approach for 24/7 Carbon-Free Data Center Operation Scheduling
The rapid growth of AI applications is dramatically increasing data center energy demand, exacerbating carbon emissions, and necessitating a shift towards 24/7 carbon-free energy (CFE). Unlike traditional annual energy matching, 24/7 CFE requires matching real-time electricity consumption with clean energy generation every hour, presenting significant challenges due to the inherent variability and forecasting errors of renewable energy sources. Traditional robust and data-driven optimization methods often fail to leverage the features of the prediction model (also known as contextual or covariate information) when constructing the uncertainty set, leading to overly conservative operational decisions. This paper proposes a comprehensive approach for 24/7 CFE data center operation scheduling, focusing on robust decision-making under renewable generation uncertainty. This framework leverages covariate information through a multi-variable conformal prediction (CP) technique to construct statistically valid and adaptive uncertainty sets for renewable forecasts. The uncertainty sets directly inform the chance-constrained programming (CCP) problem, ensuring that chance constraints are met with a specified probability. We further establish theoretical underpinnings connecting the CP-generated uncertainty sets to the statistical feasibility guarantees of the CCP. Numerical results highlight the benefits of this covariate-aware approach, demonstrating up to 6.65% cost reduction and 6.96% decrease in carbon-based energy usage compared to conventional covariate-independent methods, thereby enabling data centers to progress toward 24/7 CEF.
Distributed MPC-based Coordination of Traffic Perimeter and Signal Control: A Lexicographic Optimization Approach
This paper introduces a comprehensive strategy that integrates traffic perimeter control with traffic signal control to alleviate congestion in an urban traffic network (UTN). The strategy is formulated as a lexicographic multi-objective optimization problem, starting with the regulation of traffic inflows at boundary junctions to maximize the capacity while ensuring a smooth operation of the UTN. Following this, the signal timings at internal junctions are collaboratively optimized to enhance overall traffic conditions under the regulated inflows. The use of a model predictive control (MPC) approach ensures that the control solution adheres to safety and capacity constraints within the network. To address the computational complexity of the problem, the UTN is divided into subnetworks, each managed by a local agent. A distributed solution method based on the alternating direction method of multipliers (ADMM) algorithm is employed, allowing each agent to determine its optimal control decisions using local information from its subnetwork and neighboring agents. Numerical simulations using VISSIM and MATLAB demonstrate the effectiveness of the proposed traffic control strategy.
☆ Data-driven Practical Stabilization of Nonlinear Systems via Chain Policies: Sample Complexity and Incremental Learning
We propose a method for data-driven practical stabilization of nonlinear systems with provable guarantees, based on the concept of Nonparametric Chain Policies (NCPs). The approach employs a normalized nearest-neighbor rule to assign, at each state, a finite-duration control signal derived from stored data, after which the process repeats. Unlike recent works that model the system as linear, polynomial, or polynomial fraction, we only assume the system to be locally Lipschitz. Our analysis builds on the framework of Recurrent Lyapunov Functions (RLFs), which enable data-driven certification of practical stability using standard norm functions instead of requiring the explicit construction of a classical Lyapunov function. To extend this framework, we introduce the concept of Recurrent Control Lyapunov Functions (R-CLFs), which can certify the existence of an NCP that practically stabilizes an arbitrarily small c-neighborhood of an equilibrium point. We also provide an explicit sample complexity guarantee of O((3/rho)^d log(R/c)) number of trajectories, where R is the domain radius, d the state dimension, and rho a system-dependent constant. The proposed Chain Policies are nonparametric, thus allowing new verified data to be readily incorporated into the policy to either improve convergence rate or enlarge the certified region. Numerical experiments illustrate and validate these properties.
♻ ☆ Multi-Agent Guided Policy Search for Non-Cooperative Dynamic Games
Multi-agent reinforcement learning (MARL) optimizes strategic interactions in non-cooperative dynamic games, where agents have misaligned objectives. However, data-driven methods such as multi-agent policy gradients (MA-PG) often suffer from instability and limit-cycle behaviors. Prior stabilization techniques typically rely on entropy-based exploration, which slows learning and increases variance. We propose a model-based approach that incorporates approximate priors into the reward function as regularization. In linear quadratic (LQ) games, we prove that such priors stabilize policy gradients and guarantee local exponential convergence to an approximate Nash equilibrium. We then extend this idea to infinite-horizon nonlinear games by introducing Multi-agent Guided Policy Search (MA-GPS), which constructs short-horizon local LQ approximations from trajectories of current policies to guide training. Experiments on nonlinear vehicle platooning and a six-player strategic basketball formation show that MA-GPS achieves faster convergence and more stable learning than existing MARL methods.
comment: We fix a few typos: 1. In the Introduction, mode-based optimization -> model-based optimization; 2. In the LQ game definition, there is an accidentally missing superscript i in equation (8). We apologize for the confusion that they may raise
♻ ☆ Adaptive Disturbance Observer-based Full-Order Integral-Terminal Sliding Mode Control with Unknown A Priori Bound on Uncertainty
This study presents a novel, continuous finite-time control strategy for a class of nonlinear systems subject to matched uncertainties with unknown bounds. We propose an Adaptive Disturbance Observer-based Full-order Integral-Terminal Sliding Mode Control (ADO-FOITSMC) to stabilize a chain of integrators in presence of exogenous disturbances whose time derivative is bounded by a constant that is not known a priori. Key features of this approach include a significant reduction in control input chattering and a non-monotonic adaptive law for the observer gains, which prevents overestimation while ensuring the global boundedness of system states. The effectiveness and practical viability of the proposed algorithm are demonstrated through its application to the attitude stabilization of a rigid spacecraft.
comment: 6 pages, 4 figures
♻ ☆ MAD: A Magnitude And Direction Policy Parametrization for Stability Constrained Reinforcement Learning
We introduce magnitude and direction (MAD) policies, a policy parameterization for reinforcement learning (RL) that preserves Lp closed-loop stability for nonlinear dynamical systems. Despite their completeness in describing all stabilizing controllers, methods based on nonlinear Youla and system-level synthesis are significantly impacted by the difficulty of parametrizing Lp-stable operators. In contrast, MAD policies introduce explicit feedback on state-dependent features - a key element behind the success of reinforcement learning pipelines - without jeopardizing closed-loop stability. This is achieved by letting the magnitude of the control input be described by a disturbance-feedback Lp-stable operator, while selecting its direction based on state-dependent features through a universal function approximator. We further characterize the robust stability properties of MAD policies under model mismatch. Unlike existing disturbance-feedback policy parametrizations, MAD policies introduce state-feedback components compatible with model-free RL pipelines, ensuring closed-loop stability with no model information beyond assuming open-loop stability. Numerical experiments show that MAD policies trained with deep deterministic policy gradient (DDPG) methods generalize to unseen scenarios - matching the performance of standard neural network policies while guaranteeing closed-loop stability by design.
♻ ☆ Rough Stochastic Pontryagin Maximum Principle and an Indirect Shooting Method
We derive first-order Pontryagin optimality conditions for stochastic optimal control with deterministic controls for systems modeled by rough differential equations (RDE) driven by Gaussian rough paths. This Pontryagin Maximum Principle (PMP) applies to systems following stochastic differential equations (SDE) driven by Brownian motion, yet it does not rely on forward-backward SDEs and involves the same Hamiltonian as the deterministic PMP. The proof consists of first deriving various integrable error bounds for solutions to nonlinear and linear RDEs by leveraging recent results on Gaussian rough paths. The PMP then follows using standard techniques based on needle-like variations. As an application, we propose the first indirect shooting method for nonlinear stochastic optimal control and show that it converges 10x faster than a direct method on a stabilization task.
comment: Revisions to the presentation and proofs
Computational Geometry 1
♻ ☆ Minimum Star Partitions of Simple Polygons in Polynomial Time
We devise a polynomial-time algorithm for partitioning a simple polygon $P$ into a minimum number of star-shaped polygons. The question of whether such an algorithm exists has been open for more than four decades [Avis and Toussaint, Pattern Recognit., 1981] and it has been repeated frequently, for example in O'Rourke's famous book [Art Gallery Theorems and Algorithms, 1987]. In addition to its strong theoretical motivation, the problem is also motivated by practical domains such as CNC pocket milling, motion planning, and shape parameterization. The only previously known algorithm for a non-trivial special case is for $P$ being both monotone and rectilinear [Liu and Ntafos, Algorithmica, 1991]. For general polygons, an algorithm was only known for the restricted version in which Steiner points are disallowed [Keil, SIAM J. Comput., 1985], meaning that each corner of a piece in the partition must also be a corner of $P$. Interestingly, the solution size for the restricted version may be linear for instances where the unrestricted solution has constant size. The covering variant in which the pieces are star-shaped but allowed to overlap--known as the Art Gallery Problem--was recently shown to be $\exists\mathbb R$-complete and is thus likely not in NP [Abrahamsen, Adamaszek and Miltzow, STOC 2018 & J. ACM 2022]; this is in stark contrast to our result. Arguably the most related work to ours is the polynomial-time algorithm to partition a simple polygon into a minimum number of convex pieces by Chazelle and Dobkin~[STOC, 1979 & Comp. Geom., 1985].
Optimization and Control 19
☆ Geometry of Distance Protection
Distance relays detect faults on transmission lines. They face uncertainty from the fault's location and resistance, as well as the current from the line's remote terminal. In this paper, we aggregate this uncertainty with the Minkowski sum. This allows us to explicitly model the power grid surrounding the relay's line, and in turn accommodate any mix of synchronous machines and inverter-based resources. To make the relay's task easier, inverters can inject perturbations, or auxiliary signals, such as negative-sequence current. We use Farkas' lemma to construct an optimization for designing inverter auxiliary signals.
☆ Quantizer Design for Finite Model Approximations, Model Learning, and Quantized Q-Learning for MDPs with Unbounded Spaces
In this paper, for Markov decision processes (MDPs) with unbounded state spaces we present refined upper bounds presented in [Kara et. al. JMLR'23] on finite model approximation errors via optimizing the quantizers used for finite model approximations. We also consider implications on quantizer design for quantized Q-learning and empirical model learning, and the performance of policies obtained via Q-learning where the quantized state is treated as the state itself. We highlight the distinctions between planning, where approximating MDPs can be independently designed, and learning (either via Q-learning or empirical model learning), where approximating MDPs are restricted to be defined by invariant measures of Markov chains under exploration policies, leading to significant subtleties on quantizer design performance, even though asymptotic near optimality can be established under both setups. In particular, under Lyapunov growth conditions, we obtain explicit upper bounds which decay to zero as the number of bins approaches infinity.
Robust Optimality of Bundling Goods Beyond Finite Variance
When selling many goods with independent valuations, we develop a distributionally robust framework, consisting of a two-player game between seller and nature. The seller has only limited knowledge about the value distribution. The seller selects a revenue-maximizing mechanism, after which nature chooses a revenue-minimizing distribution from all distributions that comply with the limited knowledge. When the seller knows the mean and variance of valuations, bundling is known to be an asymptotically optimal deterministic mechanism, achieving a normalized revenue close to the mean. Moving beyond this variance assumption, we assume knowledge of the mean absolute deviation (MAD), accommodating more dispersion and heavy-tailed valuations with infinite variance. We show for a large range of MAD values that bundling remains optimal, but the seller can only guarantee a revenue strictly smaller than the mean. Another noteworthy finding is indifference to the order of play, as both the max-min and min-max versions of the problem yield identical values. This contrasts with deterministic mechanisms and the separate sale of goods, where the order of play significantly impacts outcomes. We further underscore the universality of the optimal bundling price by demonstrating its efficacy in optimizing not only absolute revenue but also the absolute regret and ratio objective among all bundling prices
☆ Convex Formulation of the Zero Emission Vessel Route Planning Problem
This paper focuses on the zero emission vessel route planning problem, which deals with cost-effective planning of battery-electric vessel services for predetermined routes. Vessel characteristics (including battery capacity), fleet size, cyclic schedule frequencies, sailing leg speeds, and shore charging infrastructure are jointly optimized. The problem is nonlinear and nonconvex in its original form, which makes it intractable for most real-world instances. The conventional approach in the literature is to solve a linear approximation by restricting vessel designs and sailing leg speeds to a small finite set. Contrary to the conventional linearization approach, this paper deals with the nonlinearities directly. We show that the problem exhibits a hidden convex structure uncovered by nonlinear changes of variables. By exploiting the favorable convex form of the transformed problem, we solve it in a few seconds using a free off-the-shelf solver that requires no initial guesses, variable bounds, or parameter tuning. We then easily recover the exact solution to the original nonconvex problem by reversing the variable changes. We provide an open-source implementation of our method.
☆ Closing the Loop: Coordinating Inventory and Recommendation via Deep Reinforcement Learning on Multiple Timescales
Effective cross-functional coordination is essential for enhancing firm-wide profitability, particularly in the face of growing organizational complexity and scale. Recent advances in artificial intelligence, especially in reinforcement learning (RL), offer promising avenues to address this fundamental challenge. This paper proposes a unified multi-agent RL framework tailored for joint optimization across distinct functional modules, exemplified via coordinating inventory replenishment and personalized product recommendation. We first develop an integrated theoretical model to capture the intricate interplay between these functions and derive analytical benchmarks that characterize optimal coordination. The analysis reveals synchronized adjustment patterns across products and over time, highlighting the importance of coordinated decision-making. Leveraging these insights, we design a novel multi-timescale multi-agent RL architecture that decomposes policy components according to departmental functions and assigns distinct learning speeds based on task complexity and responsiveness. Our model-free multi-agent design improves scalability and deployment flexibility, while multi-timescale updates enhance convergence stability and adaptability across heterogeneous decisions. We further establish the asymptotic convergence of the proposed algorithm. Extensive simulation experiments demonstrate that the proposed approach significantly improves profitability relative to siloed decision-making frameworks, while the behaviors of the trained RL agents align closely with the managerial insights from our theoretical model. Taken together, this work provides a scalable, interpretable RL-based solution to enable effective cross-functional coordination in complex business settings.
☆ PolyKAN: A Polyhedral Analysis Framework for Provable and Minimal KAN Compression
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional Multi-Layer Perceptrons (MLPs), offering enhanced interpretability and a strong mathematical foundation. However, their parameter efficiency remains a significant challenge for practical deployment. This paper introduces PolyKAN, a novel theoretical framework for KAN compression that provides formal guarantees on both model size reduction and approximation error. By leveraging the inherent piecewise polynomial structure of KANs, we formulate the compression problem as one of optimal polyhedral region merging. We establish a rigorous polyhedral characterization of KANs, develop a complete theory of $\epsilon$-equivalent compression, and design an optimal dynamic programming algorithm that guarantees minimal compression under specified error bounds. Our theoretical analysis demonstrates that PolyKAN achieves provably minimal compression while maintaining strict error control, with polynomial-time complexity in all network parameters. The framework provides the first formal foundation for KAN compression with mathematical guarantees, opening new directions for efficient deployment of interpretable neural architectures.
comment: 10
☆ DADS Under Unknown Input Coefficients
This short note shows that the Deadzone-Adapted Disturbance Suppression (DADS) adaptive control scheme is applicable to systems with unknown input coefficients. We study time-invariant, control-affine systems that satisfy the matching condition for which no bounds for the disturbance and the unknown parameters are known. The input coefficients can be time-varying as well as the unknown parameters. The only thing assumed for the input coefficients is their sign. The adaptive control design is Lyapunov-based and can be accomplished for every system for which a smooth globally stabilizing feedback exists when the disturbances are absent and all unknown parameters are known. The design is given by simple, explicit formulas. The proposed controllers guarantee an attenuation of the plant state to an assignable small level, despite unknown bounds on the parameters and disturbance, without a drift of the gain, state, and input.
comment: 23 pages, 10 figures
☆ Inverse Continuous-Time Linear Quadratic Regulator: From Control Cost Matrix to Entire Cost Reconstruction
This paper studies the inverse optimal control problem for continuous-time linear quadratic regulators over finite-time horizon, aiming to reconstruct the control, state, and terminal cost matrices in the objective function from observed optimal inputs. Previous studies have mainly explored the recovery of state cost matrices under the assumptions that the system is controllable and the control cost matrix is given. Motivated by various applications in which the control cost matrix is unknown and needs to be identified, we present two reconstruction methods. The first exploits the full trajectory of the feedback matrix and establishes the necessary and sufficient condition for unique recovery. To further reduce the computational complexity, the second method utilizes the feedback matrix at some time points, where sufficient conditions for uniqueness are provided. Moreover, we study the recovery of the state and terminal cost matrices in a more general manner. Unlike prior works that assume controllability, we analyse its impact on well-posedness, and derive analytical expressions for unknown matrices for both controllable and uncontrollable cases. Finally, we characterize the structural relation between the inverse problems with the control cost matrix either to be reconstructed or given as a prior.
☆ On vehicle routing problems with stochastic demands -- Part I: Generic integer L-shaped formulations
We study a broad class of vehicle routing problems in which the cost of a route is allowed to be any nonnegative rational value computable in polynomial time in the input size. To address this class, we introduce a unifying framework that generalizes existing integer L-shaped (ILS) formulations developed for vehicle routing problems with stochastic demands (VRPSDs). This framework and subsequent analysis allow us to generalize previous ILS cuts and pinpoint which assumptions are needed to apply those generalizations to other problems. Using these tools, we develop the first algorithm for the VRPSD in the case where the demands are given by an empirical probability distribution of scenarios - a data-driven variant that tackles a significant challenge identified in the literature: dealing with correlations. Indeed, all previous ILS-based exact algorithms for the VRPSD assume either independence of customer demands or correlations through a single external factor. This shows the potential of this generic unifying framework to be applied to a multitude of different variants of the problem.
☆ Procrustes Problems on Random Matrices
Meaningful comparison between sets of observations often necessitates alignment or registration between them, and the resulting optimization problems range in complexity from those admitting simple closed-form solutions to those requiring advanced and novel techniques. We compare different Procrustes problems in which we align two sets of points after various perturbations by minimizing the norm of the difference between one matrix and an orthogonal transformation of the other. The minimization problem depends significantly on the choice of matrix norm; we highlight recent developments in nonsmooth Riemannian optimization and characterize which choices of norm work best for each perturbation. We show that in several applications, from low-dimensional alignments to hypothesis testing for random networks, when Procrustes alignment with the spectral or robust norm is the appropriate choice, it is often feasible to replace the computationally more expensive spectral and robust minimizers with their closed-form Frobenius-norm counterpart. Our work reinforces the synergy between optimization, geometry, and statistics.
♻ ☆ Adaptive Disturbance Observer-based Full-Order Integral-Terminal Sliding Mode Control with Unknown A Priori Bound on Uncertainty
This study presents a novel, continuous finite-time control strategy for a class of nonlinear systems subject to matched uncertainties with unknown bounds. We propose an Adaptive Disturbance Observer-based Full-order Integral-Terminal Sliding Mode Control (ADO-FOITSMC) to stabilize a chain of integrators in presence of exogenous disturbances whose time derivative is bounded by a constant that is not known a priori. Key features of this approach include a significant reduction in control input chattering and a non-monotonic adaptive law for the observer gains, which prevents overestimation while ensuring the global boundedness of system states. The effectiveness and practical viability of the proposed algorithm are demonstrated through its application to the attitude stabilization of a rigid spacecraft.
comment: 6 pages, 4 figures
♻ ☆ Exploring Applications of State Space Models and Advanced Training Techniques in Sequential Recommendations: A Comparative Study on Efficiency and Performance
Recommender systems aim to estimate the dynamically changing user preferences and sequential dependencies between historical user behaviour and metadata. Although transformer-based models have proven to be effective in sequential recommendations, their state growth is proportional to the length of the sequence that is being processed, which makes them expensive in terms of memory and inference costs. Our research focused on three promising directions in sequential recommendations: enhancing speed through the use of State Space Models (SSM), as they can achieve SOTA results in the sequential recommendations domain with lower latency, memory, and inference costs, as proposed by arXiv:2403.03900 improving the quality of recommendations with Large Language Models (LLMs) via Monolithic Preference Optimization without Reference Model (ORPO); and implementing adaptive batch- and step-size algorithms to reduce costs and accelerate training processes.
comment: arXiv admin note: text overlap with arXiv:2403.07691 by other authors
♻ ☆ Lyapunov stability of the Euler method
We extend the Lyapunov stability criterion to Euler discretizations of set-valued dynamical systems. It relies on a pair of Lyapunov functions, one in continuous time and one in discrete time. In the context of optimization, this yields sufficient conditions for normalized gradient descent to converge to a region containing the flat minima.
♻ ☆ Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
Tree tensor networks (TTNs) are widely used in low-rank approximation and quantum many-body simulation. In this work, we present a formal analysis of the differential geometry underlying TTNs. Building on this foundation, we develop efficient first- and second-order optimization algorithms that exploit the intrinsic quotient structure of TTNs. Additionally, we devise a backpropagation algorithm for training TTNs in a kernel learning setting. We validate our methods through numerical experiments on a representative machine learning task.
comment: 24 pages, 6 figures, 4 pseudo-code algorithms, 1 table; updated version: additional explanation for computational advantages of Cart. horiz. space in Sec. 6; updated Fig. 6 accordingly; fixed typos and added references
♻ ☆ MAGPIE: Multilevel-Adaptive-Guided Solver for Ptychographic Phase Retrieval
We introduce MAGPIE (Multilevel-Adaptive-Guided Ptychographic Iterative Engine), a stochastic multigrid solver for the ptychographic phase-retrieval problem. The ptychographic phase-retrieval problem is inherently nonconvex and ill-posed. To address these challenges, we reformulate the original nonlinear and nonconvex inverse problem as the iterative minimization of a quadratic surrogate model that majorizes the original objective. This surrogate not only ensures favorable convergence properties but also generalizes the Ptychographic Iterative Engine (PIE) family of algorithms. By solving the surrogate model using a multigrid method, MAGPIE achieves substantial gains in convergence speed and reconstruction quality over traditional approaches.
♻ ☆ Controllability scores of linear time-varying network systems
For large-scale network systems, network centrality based on control theory plays a crucial role in understanding their properties and controlling them efficiently. The controllability score is such a centrality index and can give a physically meaningful measure. It is originally proposed for linear time-invariant (LTI) systems, and we extend it to linear time-varying (LTV) systems in this paper. Since the controllability score is defined as an optimal solution to some optimization problem, it is not necessarily uniquely determined. Its uniqueness must be guaranteed for reproducibility and interpretability. In this paper, we show its uniqueness in almost all cases, which guarantees its use as a network centrality measure. We also prove its continuity with respect to the time parameters. In addition, we propose a data-driven method to compute it. Finally, we verify the effectiveness of the extension and examine the performance of the data-driven method through numerical experiments.
♻ ☆ Smooth hyperbolicity cones are second-order cone representable
Netzer and Sanyal proved that every smooth hyperbolicity cone is a spectrahedral shadow. We generalize and sharpen this result at the same time, by showing that every Nash-smooth hyperbolicity cone is even second-order cone representable (socr). The result is proved as a consequence of our second theorem, according to which every compact convex semialgebraic set with Nash-smooth boundary of strict positive curvature is socr. The proof uses the technique of tensor evaluation.
comment: Some explanations added, a few typos corrected
♻ ☆ Muon Outperforms Adam in Tail-End Associative Memory Learning
The Muon optimizer is consistently faster than Adam in training Large Language Models (LLMs), yet the mechanism underlying its success remains unclear. This paper demystifies this mechanism through the lens of associative memory. By ablating the transformer components optimized by Muon, we reveal that the associative memory parameters of LLMs, namely the Value and Output (VO) attention weights and Feed-Forward Networks (FFNs), are the primary contributors to Muon's superiority. Motivated by this associative memory view, we then explain Muon's superiority on real-world corpora, which are intrinsically heavy-tailed: a few classes (tail classes) appear far less frequently than others. The superiority is explained through two key properties: (i) its update rule consistently yields a more isotropic singular spectrum than Adam; and as a result, (ii) on heavy-tailed data, it optimizes tail classes more effectively than Adam. Beyond empirical evidence, we theoretically confirm these findings by analyzing a one-layer associative memory model under class-imbalanced data. We prove that Muon consistently achieves balanced learning across classes regardless of feature embeddings, whereas Adam can induce large disparities in learning errors depending on embedding properties. In summary, our empirical observations and theoretical analyses reveal Muon's core advantage: its update rule aligns with the outer-product structure of linear associative memories, enabling more balanced and effective learning of tail classes in heavy-tailed distributions than Adam.
♻ ☆ Rough Stochastic Pontryagin Maximum Principle and an Indirect Shooting Method
We derive first-order Pontryagin optimality conditions for stochastic optimal control with deterministic controls for systems modeled by rough differential equations (RDE) driven by Gaussian rough paths. This Pontryagin Maximum Principle (PMP) applies to systems following stochastic differential equations (SDE) driven by Brownian motion, yet it does not rely on forward-backward SDEs and involves the same Hamiltonian as the deterministic PMP. The proof consists of first deriving various integrable error bounds for solutions to nonlinear and linear RDEs by leveraging recent results on Gaussian rough paths. The PMP then follows using standard techniques based on needle-like variations. As an application, we propose the first indirect shooting method for nonlinear stochastic optimal control and show that it converges 10x faster than a direct method on a stabilization task.
comment: Revisions to the presentation and proofs
Graphics 4
♻ ☆ CHOICE: Coordinated Human-Object Interaction in Cluttered Environments for Pick-and-Place Actions
Animating human-scene interactions such as pick-and-place tasks in cluttered, complex layouts is a challenging task, with objects of a wide variation of geometries and articulation under scenarios with various obstacles. The main difficulty lies in the sparsity of the motion data compared to the wide variation of the objects and environments as well as the poor availability of transition motions between different tasks, increasing the complexity of the generalization to arbitrary conditions. To cope with this issue, we develop a system that tackles the interaction synthesis problem as a hierarchical goal-driven task. Firstly, we develop a bimanual scheduler that plans a set of keyframes for simultaneously controlling the two hands to efficiently achieve the pick-and-place task from an abstract goal signal such as the target object selected by the user. Next, we develop a neural implicit planner that generates guidance hand trajectories under diverse object shape/types and obstacle layouts. Finally, we propose a linear dynamic model for our DeepPhase controller that incorporates a Kalman filter to enable smooth transitions in the frequency domain, resulting in a more realistic and effective multi-objective control of the character.Our system can produce a wide range of natural pick-and-place movements with respect to the geometry of objects, the articulation of containers and the layout of the objects in the scene.
comment: ACM Transaction on Graphics 2025;21 pages, 15 figures; Webpage: https://lujintaozju.github.io/publications/CHOICE/
Mixture of Contexts for Long Video Generation
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
comment: Project page: https://primecai.github.io/moc/
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to encode temporal and identity information. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
WonderHuman: Hallucinating Unseen Parts in Dynamic 3D Human Reconstruction
In this paper, we present WonderHuman to reconstruct dynamic human avatars from a monocular video for high-fidelity novel view synthesis. Previous dynamic human avatar reconstruction methods typically require the input video to have full coverage of the observed human body. However, in daily practice, one typically has access to limited viewpoints, such as monocular front-view videos, making it a cumbersome task for previous methods to reconstruct the unseen parts of the human avatar. To tackle the issue, we present WonderHuman, which leverages 2D generative diffusion model priors to achieve high-quality, photorealistic reconstructions of dynamic human avatars from monocular videos, including accurate rendering of unseen body parts. Our approach introduces a Dual-Space Optimization technique, applying Score Distillation Sampling (SDS) in both canonical and observation spaces to ensure visual consistency and enhance realism in dynamic human reconstruction. Additionally, we present a View Selection strategy and Pose Feature Injection to enforce the consistency between SDS predictions and observed data, ensuring pose-dependent effects and higher fidelity in the reconstructed avatar. In the experiments, our method achieves SOTA performance in producing photorealistic renderings from the given monocular video, particularly for those challenging unseen parts. The project page and source code can be found at https://wyiguanw.github.io/WonderHuman/.
Computer Vision and Pattern Recognition 6
☆ MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.
☆ Adaptive double-phase Rudin--Osher--Fatemi denoising model
We propose a new image denoising model based on a variable-growth total variation regularization of double-phase type with adaptive weight. It is designed to reduce staircasing with respect to the classical Rudin--Osher--Fatemi model, while preserving the edges of the image in a similar fashion. We implement the model and test its performance on synthetic and natural images in 1D and 2D over a range of noise levels.
comment: 21 pages, 18 figures, supplementary material available at: https://github.com/wojciechgorny/double-phase-ROF-model/
☆ The method of the approximate inverse for limited-angle CT
Limited-angle computerized tomography stands for one of the most difficult challenges in imaging. Although it opens the way to faster data acquisition in industry and less dangerous scans in medicine, standard approaches, such as the filtered backprojection (FBP) algorithm or the widely used total-variation functional, often produce various artefacts that hinder the diagnosis. With the rise of deep learning, many modern techniques have proven themselves successful in removing such artefacts but at the cost of large datasets. In this paper, we propose a new model-driven approach based on the method of the approximate inverse, which could serve as new starting point for learning strategies in the future. In contrast to FBP-type approaches, our reconstruction step consists in evaluating linear functionals on the measured data using reconstruction kernels that are precomputed as solution of an auxiliary problem. With this problem being uniquely solvable, the derived limited-angle reconstruction kernel (LARK) is able to fully reconstruct the object without the well-known streak artefacts, even for large limited angles. However, it inherits severe ill-conditioning which leads to a different kind of artefacts arising from the singular functions of the limited-angle Radon transform. The problem becomes particularly challenging when working on semi-discrete (real or analytical) measurements. We develop a general regularization strategy, named constrained limited-angle reconstruction kernel (CLARK), by combining spectral filter, the method of the approximate inverse and custom edge-preserving denoising in order to stabilize the whole process. We further derive and interpret error estimates for the application on real, i.e. semi-discrete, data and we validate our approach on synthetic and real data.
♻ ☆ ImplicitQA: Going beyond frames towards Implicit Video Reasoning
Video Question Answering (VideoQA) has made significant strides by leveraging multimodal learning to align visual and textual modalities. However, current benchmarks overwhelmingly focus on questions answerable through explicit visual content - actions, objects, and events directly observable within individual frames or short clips. In contrast, creative and cinematic videos - such as movies, TV shows, and narrative-driven content - employ storytelling techniques that deliberately omit certain depictions, requiring viewers to infer motives, relationships across discontinuous frames with disjoint visual contexts. Humans naturally excel at such implicit reasoning, seamlessly integrating information across time and context to construct coherent narratives. Yet current benchmarks fail to capture this essential dimension of human-like understanding. To bridge this gap, we present ImplicitQA, a novel benchmark specifically designed to test VideoQA models on human-like implicit reasoning. ImplicitQA comprises 1K meticulously annotated QA pairs drawn from 1K high-quality creative video clips covering 15 genres across 7 decades of content. Questions are systematically categorized into nine key reasoning dimensions: lateral and vertical spatial reasoning, depth and proximity, viewpoint and visibility, motion and trajectory, causal and motivational reasoning, social interactions, physical context, and inferred counting. These annotations are deliberately challenging, crafted by authors, validated through multiple annotators, and benchmarked against human performance to ensure high quality. Our extensive evaluations on 11 leading VideoQA models reveals consistent and significant performance degradation, underscoring their reliance on surface-level visual cues and highlighting the difficulty of implicit reasoning. https://huggingface.co/datasets/ucf-crcv/ImplicitQA.
♻ ☆ GeoRanker: Distance-Aware Ranking for Worldwide Image Geolocalization NeurIPS 2025
Worldwide image geolocalization-the task of predicting GPS coordinates from images taken anywhere on Earth-poses a fundamental challenge due to the vast diversity in visual content across regions. While recent approaches adopt a two-stage pipeline of retrieving candidates and selecting the best match, they typically rely on simplistic similarity heuristics and point-wise supervision, failing to model spatial relationships among candidates. In this paper, we propose GeoRanker, a distance-aware ranking framework that leverages large vision-language models to jointly encode query-candidate interactions and predict geographic proximity. In addition, we introduce a multi-order distance loss that ranks both absolute and relative distances, enabling the model to reason over structured spatial relationships. To support this, we curate GeoRanking, the first dataset explicitly designed for geographic ranking tasks with multimodal candidate information. GeoRanker achieves state-of-the-art results on two well-established benchmarks (IM2GPS3K and YFCC4K), significantly outperforming current best methods.
comment: NeurIPS 2025
♻ ☆ Region-of-Interest Augmentation for Mammography Classification under Patient-Level Cross-Validation
Breast cancer screening with mammography remains central to early detection and mortality reduction. Deep learning has shown strong potential for automating mammogram interpretation, yet limited-resolution datasets and small sample sizes continue to restrict performance. We revisit the Mini-DDSM dataset (9,684 images; 2,414 patients) and introduce a lightweight region-of-interest (ROI) augmentation strategy. During training, full images are probabilistically replaced with random ROI crops sampled from a precomputed, label-free bounding-box bank, with optional jitter to increase variability. We evaluate under strict patient-level cross-validation and report ROC-AUC, PR-AUC, and training-time efficiency metrics (throughput and GPU memory). Because ROI augmentation is training-only, inference-time cost remains unchanged. On Mini-DDSM, ROI augmentation (best: p_roi = 0.10, alpha = 0.10) yields modest average ROC-AUC gains, with performance varying across folds; PR-AUC is flat to slightly lower. These results demonstrate that simple, data-centric ROI strategies can enhance mammography classification in constrained settings without requiring additional labels or architectural modifications.
comment: 5 pages, 5 figures, 2 tables
Robotics 32
☆ A Real-Time Framework for Intermediate Map Construction and Kinematically Feasible Off-Road Planning Without OSM
Off-road environments present unique challenges for autonomous navigation due to their complex and unstructured nature. Traditional global path-planning methods, which typically aim to minimize path length and travel time, perform poorly on large-scale maps and fail to account for critical factors such as real-time performance, kinematic feasibility, and memory efficiency. This paper introduces a novel global path-planning method specifically designed for off-road environments, addressing these essential factors. The method begins by constructing an intermediate map within the pixel coordinate system, incorporating geographical features like off-road trails, waterways, restricted and passable areas, and trees. The planning problem is then divided into three sub-problems: graph-based path planning, kinematic feasibility checking, and path smoothing. This approach effectively meets real-time performance requirements while ensuring kinematic feasibility and efficient memory use. The method was tested in various off-road environments with large-scale maps up to several square kilometers in size, successfully identifying feasible paths in an average of 1.5 seconds and utilizing approximately 1.5GB of memory under extreme conditions. The proposed framework is versatile and applicable to a wide range of off-road autonomous navigation tasks, including search and rescue missions and agricultural operations.
☆ TCB-VIO: Tightly-Coupled Focal-Plane Binary-Enhanced Visual Inertial Odometry
Vision algorithms can be executed directly on the image sensor when implemented on the next-generation sensors known as focal-plane sensor-processor arrays (FPSP)s, where every pixel has a processor. FPSPs greatly improve latency, reducing the problems associated with the bottleneck of data transfer from a vision sensor to a processor. FPSPs accelerate vision-based algorithms such as visual-inertial odometry (VIO). However, VIO frameworks suffer from spatial drift due to the vision-based pose estimation, whilst temporal drift arises from the inertial measurements. FPSPs circumvent the spatial drift by operating at a high frame rate to match the high-frequency output of the inertial measurements. In this paper, we present TCB-VIO, a tightly-coupled 6 degrees-of-freedom VIO by a Multi-State Constraint Kalman Filter (MSCKF), operating at a high frame-rate of 250 FPS and from IMU measurements obtained at 400 Hz. TCB-VIO outperforms state-of-the-art methods: ROVIO, VINS-Mono, and ORB-SLAM3.
comment: Accepted at IEEE Robotics and Automation Letters
☆ OpenFLAME: Federated Visual Positioning System to Enable Large-Scale Augmented Reality Applications
World-scale augmented reality (AR) applications need a ubiquitous 6DoF localization backend to anchor content to the real world consistently across devices. Large organizations such as Google and Niantic are 3D scanning outdoor public spaces in order to build their own Visual Positioning Systems (VPS). These centralized VPS solutions fail to meet the needs of many future AR applications -- they do not cover private indoor spaces because of privacy concerns, regulations, and the labor bottleneck of updating and maintaining 3D scans. In this paper, we present OpenFLAME, a federated VPS backend that allows independent organizations to 3D scan and maintain a separate VPS service for their own spaces. This enables access control of indoor 3D scans, distributed maintenance of the VPS backend, and encourages larger coverage. Sharding of VPS services introduces several unique challenges -- coherency of localization results across spaces, quality control of VPS services, selection of the right VPS service for a location, and many others. We introduce the concept of federated image-based localization and provide reference solutions for managing and merging data across maps without sharing private data.
☆ WAFFLE: A Wearable Approach to Bite Timing Estimation in Robot-Assisted Feeding
Millions of people around the world need assistance with feeding. Robotic feeding systems offer the potential to enhance autonomy and quality of life for individuals with impairments and reduce caregiver workload. However, their widespread adoption has been limited by technical challenges such as estimating bite timing, the appropriate moment for the robot to transfer food to a user's mouth. In this work, we introduce WAFFLE: Wearable Approach For Feeding with LEarned bite timing, a system that accurately predicts bite timing by leveraging wearable sensor data to be highly reactive to natural user cues such as head movements, chewing, and talking. We train a supervised regression model on bite timing data from 14 participants and incorporate a user-adjustable assertiveness threshold to convert predictions into proceed or stop commands. In a study with 15 participants without motor impairments with the Obi feeding robot, WAFFLE performs statistically on par with or better than baseline methods across measures of feeling of control, robot understanding, and workload, and is preferred by the majority of participants for both individual and social dining. We further demonstrate WAFFLE's generalizability in a study with 2 participants with motor impairments in their home environments using a Kinova 7DOF robot. Our findings support WAFFLE's effectiveness in enabling natural, reactive bite timing that generalizes across users, robot hardware, robot positioning, feeding trajectories, foods, and both individual and social dining contexts.
☆ Bridge Thinking and Acting: Unleashing Physical Potential of VLM with Generalizable Action Expert
Although Vision-Language Models (VLM) have demonstrated impressive planning and reasoning capabilities, translating these abilities into the physical world introduces significant challenges. Conventional Vision-Language-Action (VLA) models, which integrate reasoning and action into a monolithic architecture, generalize poorly because they are constrained by scarce, narrow-domain data. While recent dual-system approaches attempt to decouple "thinking" from "acting", they are often constrained by semantic ambiguities within the action module. This ambiguity makes large-scale, cross-task training infeasible. Consequently, these systems typically necessitate fine-tuning on newly collected data when deployed to novel environments, and the cooperation mechanism between the two systems remains ill-defined. To address these limitations, we introduce, for the first time, a framework centered around a generalizable action expert. Our approach utilizes sparse 3D trajectories as an intermediate representation, effectively bridging the high-level planning capabilities of the VLM with the low-level physical action module. During the planning phase, the VLM is only required to generate coarse 3D waypoints. These waypoints are then processed by our generalizable action expert, which refines them into dense, executable action sequences by sampling real-time point cloud observations of the environment. To promote training efficiency and robust generalization, we introduce a novel "Action Pre-training, Pointcloud Fine-tuning" paradigm. Our method combines the broad generalization capabilities of VLMs in visual understanding and planning with the fine-grained, action-level generalization of action expert.
☆ NoTVLA: Narrowing of Dense Action Trajectories for Generalizable Robot Manipulation
Vision-Language-Action (VLA) models represent a pivotal advance in embodied intelligence, yet they confront critical barriers to real-world deployment, most notably catastrophic forgetting. This issue stems from their overreliance on continuous action sequences or action chunks, which inadvertently create isolated data silos that disrupt knowledge retention across tasks. To tackle these challenges, we propose the Narrowing of Trajectory VLA (NoTVLA) framework: a novel approach that narrows its focus to sparse trajectories, thereby avoiding the catastrophic forgetting associated with dense trajectory fine-tuning. A key innovation of NoTVLA lies in its trajectory planning strategy: instead of centering on the target object's trajectory, it leverages temporal compression and spatial reasoning pruning specifically for the robot end effector's trajectory. Furthermore, training is conducted using these sparse trajectories rather than dense action trajectories, an optimization that delivers remarkable practical advantages with better performance in zero-shot. In multi-task evaluation scenarios, NoTVLA achieves superior performance and generalization compared to pi0 while operating under two critical constraints: it uses over an order of magnitude less computing power than pi0 and requires no wrist-mounted camera. This design ensures that NoTVLA's operational accuracy closely approximates that of single-task expert models. Crucially, it also preserves the model's inherent language capabilities, enabling zero-shot generalization in specific scenarios, supporting unified model deployment across multiple robot platforms, and fostering a degree of generalization even when perceiving tasks from novel perspectives.
Seeing the Bigger Picture: 3D Latent Mapping for Mobile Manipulation Policy Learning
In this paper, we demonstrate that mobile manipulation policies utilizing a 3D latent map achieve stronger spatial and temporal reasoning than policies relying solely on images. We introduce Seeing the Bigger Picture (SBP), an end-to-end policy learning approach that operates directly on a 3D map of latent features. In SBP, the map extends perception beyond the robot's current field of view and aggregates observations over long horizons. Our mapping approach incrementally fuses multiview observations into a grid of scene-specific latent features. A pre-trained, scene-agnostic decoder reconstructs target embeddings from these features and enables online optimization of the map features during task execution. A policy, trainable with behavior cloning or reinforcement learning, treats the latent map as a state variable and uses global context from the map obtained via a 3D feature aggregator. We evaluate SBP on scene-level mobile manipulation and sequential tabletop manipulation tasks. Our experiments demonstrate that SBP (i) reasons globally over the scene, (ii) leverages the map as long-horizon memory, and (iii) outperforms image-based policies in both in-distribution and novel scenes, e.g., improving the success rate by 25% for the sequential manipulation task.
comment: Project website can be found at https://existentialrobotics.org/sbp_page/
☆ COVER:COverage-VErified Roadmaps for Fixed-time Motion Planning in Continuous Semi-Static Environments
Having the ability to answer motion-planning queries within a fixed time budget is critical for the widespread deployment of robotic systems. Semi-static environments, where most obstacles remain static but a limited set can vary across queries, exhibit structured variability that can be systematically exploited to provide stronger guarantees than in general motion-planning problems. However, prior approaches in this setting either lack formal guarantees or rely on restrictive discretizations of obstacle configurations, limiting their applicability in realistic domains. This paper introduces COVER, a novel framework that incrementally constructs a coverage-verified roadmap in semi-static environments. By partitioning the obstacle configuration space and solving for feasible paths within each partition, COVER systematically verifies feasibility of the roadmap in each partition and guarantees fixed-time motion planning queries within the verified regions. We validate COVER with a 7-DOF simulated Panda robot performing table and shelf tasks, demonstrating that COVER achieves broader coverage with higher query success rates than prior works.
☆ LIBERO-PRO: Towards Robust and Fair Evaluation of Vision-Language-Action Models Beyond Memorization
LIBERO has emerged as a widely adopted benchmark for evaluating Vision-Language-Action (VLA) models; however, its current training and evaluation settings are problematic, often leading to inflated performance estimates and preventing fair model comparison. To address these issues, we introduce LIBERO-PRO, an extended LIBERO benchmark that systematically evaluates model performance under reasonable perturbations across four dimensions: manipulated objects, initial states, task instructions, and environments. Experimental results reveal that, although existing models achieve over 90% accuracy under the standard LIBERO evaluation, their performance collapses to 0.0% under our generalized setting. Crucially, this discrepancy exposes the models' reliance on rote memorization of action sequences and environment layouts from the training set, rather than genuine task understanding or environmental perception. For instance, models persist in executing grasping actions when the target object is replaced with irrelevant items, and their outputs remain unchanged even when given corrupted instructions or even messy tokens. These findings expose the severe flaws in current evaluation practices, and we call on the community to abandon misleading methodologies in favor of robust assessments of model generalization and comprehension. Our code is available at: https://github.com/Zxy-MLlab/LIBERO-PRO.
comment: 12 pages,7 figures, 5 tables
Distributed Area Coverage with High Altitude Balloons Using Multi-Agent Reinforcement Learning
High Altitude Balloons (HABs) can leverage stratospheric wind layers for limited horizontal control, enabling applications in reconnaissance, environmental monitoring, and communications networks. Existing multi-agent HAB coordination approaches use deterministic methods like Voronoi partitioning and extremum seeking control for large global constellations, which perform poorly for smaller teams and localized missions. While single-agent HAB control using reinforcement learning has been demonstrated on HABs, coordinated multi-agent reinforcement learning (MARL) has not yet been investigated. This work presents the first systematic application of multi-agent reinforcement learning (MARL) to HAB coordination for distributed area coverage. We extend our previously developed reinforcement learning simulation environment (RLHAB) to support cooperative multi-agent learning, enabling multiple agents to operate simultaneously in realistic atmospheric conditions. We adapt QMIX for HAB area coverage coordination, leveraging Centralized Training with Decentralized Execution to address atmospheric vehicle coordination challenges. Our approach employs specialized observation spaces providing individual state, environmental context, and teammate data, with hierarchical rewards prioritizing coverage while encouraging spatial distribution. We demonstrate that QMIX achieves similar performance to the theoretically optimal geometric deterministic method for distributed area coverage, validating the MARL approach and providing a foundation for more complex autonomous multi-HAB missions where deterministic methods become intractable.
Trajectory prediction for heterogeneous agents: A performance analysis on small and imbalanced datasets
Robots and other intelligent systems navigating in complex dynamic environments should predict future actions and intentions of surrounding agents to reach their goals efficiently and avoid collisions. The dynamics of those agents strongly depends on their tasks, roles, or observable labels. Class-conditioned motion prediction is thus an appealing way to reduce forecast uncertainty and get more accurate predictions for heterogeneous agents. However, this is hardly explored in the prior art, especially for mobile robots and in limited data applications. In this paper, we analyse different class-conditioned trajectory prediction methods on two datasets. We propose a set of conditional pattern-based and efficient deep learning-based baselines, and evaluate their performance on robotics and outdoors datasets (TH\"OR-MAGNI and Stanford Drone Dataset). Our experiments show that all methods improve accuracy in most of the settings when considering class labels. More importantly, we observe that there are significant differences when learning from imbalanced datasets, or in new environments where sufficient data is not available. In particular, we find that deep learning methods perform better on balanced datasets, but in applications with limited data, e.g., cold start of a robot in a new environment, or imbalanced classes, pattern-based methods may be preferable.
comment: This paper has been accepted to the IEEE Robotics and Automation Letters journal and presented at the 40th Anniversary of the IEEE International Conference on Robotics and Automation, which was held in Rotterdam, Netherlands on 23-26 September, 2024
☆ Model-Based Adaptive Precision Control for Tabletop Planar Pushing Under Uncertain Dynamics
Data-driven planar pushing methods have recently gained attention as they reduce manual engineering effort and improve generalization compared to analytical approaches. However, most prior work targets narrow capabilities (e.g., side switching, precision, or single-task training), limiting broader applicability. We present a model-based framework for non-prehensile tabletop pushing that uses a single learned model to address multiple tasks without retraining. Our approach employs a recurrent GRU-based architecture with additional non-linear layers to capture object-environment dynamics while ensuring stability. A tailored state-action representation enables the model to generalize across uncertain dynamics, variable push lengths, and diverse tasks. For control, we integrate the learned dynamics with a sampling-based Model Predictive Path Integral (MPPI) controller, which generates adaptive, task-oriented actions. This framework supports side switching, variable-length pushes, and objectives such as precise positioning, trajectory following, and obstacle avoidance. Training is performed in simulation with domain randomization to support sim-to-real transfer. We first evaluate the architecture through ablation studies, showing improved prediction accuracy and stable rollouts. We then validate the full system in simulation and real-world experiments using a Franka Panda robot with markerless tracking. Results demonstrate high success rates in precise positioning under strict thresholds and strong performance in trajectory tracking and obstacle avoidance. Moreover, multiple tasks are solved simply by changing the controller's objective function, without retraining. While our current focus is on a single object type, we extend the framework by training on wider push lengths and designing a balanced controller that reduces the number of steps for longer-horizon goals.
☆ EmbodiSwap for Zero-Shot Robot Imitation Learning
We introduce EmbodiSwap - a method for producing photorealistic synthetic robot overlays over human video. We employ EmbodiSwap for zero-shot imitation learning, bridging the embodiment gap between in-the-wild ego-centric human video and a target robot embodiment. We train a closed-loop robot manipulation policy over the data produced by EmbodiSwap. We make novel use of V-JEPA as a visual backbone, repurposing V-JEPA from the domain of video understanding to imitation learning over synthetic robot videos. Adoption of V-JEPA outperforms alternative vision backbones more conventionally used within robotics. In real-world tests, our zero-shot trained V-JEPA model achieves an $82\%$ success rate, outperforming a few-shot trained $\pi_0$ network as well as $\pi_0$ trained over data produced by EmbodiSwap. We release (i) code for generating the synthetic robot overlays which takes as input human videos and an arbitrary robot URDF and generates a robot dataset, (ii) the robot dataset we synthesize over EPIC-Kitchens, HOI4D and Ego4D, and (iii) model checkpoints and inference code, to facilitate reproducible research and broader adoption.
comment: Video link: https://drive.google.com/file/d/1UccngwgPqUwPMhBja7JrXfZoTquCx_Qe/view?usp=sharing
Robust Visual Embodiment: How Robots Discover Their Bodies in Real Environments
Robots with internal visual self-models promise unprecedented adaptability, yet existing autonomous modeling pipelines remain fragile under realistic sensing conditions such as noisy imagery and cluttered backgrounds. This paper presents the first systematic study quantifying how visual degradations--including blur, salt-and-pepper noise, and Gaussian noise--affect robotic self-modeling. Through both simulation and physical experiments, we demonstrate their impact on morphology prediction, trajectory planning, and damage recovery in state-of-the-art pipelines. To overcome these challenges, we introduce a task-aware denoising framework that couples classical restoration with morphology-preserving constraints, ensuring retention of structural cues critical for self-modeling. In addition, we integrate semantic segmentation to robustly isolate robots from cluttered and colorful scenes. Extensive experiments show that our approach restores near-baseline performance across simulated and physical platforms, while existing pipelines degrade significantly. These contributions advance the robustness of visual self-modeling and establish practical foundations for deploying self-aware robots in unpredictable real-world environments.
☆ An Amphibious Untethered Inchworm Soft Robot for Fast Crawling Locomotion
Untethered soft robots are essential for advancing the real-world deployment of soft robotic systems in diverse and multitasking environments. Inspired by soft-bodied inchworm, we present a fully untethered soft robot with a curved, flexible structure actuated by magnetic forces. The robot has a total mass of 102.63 g and demonstrates multimodal locomotion, achieving a maximum walking speed of 3.74 cm/s and a swimming speed of 0.82 cm/s. A compact and lightweight onboard control circuit enables wireless command transmission, while an integrated camera provides environmental perception. Through structural optimization and system-level integration, the robot successfully performs walking, steering, swimming, and payload transport without reliance on external infrastructure. The robot's dynamic performance and locomotion capabilities are systematically validated through experimental characterization.
Geometrically Exact Hard Magneto-Elastic Cosserat Shells: Static Formulation for Shape Morphing
Cosserat rod theory is the popular approach to modeling ferromagnetic soft robots as 1-Dimensional (1D) slender structures in most applications, such as biomedical. However, recent soft robots designed for locomotion and manipulation often exhibit a large width-to-length ratio that categorizes them as 2D shells. For analysis and shape-morphing control purposes, we develop an efficient coordinate-free static model of hard-magnetic shells found in soft magnetic grippers and walking soft robots. The approach is based on a novel formulation of Cosserat shell theory on the Special Euclidean group ($\mathbf{SE}(3)$). The shell is assumed to be a 2D manifold of material points with six degrees of freedom (position & rotation) suitable for capturing the behavior of a uniformly distributed array of spheroidal hard magnetic particles embedded in the rheological elastomer. The shell's configuration manifold is the space of all smooth embeddings $\mathbb{R}^2\rightarrow\mathbf{SE}(3)$. According to a novel definition of local deformation gradient based on the Lie group structure of $\mathbf{SE}(3)$, we derive the strong and weak forms of equilibrium equations, following the principle of virtual work. We extract the linearized version of the weak form for numerical implementations. The resulting finite element approach can avoid well-known challenges such as singularity and locking phenomenon in modeling shell structures. The proposed model is analytically and experimentally validated through a series of test cases that demonstrate its superior efficacy, particularly when the shell undergoes severe rotations and displacements.
☆ Safety-Oriented Dynamic Path Planning for Automated Vehicles
Ensuring safety in autonomous vehicles necessitates advanced path planning and obstacle avoidance capabilities, particularly in dynamic environments. This paper introduces a bi-level control framework that efficiently augments road boundaries by incorporating time-dependent grid projections of obstacle movements, thus enabling precise and adaptive path planning. The main control loop utilizes Nonlinear Model Predictive Control (NMPC) for real-time path optimization, wherein homotopy-based constraint relaxation is employed to improve the solvability of the optimal control problem (OCP). Furthermore, an independent backup loop runs concurrently to provide safe fallback trajectories when an optimal trajectory cannot be computed by the main loop within a critical time frame, thus enhancing safety and real-time performance. Our evaluation showcases the benefits of the proposed methods in various driving scenarios, highlighting the real-time applicability and robustness of our approach. Overall, the framework represents a significant step towards safer and more reliable autonomous driving in complex and dynamic environments.
comment: Published in 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), Oslo, Norway, June 17-20, 2025. Received Best Conference Paper Award
♻ ☆ LLM-MCoX: Large Language Model-based Multi-robot Coordinated Exploration and Search
Autonomous exploration and object search in unknown indoor environments remain challenging for multi-robot systems (MRS). Traditional approaches often rely on greedy frontier assignment strategies with limited inter-robot coordination. In this work, we introduce LLM-MCoX (LLM-based Multi-robot Coordinated Exploration and Search), a novel framework that leverages Large Language Models (LLMs) for intelligent coordination of both homogeneous and heterogeneous robot teams tasked with efficient exploration and target object search. Our approach combines real-time LiDAR scan processing for frontier cluster extraction and doorway detection with multimodal LLM reasoning (e.g., GPT-4o) to generate coordinated waypoint assignments based on shared environment maps and robot states. LLM-MCoX demonstrates superior performance compared to existing methods, including greedy and Voronoi-based planners, achieving 22.7% faster exploration times and 50% improved search efficiency in large environments with 6 robots. Notably, LLM-MCoX enables natural language-based object search capabilities, allowing human operators to provide high-level semantic guidance that traditional algorithms cannot interpret.
♻ ☆ AutoDrive-QA: A Multiple-Choice Benchmark for Vision-Language Evaluation in Urban Autonomous Driving
Evaluating vision-language models (VLMs) in urban driving contexts remains challenging, as existing benchmarks rely on open-ended responses that are ambiguous, annotation-intensive, and inconsistent to score. This lack of standardized evaluation slows progress toward safe and reliable AI for urban mobility. We introduce AutoDrive-QA, the first benchmark that systematically converts open-ended driving QA datasets (DriveLM, NuScenes-QA, LingoQA) into structured multiple-choice questions (MCQs) with distractors grounded in five realistic error categories: Driving Domain Misconceptions, Logical Inconsistencies, Misinterpreted Sensor Inputs, Computational Oversights, and Question Ambiguity. This framework enables reproducible and interpretable evaluation of VLMs across perception, prediction, and planning tasks in complex urban scenes. Experiments show that fine-tuning LLaVA-1.5-7B improves accuracy by about six percentage points across tasks, GPT-4V achieves the strongest zero-shot performance with up to 69.8% accuracy, and Qwen2-VL models also perform competitively, particularly in multi-view settings. Moreover, traditional metrics such as BLEU and CIDEr fail to distinguish strong from weak models. By providing an objective, domain-grounded evaluation protocol, AutoDrive-QA contributes to more transparent benchmarking of urban AI systems, supporting the development of safer and more trustworthy autonomous driving technologies for smart cities.
comment: Updated results with larger dataset experiments and expanded discussion
♻ ☆ Nonparametric adaptive payload tracking for an offshore crane
A nonparametric adaptive controller is proposed for crane control where the payload tracks a desired trajectory with feedback from the payload position. The controller is based on a novel version of partial feedback linearization where the unactuated crane load dynamics are controlled with the position of the actuated crane dynamics instead of the acceleration. This is made possible by taking advantage of the gravity terms in a new Cartesian model that we propose for the load dynamics. This Cartesian model structure makes it possible to implement a nonparametric adaptive controller which cancels disturbances on the crane load by approximating the effects of unknown disturbance forces and structurally unknown dynamics in a reproducing kernel Hilbert space (RKHS). It is shown that the nonparametric adaptive controller leads to uniformly ultimately bounded errors in the presence of unknown forces and unmodeled dynamics. In addition, it is shown that the proposed partial feedback linearization based on the Cartesian model has certain advantages in payload tracking control also in the non-adaptive case. The performance of the nonparametric adaptive controller is validated in simulation and experiments with good results.
RT-GuIDE: Real-Time Gaussian Splatting for Information-Driven Exploration
We propose a framework for active mapping and exploration that leverages Gaussian splatting for constructing dense maps. Further, we develop a GPU-accelerated motion planning algorithm that can exploit the Gaussian map for real-time navigation. The Gaussian map constructed onboard the robot is optimized for both photometric and geometric quality while enabling real-time situational awareness for autonomy. We show through viewpoint selection experiments that our method yields comparable Peak Signal-to-Noise Ratio (PSNR) and similar reconstruction error to state-of-the-art approaches, while being orders of magnitude faster to compute. In closed-loop physics-based simulation and real-world experiments, our algorithm achieves better map quality (at least 0.8dB higher PSNR and more than 16% higher geometric reconstruction accuracy) than maps constructed by a state-of-the-art method, enabling semantic segmentation using off-the-shelf open-set models. Experiment videos and more details can be found on our project page: https://tyuezhan.github.io/RT GuIDE/
♻ ☆ Cyber Racing Coach: A Haptic Shared Control Framework for Teaching Advanced Driving Skills
This study introduces a haptic shared control framework designed to teach human drivers advanced driving skills. In this context, shared control refers to a driving mode where the human driver collaborates with an autonomous driving system to control the steering of a vehicle simultaneously. Advanced driving skills are those necessary to safely push the vehicle to its handling limits in high-performance driving such as racing and emergency obstacle avoidance. Previous research has demonstrated the performance and safety benefits of shared control schemes using both subjective and objective evaluations. However, these schemes have not been assessed for their impact on skill acquisition on complex and demanding tasks. Prior research on long-term skill acquisition either applies haptic shared control to simple tasks or employs other feedback methods like visual and auditory aids. To bridge this gap, this study creates a cyber racing coach framework based on the haptic shared control paradigm and evaluates its performance in helping human drivers acquire high-performance driving skills. The framework introduces (1) an autonomous driving system that is capable of cooperating with humans in a highly performant driving scenario; and (2) a haptic shared control mechanism along with a fading scheme to gradually reduce the steering assistance from autonomy based on the human driver's performance during training. Two benchmarks are considered: self-learning (no assistance) and full assistance during training. Results from a human subject study indicate that the proposed framework helps human drivers develop superior racing skills compared to the benchmarks, resulting in better performance and consistency.
comment: Added the statement written as red text for the IEEE preprint policy
♻ ☆ Dual-arm Motion Generation for Repositioning Care based on Deep Predictive Learning with Somatosensory Attention Mechanism IROS 2025
Caregiving is a vital role for domestic robots, especially the repositioning care has immense societal value, critically improving the health and quality of life of individuals with limited mobility. However, repositioning task is a challenging area of research, as it requires robots to adapt their motions while interacting flexibly with patients. The task involves several key challenges: (1) applying appropriate force to specific target areas; (2) performing multiple actions seamlessly, each requiring different force application policies; and (3) motion adaptation under uncertain positional conditions. To address these, we propose a deep neural network (DNN)-based architecture utilizing proprioceptive and visual attention mechanisms, along with impedance control to regulate the robot's movements. Using the dual-arm humanoid robot Dry-AIREC, the proposed model successfully generated motions to insert the robot's hand between the bed and a mannequin's back without applying excessive force, and it supported the transition from a supine to a lifted-up position. The project page is here: https://sites.google.com/view/caregiving-robot-airec/repositioning
comment: Accepted at IROS 2025
♻ ☆ LERa: Replanning with Visual Feedback in Instruction Following IROS 2025
Large Language Models are increasingly used in robotics for task planning, but their reliance on textual inputs limits their adaptability to real-world changes and failures. To address these challenges, we propose LERa - Look, Explain, Replan - a Visual Language Model-based replanning approach that utilizes visual feedback. Unlike existing methods, LERa requires only a raw RGB image, a natural language instruction, an initial task plan, and failure detection - without additional information such as object detection or predefined conditions that may be unavailable in a given scenario. The replanning process consists of three steps: (i) Look - where LERa generates a scene description and identifies errors; (ii) Explain - where it provides corrective guidance; and (iii) Replan - where it modifies the plan accordingly. LERa is adaptable to various agent architectures and can handle errors from both dynamic scene changes and task execution failures. We evaluate LERa on the newly introduced ALFRED-ChaOS and VirtualHome-ChaOS datasets, achieving a 40% improvement over baselines in dynamic environments. In tabletop manipulation tasks with a predefined probability of task failure within the PyBullet simulator, LERa improves success rates by up to 67%. Further experiments, including real-world trials with a tabletop manipulator robot, confirm LERa's effectiveness in replanning. We demonstrate that LERa is a robust and adaptable solution for error-aware task execution in robotics. The project page is available at https://lera-robo.github.io.
comment: Accepted to IROS 2025
♻ ☆ A Corrector-aided Look-ahead Distance-based Guidance for Online Reference Path Following with an Efficient Mid-course Guidance Strategy
Efficient path-following is crucial in most of the applications of autonomous vehicles (UxV). Among various guidance strategies presented in literature, the look-ahead distance ($L_1$)-based nonlinear guidance has received significant attention due to its ease in implementation and ability to maintain a low cross-track error while following simpler reference paths and generating bounded lateral acceleration commands. However, the constant value of $L_1$ becomes problematic when the UxV is far away from the reference path and also produces higher cross-track error while following complex reference paths having high variation in radius of curvature. To address these challenges, the notion of look-ahead distance is leveraged in a novel way to develop a two-phase guidance strategy. Initially, when the UxV is far from the reference path, an optimized $L_1$ selection strategy is developed to guide the UxV towards the vicinity of the start point of the reference path, while maintaining minimal lateral acceleration command. Once the vehicle reaches a close neighborhood of the reference path, a novel notion of corrector point is incorporated in the constant $L_1$-based guidance scheme to generate the guidance command that effectively reduces the root mean square of the cross-track error and lateral acceleration requirement thereafter. Simulation results validate satisfactory performance of this proposed corrector point and look-ahead point pair-based guidance strategy, along with the developed mid-course guidance scheme. Also, its superiority over the conventional constant $L_1$ guidance scheme is established by simulation studies over different initial condition scenarios.
comment: This paper is currently under review for publication in ACC 2026
♻ ☆ Learning a Unified Policy for Position and Force Control in Legged Loco-Manipulation
Robotic loco-manipulation tasks often involve contact-rich interactions with the environment, requiring the joint modeling of contact force and robot position. However, recent visuomotor policies often focus solely on learning position or force control, overlooking their co-learning. In this work, we propose the first unified policy for legged robots that jointly models force and position control learned without reliance on force sensors. By simulating diverse combinations of position and force commands alongside external disturbance forces, we use reinforcement learning to learn a policy that estimates forces from historical robot states and compensates for them through position and velocity adjustments. This policy enables a wide range of manipulation behaviors under varying force and position inputs, including position tracking, force application, force tracking, and compliant interactions. Furthermore, we demonstrate that the learned policy enhances trajectory-based imitation learning pipelines by incorporating essential contact information through its force estimation module, achieving approximately 39.5% higher success rates across four challenging contact-rich manipulation tasks compared to position-control policies. Extensive experiments on both a quadrupedal manipulator and a humanoid robot validate the versatility and robustness of the proposed policy across diverse scenarios.
comment: website: https://unified-force.github.io/
♻ ☆ Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models
Robots operating in complex and unknown environments frequently require geometric-semantic representations of the environment to safely perform their tasks. While inferring the environment, they must account for many possible scenarios when planning future actions. Since objects' class types are discrete and the robot's self-pose and the objects' poses are continuous, the environment can be represented by a hybrid discrete-continuous belief which is updated according to models and incoming data. Prior probabilities and observation models representing the environment can be learned from data using deep learning algorithms. Such models often couple environmental semantic and geometric properties. As a result, semantic variables are interconnected, causing semantic state space dimensionality to increase exponentially. In this paper, we consider planning under uncertainty using partially observable Markov decision processes (POMDPs) with hybrid semantic-geometric beliefs. The models and priors consider the coupling between semantic and geometric variables. Within POMDP, we introduce the concept of semantically aware safety. Obtaining representative samples of the theoretical hybrid belief, required for estimating the value function, is very challenging. As a key contribution, we develop a novel form of the hybrid belief and leverage it to sample representative samples. We show that under certain conditions, the value function and probability of safety can be calculated efficiently with an explicit expectation over all possible semantic mappings. Our simulations show that our estimates of the objective function and probability of safety achieve similar levels of accuracy compared to estimators that run exhaustively on the entire semantic state-space using samples from the theoretical hybrid belief. Nevertheless, the complexity of our estimators is polynomial rather than exponential.
comment: 20 pages, 9 figures
♻ ☆ Dynamic Neural Potential Field: Online Trajectory Optimization in the Presence of Moving Obstacles
Generalist robot policies must operate safely and reliably in everyday human environments such as homes, offices, and warehouses, where people and objects move unpredictably. We present Dynamic Neural Potential Field (NPField-GPT), a learning-enhanced model predictive control (MPC) framework that couples classical optimization with a Transformer-based predictor of footprint-aware repulsive potentials. Given an occupancy sub-map, robot footprint, and optional dynamic-obstacle cues, our autoregressive NPField-GPT head forecasts a horizon of differentiable potentials that are injected into a sequential quadratic MPC program via L4CasADi, yielding real-time, constraint-aware trajectory optimization. We additionally study two baselines: (NPField-D1) static-frame decomposition and (NPField-D2) parallel MLP heads for all steps. In dynamic indoor scenarios from BenchMR and on a Husky UGV in office corridors, NPField-GPT produces safer, more conservative trajectories under motion changes, while D1/D2 offer lower latency. We also compare with the CIAO* and MPPI baselines. Across methods, the Transformer+MPC synergy preserves the transparency and stability of model-based planning while learning only the part that benefits from data: spatiotemporal collision risk. Code and trained models are available at https://github.com/CognitiveAISystems/Dynamic-Neural-Potential-Field
♻ ☆ ATK: Automatic Task-driven Keypoint Selection for Robust Policy Learning
Visuomotor policies often suffer from perceptual challenges, where visual differences between training and evaluation environments degrade policy performance. Policies relying on state estimations, like 6D pose, require task-specific tracking and are difficult to scale, while raw sensor-based policies may lack robustness to small visual disturbances. In this work, we leverage 2D keypoints--spatially consistent features in the image frame--as a flexible state representation for robust policy learning and apply it to both sim-to-real transfer and real-world imitation learning. However, the choice of which keypoints to use can vary across objects and tasks. We propose a novel method, ATK, to automatically select keypoints in a task-driven manner so that the chosen keypoints are predictive of optimal behavior for the given task. Our proposal optimizes for a minimal set of keypoints that focus on task-relevant parts while preserving policy performance and robustness. We distill expert data (either from an expert policy in simulation or a human expert) into a policy that operates on RGB images while tracking the selected keypoints. By leveraging pre-trained visual modules, our system effectively encodes states and transfers policies to the real-world evaluation scenario despite wide scene variations and perceptual challenges such as transparent objects, fine-grained tasks, and deformable objects manipulation. We validate ATK on various robotic tasks, demonstrating that these minimal keypoint representations significantly improve robustness to visual disturbances and environmental variations. See all experiments and more details at https://yunchuzhang.github.io/ATK/.
♻ ☆ FreqPolicy: Frequency Autoregressive Visuomotor Policy with Continuous Tokens NeurIPS
Learning effective visuomotor policies for robotic manipulation is challenging, as it requires generating precise actions while maintaining computational efficiency. Existing methods remain unsatisfactory due to inherent limitations in the essential action representation and the basic network architectures. We observe that representing actions in the frequency domain captures the structured nature of motion more effectively: low-frequency components reflect global movement patterns, while high-frequency components encode fine local details. Additionally, robotic manipulation tasks of varying complexity demand different levels of modeling precision across these frequency bands. Motivated by this, we propose a novel paradigm for visuomotor policy learning that progressively models hierarchical frequency components. To further enhance precision, we introduce continuous latent representations that maintain smoothness and continuity in the action space. Extensive experiments across diverse 2D and 3D robotic manipulation benchmarks demonstrate that our approach outperforms existing methods in both accuracy and efficiency, showcasing the potential of a frequency-domain autoregressive framework with continuous tokens for generalized robotic manipulation.Code is available at https://github.com/4DVLab/Freqpolicy
comment: Comments: Published at Neural Information Processing Systems (NeurIPS) 2025. Project page and code: https://freq-policy.github.io/
♻ ☆ Physics-Based Motion Imitation with Adversarial Differential Discriminators SIGGRAPH
Multi-objective optimization problems, which require the simultaneous optimization of multiple objectives, are prevalent across numerous applications. Existing multi-objective optimization methods often rely on manually-tuned aggregation functions to formulate a joint optimization objective. The performance of such hand-tuned methods is heavily dependent on careful weight selection, a time-consuming and laborious process. These limitations also arise in the setting of reinforcement-learning-based motion tracking methods for physically simulated characters, where intricately crafted reward functions are typically used to achieve high-fidelity results. Such solutions not only require domain expertise and significant manual tuning, but also limit the applicability of the resulting reward function across diverse skills. To bridge this gap, we present a novel adversarial multi-objective optimization technique that is broadly applicable to a range of multi-objective reinforcement-learning tasks, including motion tracking. Our proposed Adversarial Differential Discriminator (ADD) receives a single positive sample, yet is still effective at guiding the optimization process. We demonstrate that our technique can enable characters to closely replicate a variety of acrobatic and agile behaviors, achieving comparable quality to state-of-the-art motion-tracking methods, without relying on manually-designed reward functions. Code and results are available at https://add-moo.github.io/.
comment: SIGGRAPH Asia 2025 Conference Papers
♻ ☆ Motion Blender Gaussian Splatting for Dynamic Scene Reconstruction
Gaussian splatting has emerged as a powerful tool for high-fidelity reconstruction of dynamic scenes. However, existing methods primarily rely on implicit motion representations, such as encoding motions into neural networks or per-Gaussian parameters, which makes it difficult to further manipulate the reconstructed motions. This lack of explicit controllability limits existing methods to replaying recorded motions only, which hinders a wider application in robotics. To address this, we propose Motion Blender Gaussian Splatting (MBGS), a novel framework that uses motion graphs as an explicit and sparse motion representation. The motion of a graph's links is propagated to individual Gaussians via dual quaternion skinning, with learnable weight painting functions that determine the influence of each link. The motion graphs and 3D Gaussians are jointly optimized from input videos via differentiable rendering. Experiments show that MBGS achieves state-of-the-art performance on the highly challenging iPhone dataset while being competitive on HyperNeRF. We demonstrate the application potential of our method in animating novel object poses, synthesizing real robot demonstrations, and predicting robot actions through visual planning. The source code, models, video demonstrations can be found at http://mlzxy.github.io/motion-blender-gs.
comment: CoRL 2025
Systems and Control 24
☆ Use of Quadcopter Wakes to Supplement Strawberry Pollination
Pollinators are critical to the world's ecosystems and food supply, yet recent studies have found pollination shortfalls in several crops, including strawberry. This is troubling because wild and managed pollinators are currently experiencing declines. One possibility is to try and provide supplemental pollination solutions. These solutions should be affordable and simple for farmers to implement if their use is to be widespread; quadcopters are a great example, already used for monitoring on many farms. This paper investigates a new method for artificial pollination based on wind pollination that bears further investigation. After determining the height where the lateral flow is maximized, we performed field experiments with a quadcopter assisting natural pollinators. Although our results in the field were inconclusive, lab studies show that the idea shows promise and could be adapted for better field results.
comment: 7 pages, 7 figures
☆ A Real-Time Framework for Intermediate Map Construction and Kinematically Feasible Off-Road Planning Without OSM
Off-road environments present unique challenges for autonomous navigation due to their complex and unstructured nature. Traditional global path-planning methods, which typically aim to minimize path length and travel time, perform poorly on large-scale maps and fail to account for critical factors such as real-time performance, kinematic feasibility, and memory efficiency. This paper introduces a novel global path-planning method specifically designed for off-road environments, addressing these essential factors. The method begins by constructing an intermediate map within the pixel coordinate system, incorporating geographical features like off-road trails, waterways, restricted and passable areas, and trees. The planning problem is then divided into three sub-problems: graph-based path planning, kinematic feasibility checking, and path smoothing. This approach effectively meets real-time performance requirements while ensuring kinematic feasibility and efficient memory use. The method was tested in various off-road environments with large-scale maps up to several square kilometers in size, successfully identifying feasible paths in an average of 1.5 seconds and utilizing approximately 1.5GB of memory under extreme conditions. The proposed framework is versatile and applicable to a wide range of off-road autonomous navigation tasks, including search and rescue missions and agricultural operations.
☆ 3D Electronic-Photonic Heterogenous Interconnect Platforms Enabling Energy-Efficient Scalable Architectures For Future HPC Systems
3D interconnects have emerged as a solution to address the scaling issues of interconnect bandwidth and the memory wall problem in high-performance computing (HPC), such as High-Bandwidth Memory (HBM). However, the copper-based electrical interconnect retains fundamental limitations. Dense I/O for high-speed signals lead to degraded signal quality for end-to-end links, necessitating additional circuits to mitigate signal impairments and resulting in poor energy efficiency. We propose a 3D chiplet stacking electronic-photonic interconnect (EPIC) platform, which offers a solution by moving the high-speed data communication interface to the optical domain across the 3D stack by using Through Silicon Optical Vias (TSOV), while retaining the functionality of electrical TSVs and 2.5D interconnects for power delivery and short-reach low-latency communications. We then benchmark the proposed model against state-of-the-art 3D electrical interconnects to demonstrate our 3D EPIC platform beating the 3D electrical interconnects to $>$10 TB/s/$mm^2$ bandwidth density. We present a pathway to extend our demonstrated, industry-ready design to achieving $\leq$100 fJ/bit high-speed communication.
☆ Convex Pollution Control of Wastewater Treatment Systems
We design a model-predictive controller for managing the actuators in sewer networks. It minimizes flooding and combined-sewer overflow during rain and pollution at other times. To make the problem tractable, we use a convex relaxation of the microbial growth kinetics and a physically motivated linearization of the mass flow bilinearities. With these approximations, the trajectory optimization in each control period is a second-order cone program. In simulation, the controller releases roughly 15% less pollutant mass than a conventional controller while treating nearly the same volume of flow. It does so by better balancing the flow over the treatment plants and over time.
☆ Electrical System Architecture for Aviation Electrification
The electrification of aircraft is reshaping the foundations of aerospace design by positioning electrical systems at the center of propulsion, control, and onboard functionality. This chapter provides an overview of electrical system architectures for electric and hybrid electric aircraft, highlighting both established principles and emerging design strategies. The discussion begins with the motivations for electrification, including reducing environmental impact, improving operational efficiency, and replacing complex pneumatic and hydraulic subsystems with lighter and more reliable electrical alternatives. Aircraft electrical architectures are classified into four major categories: conventional, more electric, all electric, and hybrid electric. A range of system topologies is examined, including direct current (DC), alternating current (AC), hybrid, and distributed configurations. Each is considered in terms of its effectiveness in delivering power, enabling redundancy, supporting fault isolation, and managing thermal performance. Real world examples are presented to demonstrate practical applications, with case studies drawn from the Boeing 787 Dreamliner, the Eviation Alice commuter aircraft, and NASA X57 Maxwell demonstrator. These examples illustrate the ongoing transition from incremental subsystem electrification toward fully integrated architectures that promise higher efficiency and greater sustainability.
☆ Enhancing Data Center Low-Voltage Ride-Through
Data center loads have expanded significantly in recent years. Compared to traditional loads, data centers are highly sensitive to voltage deviations and thus their protection mechanisms trip more proactively during voltage fluctuations. During a grid fault, simultaneous tripping of large-scale data centers can further destabilize the transmission system and even lead to cascading failures. In response, transmission system operators are imposing voltage ride-through (VRT) requirements for data centers. In this work, we enhance the VRT capability of data centers by designing voltage controllers for their internal power distribution network. We first systematically analyze VRT standards and the controllable resources related to data centers. These resources enable the design of voltage control strategies to regulate voltages internal to the data center, thereby allowing loads to remain online during voltage disturbances from the external transmission grid. We study and contrast both centralized and decentralized controllers that unify the control of heterogeneous flexible resources. Additionally, we construct an integrated test system that simulates both the transient fault response of the transmission system and the data center distribution network. Case studies demonstrate that the proposed voltage control mechanisms provide effective yet simple solutions to enhance data center low-voltage ride-through capability.
☆ HOFLON: Hybrid Offline Learning and Online Optimization for Process Start-Up and Grade-Transition Control
Start-ups and product grade-changes are critical steps in continuous-process plant operation, because any misstep immediately affects product quality and drives operational losses. These transitions have long relied on manual operation by a handful of expert operators, but the progressive retirement of that workforce is leaving plant owners without the tacit know-how needed to execute them consistently. In the absence of a process model, offline reinforcement learning (RL) promises to capture and even surpass human expertise by mining historical start-up and grade-change logs, yet standard offline RL struggles with distribution shift and value-overestimation whenever a learned policy ventures outside the data envelope. We introduce HOFLON (Hybrid Offline Learning + Online Optimization) to overcome those limitations. Offline, HOFLON learns (i) a latent data manifold that represents the feasible region spanned by past transitions and (ii) a long-horizon Q-critic that predicts the cumulative reward from state-action pairs. Online, it solves a one-step optimization problem that maximizes the Q-critic while penalizing deviations from the learned manifold and excessive rates of change in the manipulated variables. We test HOFLON on two industrial case studies: a polymerization reactor start-up and a paper-machine grade-change problem, and benchmark it against Implicit Q-Learning (IQL), a leading offline-RL algorithm. In both plants HOFLON not only surpasses IQL but also delivers, on average, better cumulative rewards than the best start-up or grade-change observed in the historical data, demonstrating its potential to automate transition operations beyond current expert capability.
comment: 31 pages, 15 figures, submitted to Computers and Chemical Engineering
☆ A Trustworthy Industrial Fault Diagnosis Architecture Integrating Probabilistic Models and Large Language Models
There are limitations of traditional methods and deep learning methods in terms of interpretability, generalization, and quantification of uncertainty in industrial fault diagnosis, and there are core problems of insufficient credibility in industrial fault diagnosis. The architecture performs preliminary analysis through a Bayesian network-based diagnostic engine and features an LLM-driven cognitive quorum module with multimodal input capabilities. The module conducts expert-level arbitration of initial diagnoses by analyzing structured features and diagnostic charts, prioritizing final decisions after conflicts are identified. To ensure the reliability of the system output, the architecture integrates a confidence calibration module based on temperature calibration and a risk assessment module, which objectively quantifies the reliability of the system using metrics such as expected calibration error (ECE). Experimental results on a dataset containing multiple fault types showed that the proposed framework improved diagnostic accuracy by more than 28 percentage points compared to the baseline model, while the calibrated ECE was reduced by more than 75%. Case studies have confirmed that HCAA effectively corrects misjudgments caused by complex feature patterns or knowledge gaps in traditional models, providing novel and practical engineering solutions for building high-trust, explainable AI diagnostic systems for industrial applications.
comment: 1tables,6 figs,11pages
☆ On the Duality Between Quantized Time and States in Dynamic Simulation
This letter introduces a formal duality between discrete-time and quantized-state numerical methods. We interpret quantized state system (QSS) methods as integration schemes applied to a dual form of the system model, where time is seen as a state-dependent variable. This perspective enables the definition of novel QSS-based schemes inspired by classical time-integration techniques. As a proof of concept, we illustrate the idea by introducing a QSS Adams-Bashforth method applied to a test equation. We then move to demonstrate how the proposed approach can achieve notable performance improvements in realistic power system simulations.
☆ Dissecting Larval Zebrafish Hunting using Deep Reinforcement Learning Trained RNN Agents
Larval zebrafish hunting provides a tractable setting to study how ecological and energetic constraints shape adaptive behavior in both biological brains and artificial agents. Here we develop a minimal agent-based model, training recurrent policies with deep reinforcement learning in a bout-based zebrafish simulator. Despite its simplicity, the model reproduces hallmark hunting behaviors -- including eye vergence-linked pursuit, speed modulation, and stereotyped approach trajectories -- that closely match real larval zebrafish. Quantitative trajectory analyses show that pursuit bouts systematically reduce prey angle by roughly half before strike, consistent with measurements. Virtual experiments and parameter sweeps vary ecological and energetic constraints, bout kinematics (coupled vs. uncoupled turns and forward motion), and environmental factors such as food density, food speed, and vergence limits. These manipulations reveal how constraints and environments shape pursuit dynamics, strike success, and abort rates, yielding falsifiable predictions for neuroscience experiments. These sweeps identify a compact set of constraints -- binocular sensing, the coupling of forward speed and turning in bout kinematics, and modest energetic costs on locomotion and vergence -- that are sufficient for zebrafish-like hunting to emerge. Strikingly, these behaviors arise in minimal agents without detailed biomechanics, fluid dynamics, circuit realism, or imitation learning from real zebrafish data. Taken together, this work provides a normative account of zebrafish hunting as the optimal balance between energetic cost and sensory benefit, highlighting the trade-offs that structure vergence and trajectory dynamics. We establish a virtual lab that narrows the experimental search space and generates falsifiable predictions about behavior and neural coding.
☆ Optimal Energy Management in Indoor Farming Using Lighting Flexibility and Intelligent Model Predictive Control
Indoor farming enables year-round food production but its reliance on artificial lighting significantly increases energy consumption, peak load charges, and energy costs for growers. Recent studies indicate that plants are able to tolerate interruptions in light, enabling the design of 24-hour lighting schedules (or "recipes") with strategic light modulation in alignment with day-ahead pricing. Thus, we propose an optimal lighting control strategy for indoor farming that modulates light intensity and photoperiod to reduce energy costs. The control strategy is implemented within a model predictive control framework and augmented with transformer-based neural networks to forecast 24-hour ahead solar radiation and electricity prices to improve energy cost reduction. The control strategy is informed by real-world experimentation on lettuce crops to discover minimum light exposure and appropriate dark-light intervals, which are mathematically formulated as constraints to maintain plant health. Simulations for a one-hectare greenhouse, based on real electricity market data from Ontario, demonstrate an annual cost reduction of $318,400 (20.9%), a peak load decrease of 1.6 MW (33.32%), and total energy savings of 1890 MWh (20.2%) against a baseline recipe. These findings highlight the potential of intelligent lighting control to improve the sustainability and economic feasibility of indoor farming.
☆ Optimising Battery Energy Storage System Trading via Energy Market Operator Price Forecast
In electricity markets around the world, the ability to anticipate price movements with precision can be the difference between profit and loss, especially for fast-acting assets like battery energy storage systems (BESS). As grid volatility increases due to renewables and market decentralisation, operators and forecasters alike face growing pressure to transform prediction into strategy. Yet while forecast data is abundant, especially in advanced markets like Australia's National Electricity Market (NEM), its practical value in driving real-world BESS trading decisions remains largely unexplored. This thesis dives into that gap. This work addresses a key research question: Can the accuracy of the Australian Energy Market Operator (AEMO) energy price forecasts be systematically leveraged to develop a reliable and profitable battery energy storage system trading algorithm? Despite the availability of AEMO price forecasts, no existing framework evaluates their reliability or incorporates them into practical BESS trading strategies. By analysing patterns in forecast accuracy based on time of day, forecast horizon, and regional variations, this project creates a novel, forecast-informed BESS trading model to optimise arbitrage financial returns. The performance of this forecast-driven algorithm is benchmarked against a basic trading algorithm with no knowledge of forecast data. The study further explores the potential of machine learning techniques to predict future energy prices by enhancing AEMO forecasts to govern a more advanced trading strategy. The research outcomes will inform future improvements in energy market trading models and promote more efficient BESS integration into market operations.
☆ Safety-Oriented Dynamic Path Planning for Automated Vehicles
Ensuring safety in autonomous vehicles necessitates advanced path planning and obstacle avoidance capabilities, particularly in dynamic environments. This paper introduces a bi-level control framework that efficiently augments road boundaries by incorporating time-dependent grid projections of obstacle movements, thus enabling precise and adaptive path planning. The main control loop utilizes Nonlinear Model Predictive Control (NMPC) for real-time path optimization, wherein homotopy-based constraint relaxation is employed to improve the solvability of the optimal control problem (OCP). Furthermore, an independent backup loop runs concurrently to provide safe fallback trajectories when an optimal trajectory cannot be computed by the main loop within a critical time frame, thus enhancing safety and real-time performance. Our evaluation showcases the benefits of the proposed methods in various driving scenarios, highlighting the real-time applicability and robustness of our approach. Overall, the framework represents a significant step towards safer and more reliable autonomous driving in complex and dynamic environments.
comment: Published in 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), Oslo, Norway, June 17-20, 2025. Received Best Conference Paper Award
☆ Cyber Resilience of Three-phase Unbalanced Distribution System Restoration under Sparse Adversarial Attack on Load Forecasting
System restoration is critical for power system resilience, nonetheless, its growing reliance on artificial intelligence (AI)-based load forecasting introduces significant cybersecurity risks. Inaccurate forecasts can lead to infeasible planning, voltage and frequency violations, and unsuccessful recovery of de-energized segments, yet the resilience of restoration processes to such attacks remains largely unexplored. This paper addresses this gap by quantifying how adversarially manipulated forecasts impact restoration feasibility and grid security. We develop a gradient-based sparse adversarial attack that strategically perturbs the most influential spatiotemporal inputs, exposing vulnerabilities in forecasting models while maintaining stealth. We further create a restoration-aware validation framework that embeds these compromised forecasts into a sequential restoration model and evaluates operational feasibility using an unbalanced three-phase optimal power flow formulation. Simulation results show that the proposed approach is more efficient and stealthier than baseline attacks. It reveals system-level failures, such as voltage and power ramping violations that prevent the restoration of critical loads. These findings provide actionable insights for designing cybersecurity-aware restoration planning frameworks.
comment: 10 pages, 7 figures
☆ Learning Safety-Compatible Observers for Unknown Systems
This paper presents a data-driven approach for jointly learning a robust full-state observer and its robustness certificate for systems with unknown dynamics. Leveraging incremental input-to-state stability (delta ISS) notions, we jointly learn a delta ISS Lyapunov function that serves as the robustness certificate and prove practical convergence of the estimation error under standard fidelity assumptions on the learned models. This renders the observer safety-compatible: they can be consumed by certificate-based safe controllers so that, when the controller tolerates bounded estimation error, the controller's certificate remains valid under output feedback. We further extend the approach to interconnected systems via the small-gain theorem, yielding a distributed observer design framework. We validate the approach on a variety of nonlinear systems.
comment: Submitted to American Control Conference (ACC)
♻ ☆ Spectral Flow Learning Theory: Finite-Sample Guarantees for Vector-Field Identification
We study the identification of continuous-time vector fields from irregularly sampled trajectories. We introduce Spectral Flow Learning (SFL), which learns in a windowed flow space using a lag-linear label operator that aggregates lagged Koopman actions. We provide finite-sample high-probability (FS-HP) guarantees for the class of variable-step linear multistep methods (vLLM). The FS-HP rates are constructed using spectral regularization with qualification-controlled filters for flow predictors under standard source and filter assumptions. A multistep observability inequality links flow error to vector-field error and yields two-term bounds that combine a statistical rate with an explicit discretization bias from vLMM theory. This preliminary preprint states the results and sketches proofs, with full proofs and extensions deferred to a journal version.
♻ ☆ Nonparametric adaptive payload tracking for an offshore crane
A nonparametric adaptive controller is proposed for crane control where the payload tracks a desired trajectory with feedback from the payload position. The controller is based on a novel version of partial feedback linearization where the unactuated crane load dynamics are controlled with the position of the actuated crane dynamics instead of the acceleration. This is made possible by taking advantage of the gravity terms in a new Cartesian model that we propose for the load dynamics. This Cartesian model structure makes it possible to implement a nonparametric adaptive controller which cancels disturbances on the crane load by approximating the effects of unknown disturbance forces and structurally unknown dynamics in a reproducing kernel Hilbert space (RKHS). It is shown that the nonparametric adaptive controller leads to uniformly ultimately bounded errors in the presence of unknown forces and unmodeled dynamics. In addition, it is shown that the proposed partial feedback linearization based on the Cartesian model has certain advantages in payload tracking control also in the non-adaptive case. The performance of the nonparametric adaptive controller is validated in simulation and experiments with good results.
♻ ☆ Sample Complexity of Linear Quadratic Regulator Without Initial Stability
Inspired by REINFORCE, we introduce a novel receding-horizon algorithm for the Linear Quadratic Regulator (LQR) problem with unknown dynamics. Unlike prior methods, our algorithm avoids reliance on two-point gradient estimates while maintaining the same order of sample complexity. Furthermore, it eliminates the restrictive requirement of starting with a stable initial policy, broadening its applicability. Beyond these improvements, we introduce a refined analysis of error propagation through the contraction of the Riccati operator under the Riemannian distance. This refinement leads to a better sample complexity and ensures improved convergence guarantees.
♻ ☆ Contrastive-KAN: A Semi-Supervised Intrusion Detection Framework for Cybersecurity with scarce Labeled Data
In the era of the Fourth Industrial Revolution, cybersecurity and intrusion detection systems are vital for the secure and reliable operation of IoT and IIoT environments. A key challenge in this domain is the scarcity of labeled cyberattack data, as most industrial systems operate under normal conditions. This data imbalance, combined with the high cost of annotation, hinders the effective training of machine learning models. Moreover, the rapid detection of attacks is essential, especially in critical infrastructure, to prevent large-scale disruptions. To address these challenges, we propose a real-time intrusion detection system based on a semi-supervised contrastive learning framework using the Kolmogorov-Arnold Network (KAN). Our method leverages abundant unlabeled data to effectively distinguish between normal and attack behaviors. We validate our approach on three benchmark datasets, UNSW-NB15, BoT-IoT, and Gas Pipeline, using only 2.20%, 1.28%, and 8% of labeled samples, respectively, to simulate real-world conditions. Experimental results show that our method outperforms existing contrastive learning-based approaches. We further compare KAN with a traditional multilayer perceptron (MLP), demonstrating KAN's superior performance in both detection accuracy and robustness under limited supervision. KAN's ability to model complex relationships, along with its learnable activation functions, is also explored and visualized, offering interpretability and the potential for rule extraction. The method supports multi-class classification and proves effective in safety, critical environments where reliability is paramount.
♻ ☆ A Corrector-aided Look-ahead Distance-based Guidance for Online Reference Path Following with an Efficient Mid-course Guidance Strategy
Efficient path-following is crucial in most of the applications of autonomous vehicles (UxV). Among various guidance strategies presented in literature, the look-ahead distance ($L_1$)-based nonlinear guidance has received significant attention due to its ease in implementation and ability to maintain a low cross-track error while following simpler reference paths and generating bounded lateral acceleration commands. However, the constant value of $L_1$ becomes problematic when the UxV is far away from the reference path and also produces higher cross-track error while following complex reference paths having high variation in radius of curvature. To address these challenges, the notion of look-ahead distance is leveraged in a novel way to develop a two-phase guidance strategy. Initially, when the UxV is far from the reference path, an optimized $L_1$ selection strategy is developed to guide the UxV towards the vicinity of the start point of the reference path, while maintaining minimal lateral acceleration command. Once the vehicle reaches a close neighborhood of the reference path, a novel notion of corrector point is incorporated in the constant $L_1$-based guidance scheme to generate the guidance command that effectively reduces the root mean square of the cross-track error and lateral acceleration requirement thereafter. Simulation results validate satisfactory performance of this proposed corrector point and look-ahead point pair-based guidance strategy, along with the developed mid-course guidance scheme. Also, its superiority over the conventional constant $L_1$ guidance scheme is established by simulation studies over different initial condition scenarios.
comment: This paper is currently under review for publication in ACC 2026
♻ ☆ Distributionally robust LMI synthesis for LTI systems
This article shows that distributionally robust controller synthesis as investigated in \cite{taskesen2024distributionally} can be formulated as a convex linear matrix inequality (LMI) synthesis problem. To this end, we rely on well-established convexification techniques from robust control. The LMI synthesis problem we propose has the advantage that it can be solved efficiently using off-the-shelf semi-definite programming (SDP) solvers. In addition, our formulation exposes the studied distributionally robust controller synthesis problem as an instance of robust $H_2$ synthesis.
comment: Submitted to Transactions of Automatic Control
A Hybrid Strategy for Probabilistic Forecasting and Trading of Aggregated Wind-Solar Power: Design and Analysis in HEFTCom2024
Obtaining accurate probabilistic energy forecasts and making effective decisions amid diverse uncertainties are routine challenges in future energy systems. This paper presents the winning solution of team GEB, which ranked 3rd in trading, 4th in forecasting, and 1st among student teams in the IEEE Hybrid Energy Forecasting and Trading Competition 2024 (HEFTCom2024). The solution provides accurate probabilistic forecasts for a wind-solar hybrid system, and achieves substantial trading revenue in the day-ahead electricity market. Key components include: (1) a stacking-based approach combining sister forecasts from various Numerical Weather Predictions (NWPs) to provide wind power forecasts, (2) an online solar post-processing model to address the distribution shift in the online test set caused by increased solar capacity, (3) a probabilistic aggregation method for accurate quantile forecasts of hybrid generation, and (4) a stochastic trading strategy to maximize expected trading revenue considering uncertainties in electricity prices. This paper also explores the potential of end-to-end learning to further enhance the trading revenue by shifting the distribution of forecast errors. Detailed case studies are provided to validate the effectiveness of these proposed methods. Code for all mentioned methods is available for reproduction and further research in both industry and academia.
comment: Solution description of IEEE Hybrid Energy Forecasting and Trading Competition (HEFTCom), preprint for International Journal of Forecasting
♻ ☆ Hierarchical Multi-Agent MCTS for Safety-Critical Coordination in Mixed-Autonomy Roundabouts
Navigating unsignalized roundabouts in mixed-autonomy traffic presents significant challenges due to dense vehicle interactions, lane-changing complexities, and behavioral uncertainties of human-driven vehicles (HDVs). This paper proposes a safety-critical decision-making framework for connected and automated vehicles (CAVs) navigating dual-lane roundabouts alongside HDVs. We formulate the problem as a multi-agent Markov Decision Process and develop a hierarchical safety assessment mechanism that evaluates three critical interaction types: CAV-to-CAV (C2C), CAV-to-HDV (C2H), and CAV-to-Boundary (C2B). A key contribution is our lane-specific uncertainty model for HDVs, which captures distinct behavioral patterns between inner and outer lanes, with outer-lane vehicles exhibiting $2.3\times$ higher uncertainty due to less constrained movements. We integrate this safety framework with a multi-agent Monte Carlo Tree Search (MCTS) algorithm that employs safety-aware pruning to eliminate high-risk trajectories while maintaining computational efficiency. The reward function incorporates Shapley value-based credit assignment to balance individual performance with group coordination. Extensive simulation results validate the effectiveness of the proposed approach under both fully autonomous (100% AVs) and mixed traffic (50% AVs + 50% HDVs) conditions. Compared to benchmark methods, our framework consistently reduces trajectory deviations across all AVs and significantly lowers the rate of Post-Encroachment Time (PET) violations, achieving only 1.0% in the fully autonomous scenario and 3.2% in the mixed traffic setting.
comment: 11 pages, 10 figures
♻ ☆ Learning Passive Continuous-Time Dynamics with Multistep Port-Hamiltonian Gaussian Processes
We propose the multistep port-Hamiltonian Gaussian process (MS-PHS GP) to learn physically consistent continuous-time dynamics and a posterior over the Hamiltonian from noisy, irregularly-sampled trajectories. By placing a GP prior on the Hamiltonian surface $H$ and encoding variable-step multistep integrator constraints as finite linear functionals, MS-PHS GP enables closed-form conditioning of both the vector field and the Hamiltonian surface without latent states, while enforcing energy balance and passivity by design. We state a finite-sample vector-field bound that separates the estimation and variable-step discretization terms. Lastly, we demonstrate improved vector-field recovery and well-calibrated Hamiltonian uncertainty on mass-spring, Van der Pol, and Duffing benchmarks.
Computational Geometry 1
☆ Cellular Learning: Scattered Data Regression in High Dimensions via Voronoi Cells
I present a regression algorithm that provides a continuous, piecewise-smooth function approximating scattered data. It is based on composing and blending linear functions over Voronoi cells, and it scales to high dimensions. The algorithm infers Voronoi cells from seed vertices and constructs a linear function for the input data in and around each cell. As the algorithm does not explicitly compute the Voronoi diagram, it avoids the curse of dimensionality. An accuracy of around 98.2% on the MNIST dataset with 722,200 degrees of freedom (without data augmentation, convolution, or other geometric operators) demonstrates the applicability and scalability of the algorithm.
comment: 15 pages + 2 pages references; 3 figures; 4 tables; 1 algorithm
Optimization and Control 21
☆ Modeling and Optimization of Control Problems on GPUs
We present a fully Julia-based, GPU-accelerated workflow for solving large-scale sparse nonlinear optimal control problems. Continuous-time dynamics are modeled and then discretized via direct transcription with OptimalControl.jl into structured sparse nonlinear programs. These programs are compiled into GPU kernels using ExaModels.jl, leveraging SIMD parallelism for fast evaluation of objectives, constraints, gradients, Jacobians and Hessians. The resulting sparse problems are solved entirely on GPU using the interior-point solver MadNLP.jl and the GPU sparse linear solver cuDSS, yielding significant speed-ups over CPU-based approaches.
☆ Convex Pollution Control of Wastewater Treatment Systems
We design a model-predictive controller for managing the actuators in sewer networks. It minimizes flooding and combined-sewer overflow during rain and pollution at other times. To make the problem tractable, we use a convex relaxation of the microbial growth kinetics and a physically motivated linearization of the mass flow bilinearities. With these approximations, the trajectory optimization in each control period is a second-order cone program. In simulation, the controller releases roughly 15% less pollutant mass than a conventional controller while treating nearly the same volume of flow. It does so by better balancing the flow over the treatment plants and over time.
☆ BONSAI: Structure-exploiting robust Bayesian optimization for networked black-box systems under uncertainty
Optimal design under uncertainty remains a fundamental challenge in advancing reliable, next-generation process systems. Robust optimization (RO) offers a principled approach by safeguarding against worst-case scenarios across a range of uncertain parameters. However, traditional RO methods typically require known problem structure, which limits their applicability to high-fidelity simulation environments. To overcome these limitations, recent work has explored robust Bayesian optimization (RBO) as a flexible alternative that can accommodate expensive, black-box objectives. Existing RBO methods, however, generally ignore available structural information and struggle to scale to high-dimensional settings. In this work, we introduce BONSAI (Bayesian Optimization of Network Systems under uncertAInty), a new RBO framework that leverages partial structural knowledge commonly available in simulation-based models. Instead of treating the objective as a monolithic black box, BONSAI represents it as a directed graph of interconnected white- and black-box components, allowing the algorithm to utilize intermediate information within the optimization process. We further propose a scalable Thompson sampling-based acquisition function tailored to the structured RO setting, which can be efficiently optimized using gradient-based methods. We evaluate BONSAI across a diverse set of synthetic and real-world case studies, including applications in process systems engineering. Compared to existing simulation-based RO algorithms, BONSAI consistently delivers more sample-efficient and higher-quality robust solutions, highlighting its practical advantages for uncertainty-aware design in complex engineering systems.
comment: Published in Computers and Chemical Engineering, 2025
☆ Calm local optimality for couple-constrained minimax problems
Recently, a new local optimality concept for minimax problems, termed calm local minimax points, has been introduced. In this paper, we extend this concept to a general class of nonsmooth, nonconvex nonconcave minimax problems with coupled constraints, where the inner feasible set depends on the outer variable. We derive comprehensive first-order and second-order necessary and sufficient optimality conditions for calm local minimax points in the setting of nonsmooth, nonconvex nonconcave minimax problems with coupled constraints. Furthermore, we show how these conditions apply to problems with set constraints, as well as those involving systems of inequalities and equalities. By unifying existing formulations that often rely on stronger assumptions within the framework of calm local minimax points, we show that our results hold under weaker assumptions than those previously required.
Optimization Outperforms Unscented Techniques for Nonlinear Smoothing
We review optimization-based approaches to smoothing nonlinear dynamical systems. These approaches leverage the fact that the Extended Kalman Filter and corresponding smoother can be framed as the Gauss-Newton method for a nonlinear least squares maximum a posteriori loss, and stabilized with standard globalization techniques. We compare the performance of the Optimized Kalman Smoother (OKS) to Unscented Kalman smoothing techniques, and show that they achieve significant improvement for highly nonlinear systems, particularly in noisy settings. The comparison is performed across standard parameter choices (such as the trade-off between process and measurement terms). To our knowledge, this is the first comparison of these methods in the literature.
☆ A Frank-Wolfe Algorithm for Strongly Monotone Variational Inequalities
We propose an accelerated algorithm with a Frank-Wolfe method as an oracle for solving strongly monotone variational inequality problems. While standard solution approaches, such as projected gradient descent (aka value iteration), involve projecting onto the desired set at each iteration, a distinctive feature of our proposed method is the use of a linear minimization oracle in each iteration. This difference potentially reduces the projection cost, a factor that can become significant for certain sets or in high-dimensional problems. We validate the performance of the proposed algorithm on the traffic assignment problem, motivated by the fact that the projection complexity per iteration increases exponentially with respect to the number of links.
☆ Well-Posedness and Efficient Algorithms for Inverse Optimal Transport with Bregman Regularization
This work analyzes the inverse optimal transport (IOT) problem under Bregman regularization. We establish well-posedness results, including existence, uniqueness (up to equivalence classes of solutions), and stability, under several structural assumptions on the cost matrix. On the computational side, we investigate the existence of solutions to the optimization problem with general constraints on the cost matrix and provide a sufficient condition guaranteeing existence. In addition, we propose an inexact block coordinate descent (BCD) method for the problem with a strongly convex penalty term. In particular, when the penalty is quadratic, the subproblems admit a diagonal Hessian structure, which enables highly efficient element-wise Newton updates. We establish a linear convergence rate for the algorithm and demonstrate its practical performance through numerical experiments, including the validation of stability bounds, the investigation of regularization effects, and the application to a marriage matching dataset.
☆ Rapid boundary stabilization of 1D nonlinear parabolic equations
In this paper, we focus on the rapid boundary stabilization of 1D nonlinear parabolic equations via the modal decomposition method. The nonlinear term is assumed to satisfy certain local Lipschitz continuity and global growth conditions. Through the modal decomposition, we construct a feedback control that modifies only the unstable eigenvalues to achieve spectral reduction. Under this control, we establish locally rapid stabilization by estimating the nonlinearity in Lyapunov stability analysis. Furthermore, utilizing the dissipative property, we derive a globally rapid stabilization result for dissipative systems such as the Burgers equation and the Allen-Cahn equation.
comment: 28 pages
☆ Infinite-time Mean Field FBSDEs and Viscosity Solutions to Elliptic Master Equations
This paper presents a further investigation of the properties of infinite-time mean field FBSDEs and elliptic master equations, which were introduced in \cite{yang2025discounted} as mathematical tools for solving discounted infinite-time mean field games. By establishing the continuous dependence of the FBSDE solutions on their initial values, we prove the flow property of the mean field FBSDEs. Furthermore, we prove that, at the Nash equilibrium, the value function of the representative player constitutes a viscosity solution to the corresponding elliptic master equation. Our work extends the classical theory of finite-time mean field games and parabolic master equations to the infinite-time setting.
☆ Learning Polynomial Activation Functions for Deep Neural Networks
Activation functions are crucial for deep neural networks. This novel work frames the problem of training neural network with learnable polynomial activation functions as a polynomial optimization problem, which is solvable by the Moment-SOS hierarchy. This work represents a fundamental departure from the conventional paradigm of training deep neural networks, which relies on local optimization methods like backpropagation and gradient descent. Numerical experiments are presented to demonstrate the accuracy and robustness of optimum parameter recovery in presence of noises.
comment: 10 pages
☆ Achieving Universal Approximation and Universal Interpolation via Nonlinearity of Control Families
A significant connection exists between the controllability of dynamical systems and the approximation capabilities of neural networks, where residual networks and vanilla feedforward neural networks can both be regarded as numerical discretizations of the flow maps of dynamical systems. Leveraging the expressive power of neural networks, prior works have explored various control families $\mathcal{F}$ that enable the flow maps of dynamical systems to achieve either the universal approximation property (UAP) or the universal interpolation property (UIP). For example, the control family $\mathcal{F}_\text{ass}({\mathrm{ReLU}})$, consisting of affine maps together with a specific nonlinear function ReLU, achieves UAP; while the affine-invariant nonlinear control family $\mathcal{F}_{\mathrm{aff}}(f)$ containing a nonlinear function $f$ achieves UIP. However, UAP and UIP are generally not equivalent, and thus typically need to be studied separately with different techniques. In this paper, we investigate more general control families, including $\mathcal{F}_\text{ass}(f)$ with nonlinear functions $f$ beyond ReLU, the diagonal affine-invariant family $\mathcal{F}_{\mathrm{diag}}(f)$, and UAP for orientation-preserving diffeomorphisms under the uniform norm. We show that in certain special cases, UAP and UIP are indeed equivalent, whereas in the general case, we introduce the notion of local UIP (a substantially weaker version of UIP) and prove that the combination of UAP and local UIP implies UIP. In particular, the control family $\mathcal{F}_\text{ass}({\mathrm{ReLU}})$ achieves the UIP.
☆ Optimal Zeroth-Order Bilevel Optimization
In this paper, we develop zeroth-order algorithms with provably (nearly) optimal sample complexity for stochastic bilevel optimization, where only noisy function evaluations are available. We propose two distinct algorithms: the first is inspired by Jacobian/Hessian-based approaches, and the second builds on using a penalty function reformulation. The Jacobian/Hessian-based method achieves a sample complexity of $\mathcal{O}(d^3/\epsilon^2)$, which is optimal in terms of accuracy $\epsilon$, albeit with polynomial dependence on the problem dimension $d$. In contrast, the penalty-based method sharpens this guarantee to $\mathcal{O}(d/\epsilon^2)$, optimally reducing the dimension dependence to linear while preserving optimal accuracy scaling. Our analysis is built upon Gaussian smoothing techniques, and we rigorously establish their validity under the stochastic bilevel settings considered in the existing literature. To the best of our knowledge, this is the first work to provide provably optimal sample complexity guarantees for a zeroth-order stochastic approximation method in bilevel optimization.
☆ On damping neutral-type control system on a temporal star graph with global time-proportional delay
We consider, on a temporal star graph, the problem of optimal damping a control system is considered for a generalized pantograph equation, which is a neutral-type equation with a time-proportional delay. The delay in the system propagates through the internal vertex of the graph. We study the variational problem of minimizing the energy functional, taking into account the probabilities the of scenarios corresponding to different edges. It is established that the optimal trajectory satisfies Kirchhoff-type conditions at the internal vertex. The equivalence of the variational problem to a certain boundary value problem for second-order functional-differential equations on the graph is proved, and the unique solvability of both problems is established.
comment: in Russian language
♻ ☆ Sample Complexity of Linear Quadratic Regulator Without Initial Stability
Inspired by REINFORCE, we introduce a novel receding-horizon algorithm for the Linear Quadratic Regulator (LQR) problem with unknown dynamics. Unlike prior methods, our algorithm avoids reliance on two-point gradient estimates while maintaining the same order of sample complexity. Furthermore, it eliminates the restrictive requirement of starting with a stable initial policy, broadening its applicability. Beyond these improvements, we introduce a refined analysis of error propagation through the contraction of the Riccati operator under the Riemannian distance. This refinement leads to a better sample complexity and ensures improved convergence guarantees.
♻ ☆ A distributed augmented Lagrangian decomposition algorithm for constrained optimization
Within the framework of the augmented Lagrangian (AL), we propose a novel distributed optimization method, termed Distributed Augmented Lagrangian Decomposition (DALD), and provide a rigorous convergence proof for its standard version. To address the high iteration costs in early stages, we propose several accelerated variants of DALD that enhances efficiency without compromising theoretical guarantees, supported by a comprehensive convergence analysis. To facilitate the description of the distributed optimization process, the concept of hierarchical coordination networks is introduced, integrating hierarchical matrix concepts to aid in this explanation. We further explore and expand the applicability of the DALD method and demonstrate how it unifies existing distributed optimization theories within the AL framework. The effectiveness and applicability of the proposed distributed optimization method and its variants are further validated through numerical experiments.
comment: 13 pages, 7 figures
♻ ☆ On the Convergence Rates of Iterative Regularization Algorithms for Composite Bi-Level Optimization
This paper investigates iterative methods for solving bi-level optimization problems where both inner and outer functions have a composite structure. We establish novel theoretical results, including the first analysis that provides simultaneous convergence rates for the Iteratively REgularized Proximal Gradient (IRE-PG) method, a variant of Solodov's algorithm. These rates for the inner and outer functions highlight the inherent trade-offs between their respective convergence behaviors. We further extend this analysis to an accelerated version of IRE-PG, proving faster convergence rates under specific settings. Additionally, we propose a new scheme for handling cases where these methods cannot be directly applied to the bi-level problem due to the difficulty of computing the associated proximal operator. This scheme offers surrogate functions to approximate the original problem and a framework to translate convergence rates between the surrogate and original functions. Our results show that the accelerated method's advantage diminishes under this translation.
♻ ☆ A first-order method for constrained nonconvex--nonconcave minimax problems under a local Kurdyka-Łojasiewicz condition
We study a class of constrained nonconvex--nonconcave minimax problems in which the inner maximization involves potentially complex constraints. Under the assumption that the inner problem of a novel lifted minimax problem satisfies a local Kurdyka-{\L}ojasiewicz (KL) condition, we show that the maximal function of the original problem enjoys a local H\"older smoothness property. We also propose a sequential convex programming (SCP) method for solving constrained optimization problems and establish its convergence rate under a local KL condition. Leveraging these results, we develop an inexact proximal gradient method for the original minimax problem, where the inexact gradient of the maximal function is computed via the SCP method applied to a locally KL-structured subproblem. Finally, we establish complexity guarantees for the proposed method in computing an approximate stationary point of the original minimax problem.
comment: This paper needs revision
♻ ☆ Distributionally robust LMI synthesis for LTI systems
This article shows that distributionally robust controller synthesis as investigated in \cite{taskesen2024distributionally} can be formulated as a convex linear matrix inequality (LMI) synthesis problem. To this end, we rely on well-established convexification techniques from robust control. The LMI synthesis problem we propose has the advantage that it can be solved efficiently using off-the-shelf semi-definite programming (SDP) solvers. In addition, our formulation exposes the studied distributionally robust controller synthesis problem as an instance of robust $H_2$ synthesis.
comment: Submitted to Transactions of Automatic Control
♻ ☆ Concrete convergence rates for common fixed point problems under Karamata regularity
We introduce the notion of Karamata regular operators, which is a notion of regularity that is suitable for obtaining concrete convergence rates for common fixed point problems. This provides a broad framework that includes, but goes beyond, H\"olderian error bounds and H\"older regular operators. By concrete, we mean that the rates we obtain are explicitly expressed in terms of a function of the iteration number $k$ instead, of say, a function of the iterate $x^k$. While it is well-known that under H\"olderian-like assumptions many algorithms converge linearly/sublinearly (depending on the exponent), little it is known when the underlying problem data does not satisfy H\"olderian assumptions, which may happen if a problem involves exponentials and logarithms. Our main innovation is the usage of the theory of regularly varying functions which we showcase by obtaining concrete convergence rates for quasi-cylic algorithms in non-H\"olderian settings. This includes certain rates that are neither sublinear nor linear but sit somewhere in-between, including a case where the rate is expressed via the Lambert W function. Finally, we connect our discussion to o-minimal geometry and show that, under mild assumptions, definable operators in any o-minimal structure are always Karamata regular.
comment: 52 pages. Added new example involving the 0 branch of the Lambert W function. Showed that projections onto some of the sets that appear in the examples can be computed by solving conic linear programs over exponential cones and second-order cones. Added a discussion on polynomially bounded o-minimal structures
♻ ☆ Generalized Separation of Collections of Sets
We show that the existing generalized separation statements including the conventional extremal principle and its extensions differ {in the ways norms on product spaces are defined}. We prove a general separation statement with arbitrary product norms covering the existing results of this kind. The proof is divided into a series of claims and exposes the key steps and arguments used when proving generalized separation statements. As an application, we prove dual necessary (sufficient) conditions for an abstract product norm extension of the approximate stationarity (transversality) property.
comment: 21 pages, Optimization (2025)
♻ ☆ Robust dividend policy: Equivalence of Epstein-Zin and Maenhout preferences
In a continuous-time economy, this paper formulates the Epstein-Zin preference for discounted dividends received by an investor as an Epstein-Zin singular control utility. We introduce a backward stochastic differential equation with an aggregator integrated with respect to a singular control, prove its well-posedness, and show that it coincides with the Epstein-Zin singular control utility. We then establish that this formulation is equivalent to a robust dividend policy chosen by the firm's executive under the Maenhout's ambiguity-averse preference. In particular, the robust dividend policy takes the form of a threshold strategy on the firm's surplus process, where the threshold level is characterized as the free boundary of a Hamilton-Jacobi-Bellman variational inequality. Therefore, dividend-caring investors can choose firms that match their preferences by examining stock's dividend policies and financial statements, whereas executives can make use of dividend to signal their confidence, in the form of ambiguity aversion, on realizing the earnings implied by their financial statements.
Graphics 5
☆ Enhancing Foveated Rendering with Weighted Reservoir Sampling SIGGRAPH
Spatiotemporal sensitivity to high frequency information declines with increased peripheral eccentricity. Foveated rendering exploits this by decreasing the spatial resolution of rendered images in peripheral vision, reducing the rendering cost by omitting high frequency details. As foveation levels increase, the rendering quality is reduced, and traditional foveated rendering systems tend not to preserve samples that were previously rendered at high spatial resolution in previous frames. Additionally, prior research has shown that saccade landing positions are distributed around a target location rather than landing at a single point, and that even during fixations, eyes perform small microsaccades around a fixation point. This creates an opportunity for sampling from temporally neighbouring frames with differing foveal locations to reduce the required rendered size of the foveal region while achieving a higher perceived image quality. We further observe that the temporal presentation of pixels frame-to-frame can be viewed as a data stream, presenting a random sampling problem. Following this intuition, we propose a Weighted Reservoir Sampling technique to efficiently maintain a reservoir of the perceptually relevant high quality pixel samples from previous frames and incorporate them into the computation of the current frame. This allows the renderer to render a smaller region of foveal pixels per frame by temporally reusing pixel samples that are still relevant to reconstruct a higher perceived image quality, while allowing for higher levels of foveation. Our method operates on the output of foveated rendering, and runs in under 1\,ms at 4K resolution, making it highly efficient and integrable with real-time VR and AR foveated rendering systems.
comment: To appear in The 18th ACM SIGGRAPH Conference on Motion, Interaction, and Games (MIG '25), December 03-05, 2025, Zurich, Switzerland
☆ Joint Neural SDF Reconstruction and Semantic Segmentation for CAD Models
We propose a simple, data-efficient pipeline that augments an implicit reconstruction network based on neural SDF-based CAD parts with a part-segmentation head trained under PartField-generated supervision. Unlike methods tied to fixed taxonomies, our model accepts meshes with any number of parts and produces coherent, geometry-aligned labels in a single pass. We evaluate on randomly sampled CAD meshes from the ABC dataset with intentionally varied part cardinalities, including over-segmented shapes, and report strong performance across reconstruction (CDL1/CDL2, F1-micro, NC) and segmentation (mIoU, Accuracy), together with a new Segmentation Consistency metric that captures local label smoothness. We attach a lightweight segmentation head to the Flat-CAD SDF trunk; on a paired evaluation it does not alter reconstruction while providing accurate part labels for meshes with any number of parts. Even under degraded reconstructions on thin or intricate geometries, segmentation remains accurate and label-coherent, often preserving the correct part count. Our approach therefore offers a practical route to semantically structured CAD meshes without requiring curated taxonomies or exact palette matches. We discuss limitations in boundary precision, partly due to per-face supervision, and outline paths toward boundary-aware training and higher resolution labels.
☆ Diverse Text-to-Image Generation via Contrastive Noise Optimization
Text-to-image (T2I) diffusion models have demonstrated impressive performance in generating high-fidelity images, largely enabled by text-guided inference. However, this advantage often comes with a critical drawback: limited diversity, as outputs tend to collapse into similar modes under strong text guidance. Existing approaches typically optimize intermediate latents or text conditions during inference, but these methods deliver only modest gains or remain sensitive to hyperparameter tuning. In this work, we introduce Contrastive Noise Optimization, a simple yet effective method that addresses the diversity issue from a distinct perspective. Unlike prior techniques that adapt intermediate latents, our approach shapes the initial noise to promote diverse outputs. Specifically, we develop a contrastive loss defined in the Tweedie data space and optimize a batch of noise latents. Our contrastive optimization repels instances within the batch to maximize diversity while keeping them anchored to a reference sample to preserve fidelity. We further provide theoretical insights into the mechanism of this preprocessing to substantiate its effectiveness. Extensive experiments across multiple T2I backbones demonstrate that our approach achieves a superior quality-diversity Pareto frontier while remaining robust to hyperparameter choices.
☆ Neon: Negative Extrapolation From Self-Training Improves Image Generation
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/SinaAlemohammad/Neon
♻ ☆ Physics-Based Motion Imitation with Adversarial Differential Discriminators SIGGRAPH
Multi-objective optimization problems, which require the simultaneous optimization of multiple objectives, are prevalent across numerous applications. Existing multi-objective optimization methods often rely on manually-tuned aggregation functions to formulate a joint optimization objective. The performance of such hand-tuned methods is heavily dependent on careful weight selection, a time-consuming and laborious process. These limitations also arise in the setting of reinforcement-learning-based motion tracking methods for physically simulated characters, where intricately crafted reward functions are typically used to achieve high-fidelity results. Such solutions not only require domain expertise and significant manual tuning, but also limit the applicability of the resulting reward function across diverse skills. To bridge this gap, we present a novel adversarial multi-objective optimization technique that is broadly applicable to a range of multi-objective reinforcement-learning tasks, including motion tracking. Our proposed Adversarial Differential Discriminator (ADD) receives a single positive sample, yet is still effective at guiding the optimization process. We demonstrate that our technique can enable characters to closely replicate a variety of acrobatic and agile behaviors, achieving comparable quality to state-of-the-art motion-tracking methods, without relying on manually-designed reward functions. Code and results are available at https://add-moo.github.io/.
comment: SIGGRAPH Asia 2025 Conference Papers
Robotics 42
Simulation to Rules: A Dual-VLM Framework for Formal Visual Planning
Vision Language Models (VLMs) show strong potential for visual planning but struggle with precise spatial and long-horizon reasoning. In contrast, Planning Domain Definition Language (PDDL) planners excel at long-horizon formal planning, but cannot interpret visual inputs. Recent works combine these complementary advantages by enabling VLMs to turn visual planning problems into PDDL files for formal planning. However, while VLMs can generate PDDL problem files satisfactorily, they struggle to accurately generate the PDDL domain files, which describe all the planning rules. As a result, prior methods rely on human experts to predefine domain files or on constant environment access for refinement. We propose VLMFP, a Dual-VLM-guided framework that can autonomously generate both PDDL problem and domain files for formal visual planning. VLMFP introduces two VLMs to ensure reliable PDDL file generation: A SimVLM that simulates action consequences based on input rule descriptions, and a GenVLM that generates and iteratively refines PDDL files by comparing the PDDL and SimVLM execution results. VLMFP unleashes multiple levels of generalizability: The same generated PDDL domain file works for all the different instances under the same problem, and VLMs generalize to different problems with varied appearances and rules. We evaluate VLMFP with 6 grid-world domains and test its generalization to unseen instances, appearance, and game rules. On average, SimVLM accurately describes 95.5%, 82.6% of scenarios, simulates 85.5%, 87.8% of action sequence, and judges 82.4%, 85.6% goal reaching for seen and unseen appearances, respectively. With the guidance of SimVLM, VLMFP can generate PDDL files to reach 70.0%, 54.1% valid plans for unseen instances in seen and unseen appearances, respectively. Project page: https://sites.google.com/view/vlmfp.
comment: 30 pages, 5 figures, 5 tables
☆ Optimal Smooth Coverage Trajectory Planning for Quadrotors in Cluttered Environment
For typical applications of UAVs in power grid scenarios, we construct the problem as planning UAV trajectories for coverage in cluttered environments. In this paper, we propose an optimal smooth coverage trajectory planning algorithm. The algorithm consists of two stages. In the front-end, a Genetic Algorithm (GA) is employed to solve the Traveling Salesman Problem (TSP) for Points of Interest (POIs), generating an initial sequence of optimized visiting points. In the back-end, the sequence is further optimized by considering trajectory smoothness, time consumption, and obstacle avoidance. This is formulated as a nonlinear least squares problem and solved to produce a smooth coverage trajectory that satisfies these constraints. Numerical simulations validate the effectiveness of the proposed algorithm, ensuring UAVs can smoothly cover all POIs in cluttered environments.
comment: This paper has been accepted for publication in the 44th Chinese Control Conference, 2025. Please cite the paper using appropriate formats
☆ Improving Cooperation in Collaborative Embodied AI
The integration of Large Language Models (LLMs) into multiagent systems has opened new possibilities for collaborative reasoning and cooperation with AI agents. This paper explores different prompting methods and evaluates their effectiveness in enhancing agent collaborative behaviour and decision-making. We enhance CoELA, a framework designed for building Collaborative Embodied Agents that leverage LLMs for multi-agent communication, reasoning, and task coordination in shared virtual spaces. Through systematic experimentation, we examine different LLMs and prompt engineering strategies to identify optimised combinations that maximise collaboration performance. Furthermore, we extend our research by integrating speech capabilities, enabling seamless collaborative voice-based interactions. Our findings highlight the effectiveness of prompt optimisation in enhancing collaborative agent performance; for example, our best combination improved the efficiency of the system running with Gemma3 by 22% compared to the original CoELA system. In addition, the speech integration provides a more engaging user interface for iterative system development and demonstrations.
comment: In proceedings of UKCI 2025
☆ MM-Nav: Multi-View VLA Model for Robust Visual Navigation via Multi-Expert Learning
Visual navigation policy is widely regarded as a promising direction, as it mimics humans by using egocentric visual observations for navigation. However, optical information of visual observations is difficult to be explicitly modeled like LiDAR point clouds or depth maps, which subsequently requires intelligent models and large-scale data. To this end, we propose to leverage the intelligence of the Vision-Language-Action (VLA) model to learn diverse navigation capabilities from synthetic expert data in a teacher-student manner. Specifically, we implement the VLA model, MM-Nav, as a multi-view VLA (with 360 observations) based on pretrained large language models and visual foundation models. For large-scale navigation data, we collect expert data from three reinforcement learning (RL) experts trained with privileged depth information in three challenging tailor-made environments for different navigation capabilities: reaching, squeezing, and avoiding. We iteratively train our VLA model using data collected online from RL experts, where the training ratio is dynamically balanced based on performance on individual capabilities. Through extensive experiments in synthetic environments, we demonstrate that our model achieves strong generalization capability. Moreover, we find that our student VLA model outperforms the RL teachers, demonstrating the synergistic effect of integrating multiple capabilities. Extensive real-world experiments further confirm the effectiveness of our method.
comment: Project page: https://pku-epic.github.io/MM-Nav-Web/
☆ Mask2IV: Interaction-Centric Video Generation via Mask Trajectories
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.
comment: Project page: https://reagan1311.github.io/mask2iv
☆ Learning Stability Certificate for Robotics in Real-World Environments
Stability certificates play a critical role in ensuring the safety and reliability of robotic systems. However, deriving these certificates for complex, unknown systems has traditionally required explicit knowledge of system dynamics, often making it a daunting task. This work introduces a novel framework that learns a Lyapunov function directly from trajectory data, enabling the certification of stability for autonomous systems without needing detailed system models. By parameterizing the Lyapunov candidate using a neural network and ensuring positive definiteness through Cholesky factorization, our approach automatically identifies whether the system is stable under the given trajectory. To address the challenges posed by noisy, real-world data, we allow for controlled violations of the stability condition, focusing on maintaining high confidence in the stability certification process. Our results demonstrate that this framework can provide data-driven stability guarantees, offering a robust method for certifying the safety of robotic systems in dynamic, real-world environments. This approach works without access to the internal control algorithms, making it applicable even in situations where system behavior is opaque or proprietary. The tool for learning the stability proof is open-sourced by this research: https://github.com/HansOersted/stability.
☆ Whisker-based Tactile Flight for Tiny Drones
Tiny flying robots hold great potential for search-and-rescue, safety inspections, and environmental monitoring, but their small size limits conventional sensing-especially with poor-lighting, smoke, dust or reflective obstacles. Inspired by nature, we propose a lightweight, 3.2-gram, whisker-based tactile sensing apparatus for tiny drones, enabling them to navigate and explore through gentle physical interaction. Just as rats and moles use whiskers to perceive surroundings, our system equips drones with tactile perception in flight, allowing obstacle sensing even in pitch-dark conditions. The apparatus uses barometer-based whisker sensors to detect obstacle locations while minimising destabilisation. To address sensor noise and drift, we develop a tactile depth estimation method achieving sub-6 mm accuracy. This enables drones to navigate, contour obstacles, and explore confined spaces solely through touch-even in total darkness along both soft and rigid surfaces. Running fully onboard a 192-KB RAM microcontroller, the system supports autonomous tactile flight and is validated in both simulation and real-world tests. Our bio-inspired approach redefines vision-free navigation, opening new possibilities for micro aerial vehicles in extreme environments.
☆ Geometry Meets Vision: Revisiting Pretrained Semantics in Distilled Fields
Semantic distillation in radiance fields has spurred significant advances in open-vocabulary robot policies, e.g., in manipulation and navigation, founded on pretrained semantics from large vision models. While prior work has demonstrated the effectiveness of visual-only semantic features (e.g., DINO and CLIP) in Gaussian Splatting and neural radiance fields, the potential benefit of geometry-grounding in distilled fields remains an open question. In principle, visual-geometry features seem very promising for spatial tasks such as pose estimation, prompting the question: Do geometry-grounded semantic features offer an edge in distilled fields? Specifically, we ask three critical questions: First, does spatial-grounding produce higher-fidelity geometry-aware semantic features? We find that image features from geometry-grounded backbones contain finer structural details compared to their counterparts. Secondly, does geometry-grounding improve semantic object localization? We observe no significant difference in this task. Thirdly, does geometry-grounding enable higher-accuracy radiance field inversion? Given the limitations of prior work and their lack of semantics integration, we propose a novel framework SPINE for inverting radiance fields without an initial guess, consisting of two core components: coarse inversion using distilled semantics, and fine inversion using photometric-based optimization. Surprisingly, we find that the pose estimation accuracy decreases with geometry-grounded features. Our results suggest that visual-only features offer greater versatility for a broader range of downstream tasks, although geometry-grounded features contain more geometric detail. Notably, our findings underscore the necessity of future research on effective strategies for geometry-grounding that augment the versatility and performance of pretrained semantic features.
☆ A Dimension-Decomposed Learning Framework for Online Disturbance Identification in Quadrotor SE(3) Control
Quadrotor stability under complex dynamic disturbances and model uncertainties poses significant challenges. One of them remains the underfitting problem in high-dimensional features, which limits the identification capability of current learning-based methods. To address this, we introduce a new perspective: Dimension-Decomposed Learning (DiD-L), from which we develop the Sliced Adaptive-Neuro Mapping (SANM) approach for geometric control. Specifically, the high-dimensional mapping for identification is axially ``sliced" into multiple low-dimensional submappings (``slices"). In this way, the complex high-dimensional problem is decomposed into a set of simple low-dimensional tasks addressed by shallow neural networks and adaptive laws. These neural networks and adaptive laws are updated online via Lyapunov-based adaptation without any pre-training or persistent excitation (PE) condition. To enhance the interpretability of the proposed approach, we prove that the full-state closed-loop system exhibits arbitrarily close to exponential stability despite multi-dimensional time-varying disturbances and model uncertainties. This result is novel as it demonstrates exponential convergence without requiring pre-training for unknown disturbances and specific knowledge of the model.
☆ Embracing Evolution: A Call for Body-Control Co-Design in Embodied Humanoid Robot
Humanoid robots, as general-purpose physical agents, must integrate both intelligent control and adaptive morphology to operate effectively in diverse real-world environments. While recent research has focused primarily on optimizing control policies for fixed robot structures, this position paper argues for evolving both control strategies and humanoid robots' physical structure under a co-design mechanism. Inspired by biological evolution, this approach enables robots to iteratively adapt both their form and behavior to optimize performance within task-specific and resource-constrained contexts. Despite its promise, co-design in humanoid robotics remains a relatively underexplored domain, raising fundamental questions about its feasibility and necessity in achieving true embodied intelligence. To address these challenges, we propose practical co-design methodologies grounded in strategic exploration, Sim2Real transfer, and meta-policy learning. We further argue for the essential role of co-design by analyzing it from methodological, application-driven, and community-oriented perspectives. Striving to guide and inspire future studies, we present open research questions, spanning from short-term innovations to long-term goals. This work positions co-design as a cornerstone for developing the next generation of intelligent and adaptable humanoid agents.
Long-Term Human Motion Prediction Using Spatio-Temporal Maps of Dynamics
Long-term human motion prediction (LHMP) is important for the safe and efficient operation of autonomous robots and vehicles in environments shared with humans. Accurate predictions are important for applications including motion planning, tracking, human-robot interaction, and safety monitoring. In this paper, we exploit Maps of Dynamics (MoDs), which encode spatial or spatio-temporal motion patterns as environment features, to achieve LHMP for horizons of up to 60 seconds. We propose an MoD-informed LHMP framework that supports various types of MoDs and includes a ranking method to output the most likely predicted trajectory, improving practical utility in robotics. Further, a time-conditioned MoD is introduced to capture motion patterns that vary across different times of day. We evaluate MoD-LHMP instantiated with three types of MoDs. Experiments on two real-world datasets show that MoD-informed method outperforms learning-based ones, with up to 50\% improvement in average displacement error, and the time-conditioned variant achieves the highest accuracy overall. Project code is available at https://github.com/test-bai-cpu/LHMP-with-MoDs.git
comment: IEEE Robotics and Automation Letters
☆ HumanoidExo: Scalable Whole-Body Humanoid Manipulation via Wearable Exoskeleton
A significant bottleneck in humanoid policy learning is the acquisition of large-scale, diverse datasets, as collecting reliable real-world data remains both difficult and cost-prohibitive. To address this limitation, we introduce HumanoidExo, a novel system that transfers human motion to whole-body humanoid data. HumanoidExo offers a high-efficiency solution that minimizes the embodiment gap between the human demonstrator and the robot, thereby tackling the scarcity of whole-body humanoid data. By facilitating the collection of more voluminous and diverse datasets, our approach significantly enhances the performance of humanoid robots in dynamic, real-world scenarios. We evaluated our method across three challenging real-world tasks: table-top manipulation, manipulation integrated with stand-squat motions, and whole-body manipulation. Our results empirically demonstrate that HumanoidExo is a crucial addition to real-robot data, as it enables the humanoid policy to generalize to novel environments, learn complex whole-body control from only five real-robot demonstrations, and even acquire new skills (i.e., walking) solely from HumanoidExo data.
☆ 3D-CovDiffusion: 3D-Aware Diffusion Policy for Coverage Path Planning
Diffusion models, as a class of deep generative models, have recently emerged as powerful tools for robot skills by enabling stable training with reliable convergence. In this paper, we present an end-to-end framework for generating long, smooth trajectories that explicitly target high surface coverage across various industrial tasks, including polishing, robotic painting, and spray coating. The conventional methods are always fundamentally constrained by their predefined functional forms, which limit the shapes of the trajectories they can represent and make it difficult to handle complex and diverse tasks. Moreover, their generalization is poor, often requiring manual redesign or extensive parameter tuning when applied to new scenarios. These limitations highlight the need for more expressive generative models, making diffusion-based approaches a compelling choice for trajectory generation. By iteratively denoising trajectories with carefully learned noise schedules and conditioning mechanisms, diffusion models not only ensure smooth and consistent motion but also flexibly adapt to the task context. In experiments, our method improves trajectory continuity, maintains high coverage, and generalizes to unseen shapes, paving the way for unified end-to-end trajectory learning across industrial surface-processing tasks without category-specific models. On average, our approach improves Point-wise Chamfer Distance by 98.2\% and smoothness by 97.0\%, while increasing surface coverage by 61\% compared to prior methods. The link to our code can be found \href{https://anonymous.4open.science/r/spraydiffusion_ral-2FCE/README.md}{here}.
☆ Real-Time Nonlinear Model Predictive Control of Heavy-Duty Skid-Steered Mobile Platform for Trajectory Tracking Tasks
This paper presents a framework for real-time optimal controlling of a heavy-duty skid-steered mobile platform for trajectory tracking. The importance of accurate real-time performance of the controller lies in safety considerations of situations where the dynamic system under control is affected by uncertainties and disturbances, and the controller should compensate for such phenomena in order to provide stable performance. A multiple-shooting nonlinear model-predictive control framework is proposed in this paper. This framework benefits from suitable algorithm along with readings from various sensors for genuine real-time performance with extremely high accuracy. The controller is then tested for tracking different trajectories where it demonstrates highly desirable performance in terms of both speed and accuracy. This controller shows remarkable improvement when compared to existing nonlinear model-predictive controllers in the literature that were implemented on skid-steered mobile platforms.
☆ AI-Enhanced Kinematic Modeling of Flexible Manipulators Using Multi-IMU Sensor Fusion
This paper presents a novel framework for estimating the position and orientation of flexible manipulators undergoing vertical motion using multiple inertial measurement units (IMUs), optimized and calibrated with ground truth data. The flexible links are modeled as a series of rigid segments, with joint angles estimated from accelerometer and gyroscope measurements acquired by cost-effective IMUs. A complementary filter is employed to fuse the measurements, with its parameters optimized through particle swarm optimization (PSO) to mitigate noise and delay. To further improve estimation accuracy, residual errors in position and orientation are compensated using radial basis function neural networks (RBFNN). Experimental results validate the effectiveness of the proposed intelligent multi-IMU kinematic estimation method, achieving root mean square errors (RMSE) of 0.00021~m, 0.00041~m, and 0.00024~rad for $y$, $z$, and $\theta$, respectively.
☆ YawSitter: Modeling and Controlling a Tail-Sitter UAV with Enhanced Yaw Control
Achieving precise lateral motion modeling and decoupled control in hover remains a significant challenge for tail-sitter Unmanned Aerial Vehicles (UAVs), primarily due to complex aerodynamic couplings and the absence of welldefined lateral dynamics. This paper presents a novel modeling and control strategy that enhances yaw authority and lateral motion by introducing a sideslip force model derived from differential propeller slipstream effects acting on the fuselage under differential thrust. The resulting lateral force along the body y-axis enables yaw-based lateral position control without inducing roll coupling. The control framework employs a YXZ Euler rotation formulation to accurately represent attitude and incorporate gravitational components while directly controlling yaw in the yaxis, thereby improving lateral dynamic behavior and avoiding singularities. The proposed approach is validated through trajectory-tracking simulations conducted in a Unity-based environment. Tests on both rectangular and circular paths in hover mode demonstrate stable performance, with low mean absolute position errors and yaw deviations constrained within 5.688 degrees. These results confirm the effectiveness of the proposed lateral force generation model and provide a foundation for the development of agile, hover-capable tail-sitter UAVs.
☆ Single-Rod Brachiation Robot: Mechatronic Control Design and Validation of Prejump Phases
A complete mechatronic design of a minimal configuration brachiation robot is presented. The robot consists of a single rigid rod with gripper mechanisms attached to both ends. The grippers are used to hang the robot on a horizontal bar on which it swings or rotates. The motion is imposed by repositioning the robot's center of mass, which is performed using a crank-slide mechanism. Based on a non-linear model, an optimal control strategy is proposed, for repositioning the center of mass in a bang-bang manner. Consequently, utilizing the concept of input-output linearization, a continuous control strategy is proposed that takes into account the limited torque of the crank-slide mechanism and its geometry. An increased attention is paid to energy accumulation towards the subsequent jump stage of the brachiation. These two strategies are validated and compared in simulations. The continuous control strategy is then also implemented within a low-cost STM32-based control system, and both the swing and rotation stages of the brachiation motion are experimentally validated.
comment: 11 pages, 13 figures, 1 table, Accepted 27 July 2025, Available online 16 Sept 2025, Version of Record 28 Sept 2025
☆ Metrics vs Surveys: Can Quantitative Measures Replace Human Surveys in Social Robot Navigation? A Correlation Analysis
Social, also called human-aware, navigation is a key challenge for the integration of mobile robots into human environments. The evaluation of such systems is complex, as factors such as comfort, safety, and legibility must be considered. Human-centered assessments, typically conducted through surveys, provide reliable insights but are costly, resource-intensive, and difficult to reproduce or compare across systems. Alternatively, numerical social navigation metrics are easy to compute and facilitate comparisons, yet the community lacks consensus on a standard set of metrics. This work explores the relationship between numerical metrics and human-centered evaluations to identify potential correlations. If specific quantitative measures align with human perceptions, they could serve as standardized evaluation tools, reducing the dependency on surveys. Our results indicate that while current metrics capture some aspects of robot navigation behavior, important subjective factors remain insufficiently represented and new metrics are necessary.
Point Cloud-Based Control Barrier Functions for Model Predictive Control in Safety-Critical Navigation of Autonomous Mobile Robots IROS2025
In this work, we propose a novel motion planning algorithm to facilitate safety-critical navigation for autonomous mobile robots. The proposed algorithm integrates a real-time dynamic obstacle tracking and mapping system that categorizes point clouds into dynamic and static components. For dynamic point clouds, the Kalman filter is employed to estimate and predict their motion states. Based on these predictions, we extrapolate the future states of dynamic point clouds, which are subsequently merged with static point clouds to construct the forward-time-domain (FTD) map. By combining control barrier functions (CBFs) with nonlinear model predictive control, the proposed algorithm enables the robot to effectively avoid both static and dynamic obstacles. The CBF constraints are formulated based on risk points identified through collision detection between the predicted future states and the FTD map. Experimental results from both simulated and real-world scenarios demonstrate the efficacy of the proposed algorithm in complex environments. In simulation experiments, the proposed algorithm is compared with two baseline approaches, showing superior performance in terms of safety and robustness in obstacle avoidance. The source code is released for the reference of the robotics community.
comment: 8 pages, 8 figures, accepted to IROS2025
☆ Novel UWB Synthetic Aperture Radar Imaging for Mobile Robot Mapping
Traditional exteroceptive sensors in mobile robots, such as LiDARs and cameras often struggle to perceive the environment in poor visibility conditions. Recently, radar technologies, such as ultra-wideband (UWB) have emerged as potential alternatives due to their ability to see through adverse environmental conditions (e.g. dust, smoke and rain). However, due to the small apertures with low directivity, the UWB radars cannot reconstruct a detailed image of its field of view (FOV) using a single scan. Hence, a virtual large aperture is synthesized by moving the radar along a mobile robot path. The resulting synthetic aperture radar (SAR) image is a high-definition representation of the surrounding environment. Hence, this paper proposes a pipeline for mobile robots to incorporate UWB radar-based SAR imaging to map an unknown environment. Finally, we evaluated the performance of classical feature detectors: SIFT, SURF, BRISK, AKAZE and ORB to identify loop closures using UWB SAR images. The experiments were conducted emulating adverse environmental conditions. The results demonstrate the viability and effectiveness of UWB SAR imaging for high-resolution environmental mapping and loop closure detection toward more robust and reliable robotic perception systems.
comment: Accepted and presented at the 15th International Conference on Indoor Positioning and Indoor Navigation (IPIN) 2025, see https://ipin-conference.org/2025/
☆ Action Deviation-Aware Inference for Low-Latency Wireless Robots
To support latency-sensitive AI applications ranging from autonomous driving to industrial robot manipulation, 6G envisions distributed ML, connecting distributed computational resources in edge and cloud over hyper-reliable low-latency communication (HRLLC). In this setting, speculative decoding can facilitate collaborative inference of models distributively deployed: an on-device draft model locally generates drafts and a remote server-based target model verifies and corrects them, resulting lower latency. However, unlike autoregressive text generation, behavior cloning policies, typically used for embodied AI applications like robot manipulation and autonomous driving, cannot parallelize verification and correction for multiple drafts as each action depends on observation which needs to be updated by a previous action. To this end, we propose Action Deviation-Aware Hybrid Inference, wherein the draft model estimates an action's need for verification and correction by the target model and selectively skips communication and computation for server operations. Action deviation shows a strong correlation with action's rejection probability by the target model, enabling selective skipping. We derive the path deviation threshold that balances the transmission rate and the inference performance, and we empirically show that action deviation-aware hybrid inference reduces uplink transmission and server operation by 40%, while lowering end-to-end latency by 33.32% relative to hybrid inference without skipping and achieving task success rate up to 97.03% of that of target model only inference.
☆ Assist-as-needed Control for FES in Foot Drop Management
Foot drop is commonly managed using Functional Electrical Stimulation (FES), typically delivered via open-loop controllers with fixed stimulation intensities. While users may manually adjust the intensity through external controls, this approach risks overstimulation, leading to muscle fatigue and discomfort, or understimulation, which compromises dorsiflexion and increases fall risk. In this study, we propose a novel closed-loop FES controller that dynamically adjusts the stimulation intensity based on real-time toe clearance, providing "assistance as needed". We evaluate this system by inducing foot drop in healthy participants and comparing the effects of the closed-loop controller with a traditional open-loop controller across various walking conditions, including different speeds and surface inclinations. Kinematic data reveal that our closed-loop controller maintains adequate toe clearance without significantly affecting the joint angles of the hips, the knees, and the ankles, and while using significantly lower stimulation intensities compared to the open-loop controller. These findings suggest that the proposed method not only matches the effectiveness of existing systems but also offers the potential for reduced muscle fatigue and improved long-term user comfort and adherence.
☆ Work Zones challenge VLM Trajectory Planning: Toward Mitigation and Robust Autonomous Driving
Visual Language Models (VLMs), with powerful multimodal reasoning capabilities, are gradually integrated into autonomous driving by several automobile manufacturers to enhance planning capability in challenging environments. However, the trajectory planning capability of VLMs in work zones, which often include irregular layouts, temporary traffic control, and dynamically changing geometric structures, is still unexplored. To bridge this gap, we conduct the \textit{first} systematic study of VLMs for work zone trajectory planning, revealing that mainstream VLMs fail to generate correct trajectories in $68.0%$ of cases. To better understand these failures, we first identify candidate patterns via subgraph mining and clustering analysis, and then confirm the validity of $8$ common failure patterns through human verification. Building on these findings, we propose REACT-Drive, a trajectory planning framework that integrates VLMs with Retrieval-Augmented Generation (RAG). Specifically, REACT-Drive leverages VLMs to convert prior failure cases into constraint rules and executable trajectory planning code, while RAG retrieves similar patterns in new scenarios to guide trajectory generation. Experimental results on the ROADWork dataset show that REACT-Drive yields a reduction of around $3\times$ in average displacement error relative to VLM baselines under evaluation with Qwen2.5-VL. In addition, REACT-Drive yields the lowest inference time ($0.58$s) compared with other methods such as fine-tuning ($17.90$s). We further conduct experiments using a real vehicle in 15 work zone scenarios in the physical world, demonstrating the strong practicality of REACT-Drive.
comment: 13 pages,5 figures
☆ VERNIER: an open-source software pushing marker pose estimation down to the micrometer and nanometer scales
Pose estimation is still a challenge at the small scales. Few solutions exist to capture the 6 degrees of freedom of an object with nanometric and microradians resolutions over relatively large ranges. Over the years, we have proposed several fiducial marker and pattern designs to achieve reliable performance for various microscopy applications. Centimeter ranges are possible using pattern encoding methods, while nanometer resolutions can be achieved using phase processing of the periodic frames. This paper presents VERNIER, an open source phase processing software designed to provide fast and reliable pose measurement based on pseudo-periodic patterns. Thanks to a phase-based local thresholding algorithm, the software has proven to be particularly robust to noise, defocus and occlusion. The successive steps of the phase processing are presented, as well as the different types of patterns that address different application needs. The implementation procedure is illustrated with synthetic and experimental images. Finally, guidelines are given for selecting the appropriate pattern design and microscope magnification lenses as a function of the desired performance.
☆ Periodic Event-Triggered Prescribed Time Control of Euler-Lagrange Systems under State and Input Constraints
This article proposes a periodic event-triggered adaptive barrier control policy for the trajectory tracking problem of perturbed Euler-Lagrangian systems with state, input, and temporal (SIT) constraints. In particular, an approximation-free adaptive-barrier control architecture is designed to ensure prescribed-time convergence of the tracking error to a prescribed bound while rejecting exogenous disturbances. In contrast to existing approaches that necessitate continuous real-time control action, the proposed controller generates event-based updates through periodic evaluation of the triggering condition. Additionally, we derive an upper bound on the monitoring period by analysing the performance degradation of the filtered tracking error to facilitate periodic evaluation of the event-triggered strategy. To this end, a time-varying threshold function is considered in the triggering mechanism to reduce the number of triggers during the transient phase of system behaviour. Notably, the proposed design avoids Zeno behaviour and precludes the need for continuous monitoring of the triggering condition. A simulation and experimental study is undertaken to demonstrate the efficacy of the proposed control scheme.
☆ Flow with the Force Field: Learning 3D Compliant Flow Matching Policies from Force and Demonstration-Guided Simulation Data
While visuomotor policy has made advancements in recent years, contact-rich tasks still remain a challenge. Robotic manipulation tasks that require continuous contact demand explicit handling of compliance and force. However, most visuomotor policies ignore compliance, overlooking the importance of physical interaction with the real world, often leading to excessive contact forces or fragile behavior under uncertainty. Introducing force information into vision-based imitation learning could help improve awareness of contacts, but could also require a lot of data to perform well. One remedy for data scarcity is to generate data in simulation, yet computationally taxing processes are required to generate data good enough not to suffer from the Sim2Real gap. In this work, we introduce a framework for generating force-informed data in simulation, instantiated by a single human demonstration, and show how coupling with a compliant policy improves the performance of a visuomotor policy learned from synthetic data. We validate our approach on real-robot tasks, including non-prehensile block flipping and a bi-manual object moving, where the learned policy exhibits reliable contact maintenance and adaptation to novel conditions. Project Website: https://flow-with-the-force-field.github.io/webpage/
☆ Team Xiaomi EV-AD VLA: Caption-Guided Retrieval System for Cross-Modal Drone Navigation -- Technical Report for IROS 2025 RoboSense Challenge Track 4
Cross-modal drone navigation remains a challenging task in robotics, requiring efficient retrieval of relevant images from large-scale databases based on natural language descriptions. The RoboSense 2025 Track 4 challenge addresses this challenge, focusing on robust, natural language-guided cross-view image retrieval across multiple platforms (drones, satellites, and ground cameras). Current baseline methods, while effective for initial retrieval, often struggle to achieve fine-grained semantic matching between text queries and visual content, especially in complex aerial scenes. To address this challenge, we propose a two-stage retrieval refinement method: Caption-Guided Retrieval System (CGRS) that enhances the baseline coarse ranking through intelligent reranking. Our method first leverages a baseline model to obtain an initial coarse ranking of the top 20 most relevant images for each query. We then use Vision-Language-Model (VLM) to generate detailed captions for these candidate images, capturing rich semantic descriptions of their visual content. These generated captions are then used in a multimodal similarity computation framework to perform fine-grained reranking of the original text query, effectively building a semantic bridge between the visual content and natural language descriptions. Our approach significantly improves upon the baseline, achieving a consistent 5\% improvement across all key metrics (Recall@1, Recall@5, and Recall@10). Our approach win TOP-2 in the challenge, demonstrating the practical value of our semantic refinement strategy in real-world robotic navigation scenarios.
☆ A $1000\times$ Faster LLM-enhanced Algorithm For Path Planning in Large-scale Grid Maps
Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6\%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}
☆ A Trajectory Generator for High-Density Traffic and Diverse Agent-Interaction Scenarios
Accurate trajectory prediction is fundamental to autonomous driving, as it underpins safe motion planning and collision avoidance in complex environments. However, existing benchmark datasets suffer from a pronounced long-tail distribution problem, with most samples drawn from low-density scenarios and simple straight-driving behaviors. This underrepresentation of high-density scenarios and safety critical maneuvers such as lane changes, overtaking and turning is an obstacle to model generalization and leads to overly optimistic evaluations. To address these challenges, we propose a novel trajectory generation framework that simultaneously enhances scenarios density and enriches behavioral diversity. Specifically, our approach converts continuous road environments into a structured grid representation that supports fine-grained path planning, explicit conflict detection, and multi-agent coordination. Built upon this representation, we introduce behavior-aware generation mechanisms that combine rule-based decision triggers with Frenet-based trajectory smoothing and dynamic feasibility constraints. This design allows us to synthesize realistic high-density scenarios and rare behaviors with complex interactions that are often missing in real data. Extensive experiments on the large-scale Argoverse 1 and Argoverse 2 datasets demonstrate that our method significantly improves both agent density and behavior diversity, while preserving motion realism and scenario-level safety. Our synthetic data also benefits downstream trajectory prediction models and enhances performance in challenging high-density scenarios.
Multi-robot Rigid Formation Navigation via Synchronous Motion and Discrete-time Communication-Control Optimization
Rigid-formation navigation of multiple robots is essential for applications such as cooperative transportation. This process involves a team of collaborative robots maintaining a predefined geometric configuration, such as a square, while in motion. For untethered collaborative motion, inter-robot communication must be conducted through a wireless network. Notably, few existing works offer a comprehensive solution for multi-robot formation navigation executable on microprocessor platforms via wireless networks, particularly for formations that must traverse complex curvilinear paths. To address this gap, we introduce a novel "hold-and-hit" communication-control framework designed to work seamlessly with the widely-used Robotic Operating System (ROS) platform. The hold-and-hit framework synchronizes robot movements in a manner robust against wireless network delays and packet loss. It operates over discrete-time communication-control cycles, making it suitable for implementation on contemporary microprocessors. Complementary to hold-and-hit, we propose an intra-cycle optimization approach that enables rigid formations to closely follow desired curvilinear paths, even under the nonholonomic movement constraints inherent to most vehicular robots. The combination of hold-and-hit and intra-cycle optimization ensures precise and reliable navigation even in challenging scenarios. Simulations in a virtual environment demonstrate the superiority of our method in maintaining a four-robot square formation along an S-shaped path, outperforming two existing approaches. Furthermore, real-world experiments validate the effectiveness of our framework: the robots maintained an inter-distance error within $\pm 0.069m$ and an inter-angular orientation error within $\pm19.15^{\circ}$ while navigating along an S-shaped path at a fixed linear velocity of $0.1 m/s$.
☆ Reachable Predictive Control: A Novel Control Algorithm for Nonlinear Systems with Unknown Dynamics and its Practical Applications
This paper proposes an algorithm capable of driving a system to follow a piecewise linear trajectory without prior knowledge of the system dynamics. Motivated by a critical failure scenario in which a system can experience an abrupt change in its dynamics, we demonstrate that it is possible to follow a set of waypoints comprised of states analytically proven to be reachable despite not knowing the system dynamics. The proposed algorithm first applies small perturbations to locally learn the system dynamics around the current state, then computes the set of states that are provably reachable using the locally learned dynamics and their corresponding maximum growth-rate bounds, and finally synthesizes a control action that navigates the system to a guaranteed reachable state.
Less is More: Lean yet Powerful Vision-Language Model for Autonomous Driving
In this work, we reconceptualize autonomous driving as a generalized language and formulate the trajectory planning task as next waypoint prediction. We introduce Max-V1, a novel framework for one-stage end-to-end autonomous driving. Our framework presents a single-pass generation paradigm that aligns with the inherent sequentiality of driving. This approach leverages the generative capacity of the VLM (Vision-Language Model) to enable end-to-end trajectory prediction directly from front-view camera input. The efficacy of this method is underpinned by a principled supervision strategy derived from statistical modeling. This provides a well-defined learning objective, which makes the framework highly amenable to master complex driving policies through imitation learning from large-scale expert demonstrations. Empirically, our method achieves the state-of-the-art performance on the nuScenes dataset, delivers an overall improvement of over 30% compared to prior baselines. Furthermore, it exhibits superior generalization performance on cross-domain datasets acquired from diverse vehicles, demonstrating notable potential for cross-vehicle robustness and adaptability. Due to these empirical strengths, this work introduces a model enabling fundamental driving behaviors, laying the foundation for the development of more capable self-driving agents. Code will be available upon publication.
Learned IMU Bias Prediction for Invariant Visual Inertial Odometry
Autonomous mobile robots operating in novel environments depend critically on accurate state estimation, often utilizing visual and inertial measurements. Recent work has shown that an invariant formulation of the extended Kalman filter improves the convergence and robustness of visual-inertial odometry by utilizing the Lie group structure of a robot's position, velocity, and orientation states. However, inertial sensors also require measurement bias estimation, yet introducing the bias in the filter state breaks the Lie group symmetry. In this paper, we design a neural network to predict the bias of an inertial measurement unit (IMU) from a sequence of previous IMU measurements. This allows us to use an invariant filter for visual inertial odometry, relying on the learned bias prediction rather than introducing the bias in the filter state. We demonstrate that an invariant multi-state constraint Kalman filter (MSCKF) with learned bias predictions achieves robust visual-inertial odometry in real experiments, even when visual information is unavailable for extended periods and the system needs to rely solely on IMU measurements.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios NeurIPS 2025
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action segmentation methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF.
comment: Accepted to NeurIPS 2025. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF
♻ ☆ Decoupling Geometry from Optimization in 2D Irregular Cutting and Packing Problems: an Open-Source Collision Detection Engine
Addressing irregular cutting and packing (C&P) optimization problems poses two distinct challenges: the geometric challenge of determining whether or not an item can be placed feasibly at a certain position, and the optimization challenge of finding a good solution according to some objective function. Until now, those tackling such problems have had to address both challenges simultaneously, requiring two distinct sets of expertise and a lot of research & development effort. One way to lower this barrier is to decouple the two challenges. In this paper we introduce a powerful collision detection engine (CDE) for 2D irregular C&P problems which assumes full responsibility for the geometric challenge. The CDE (i) allows users to focus with full confidence on their optimization challenge by abstracting geometry away and (ii) enables independent advances to propagate to all optimization algorithms built atop it. We present a set of core principles and design philosophies to model a general and adaptable CDE focused on maximizing performance, accuracy and robustness. These principles are accompanied by a concrete open-source implementation called $\texttt{jagua-rs}$. This paper together with its implementation serves as a catalyst for future advances in irregular C&P problems by providing a solid foundation which can either be used as it currently exists or be further improved upon.
comment: 25 pages, 16 figures
♻ ☆ Beyond Anthropomorphism: Enhancing Grasping and Eliminating a Degree of Freedom by Fusing the Abduction of Digits Four and Five IROS
This paper presents the SABD hand, a 16-degree-of-freedom (DoF) robotic hand that departs from purely anthropomorphic designs to achieve an expanded grasp envelope, enable manipulation poses beyond human capability, and reduce the required number of actuators. This is achieved by combining the adduction/abduction (Add/Abd) joint of digits four and five into a single joint with a large range of motion. The combined joint increases the workspace of the digits by 400% and reduces the required DoFs while retaining dexterity. Experimental results demonstrate that the combined Add/Abd joint enables the hand to grasp objects with a side distance of up to 200 mm. Reinforcement learning-based investigations show that the design enables grasping policies that are effective not only for handling larger objects but also for achieving enhanced grasp stability. In teleoperated trials, the hand successfully performed 86% of attempted grasps on suitable YCB objects, including challenging non-anthropomorphic configurations. These findings validate the design's ability to enhance grasp stability, flexibility, and dexterous manipulation without added complexity, making it well-suited for a wide range of applications. A supplementary video is available at https://youtu.be/P3jRts46o4s .
comment: The first five listed authors have equal contribution. This work has been accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning High-Fidelity Robot Self-Model with Articulated 3D Gaussian Splatting
Self-modeling enables robots to build task-agnostic models of their morphology and kinematics based on data that can be automatically collected, with minimal human intervention and prior information, thereby enhancing machine intelligence. Recent research has highlighted the potential of data-driven technology in modeling the morphology and kinematics of robots. However, existing self-modeling methods suffer from either low modeling quality or excessive data acquisition costs. Beyond morphology and kinematics, texture is also a crucial component of robots, which is challenging to model and remains unexplored. In this work, a high-quality, texture-aware, and link-level method is proposed for robot self-modeling. We utilize three-dimensional (3D) Gaussians to represent the static morphology and texture of robots, and cluster the 3D Gaussians to construct neural ellipsoid bones, whose deformations are controlled by the transformation matrices generated by a kinematic neural network. The 3D Gaussians and kinematic neural network are trained using data pairs composed of joint angles, camera parameters and multi-view images without depth information. By feeding the kinematic neural network with joint angles, we can utilize the well-trained model to describe the corresponding morphology, kinematics and texture of robots at the link level, and render robot images from different perspectives with the aid of 3D Gaussian splatting. Furthermore, we demonstrate that the established model can be exploited to perform downstream tasks such as motion planning and inverse kinematics.
comment: This paper is accepted by IJRR. The code will be open-sourced on GitHub as soon as possible after the paper is officially published
♻ ☆ S-Graphs 2.0 -- A Hierarchical-Semantic Optimization and Loop Closure for SLAM
The hierarchical structure of 3D scene graphs shows a high relevance for representations purposes, as it fits common patterns from man-made environments. But, additionally, the semantic and geometric information in such hierarchical representations could be leveraged to speed up the optimization and management of map elements and robot poses. In this direction, we present our work Situational Graphs 2.0 (S-Graphs 2.0), which leverages the hierarchical structure of indoor scenes for efficient data management and optimization. Our algorithm begins by constructing a situational graph that represents the environment into four layers: Keyframes, Walls, Rooms, and Floors. Our first novelty lies in the front-end, which includes a floor detection module capable of identifying stairways and assigning floor-level semantic relations to the underlying layers. Floor-level semantics allows us to propose a floor-based loop closure strategy, that effectively rejects false positive closures that typically appear due to aliasing between different floors of a building. Our second novelty lies in leveraging our representation hierarchy in the optimization. Our proposal consists of: (1) local optimization over a window of recent keyframes and their connected components across the four representation layers, (2) floor-level global optimization, which focuses only on keyframes and their connections within the current floor during loop closures, and (3) room-level local optimization, marginalizing redundant keyframes that share observations within the room, which reduces the computational footprint. We validate our algorithm extensively in different real multi-floor environments. Our approach shows state-of-art-art accuracy metrics in large-scale multi-floor environments, estimating hierarchical representations up to 10x faster, in average, than competing baselines
comment: 8 pages, 9 figures, Accepted in IEEE RA-L September 2025
An Intention-driven Lane Change Framework Considering Heterogeneous Dynamic Cooperation in Mixed-traffic Environment
In mixed-traffic environments, where autonomous vehicles (AVs) interact with diverse human-driven vehicles (HVs), unpredictable intentions and heterogeneous behaviors make safe and efficient lane change maneuvers highly challenging. Existing methods often oversimplify these interactions by assuming uniform patterns. We propose an intention-driven lane change framework that integrates driving-style recognition, cooperation-aware decision-making, and coordinated motion planning. A deep learning classifier trained on the NGSIM dataset identifies human driving styles in real time. A cooperation score with intrinsic and interactive components estimates surrounding drivers' intentions and quantifies their willingness to cooperate with the ego vehicle. Decision-making combines behavior cloning with inverse reinforcement learning to determine whether a lane change should be initiated. For trajectory generation, model predictive control is integrated with IRL-based intention inference to produce collision-free and socially compliant maneuvers. Experiments show that the proposed model achieves 94.2\% accuracy and 94.3\% F1-score, outperforming rule-based and learning-based baselines by 4-15\% in lane change recognition. These results highlight the benefit of modeling inter-driver heterogeneity and demonstrate the potential of the framework to advance context-aware and human-like autonomous driving in complex traffic environments.
SlideSLAM: Sparse, Lightweight, Decentralized Metric-Semantic SLAM for Multi-Robot Navigation
This paper develops a real-time decentralized metric-semantic SLAM algorithm that enables a heterogeneous robot team to collaboratively construct object-based metric-semantic maps. The proposed framework integrates a data-driven front-end for instance segmentation from either RGBD cameras or LiDARs and a custom back-end for optimizing robot trajectories and object landmarks in the map. To allow multiple robots to merge their information, we design semantics-driven place recognition algorithms that leverage the informativeness and viewpoint invariance of the object-level metric-semantic map for inter-robot loop closure detection. A communication module is designed to track each robot's observations and those of other robots whenever communication links are available. The framework supports real-time, decentralized operation onboard the robots and has been integrated with three types of aerial and ground platforms. We validate its effectiveness through experiments in both indoor and outdoor environments, as well as benchmarks on public datasets and comparisons with existing methods. The framework is open-sourced and suitable for both single-agent and multi-robot real-time metric-semantic SLAM applications. The code is available at: https://github.com/KumarRobotics/SLIDE_SLAM.
comment: Xu Liu, Jiuzhou Lei, and Ankit Prabhu contributed equally to this work
♻ ☆ Latent Action Diffusion for Cross-Embodiment Manipulation
End-to-end learning is emerging as a powerful paradigm for robotic manipulation, but its effectiveness is limited by data scarcity and the heterogeneity of action spaces across robot embodiments. In particular, diverse action spaces across different end-effectors create barriers for cross-embodiment learning and skill transfer. We address this challenge through diffusion policies learned in a latent action space that unifies diverse end-effector actions. We first show that we can learn a semantically aligned latent action space for anthropomorphic robotic hands, a human hand, and a parallel jaw gripper using encoders trained with a contrastive loss. Second, we show that by using our proposed latent action space for co-training on manipulation data from different end-effectors, we can utilize a single policy for multi-robot control and obtain up to 25.3% improved manipulation success rates, indicating successful skill transfer despite a significant embodiment gap. Our approach using latent cross-embodiment policies presents a new method to unify different action spaces across embodiments, enabling efficient multi-robot control and data sharing across robot setups. This unified representation significantly reduces the need for extensive data collection for each new robot morphology, accelerates generalization across embodiments, and ultimately facilitates more scalable and efficient robotic learning.
comment: 15 pages, 7 figures, website: https://mimicrobotics.github.io/lad/
MCGS-SLAM: A Multi-Camera SLAM Framework Using Gaussian Splatting for High-Fidelity Mapping
Recent progress in dense SLAM has primarily targeted monocular setups, often at the expense of robustness and geometric coverage. We present MCGS-SLAM, the first purely RGB-based multi-camera SLAM system built on 3D Gaussian Splatting (3DGS). Unlike prior methods relying on sparse maps or inertial data, MCGS-SLAM fuses dense RGB inputs from multiple viewpoints into a unified, continuously optimized Gaussian map. A multi-camera bundle adjustment (MCBA) jointly refines poses and depths via dense photometric and geometric residuals, while a scale consistency module enforces metric alignment across views using low-rank priors. The system supports RGB input and maintains real-time performance at large scale. Experiments on synthetic and real-world datasets show that MCGS-SLAM consistently yields accurate trajectories and photorealistic reconstructions, usually outperforming monocular baselines. Notably, the wide field of view from multi-camera input enables reconstruction of side-view regions that monocular setups miss, critical for safe autonomous operation. These results highlight the promise of multi-camera Gaussian Splatting SLAM for high-fidelity mapping in robotics and autonomous driving.
Systems and Control 37
☆ A Dimension-Decomposed Learning Framework for Online Disturbance Identification in Quadrotor SE(3) Control
Quadrotor stability under complex dynamic disturbances and model uncertainties poses significant challenges. One of them remains the underfitting problem in high-dimensional features, which limits the identification capability of current learning-based methods. To address this, we introduce a new perspective: Dimension-Decomposed Learning (DiD-L), from which we develop the Sliced Adaptive-Neuro Mapping (SANM) approach for geometric control. Specifically, the high-dimensional mapping for identification is axially ``sliced" into multiple low-dimensional submappings (``slices"). In this way, the complex high-dimensional problem is decomposed into a set of simple low-dimensional tasks addressed by shallow neural networks and adaptive laws. These neural networks and adaptive laws are updated online via Lyapunov-based adaptation without any pre-training or persistent excitation (PE) condition. To enhance the interpretability of the proposed approach, we prove that the full-state closed-loop system exhibits arbitrarily close to exponential stability despite multi-dimensional time-varying disturbances and model uncertainties. This result is novel as it demonstrates exponential convergence without requiring pre-training for unknown disturbances and specific knowledge of the model.
☆ Eigenvalue Tracking of Large-Scale Systems Impacted by Time Delays
The paper focuses on tracking eigenvalue trajectories in power system models with time delays. We formulate a continuation-based approach that employs numerical integration to follow eigenvalues as system parameters vary, in the presence of one or multiple delayed variables. The formulation preserves the sparsity of the delay differential-algebraic equation (DDAE) system model and allows treating the delay magnitude itself as a varying parameter with implementation aspects discussed in detail. Accuracy is demonstrated on a modified IEEE 39-bus system with distributed energy resources. Scalability is discussed using a realistic dynamic model of the Irish transmission network.
☆ Economic zone data-enabled predictive control for connected open water systems
Real-time regulation of water distribution in connected open water systems is critical for ensuring system safety and meeting operational requirements. In this work, we consider a connected open water system that includes linkage hydraulic structures such as weirs, pumps and sluice gates. We propose a mixed-integer economic zone data-enabled predictive control (DeePC) approach, which is used to maintain the water levels of the branches within desired zones to avoid floods and reduce the energy consumption of the pumps in the considered water system. The proposed DeePC-based approach predicts the future dynamics of the system water levels, and generates optimal control actions based on system input and output data, thereby eliminating the need for both first-principles modeling and explicit data-driven modeling. To achieve multiple control objectives in order of priority, we utilize lexicographic optimization and adapt traditional DeePC cost function for zone tracking and energy consumption minimization. Additionally, Bayesian optimization is utilized to determine the control target zone, which effectively balances zone tracking and energy consumption in the presence of external disturbances. Comprehensive simulations and comparative analyses demonstrate the effectiveness of the proposed method. The proposed method maintains water levels within the desired zone for 97.04% of the operating time, with an average energy consumption of 33.5 kWh per 0.5 h. Compared to baseline methods, the proposed approach reduces the zone-tracking mean square error by 98.82% relative to economic zone DeePC without Bayesian optimization, and lowers energy consumption by 44.08% relative to economic set-point tracking DeePC. As compared to passive pump/gate control, the proposed method lowers the frequency of zone violations by 86.94% and the average energy consumption by 4.69%.
☆ Real-Time Peer-to-Peer Energy Trading for Multi-Microgrids: Improved Double Auction Mechanism and Prediction-Free Online Trading Approach
Peer-to-peer energy trading offers a promising solution for enhancing renewable energy utilization and economic benefits within interconnected microgrids. However, existing real-time P2P markets face two key challenges: high computational complexity in trading mechanisms, and suboptimal participant decision-making under diverse uncertainties. Existing prediction-based decision-making methods rely heavily on accurate forecasts, which are typically unavailable for microgrids, while prediction-free methods suffer from myopic behaviors. To address these challenges, this paper proposes an improved double auction mechanism combined with an adaptive step-size search algorithm to reduce computational burden, and a data-driven dual-reference online optimization (DDOO) framework to enhance participant decision-making. The improved mechanism simplifies bidding procedures, significantly reducing computational burden and ensuring rapid convergence to the market equilibrium. Additionally, the prediction-free DDOO framework mitigates myopic decision-making by introducing two informative reference signals. Case studies on a 20-microgrid system demonstrate the effectiveness and scalability of the proposed mechanism and approach. The improved mechanism significantly decreases the computational time while increasing local energy self-sufficiency periods from 0.01% to 29.86%, reducing reverse power flow periods from 24.51% to 3.96%, and lowering average operating costs by 19.20%. Compared with conventional approaches such as Lyapunov optimization and model predictive control, the DDOO framework achieves a 10%-13% reduction in operating costs with an optimality gap of only 5.76%.
☆ Corrosion Risk Estimation for Heritage Preservation: An Internet of Things and Machine Learning Approach Using Temperature and Humidity
Proactive preservation of steel structures at culturally significant heritage sites like the San Sebastian Basilica in the Philippines requires accurate corrosion forecasting. This study developed an Internet of Things hardware system connected with LoRa wireless communications to monitor heritage buildings with steel structures. From a three year dataset generated by the IoT system, we built a machine learning framework for predicting atmospheric corrosion rates using only temperature and relative humidity data. Deployed via a Streamlit dashboard with ngrok tunneling for public access, the framework provides real-time corrosion monitoring and actionable preservation recommendations. This minimal-data approach is scalable and cost effective for heritage sites with limited monitoring resources, showing that advanced regression can extract accurate corrosion predictions from basic meteorological data enabling proactive preservation of culturally significant structures worldwide without requiring extensive sensor networks
comment: 17 pages
☆ Single-Rod Brachiation Robot: Mechatronic Control Design and Validation of Prejump Phases
A complete mechatronic design of a minimal configuration brachiation robot is presented. The robot consists of a single rigid rod with gripper mechanisms attached to both ends. The grippers are used to hang the robot on a horizontal bar on which it swings or rotates. The motion is imposed by repositioning the robot's center of mass, which is performed using a crank-slide mechanism. Based on a non-linear model, an optimal control strategy is proposed, for repositioning the center of mass in a bang-bang manner. Consequently, utilizing the concept of input-output linearization, a continuous control strategy is proposed that takes into account the limited torque of the crank-slide mechanism and its geometry. An increased attention is paid to energy accumulation towards the subsequent jump stage of the brachiation. These two strategies are validated and compared in simulations. The continuous control strategy is then also implemented within a low-cost STM32-based control system, and both the swing and rotation stages of the brachiation motion are experimentally validated.
comment: 11 pages, 13 figures, 1 table, Accepted 27 July 2025, Available online 16 Sept 2025, Version of Record 28 Sept 2025
☆ Incomplete Air Mixing Reduces the Efficiency of Commercial Buildings Behaving as Virtual Batteries
Commercial building Heating, Ventilation, and Air Conditioning (HVAC) systems can provide flexibility to the electricity grid. Some researchers have found it convenient to model HVAC systems as virtual batteries. These models also better align with models used by grid planners and operators. However, experiments have shown that HVAC load shifting can be inefficient, and virtual battery models do not capture this inefficiency well. While the models typically use the average room temperature as the system's ``state of charge," they do not capture other factors that affect HVAC power/energy such as airflow and mixing. Here, we develop a new analytical building model to explore how incomplete mixing of supply air into a conditioned space leads to inefficiency in a virtual battery capturing the dynamics of HVAC fan power load shifting. The model qualitatively matches experimental results better than previous models, and shows that, as mixing becomes worse, the virtual battery becomes less efficient. Unfortunately, air mixing is unmeasured/unmeasurable. However, we show that, by closing the loop around measurements of fan power, we can improve the virtual battery's performance without the need for air mixing measurements. For example, in one case, we show a roundtrip efficiency improvement from 0.75 to 0.99.
Global Convergence of Policy Gradient for Entropy Regularized Linear-Quadratic Control with multiplicative noise
Reinforcement Learning (RL) has emerged as a powerful framework for sequential decision-making in dynamic environments, particularly when system parameters are unknown. This paper investigates RL-based control for entropy-regularized Linear Quadratic control (LQC) problems with multiplicative noises over an infinite time horizon. First, we adapt the Regularized Policy Gradient (RPG) algorithm to stochastic optimal control settings, proving that despite the non-convexity of the problem, RPG converges globally under conditions of gradient domination and near-smoothness. Second, based on zero-order optimization approach, we introduce a novel model free RL algorithm: Sample-Based Regularized Policy Gradient (SB-RPG). SB-RPG operates without knowledge of system parameters yet still retains strong theoretical guarantees of global convergence. Our model leverages entropy regularization to accelerate convergence and address the exploration versus exploitation trade-off inherent in RL. Numerical simulations validate the theoretical results and demonstrate the efficacy of SB-RPG in unknown-parameters environments.
comment: 33 pages, 4 figures
☆ Delay-Tolerant Augmented-Consensus-based Distributed Directed Optimization
Distributed optimization finds applications in large-scale machine learning, data processing and classification over multi-agent networks. In real-world scenarios, the communication network of agents may encounter latency that may affect the convergence of the optimization protocol. This paper addresses the case where the information exchange among the agents (computing nodes) over data-transmission channels (links) might be subject to communication time-delays, which is not well addressed in the existing literature. Our proposed algorithm improves the state-of-the-art by handling heterogeneous and arbitrary but bounded and fixed (time-invariant) delays over general strongly-connected directed networks. Arguments from matrix theory, algebraic graph theory, and augmented consensus formulation are applied to prove the convergence to the optimal value. Simulations are provided to verify the results and compare the performance with some existing delay-free algorithms.
comment: Systems & Control Letters
Life Estimation of HVDC Cable Insulation under Load Cycles: from Macroscopic to Microscopic Charge Conduction Modelling
This paper goes one step forward in the life estimation of HVDC cable insulation under load cycles by introducing for the first time a microscopic model of charge conduction and transport i.e., Bipolar Charge Transport BCT model for electric field calculation inside the insulation thickness. The paper firstly includes the development and the validation of BCT model with that found in literature. Then, the parameters of the developed BCT model are optimized using Pulsed Electro-Acoustic PEA space charge measurements. Followed by the integration of the developed, validated and optimized model into the electric field calculation for life estimation of a 500 kV DC-XLPE insulated cable subjected to Type Test load cycles according to Cigre Techical Brochure 852. The developed microscopic model is compared to the macroscopic models already found in the literature. The microscopic model shows a comparable electric field inversion similarly to macroscopic models. However, the behavior of the microscopic model is noticed to be different under heating and cooling load cycles. In hot cable, the maximum electric field stabilizes at different amplitude and position inside the insulation thickness in both models. This investigation has been carried out in the framework of the HEU-NEWGEN research project.
☆ Assist-as-needed Control for FES in Foot Drop Management
Foot drop is commonly managed using Functional Electrical Stimulation (FES), typically delivered via open-loop controllers with fixed stimulation intensities. While users may manually adjust the intensity through external controls, this approach risks overstimulation, leading to muscle fatigue and discomfort, or understimulation, which compromises dorsiflexion and increases fall risk. In this study, we propose a novel closed-loop FES controller that dynamically adjusts the stimulation intensity based on real-time toe clearance, providing "assistance as needed". We evaluate this system by inducing foot drop in healthy participants and comparing the effects of the closed-loop controller with a traditional open-loop controller across various walking conditions, including different speeds and surface inclinations. Kinematic data reveal that our closed-loop controller maintains adequate toe clearance without significantly affecting the joint angles of the hips, the knees, and the ankles, and while using significantly lower stimulation intensities compared to the open-loop controller. These findings suggest that the proposed method not only matches the effectiveness of existing systems but also offers the potential for reduced muscle fatigue and improved long-term user comfort and adherence.
☆ Periodic Event-Triggered Prescribed Time Control of Euler-Lagrange Systems under State and Input Constraints
This article proposes a periodic event-triggered adaptive barrier control policy for the trajectory tracking problem of perturbed Euler-Lagrangian systems with state, input, and temporal (SIT) constraints. In particular, an approximation-free adaptive-barrier control architecture is designed to ensure prescribed-time convergence of the tracking error to a prescribed bound while rejecting exogenous disturbances. In contrast to existing approaches that necessitate continuous real-time control action, the proposed controller generates event-based updates through periodic evaluation of the triggering condition. Additionally, we derive an upper bound on the monitoring period by analysing the performance degradation of the filtered tracking error to facilitate periodic evaluation of the event-triggered strategy. To this end, a time-varying threshold function is considered in the triggering mechanism to reduce the number of triggers during the transient phase of system behaviour. Notably, the proposed design avoids Zeno behaviour and precludes the need for continuous monitoring of the triggering condition. A simulation and experimental study is undertaken to demonstrate the efficacy of the proposed control scheme.
☆ A Control-Barrier-Function-Based Algorithm for Policy Adaptation in Reinforcement Learning
This paper considers the problem of adapting a predesigned policy, represented by a parameterized function class, from a solution that minimizes a given original cost function to a trade-off solution between minimizing the original objective and an additional cost function. The problem is formulated as a constrained optimization problem, where deviations from the optimal value of the original cost are explicitly constrained. To solve it, we develop a closed-loop system that governs the evolution of the policy parameters, with a closed-loop controller designed to adjust the additional cost gradient to ensure the satisfaction of the constraint. The resulting closed-loop system, termed control-barrier-function-based policy adaptation, exploits the set-invariance property of control barrier functions to guarantee constraint satisfaction. The effectiveness of the proposed method is demonstrated through numerical experiments on the Cartpole and Lunar Lander benchmarks from OpenAI Gym, as well as a quadruped robot, thereby illustrating both its practicality and potential for real-world policy adaptation.
☆ Guaranteed Time Control using Linear Matrix Inequalities
This paper presents a synthesis approach aiming to guarantee a minimum upper-bound for the time taken to reach a target set of non-zero measure that encompasses the origin, while taking into account uncertainties and input and state constraints. This approach is based on a harmonic transformation of the Lyapunov function and a novel piecewise quadratic representation of this transformed Lyapunov function over a simplicial partition of the state space. The problem is solved in a policy iteration fashion, whereas the evaluation and improvement steps are formulated as linear matrix inequalities employing the structural relaxation approach. Though initially formulated for uncertain polytopic systems, extensions to piecewise and nonlinear systems are discussed. Three examples illustrate the effectiveness of the proposed approach in different scenarios.
comment: Preprint - Initial submission submitted to Automatica
☆ Generalization of Graph Neural Network Models for Distribution Grid Fault Detection
Fault detection in power distribution grids is critical for ensuring system reliability and preventing costly outages. Moreover, fault detection methodologies should remain robust to evolving grid topologies caused by factors such as reconfigurations, equipment failures, and Distributed Energy Resource (DER) integration. Current data-driven state-of-the-art methods use Recurrent Neural Networks (RNNs) for temporal modeling and Graph Neural Networks (GNNs) for spatial learning, in an RNN+GNN pipeline setting (RGNN in short). Specifically, for power system fault diagnosis, Graph Convolutional Networks (GCNs) have been adopted. Yet, various more advanced GNN architectures have been proposed and adopted in domains outside of power systems. In this paper, we set out to systematically and consistently benchmark various GNN architectures in an RNN+GNN pipeline model. Specifically, to the best of our knowledge, we are the first to (i) propose to use GraphSAGE and Graph Attention (GAT, GATv2) in an RGNN for fault diagnosis, and (ii) provide a comprehensive benchmark against earlier proposed RGNN solutions (RGCN) as well as pure RNN models (especially Gated Recurrent Unit (GRU)), particularly (iii) exploring their generalization potential for deployment in different settings than those used for training them. Our experimental results on the IEEE 123-node distribution network show that RGATv2 has superior generalization capabilities, maintaining high performance with an F1-score reduction of $\sim$12% across different topology settings. In contrast, pure RNN models largely fail, experiencing an F1-score reduction of up to $\sim$60%, while other RGNN variants also exhibit significant performance degradation, i.e., up to $\sim$25% lower F1-scores.
comment: This paper has been submitted and accepted for IEEE SmartGridComm 2025
Long-Term Mapping of the Douro River Plume with Multi-Agent Reinforcement Learning
We study the problem of long-term (multiple days) mapping of a river plume using multiple autonomous underwater vehicles (AUVs), focusing on the Douro river representative use-case. We propose an energy - and communication - efficient multi-agent reinforcement learning approach in which a central coordinator intermittently communicates with the AUVs, collecting measurements and issuing commands. Our approach integrates spatiotemporal Gaussian process regression (GPR) with a multi-head Q-network controller that regulates direction and speed for each AUV. Simulations using the Delft3D ocean model demonstrate that our method consistently outperforms both single- and multi-agent benchmarks, with scaling the number of agents both improving mean squared error (MSE) and operational endurance. In some instances, our algorithm demonstrates that doubling the number of AUVs can more than double endurance while maintaining or improving accuracy, underscoring the benefits of multi-agent coordination. Our learned policies generalize across unseen seasonal regimes over different months and years, demonstrating promise for future developments of data-driven long-term monitoring of dynamic plume environments.
Certifiable Safe RLHF: Fixed-Penalty Constraint Optimization for Safer Language Models
Ensuring safety is a foundational requirement for large language models (LLMs). Achieving an appropriate balance between enhancing the utility of model outputs and mitigating their potential for harm is a complex and persistent challenge. Contemporary approaches frequently formalize this problem within the framework of Constrained Markov Decision Processes (CMDPs) and employ established CMDP optimization techniques. However, these methods exhibit two notable limitations. First, their reliance on reward and cost functions renders performance highly sensitive to the underlying scoring mechanism, which must capture semantic meaning rather than being triggered by superficial keywords. Second, CMDP-based training entails tuning dual-variable, a process that is both computationally expensive and does not provide any provable safety guarantee for a fixed dual variable that can be exploitable through adversarial jailbreaks. To overcome these limitations, we introduce Certifiable Safe-RLHF (CS-RLHF) that introduces a cost model trained on a large-scale corpus to assign semantically grounded safety scores. In contrast to the lagrangian-based approach, CS-RLHF adopts a rectified penalty-based formulation. This design draws on the theory of exact penalty functions in constrained optimization, wherein constraint satisfaction is enforced directly through a suitably chosen penalty term. With an appropriately scaled penalty, feasibility of the safety constraints can be guaranteed at the optimizer, eliminating the need for dual-variable updates. Empirical evaluation demonstrates that CS-RLHF outperforms state-of-the-art LLM model responses rendering at-least 5 times efficient against nominal and jail-breaking prompts
☆ Machine Learning-Driven Prediction of Lithium-Ion Battery Power Capability for eVTOL Aircraft
Electric vertical take-off and landing (eVTOL) aircraft have emerged as a promising solution to transform urban transportation. They present a few technical challenges for battery management, a prominent one of which is the prediction of the power capability of their lithium-ion battery systems. The challenge originates from the high C-rate discharging conditions required during eVTOL flights as well as the complexity of lithium-ion batteries' electro-thermal dynamics. This paper, for the first time, formulates a power limit prediction problem for eVTOL which explicitly considers long prediction horizons and the possible occurrence of emergency landings. We then harness machine learning to solve this problem in two intertwined ways. First, we adopt a dynamic model that integrates physics with machine learning to predict a lithium-ion battery's voltage and temperature behaviors with high accuracy. Second, while performing search for the maximum power, we leverage machine learning to predict the remaining discharge time and use the prediction to accelerate the search with fast computation. Our validation results show the effectiveness of the proposed study for eVTOL operations.
comment: 2025 American Control Conference (ACC)
☆ CANOPI: Contingency-Aware Nodal Optimal Power Investments with High Temporal Resolution
We present CANOPI, a novel algorithmic framework, for solving the Contingency-Aware Nodal Power Investments problem, a large-scale nonlinear optimization problem that jointly optimizes generation, storage, and transmission expansion. The underlying problem is nonlinear due to the impact of transmission upgrades on impedances, and the problem's large scale arises from the confluence of spatial and temporal resolutions. We propose algorithmic approaches to address these computational challenges. We pose a linear approximation of the overall nonlinear model, and develop a fixed-point algorithm to adjust for the nonlinear impedance feedback effect. We solve the large-scale linear expansion model with a specialized level-bundle method leveraging a novel interleaved approach to contingency constraint generation. We introduce a minimal cycle basis algorithm that improves the numerical sparsity of cycle-based DC power flow formulations, accelerating solve times for the operational subproblems. CANOPI is demonstrated on a 1493-bus Western Interconnection test system built from realistic-geography network data, with hourly operations spanning 52 week-long scenarios and a total possible set of 20 billion individual transmission contingency constraints. Numerical results quantify the reliability and economic benefits of fully incorporating transmission contingencies in integrated planning models and highlight the computational advantages of the proposed methods.
comment: This work has been submitted to the IEEE for possible publication
Robust Permissive Controller Synthesis for Interval MDPs
We address the problem of robust permissive controller synthesis for robots operating under uncertain dynamics, modeled as Interval Markov Decision Processes (IMDPs). IMDPs generalize standard MDPs by allowing transition probabilities to vary within intervals, capturing epistemic uncertainty from sensing noise, actuation imprecision, and coarse system abstractions-common in robotics. Traditional controller synthesis typically yields a single deterministic strategy, limiting adaptability. In contrast, permissive controllers (multi-strategies) allow multiple actions per state, enabling runtime flexibility and resilience. However, prior work on permissive controller synthesis generally assumes exact transition probabilities, which is unrealistic in many robotic applications. We present the first framework for robust permissive controller synthesis on IMDPs, guaranteeing that all strategies compliant with the synthesized multi-strategy satisfy reachability or reward-based specifications under all admissible transitions. We formulate the problem as mixed-integer linear programs (MILPs) and propose two encodings: a baseline vertex-enumeration method and a scalable duality-based method that avoids explicit enumeration. Experiments on four benchmark domains show that both methods synthesize robust, maximally permissive controllers and scale to large IMDPs with up to hundreds of thousands of states.
☆ A Sequential Quadratic Programming Perspective on Optimal Control
This paper offers a unified perspective on different approaches to the solution of optimal control problems through the lens of constrained sequential quadratic programming. In particular, it allows us to find the relationships between Newton's method, the iterative LQR (iLQR), and Differential Dynamic Programming (DDP) approaches to solve the problem. It is shown that the iLQR is a principled SQP approach, rather than simply an approximation of DDP by neglecting the Hessian terms, to solve optimal control problems that can be guaranteed to always produce a cost-descent direction and converge to an optimum; while Newton's approach or DDP do not have similar guarantees, especially far from an optimum. Our empirical evaluations on the pendulum and cart-pole swing-up tasks serve to corroborate the SQP-based analysis proposed in this paper.
☆ Cooling Under Convexity: An Inventory Control Perspective on Industrial Refrigeration
Industrial refrigeration systems have substantial energy needs, but optimizing their operation remains challenging due to the tension between minimizing energy costs and meeting strict cooling requirements. Load shifting--strategic overcooling in anticipation of future demands--offers substantial efficiency gains. This work seeks to rigorously quantify these potential savings through the derivation of optimal load shifting policies. Our first contribution establishes a novel connection between industrial refrigeration and inventory control problems with convex ordering costs, where the convexity arises from the relationship between energy consumption and cooling capacity. Leveraging this formulation, we derive three main theoretical results: (1) an optimal algorithm for deterministic demand scenarios, along with proof that optimal trajectories are non-increasing (a valuable structural insight for practical control); (2) performance bounds that quantify the value of load shifting as a function of cost convexity, demand variability, and temporal patterns; (3) a computationally tractable load shifting heuristic with provable near-optimal performance under uncertainty. Numerical simulations validate our theoretical findings, and a case study using real industrial refrigeration data demonstrates an opportunity for improved load shifting.
☆ Scalable Ground Station Selection for Large LEO Constellations
Effective ground station selection is critical for low Earth orbiting (LEO) satellite constellations to minimize operational costs, maximize data downlink volume, and reduce communication gaps between access windows. Traditional ground station selection typically begins by choosing from a fixed set of locations offered by Ground Station-as-a-Service (GSaaS) providers, which helps reduce the problem scope to optimizing locations over existing infrastructure. However, finding a globally optimal solution for stations using existing mixed-integer programming methods quickly becomes intractable at scale, especially when considering multiple providers and large satellite constellations. To address this issue, we introduce a scalable, hierarchical framework that decomposes the global selection problem into single-satellite, short time-window subproblems. Optimal station choices from each subproblem are clustered to identify consistently high-value locations across all decomposed cases. Cluster-level sets are then matched back to the closest GSaaS candidate sites to produce a globally feasible solution. This approach enables scalable coordination while maintaining near-optimal performance. We evaluate our method's performance on synthetic Walker-Star test cases (1-10 satellites, 1-10 stations), achieving solutions within 95% of the global IP optimum for all test cases. Real-world evaluations on Capella Space (5 satellites), ICEYE (40), and Planet's Flock (96) show that while exact IP solutions fail to scale, our framework continues to deliver high-quality site selections.
comment: 14 pages, 7 tables, 10 figures, submitted to IEEE Aeroconf 2026
☆ Efficient Input-Constrained Impulsive Optimal Control of Linear Systems with Application to Spacecraft Relative Motion
This work presents a novel algorithm for impulsive optimal control of linear time-varying systems with the inclusion of input magnitude constraints. Impulsive optimal control problems, where the optimal input solution is a sum of delta functions, are typically formulated as an optimization over a normed function space subject to integral equality constraints and can be efficiently solved for linear time-varying systems in their dual formulation. In this dual setting, the problem takes the form of a semi-infinite program which is readily solvable in online scenarios for constructing maneuver plans. This work augments the approach with the inclusion of magnitude constraints on the input over time windows of interest, which is shown to preserve the impulsive nature of the optimal solution and enable efficient solution procedures via semi-infinite programming. The resulting algorithm is demonstrated on the highly relevant problem of relative motion control of spacecraft in Low Earth Orbit (LEO) and compared to several other proposed solutions from the literature.
♻ ☆ Distributed Feedback-Feedforward Algorithms for Time-Varying Resource Allocation
This paper studies distributed Time-Varying Resource Allocation (TVRA) where the local cost functions, global equality constraints, and Local Feasibility Constraints (LFCs) vary with time. Algorithms that mimic the structure of feedback-feedforward control systems are proposed. Feedback and feedforward laws are generated using local estimates from a distributed estimator, while a distributed controller enforces the stationarity condition within a fixed time and updates the candidate solution accordingly. To handle the LFCs, feedback laws based on projection and feedforward laws that switch between different modes are introduced as an initialization-free alternative to the barrier-based methods used in most related works. Our projection-based method guarantees that, for any infeasible initial value, the state trajectory enters the locally feasible set within a fixed time and remains within it thereafter, and that the set is forward invariant if the initial value is locally feasible. Convergence analyses are conducted under mild assumptions. For cases without LFCs, the proposed algorithm converges to the optimal trajectory within a fixed time. For cases with LFCs, the proposed algorithm is globally asymptotically stable at the optimal trajectory while exhibiting fixed-time convergence between consecutive switching instants. Numerical examples and a power system application verify their effectiveness.
♻ ☆ Scalable analysis of stop-and-go waves: Representation, measurements and insights
Analyzing stop-and-go waves at the scale of miles and hours of data is an emerging challenge in traffic research. The past 5 years have seen an explosion in the availability of large-scale traffic data containing traffic waves and complex congestion patterns, making existing approaches unsuitable for repeatable and scalable analysis of traffic waves in these data. This paper makes a first step towards addressing this challenge by introducing an automatic and scalable stop-and-go wave identification method capable of capturing wave generation, propagation, dissipation, as well as bifurcation and merging, which have previously been observed only very rarely. Using a concise and simple critical-speed based definition of a stop-and-go wave, the proposed method identifies all wave boundaries that encompass spatio-temporal points where vehicle speed is below a chosen critical speed. The method is built upon a graph representation of the spatio-temporal points associated with stop-and-go waves, specifically wave front (start) points and wave tail (end) points, and approaches the solution as a graph component identification problem. It enables the measurement of wave properties at scale. The method is implemented in Python and demonstrated on a large-scale dataset, I-24 MOTION INCEPTION. Our results show insights on the complexity of traffic waves. Traffic waves can bifurcate and merge at a scale that has never been observed or described before. The clustering analysis of all the identified wave components reveals the different topological structures of traffic waves. We explored that the wave merge or bifurcation points can be explained by spatial features. The gallery of all the identified wave topologies is demonstrated at https://trafficwaves.github.io/.
♻ ☆ On the Eigenvalue Tracking of Large-Scale Systems
The paper focuses on the problem of tracking eigenvalue trajectories in large-scale power system models as system parameters vary. A continuation-based formulation is presented for tracing any single eigenvalue of interest, which supports sparse matrix representations and accommodates both explicit and semi-implicit differential-algebraic models. Key implementation aspects, such as numerical integration, matrix updates, derivative approximations, and handling defective eigenvalues, are discussed in detail and practical recommendations are duly provided. The tracking approach is demonstrated through a comprehensive case study on the IEEE 39-bus system, as well as on a realistic dynamic model of the Irish transmission system.
♻ ☆ Online Feedback Optimization for Monotone Systems without Timescale Separation
Online Feedback Optimization (OFO) steers a dynamical plant to a cost-efficient steady-state, only relying on input-output sensitivity information, rather than on a full plant model. Unlike traditional feedforward approaches, OFO leverages real-time measurements from the plant, thereby inheriting the robustness and adaptability of feedback control. Unfortunately, existing theoretical guarantees for OFO assume that the controller operates on a slower timescale than the plant, which can affect responsiveness and transient performance. In this paper, we focus on relaxing this ``timescale separation'' assumption. Specifically, we consider the class of monotone systems, and we prove that OFO can achieve an optimal operating point, regardless of the time constants of controller and plant. By leveraging a small gain theorem for monotone systems, we derive several sufficient conditions for global convergence. Notably, these conditions depend only on the steady-state behavior of the plant, and they are entirely independent of the transient dynamics.
♻ ☆ Neuromorphic Deployment of Spiking Neural Networks for Cognitive Load Classification in Air Traffic Control
This paper presents a neuromorphic system for cognitive load classification in a real-world setting, an Air Traffic Control (ATC) task, using a hardware implementation of Spiking Neural Networks (SNNs). Electroencephalogram (EEG) and eye-tracking features, extracted from an open-source dataset, were used to train and evaluate both conventional machine learning models and SNNs. Among the SNN architectures explored, a minimalistic, single-layer model trained with a biologically inspired delta-rule learning algorithm achieved competitive performance (80.6%). To enable deployment on neuromorphic hardware, the model was quantized and implemented on the mixed-signal DYNAP-SE chip. Despite hardware constraints and analog variability, the chip-deployed SNN maintained a classification accuracy of up to 73.5% using spike-based input. These results demonstrate the feasibility of event-driven neuromorphic systems for ultra-low-power, embedded cognitive state monitoring in dynamic real-world scenarios.
comment: Preprint version. Accepted at ACM/IEEE ICONS 2025 (to appear in Proceedings)
♻ ☆ Improved Monte Carlo Planning via Causal Disentanglement for Structurally-Decomposed Markov Decision Processes
Markov Decision Processes (MDPs), as a general-purpose framework, often overlook the benefits of incorporating the causal structure of the transition and reward dynamics. For a subclass of resource allocation problems, we introduce the Structurally Decomposed MDP (SD-MDP), which leverages causal disentanglement to partition an MDP's temporal causal graph into independent components. By exploiting this disentanglement, SD-MDP enables dimensionality reduction and computational efficiency gains in optimal value function estimation. We reduce the sequential optimization problem to a fractional knapsack problem with log-linear complexity $O(T \log T)$, outperforming traditional stochastic programming methods that exhibit polynomial complexity with respect to the time horizon $T$. Additionally, SD-MDP's computational advantages are independent of state-action space size, making it viable for high-dimensional spaces. Furthermore, our approach integrates seamlessly with Monte Carlo Tree Search (MCTS), achieving higher expected rewards under constrained simulation budgets while providing a vanishing simple regret bound. Empirical results demonstrate superior policy performance over benchmarks across various logistics and finance domains.
comment: Conference Paper. 7th International Conference on Distributed Artificial Intelligence (DAI)
♻ ☆ Fine Tuning a Simulation-Driven Estimator
Many industries now deploy high-fidelity simulators (digital twins) to represent physical systems, yet their parameters must be calibrated to match the true system. This motivated the construction of simulation-driven parameter estimators, built by generating synthetic observations for sampled parameter values and learning a supervised mapping from observations to parameters. However, when the true parameters lie outside the sampled range, predictions suffer from an out-of-distribution (OOD) error. This paper introduces a fine-tuning approach for the Two-Stage estimator that mitigates OOD effects and improves accuracy. The effectiveness of the proposed method is verified through numerical simulations.
comment: 6 pages, 4 figures
♻ ☆ Linear-quadratic mean-field-type difference games with coupled affine inequality constraints
In this letter, we study a class of linear-quadratic mean-field-type difference games with coupled affine inequality constraints. We show that the mean-field-type equilibrium can be characterized by the existence of a multiplier process which satisfies some implicit complementarity conditions. Further, we show that the equilibrium strategies can be computed by reformulating these conditions as a single large-scale linear complementarity problem. We illustrate our results with an energy storage problem arising in the management of microgrids.
♻ ☆ Stochastic Security Constrained AC Optimal Power Flow Using General Polynomial Chaos Expansion
Addressing the uncertainty introduced by increasing renewable integration is crucial for secure power system operation, yet capturing it while preserving the full nonlinear physics of the grid remains a significant challenge. This paper presents a stochastic security constrained optimal power flow model with chance constraints supporting nonlinear AC power flow equations and non Gaussian uncertainties. We use general polynomial chaos expansion to model arbitrary uncertainties of finite variance, enabling accurate moment computations and robust prediction of system states across diverse operating scenarios. The chance constraints probabilistically limit inequality violations, providing a more flexible representation of controllable variables and the consequent power system operation. Case studies validate the proposed models effectiveness in satisfying operational constraints and capturing uncertainty with high fidelity. Compared to the deterministic formulation, it also uncovers a wider set of unsecure contingencies, highlighting improved uncertainty capture and operational insight.
comment: 2025 IEEE International Conference on Energy Technologies for Future Grids (6 pages)
♻ ☆ Distributed Koopman Learning with Incomplete Measurements
Koopman operator theory has emerged as a powerful tool for system identification, particularly for approximating nonlinear time-invariant systems (NTIS). This paper considers a network of agents with limited observation capabilities that collaboratively estimate the dynamics of an NTIS. A distributed deep Koopman learning algorithm is developed by integrating Koopman operator theory, deep neural networks, and consensus-based coordination. In the proposed framework, each agent approximates the system dynamics using its partial measurements and lifted states exchanged with its neighbors. This cooperative scheme enables accurate reconstruction of the global dynamics despite the absence of full-state information at individual agents. Simulation results on the Lunar Lander environment from OpenAI Gym demonstrate that the proposed method achieves performance comparable to the centralized deep Koopman learning with full-state access.
♻ ☆ Distributed Koopman Learning using Partial Trajectories for Control
This paper proposes a distributed data-driven framework for dynamics learning, termed distributed deep Koopman learning using partial trajectories (DDKL-PT). In this framework, each agent in a multi-agent system is assigned a partial trajectory offline and locally approximates the unknown dynamics using a deep neural network within the Koopman operator framework. By exchanging local estimated dynamics rather than training data, agents achieve consensus on a global dynamics model without sharing their private training trajectories. Simulation studies on a surface vehicle demonstrate that DDKL-PT attains consensus with respect to the learned dynamics, with each agent achieving reasonably small approximation errors over the testing data. Furthermore, a model predictive control scheme is developed by integrating the learned Koopman dynamics with known kinematic relations. Results on goal-tracking and station-keeping tasks support that the distributedly learned dynamics are sufficiently accurate for model-based optimal control.
♻ ☆ Local Stability and Region of Attraction Analysis for Neural Network Feedback Systems under Positivity Constraints
We study the local stability of nonlinear systems in the Lur'e form with static nonlinear feedback realized by feedforward neural networks (FFNNs). By leveraging positivity system constraints, we employ a localized variant of the Aizerman conjecture, which provides sufficient conditions for exponential stability of trajectories confined to a compact set. Using this foundation, we develop two distinct methods for estimating the Region of Attraction (ROA): (i) a less conservative Lyapunov-based approach that constructs invariant sublevel sets of a quadratic function satisfying a linear matrix inequality (LMI), and (ii) a novel technique for computing tight local sector bounds for FFNNs via layer-wise propagation of linear relaxations. These bounds are integrated into the localized Aizerman framework to certify local exponential stability. Numerical results demonstrate substantial improvements over existing integral quadratic constraint-based approaches in both ROA size and scalability.
comment: Accepted at 64th IEEE Conference on Decision and Control (CDC) 2025 - Rio de Janeiro, Brazil
♻ ☆ Robust Stability Analysis of Positive Lure System with Neural Network Feedback
This paper investigates the robustness of the Lur'e problem under positivity constraints, drawing on results from the positive Aizerman conjecture and robustness properties of Metzler matrices. Specifically, we consider a control system of Lur'e type in which not only the linear part includes parametric uncertainty but also the nonlinear sector bound is unknown. We investigate tools from positive linear systems to effectively solve the problems in complicated and uncertain nonlinear systems. By leveraging the positivity characteristic of the system, we derive an explicit formula for the stability radius of Lur'e systems. Furthermore, we extend our analysis to systems with neural network (NN) feedback loops. Building on this approach, we also propose a refinement method for sector bounds of NNs. This study introduces a scalable and efficient approach for robustness analysis of both Lur'e and NN-controlled systems. Finally, the proposed results are supported by illustrative examples.
comment: Accepted at the 9th IEEE Conference on Control Technology and Applications (CCTA) 2025, San Diego, California
Computational Geometry 5
☆ Local Routing on a Convex Polytope in R^3
Given a convex polytope $P$ defined with $n$ vertices in $\mathbb{R}^3$, this paper presents an algorithm to preprocess $P$ to compute routing tables at every vertex of $P$ so that a data packet can be routed on $P$ from any vertex of $P$ to any other vertex of $P$. At every vertex $v$ of $P$ along the routing path, until the packet reaches its destination, the next hop is determined using the routing tables at $v$ and the information stored in the packet header. In $O(n+\min(n^3, \frac{1}{\epsilon^7}))$ time, the preprocessing algorithm computes a routing table at every vertex of $P$ of amortized size $O(\min(n, \frac{1}{\epsilon^{3/2}}))$ bits. If the optimal shortest distance between $s$ and $t$ on $P$ is $d(s, t)$, then the routing path produced by this algorithm has length at most $\frac{8+\epsilon}{\sin{\theta_m}}(D+d(s,t))$. Here, $\epsilon \in (0, 1)$ is an input parameter, $D$ is the maximum length of the diagonal of any cell when $\partial P$ is partitioned into $\frac{1}{\epsilon^3}$ geodesic cells of equal size, and $\theta_m$ is half the minimum angle between any two neighbouring edges of $P$ on $\partial P$.
☆ Note on the Number of Almost Ordinary Triangles
Let $X$ be a set of $n$ points in the plane, not all on a line. According to the Gallai-Sylvester theorem, $X$ always spans an \emph{ordinary line}, i.e., one that passes through precisely 2 elements of $X$. Given an integer $c\ge 2,$ a \emph{line} spanned by $X$ is called \emph{$c$-ordinary} if it passes through at most $c$ points of $X$. A \emph{triangle} spanned by 3 noncollinear points of $X$ is called \emph{$c$-ordinary} if all 3 lines determined by its sides are \emph{$c$-ordinary}. Motivated by a question of Erd\H os, Fulek \emph{et al.}~\cite{FMN+17} proved that there exists an absolute constant $c > 2$ such that if $X$ cannot be covered by 2 lines, then it determines at least one $c$-ordinary triangle. Moreover, the number of such triangles grows at least linearly in $n$. They raised the question whether the true growth rate of this function is superlinear. We prove that if $X$ cannot be covered by 2 lines, and no line passes through more than $n-t(n)$ points of $X$, for some function $t(n)\rightarrow\infty,$ then the number of $17$-ordinary triangles spanned by $X$ is at least constant times $n \cdot t(n)$, i.e., superlinear in $n$. We also show that the assumption $t(n)\rightarrow\infty$ is necessary. If we further assume that no line passes through more than $n/2-t(n)$ points of $X$, then the number of $17$-ordinary triangles grows superquadratically in $n$. This statement does not hold if $t(n)$ is bounded. We close this paper with some algorithmic results. In particular, we provide a $O(n^{2.372})$ time algorithm for counting all $c$-ordinary triangles in an $n$-element point set, for any $c
comment: 10 pages, 2 figures
♻ ☆ Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
This paper presents a novel topology-aware dimensionality reduction approach aiming at accurately visualizing the cyclic patterns present in high dimensional data. To that end, we build on the Topological Autoencoders (TopoAE) formulation. First, we provide a novel theoretical analysis of its associated loss and show that a zero loss indeed induces identical persistence pairs (in high and low dimensions) for the $0$-dimensional persistent homology (PH$^0$) of the Rips filtration. We also provide a counter example showing that this property no longer holds for a naive extension of TopoAE to PH$^d$ for $d\ge 1$. Based on this observation, we introduce a novel generalization of TopoAE to $1$-dimensional persistent homology (PH$^1$), called TopoAE++, for the accurate generation of cycle-aware planar embeddings, addressing the above failure case. This generalization is based on the notion of cascade distortion, a new penalty term favoring an isometric embedding of the $2$-chains filling persistent $1$-cycles, hence resulting in more faithful geometrical reconstructions of the $1$-cycles in the plane. We further introduce a novel, fast algorithm for the exact computation of PH for Rips filtrations in the plane, yielding improved runtimes over previously documented topology-aware methods. Our method also achieves a better balance between the topological accuracy, as measured by the Wasserstein distance, and the visual preservation of the cycles in low dimensions. Our C++ implementation is available at https://github.com/MClemot/TopologicalAutoencodersPlusPlus.
♻ ☆ Decoupling Geometry from Optimization in 2D Irregular Cutting and Packing Problems: an Open-Source Collision Detection Engine
Addressing irregular cutting and packing (C&P) optimization problems poses two distinct challenges: the geometric challenge of determining whether or not an item can be placed feasibly at a certain position, and the optimization challenge of finding a good solution according to some objective function. Until now, those tackling such problems have had to address both challenges simultaneously, requiring two distinct sets of expertise and a lot of research & development effort. One way to lower this barrier is to decouple the two challenges. In this paper we introduce a powerful collision detection engine (CDE) for 2D irregular C&P problems which assumes full responsibility for the geometric challenge. The CDE (i) allows users to focus with full confidence on their optimization challenge by abstracting geometry away and (ii) enables independent advances to propagate to all optimization algorithms built atop it. We present a set of core principles and design philosophies to model a general and adaptable CDE focused on maximizing performance, accuracy and robustness. These principles are accompanied by a concrete open-source implementation called $\texttt{jagua-rs}$. This paper together with its implementation serves as a catalyst for future advances in irregular C&P problems by providing a solid foundation which can either be used as it currently exists or be further improved upon.
comment: 25 pages, 16 figures
♻ ☆ Interval Decomposition of Persistence Modules over a Principal Ideal Domain
The study of persistent homology has contributed new insights and perspectives into a variety of interesting problems in science and engineering. Work in this domain relies on the result that any finitely-indexed persistence module of finite-dimensional vector spaces admits an interval decomposition -- that is, a decomposition as a direct sum of simpler components called interval modules. This result fails if we replace vector spaces with modules over more general coefficient rings. To address this problem, we introduce an algorithm to determine whether or not a persistence module of pointwise free and finitely-generated modules over a principal ideal domain (PID) splits as a direct sum of interval submodules. If one exists, our algorithm outputs an interval decomposition. When considering persistence modules with coefficients in $\Z$ or $\Q[x]$, our algorithm computes an interval decomposition in polynomial time. This is the first algorithm with these properties of which we are aware. We also show that a persistence module of pointwise free and finitely-generated modules over a PID splits as a direct sum of interval submodules if and only if the cokernel of every structure map is free. This result underpins the formulation of our algorithm. It also complements prior findings by Obayashi and Yoshiwaki regarding persistent homology, including a criterion for field independence and an algorithm to decompose persistence homology modules.
comment: Final version before published version. 33 pages, 3 figures
Optimization and Control 47
☆ ProxSTORM -- A Stochastic Trust-Region Algorithm for Nonsmooth Optimization
We develop a stochastic trust-region algorithm for minimizing the sum of a possibly nonconvex Lipschitz-smooth function that can only be evaluated stochastically and a nonsmooth, deterministic, convex function. This algorithm, which we call ProxSTORM, generalizes STORM [1, 2] -- a stochastic trust-region algorithm for the unconstrained optimization of smooth functions -- and the inexact deterministic proximal trust-region algorithm in [3]. We generalize and, in some cases, simplify problem assumptions so that they reduce to more succinct version of assumptions on STORM when the convex term is zero. Our analysis follows the STORM framework by employing martingales, but again simplifies certain steps and proving global convergence and an expected complexity bound in the more general setting of a possibly nonsmooth term. To demonstrate that the method is numerically viable, we apply the algorithm to $\ell^1$-regularized neural network training and also to topology optimization.
☆ Improving Online-to-Nonconvex Conversion for Smooth Optimization via Double Optimism
A recent breakthrough in nonconvex optimization is the online-to-nonconvex conversion framework of \cite{cutkosky2023optimal}, which reformulates the task of finding an $\varepsilon$-first-order stationary point as an online learning problem. When both the gradient and the Hessian are Lipschitz continuous, instantiating this framework with two different online learners achieves a complexity of $\mathcal{O}(\varepsilon^{-1.75}\log(1/\varepsilon))$ in the deterministic case and a complexity of $\mathcal{O}(\varepsilon^{-3.5})$ in the stochastic case. However, this approach suffers from several limitations: (i) the deterministic method relies on a complex double-loop scheme that solves a fixed-point equation to construct hint vectors for an optimistic online learner, introducing an extra logarithmic factor; (ii) the stochastic method assumes a bounded second-order moment of the stochastic gradient, which is stronger than standard variance bounds; and (iii) different online learning algorithms are used in the two settings. In this paper, we address these issues by introducing an online optimistic gradient method based on a novel \textit{doubly optimistic hint function}. Specifically, we use the gradient at an extrapolated point as the hint, motivated by two optimistic assumptions: that the difference between the hint and the target gradient remains near constant, and that consecutive update directions change slowly due to smoothness. Our method eliminates the need for a double loop and removes the logarithmic factor. Furthermore, by simply replacing full gradients with stochastic gradients and under the standard assumption that their variance is bounded by $\sigma^2$, we obtain a unified algorithm with complexity $\mathcal{O}(\varepsilon^{-1.75} + \sigma^2 \varepsilon^{-3.5})$, smoothly interpolating between the best-known deterministic rate and the optimal stochastic rate.
comment: 32 pages
☆ Why Do We Need Warm-up? A Theoretical Perspective
Learning rate warm-up - increasing the learning rate at the beginning of training - has become a ubiquitous heuristic in modern deep learning, yet its theoretical foundations remain poorly understood. In this work, we provide a principled explanation for why warm-up improves training. We rely on a generalization of the $(L_0, L_1)$-smoothness condition, which bounds local curvature as a linear function of the loss sub-optimality and exhibits desirable closure properties. We demonstrate both theoretically and empirically that this condition holds for common neural architectures trained with mean-squared error and cross-entropy losses. Under this assumption, we prove that Gradient Descent with a warm-up schedule achieves faster convergence than with a fixed step-size, establishing upper and lower complexity bounds. Finally, we validate our theoretical insights through experiments on language and vision models, confirming the practical benefits of warm-up schedules.
☆ Lower Bound for a Polynomial on a product of hyperellipsoids using geometric programming
Let $f$ be a polynomial in $n$ variables $x_1,\dots,x_n$ with real coefficients. In [Ghasemi-Marshal], Ghasemi and Marshall give an algorithm, based on geometric programming, which computes a lower bound for $f$ on $\mathbb{R}^n$. In [Ghasemi-Lasserre-Marshall] Ghasemi, Lasserre and Marshall show how the algorithm in [Ghasemi-Marshal] can be modified to compute a lower bound for $f$ on the hyperellipsoid $\sum_{i=1}^n x_i^d \le M.$ Here $d$ is a fixed even integer, $d \ge \max\{ 2, \deg(f)\}$ and $M$ is a fixed positive real number. Suppose now that $g_j := 1-\sum_{i\in I_j} (\frac{x_i}{N_i})^d$, $j=1,\dots,m$, where $d$ is a fixed even integer $d \ge \max\{ 2, \deg(f)\}$, $N_i$ is a fixed positive real number, $i=1,\dots,n$ and $I_1,\dots, I_m$ is a fixed partition of $\{ 1,\dots,n\}$. The present paper gives an algorithm based on geometric programming for computing a lower bound for $f$ on the subset of $\mathbb{R}^n$ defined by the inequalities $g_j\ge 0$, $j=1,\dots,m$. The algorithm is implemented in a SAGE program developed by the first author. The bound obtained is typically not as sharp as the bound obtained using semidefinite programming, but it has the advantage that it is computable rapidly, even in cases where the bound obtained by semidefinite programming is not computable. When $m=1$ and $N_i = \root d \of{M}$, $i=1,\dots,n$ the algorithm produces the lower bound obtained in [Ghasemi-Lasserre-Marshall]. When $m=n$ and $I_j = \{ j \}$, $j=1,\dots,n$ the algorithm produces a lower bound for $f$ on the hypercube $\prod_{i=1}^n [-N_i,N_i]$, which in certain cases can be computed by a simple formula.
☆ A Dimension-Decomposed Learning Framework for Online Disturbance Identification in Quadrotor SE(3) Control
Quadrotor stability under complex dynamic disturbances and model uncertainties poses significant challenges. One of them remains the underfitting problem in high-dimensional features, which limits the identification capability of current learning-based methods. To address this, we introduce a new perspective: Dimension-Decomposed Learning (DiD-L), from which we develop the Sliced Adaptive-Neuro Mapping (SANM) approach for geometric control. Specifically, the high-dimensional mapping for identification is axially ``sliced" into multiple low-dimensional submappings (``slices"). In this way, the complex high-dimensional problem is decomposed into a set of simple low-dimensional tasks addressed by shallow neural networks and adaptive laws. These neural networks and adaptive laws are updated online via Lyapunov-based adaptation without any pre-training or persistent excitation (PE) condition. To enhance the interpretability of the proposed approach, we prove that the full-state closed-loop system exhibits arbitrarily close to exponential stability despite multi-dimensional time-varying disturbances and model uncertainties. This result is novel as it demonstrates exponential convergence without requiring pre-training for unknown disturbances and specific knowledge of the model.
☆ Subgradient Methods for Nonsmooth Convex Functions with Adversarial Errors
We consider minimizing nonsmooth convex functions with bounded subgradients. However, instead of directly observing a subgradient at every step $k\in [0, \dots, N-1]$, we assume that the optimizer receives an adversarially corrupted subgradient. The adversary's power is limited to a finite corruption budget, but allows the adversary to strategically time its perturbations. We show that the classical averaged subgradient descent method, which is optimal in the noiseless case, has worst-case performance that deteriorates quadratically with the corruption budget. Using performance optimization programming, (i) we construct and analyze the performance of three novel subgradient descent methods, and (ii) propose a novel lower bound on the worst-case suboptimality gap of any first-order method satisfying a mild cone condition proposed by Fatkhullin et al. (2025). The worst-case performance of each of our methods degrades only linearly with the corruption budget. Furthermore, we show that the relative difference between their worst-case suboptimality gap and our lower bound decays as $\mathcal O(\log(N)/N)$, so that all three proposed subgradient descent methods are near-optimal. Our methods achieve such near-optimal performance without a need for momentum or averaging. This suggests that these techniques are not necessary in this context, which is in line with recent results by Zamani and Glineur (2025).
☆ Valid Inequalities for Mixed Integer Bilevel Linear Optimization Problems
Despite the success of branch-and-cut methods for solving mixed integer bilevel linear optimization problems (MIBLPs) in practice, there are still gaps in both the theory and practice surrounding these methods. In the first part of this paper, we lay out a basic theory of valid inequalities and cutting-plane methods for MIBLPs that parallels the existing theory for mixed integer linear optimization problems (MILPs). We provide a general scheme for classifying valid inequalities and illustrate how the known classes of valid inequalities fit into this categorization, as well as generalizing several existing classes. In the second part of the paper, we assess the computational effectiveness of these valid inequalities and discuss the myriad challenges that arise in integrating methods of dynamically generating inequalities valid for MIBLPs into a branch-and-cut algorithms originally designed for solving MILPs. Although branch-and-cut methods for solving for MIBLPs are in principle straightforward generalizations of those used for MILP, there are subtle but important differences and there remain many unanswered questions regarding how to suitably modify control mechanisms and other algorithmic details in order to ensure performance in the MIBLP setting. We demonstrate that performance of version 1.2 of the open-source solver MibS was substantially improved over that of version 1.1 through a variety of improvements to the previous implementation.
☆ Oracle-based Uniform Sampling from Convex Bodies
We propose new Markov chain Monte Carlo algorithms to sample a uniform distribution on a convex body $K$. Our algorithms are based on the Alternating Sampling Framework/proximal sampler, which uses Gibbs sampling on an augmented distribution and assumes access to the so-called restricted Gaussian oracle (RGO). The key contribution of this work is the efficient implementation of RGO for uniform sampling on $K$ via rejection sampling and access to either a projection oracle or a separation oracle on $K$. In both oracle cases, we establish non-asymptotic complexities to obtain unbiased samples where the accuracy is measured in R\'enyi divergence or $\chi^2$-divergence.
comment: 24 pages
☆ Estimating Sequences with Memory for Minimizing Convex Non-smooth Composite Functions
First-order optimization methods are crucial for solving large-scale data processing problems, particularly those involving convex non-smooth composite objectives. For such problems with convex non-smooth composite objectives, we introduce a new class of generalized composite estimating sequences, devised by exploiting the information embedded in the iterates generated during the minimization process. Building on these sequences, we propose a novel accelerated first-order method tailored for such objective structures. This method features a backtracking line-search strategy and achieves an accelerated convergence rate, regardless of whether the true Lipschitz constant is known. Additionally, it exhibits robustness to imperfect knowledge of the strong convexity parameter, a property of significant practical importance. The method's efficiency and robustness are substantiated by comprehensive numerical evaluations on both synthetic and real-world datasets, demonstrating its effectiveness in data processing applications.
comment: 15 double-column pages, 12 figures
☆ Long-Time Analysis of Stochastic Heavy Ball Dynamics for Convex Optimization and Monotone Equations
In a separable real Hilbert space, we study the problem of minimizing a convex function with Lipschitz continuous gradient in the presence of noisy evaluations. To this end, we associate a stochastic Heavy Ball system, incorporating a friction coefficient, with the optimization problem. We establish existence and uniqueness of trajectory solutions for this system. Under a square integrability condition for the diffusion term, we prove almost sure convergence of the trajectory process to an optimal solution, as well as almost sure convergence of its time derivative to zero. Moreover, we derive almost sure and expected convergence rates for the function values along the trajectory towards the infimal value. Finally, we show that the stochastic Heavy Ball system is equivalent to a Su-Boyd-Cand\`{e}s-type system for a suitable choice of the parameter function, and we provide corresponding convergence rate results for the latter. In the second part of this paper, we extend our analysis beyond the optimization framework and investigate a monotone equation induced by a monotone and Lipschitz continuous operator, whose evaluations are assumed to be corrupted by noise. As before, we consider a stochastic Heavy Ball system with a friction coefficient and a correction term, now augmented by an additional component that accounts for the time derivative of the operator. We establish analogous convergence results for both the trajectory process and its time derivative, and derive almost sure as well as expected convergence rates for the decay of the residual and the gap function along the trajectory. As a final result, we show that a particular instance of the stochastic Heavy Ball system for monotone equations is equivalent to a stochastic second-order dynamical system with a vanishing damping term. Remarkably, this system exhibits fast convergence rates for both the residual and gap functions.
☆ Progressive Bound Strengthening via Doubly Nonnegative Cutting Planes for Nonconvex Quadratic Programs
We introduce a cutting-plane framework for nonconvex quadratic programs (QPs) that progressively tightens convex relaxations. Our approach leverages the doubly nonnegative (DNN) relaxation to compute strong lower bounds and generate separating cuts, which are iteratively added to improve the relaxation. We establish that, at any Karush-Kuhn-Tucker (KKT) point satisfying a second-order sufficient condition, a valid cut can be obtained by solving a linear semidefinite program (SDP), and we devise a finite-termination local search procedure to identify such points. Extensive computational experiments on both benchmark and synthetic instances demonstrate that our approach yields tighter bounds and consistently outperforms leading commercial and academic solvers in terms of efficiency, robustness, and scalability. Notably, on a standard desktop, our algorithm reduces the relative optimality gap to 0.01% on 138 out of 140 instances of dimension 100 within one hour, without resorting to branch-and-bound.
☆ Joint Stochastic Optimal Control and Stopping in Aquaculture: Finite-Difference and PINN-Based Approaches
This paper studies a joint stochastic optimal control and stopping (JCtrlOS) problem motivated by aquaculture operations, where the objective is to maximize farm profit through an optimal feeding strategy and harvesting time under stochastic price dynamics. We introduce a simplified aquaculture model capturing essential biological and economic features, distinguishing between biologically optimal and economically optimal feeding strategies. The problem is formulated as a Hamilton-Jacobi-Bellman variational inequality and corresponding free boundary problem. We develop two numerical solution approaches: First, a finite difference scheme that serves as a benchmark, and second, a Physics-Informed Neural Network (PINN)-based method, combined with a deep optimal stopping (DeepOS) algorithm to improve stopping time accuracy. Numerical experiments demonstrate that while finite differences perform well in medium-dimensional settings, the PINN approach achieves comparable accuracy and is more scalable to higher dimensions where grid-based methods become infeasible. The results confirm that jointly optimizing feeding and harvesting decisions outperforms strategies that neglect either control or stopping.
comment: Working Paper
☆ Delay-Tolerant Augmented-Consensus-based Distributed Directed Optimization
Distributed optimization finds applications in large-scale machine learning, data processing and classification over multi-agent networks. In real-world scenarios, the communication network of agents may encounter latency that may affect the convergence of the optimization protocol. This paper addresses the case where the information exchange among the agents (computing nodes) over data-transmission channels (links) might be subject to communication time-delays, which is not well addressed in the existing literature. Our proposed algorithm improves the state-of-the-art by handling heterogeneous and arbitrary but bounded and fixed (time-invariant) delays over general strongly-connected directed networks. Arguments from matrix theory, algebraic graph theory, and augmented consensus formulation are applied to prove the convergence to the optimal value. Simulations are provided to verify the results and compare the performance with some existing delay-free algorithms.
comment: Systems & Control Letters
☆ Wasserstein crossover for evolutionary algorithm-based topology optimization
Evolutionary algorithms (EAs) are promising approaches for non-differentiable or strongly multimodal topology optimization problems, but they often suffer from the curse of dimensionality, generally leading to low-resolution optimized results. This limitation stems in part from the difficulty of producing effective offspring through traditional crossover operators, which struggle to recombine complex parent design features in a meaningful way. In this study, we propose a novel crossover operator for topology optimization, termed Wasserstein crossover, and develop a corresponding EA-based optimization framework. Our method leverages a morphing technique based on the Wasserstein distance -- a distance metric between probability distributions derived from the optimal transport theory. Its key idea is to treat material distributions as probability distributions and generate offspring as Wasserstein barycenters, enabling smooth and interpretable interpolation between parent designs while preserving their structural features. The proposed framework incorporates Wasserstein crossover into an EA under a multifidelity design scheme, where low-fidelity optimized initial designs evolve through iterations of Wasserstein crossover and selection based on high-fidelity evaluation. We apply the proposed framework to three topology optimization problems: maximum stress minimization in two- and three-dimensional structural mechanics, and turbulent heat transfer in two-dimensional thermofluids. The results demonstrate that candidate solutions evolve iteratively toward high-performance designs through Wasserstein crossover, highlighting its potential as an effective crossover operator and validating the usefulness of the proposed framework for solving intractable topology optimization problems.
☆ Quantitative Convergence Analysis of Projected Stochastic Gradient Descent for Non-Convex Losses via the Goldstein Subdifferential
Stochastic gradient descent (SGD) is the main algorithm behind a large body of work in machine learning. In many cases, constraints are enforced via projections, leading to projected stochastic gradient algorithms. In recent years, a large body of work has examined the convergence properties of projected SGD for non-convex losses in asymptotic and non-asymptotic settings. Strong quantitative guarantees are available for convergence measured via Moreau envelopes. However, these results cannot be compared directly with work on unconstrained SGD, since the Moreau envelope construction changes the gradient. Other common measures based on gradient mappings have the limitation that convergence can only be guaranteed if variance reduction methods, such as mini-batching, are employed. This paper presents an analysis of projected SGD for non-convex losses over compact convex sets. Convergence is measured via the distance of the gradient to the Goldstein subdifferential generated by the constraints. Our proposed convergence criterion directly reduces to commonly used criteria in the unconstrained case, and we obtain convergence without requiring variance reduction. We obtain results for data that are independent, identically distributed (IID) or satisfy mixing conditions ($L$-mixing). In these cases, we derive asymptotic convergence and $O(N^{-1/3})$ non-asymptotic bounds in expectation, where $N$ is the number of steps. In the case of IID sub-Gaussian data, we obtain almost-sure asymptotic convergence and high-probability non-asymptotic $O(N^{-1/5})$ bounds. In particular, these are the first non-asymptotic high-probability bounds for projected SGD with non-convex losses.
comment: 40 pages, 2 figures, under review for 37th International Conference on Algorithmic Learning Theory
☆ On Non-Monotone Variational Inequalities
In this paper, we provide some sufficient conditions for the existence of solutions to non-monotone Variational Inequalities (VIs) based on inverse mapping theory and degree theory. We have obtained several applicable sufficient conditions for this problem and have introduced a sufficient condition for the existence of a Minty solution. We have shown that the Korpelevich and Popov methods converge to a solution of a non-monotone VI, provided that a Minty solution exists.
☆ Flow Matching for Measure Transport and Feedback Stabilization of Control-Affine Systems
We develop a \emph{flow-matching framework} for transporting probability measures under control-affine dynamics and for stabilizing systems to points or target sets. Starting from the continuity equation associated with the control affine system dx/dt = f_0(x) + \sum_{i=1}^m u_i f_i(x), we construct measure interpolations through exact and approximate flow matching, and extend the approach to \emph{output flow matching} when only output distributions must align. These constructions allow to directly import standard control tools, such as feedback design, oscillatory inputs, and trajectory steering, and yield sample-efficient, regression-based controllers for measure-to-measure transport. We also introduce a complementary ``noising + time-reversal'' perspective for classical state or set stabilization, inspired by denoising diffusion models. Here stabilization is interpreted as a denoising problem. We propose two methods for constructing the noising process: (i) PMP-based noising, which leverages the Hamiltonian system from Pontryagin's Maximum Principle and recovers the optimal controller for linear systems with convex costs, while providing feasible feedback laws in the nonlinear case; and (ii) randomized-control noising, which employs regular (non-white noise) controls through the endpoint map and naturally accommodates control constraints. Both approaches avoid the score blow-up seen in stochastic differential equation-based denoising methods. We establish existence of solutions to the corresponding ODEs and regularity of the induced flows on measures, even when control laws are nonsmooth. Finally, we illustrate the framework on linear and nonlinear systems, demonstrating its effectiveness for both measure transport and stabilization problems.
☆ Closed-loop solvability of delayed control problems: A stochastic Volterra system approach
A general and new stochastic linear quadratic optimal control problem is studied, where the coefficients are allowed to be time-varying, and both state delay and control delay can appear simultaneously in the state equation and the cost functional. The closed-loop outcome control of this delayed problem is given by a new Riccati system whose solvability is carefully established. To this end, a novel method is introduced to transform the delayed problem into a control problem driven by a stochastic Volterra integral system without delay. This method offers several advantages: it bypasses the difficulty of decoupling the forward delayed state equation and the backward anticipated adjoint equation, avoids the introduction of infinite-dimensional spaces and unbounded control operators, and ensures that the closed-loop outcome control depends only on past state and control, without relying on future state or complex conditional expectation calculations. Finally, several particular important stochastic systems are discussed. It is found that the model can cover a class of stochastic integro-differential systems, whose closed-loop solvability has not been available before.
☆ Inverse Design of a Layered Medium for Maximal Surface Localization
Electromagnetic wave manipulation plays a crucial role in advancing technology across various domains, including photonic device design. This study presents an inverse design approach for a periodic medium that optimizes electromagnetic wave localization at the interface between a layered half-space and a homogeneous half-space. The approach finds a maximally localized mode at a specified frequency and wave number. The mode propagates in the direction of the interface. The design parameters are the permittivity of the layered medium, their relative thicknesses, and the permittivity of the homogeneous half-space. We analyze the problem using the transfer matrix method and apply the particle swarm optimization to find a rapidly decaying mode that satisfies the design constraints. The design process is demonstrated in a numerical example, which serves to illustrate the efficacy of the proposed method.
comment: 13 pages
☆ Optimal Characteristics of Inspection Vehicle for Drive-by Bridge Inspection
Drive-by inspection for bridge health monitoring has gained increasing attention over the past decade. This method involves analysing the coupled vehicle-bridge response, recorded by an instrumented inspection vehicle, to assess structural integrity and detect damage. However, the vehicles mechanical and dynamic properties significantly influence detection performance, limiting the effectiveness of the approach. This study presents a framework for optimising the inspection vehicle to enhance damage sensitivity. An unsupervised deep learning methodbased on adversarial autoencoders (AAE)is used to reconstruct the frequency-domain representation of acceleration responses. The mass and stiffness of the tyre suspension system of a two-axle vehicle are optimised by minimising the Wasserstein distance between damage index distributions for healthy and damaged bridge states. A Kriging meta-model is employed to approximate this objective function efficiently and identify optimal vehicle configurations in both dimensional and non-dimensional parameter spaces. Results show that vehicles with frequency ratios between 0.3 and 0.7 relative to the bridges' first natural frequency are most effective, while those near resonance perform poorly. Lighter vehicles require lower natural frequencies for optimal detection. This is the first study to rigorously optimise the sensing platform for drive-by sensing and to propose a purpose-built inspection vehicle.
☆ Error estimates for finite-dimensional approximations of Hamilton-Jacobi-Bellman equations on the Wasserstein space
In this paper, we study a Hamilton-Jacobi-Bellman (HJB) equation set on the Wasserstein space $\mathcal{P}_2(\mathbb{R}^d)$, with a second order term arising from a purely common noise. We do not assume that the Hamiltonian is convex in the momentum variable, which means that we cannot rely on representation formulas coming from mean field control. In this setting, Gangbo, Mayorga, and \'Swi\k{e}ch showed via viscosity solutions methods that the HJB equation on $\mathcal{P}_2(\mathbb{R}^d)$ can be approximated by a sequence of finite-dimensional HJB equations. Our main contribution is to quantify this convergence result. The proof involves a doubling of variables argument, which leverages the Hilbertian approach of P.L. Lions for HJB equations in the Wasserstein space, rather than working with smooth metrics which have been used to obtain similar results in the presence of idiosyncratic noise. In dimension one, our doubling of variables argument is made relatively simply by the rigid structure of one-dimensional optimal transport, but in higher dimension the argument is significantly more complicated, and relies on some estimates concerning the "simultaneous quantization" of probability measures.
☆ Machine Unlearning Meets Adversarial Robustness via Constrained Interventions on LLMs
With the increasing adoption of Large Language Models (LLMs), more customization is needed to ensure privacy-preserving and safe generation. We address this objective from two critical aspects: unlearning of sensitive information and robustness to jail-breaking attacks. We investigate various constrained optimization formulations that address both aspects in a \emph{unified manner}, by finding the smallest possible interventions on LLM weights that either make a given vocabulary set unreachable or embed the LLM with robustness to tailored attacks by shifting part of the weights to a \emph{safer} region. Beyond unifying two key properties, this approach contrasts with previous work in that it doesn't require an oracle classifier that is typically not available or represents a computational overhead. Surprisingly, we find that the simplest point-wise constraint-based intervention we propose leads to better performance than max-min interventions, while having a lower computational cost. Comparison against state-of-the-art defense methods demonstrates superior performance of the proposed approach.
☆ Agile Tradespace Exploration for Space Rendezvous Mission Design via Transformers
Spacecraft rendezvous enables on-orbit servicing, debris removal, and crewed docking, forming the foundation for a scalable space economy. Designing such missions requires rapid exploration of the tradespace between control cost and flight time across multiple candidate targets. However, multi-objective optimization in this setting is challenging, as the underlying constraints are often highly nonconvex, and mission designers must balance accuracy (e.g., solving the full problem) with efficiency (e.g., convex relaxations), slowing iteration and limiting design agility. To address these challenges, this paper proposes an AI-powered framework that enables agile mission design for a wide range of Earth orbit rendezvous scenarios. Given the orbital information of the target spacecraft, boundary conditions, and a range of flight times, this work proposes a Transformer-based architecture that generates, in a single parallelized inference step, a set of near-Pareto optimal trajectories across varying flight times, thereby enabling rapid mission trade studies. The model is further extended to accommodate variable flight times and perturbed orbital dynamics, supporting realistic multi-objective trade-offs. Validation on chance-constrained rendezvous problems with passive safety constraints demonstrates that the model generalizes across both flight times and dynamics, consistently providing high-quality initial guesses that converge to superior solutions in fewer iterations. Moreover, the framework efficiently approximates the Pareto front, achieving runtimes comparable to convex relaxation by exploiting parallelized inference. Together, these results position the proposed framework as a practical surrogate for nonconvex trajectory generation and mark an important step toward AI-driven trajectory design for accelerating preliminary mission planning in real-world rendezvous applications.
comment: 14 pages, 7 figures
☆ Composite Optimization with Error Feedback: the Dual Averaging Approach
Communication efficiency is a central challenge in distributed machine learning training, and message compression is a widely used solution. However, standard Error Feedback (EF) methods (Seide et al., 2014), though effective for smooth unconstrained optimization with compression (Karimireddy et al., 2019), fail in the broader and practically important setting of composite optimization, which captures, e.g., objectives consisting of a smooth loss combined with a non-smooth regularizer or constraints. The theoretical foundation and behavior of EF in the context of the general composite setting remain largely unexplored. In this work, we consider composite optimization with EF. We point out that the basic EF mechanism and its analysis no longer stand when a composite part is involved. We argue that this is because of a fundamental limitation in the method and its analysis technique. We propose a novel method that combines Dual Averaging with EControl (Gao et al., 2024), a state-of-the-art variant of the EF mechanism, and achieves for the first time a strong convergence analysis for composite optimization with error feedback. Along with our new algorithm, we also provide a new and novel analysis template for inexact dual averaging method, which might be of independent interest. We also provide experimental results to complement our theoretical findings.
☆ CANOPI: Contingency-Aware Nodal Optimal Power Investments with High Temporal Resolution
We present CANOPI, a novel algorithmic framework, for solving the Contingency-Aware Nodal Power Investments problem, a large-scale nonlinear optimization problem that jointly optimizes generation, storage, and transmission expansion. The underlying problem is nonlinear due to the impact of transmission upgrades on impedances, and the problem's large scale arises from the confluence of spatial and temporal resolutions. We propose algorithmic approaches to address these computational challenges. We pose a linear approximation of the overall nonlinear model, and develop a fixed-point algorithm to adjust for the nonlinear impedance feedback effect. We solve the large-scale linear expansion model with a specialized level-bundle method leveraging a novel interleaved approach to contingency constraint generation. We introduce a minimal cycle basis algorithm that improves the numerical sparsity of cycle-based DC power flow formulations, accelerating solve times for the operational subproblems. CANOPI is demonstrated on a 1493-bus Western Interconnection test system built from realistic-geography network data, with hourly operations spanning 52 week-long scenarios and a total possible set of 20 billion individual transmission contingency constraints. Numerical results quantify the reliability and economic benefits of fully incorporating transmission contingencies in integrated planning models and highlight the computational advantages of the proposed methods.
comment: This work has been submitted to the IEEE for possible publication
☆ How to Set $β_1, β_2$ in Adam: An Online Learning Perspective
While Adam is one of the most effective optimizer for training large-scale machine learning models, a theoretical understanding of how to optimally set its momentum factors, $\beta_1$ and $\beta_2$, remains largely incomplete. Prior works have shown that Adam can be seen as an instance of Follow-the-Regularized-Leader (FTRL), one of the most important class of algorithms in online learning. The prior analyses in these works required setting $\beta_1 = \sqrt{\beta_2}$, which does not cover the more practical cases with $\beta_1 \neq \sqrt{\beta_2}$. We derive novel, more general analyses that hold for both $\beta_1 \geq \sqrt{\beta_2}$ and $\beta_1 \leq \sqrt{\beta_2}$. In both cases, our results strictly generalize the existing bounds. Furthermore, we show that our bounds are tight in the worst case. We also prove that setting $\beta_1 = \sqrt{\beta_2}$ is optimal for an oblivious adversary, but sub-optimal for an non-oblivious adversary.
comment: 15 pages
☆ A Sequential Quadratic Programming Perspective on Optimal Control
This paper offers a unified perspective on different approaches to the solution of optimal control problems through the lens of constrained sequential quadratic programming. In particular, it allows us to find the relationships between Newton's method, the iterative LQR (iLQR), and Differential Dynamic Programming (DDP) approaches to solve the problem. It is shown that the iLQR is a principled SQP approach, rather than simply an approximation of DDP by neglecting the Hessian terms, to solve optimal control problems that can be guaranteed to always produce a cost-descent direction and converge to an optimum; while Newton's approach or DDP do not have similar guarantees, especially far from an optimum. Our empirical evaluations on the pendulum and cart-pole swing-up tasks serve to corroborate the SQP-based analysis proposed in this paper.
☆ Optimal Regularization Under Uncertainty: Distributional Robustness and Convexity Constraints
Regularization is a central tool for addressing ill-posedness in inverse problems and statistical estimation, with the choice of a suitable penalty often determining the reliability and interpretability of downstream solutions. While recent work has characterized optimal regularizers for well-specified data distributions, practical deployments are often complicated by distributional uncertainty and the need to enforce structural constraints such as convexity. In this paper, we introduce a framework for distributionally robust optimal regularization, which identifies regularizers that remain effective under perturbations of the data distribution. Our approach leverages convex duality to reformulate the underlying distributionally robust optimization problem, eliminating the inner maximization and yielding formulations that are amenable to numerical computation. We show how the resulting robust regularizers interpolate between memorization of the training distribution and uniform priors, providing insights into their behavior as robustness parameters vary. For example, we show how certain ambiguity sets, such as those based on the Wasserstein-1 distance, naturally induce regularity in the optimal regularizer by promoting regularizers with smaller Lipschitz constants. We further investigate the setting where regularizers are required to be convex, formulating a convex program for their computation and illustrating their stability with respect to distributional shifts. Taken together, our results provide both theoretical and computational foundations for designing regularizers that are reliable under model uncertainty and structurally constrained for robust deployment.
☆ Error estimates for deterministic empirical approximations of probability measures
The question of approximating an arbitrary probability measure in the Wasserstein distance by a discrete one with uniform weights is considered. Estimates are obtained for the rate of convergence as the number of points tends to infinity, depending on the moment parameter, the parameter in the Wasserstein distance, and the dimension. In certain low-dimensional regimes and for measures with unbounded support, the rates are improvements over those obtained through other methods, including through random sampling. Except for some critical cases, the rates are shown to be optimal.
☆ Cooling Under Convexity: An Inventory Control Perspective on Industrial Refrigeration
Industrial refrigeration systems have substantial energy needs, but optimizing their operation remains challenging due to the tension between minimizing energy costs and meeting strict cooling requirements. Load shifting--strategic overcooling in anticipation of future demands--offers substantial efficiency gains. This work seeks to rigorously quantify these potential savings through the derivation of optimal load shifting policies. Our first contribution establishes a novel connection between industrial refrigeration and inventory control problems with convex ordering costs, where the convexity arises from the relationship between energy consumption and cooling capacity. Leveraging this formulation, we derive three main theoretical results: (1) an optimal algorithm for deterministic demand scenarios, along with proof that optimal trajectories are non-increasing (a valuable structural insight for practical control); (2) performance bounds that quantify the value of load shifting as a function of cost convexity, demand variability, and temporal patterns; (3) a computationally tractable load shifting heuristic with provable near-optimal performance under uncertainty. Numerical simulations validate our theoretical findings, and a case study using real industrial refrigeration data demonstrates an opportunity for improved load shifting.
☆ Efficient Input-Constrained Impulsive Optimal Control of Linear Systems with Application to Spacecraft Relative Motion
This work presents a novel algorithm for impulsive optimal control of linear time-varying systems with the inclusion of input magnitude constraints. Impulsive optimal control problems, where the optimal input solution is a sum of delta functions, are typically formulated as an optimization over a normed function space subject to integral equality constraints and can be efficiently solved for linear time-varying systems in their dual formulation. In this dual setting, the problem takes the form of a semi-infinite program which is readily solvable in online scenarios for constructing maneuver plans. This work augments the approach with the inclusion of magnitude constraints on the input over time windows of interest, which is shown to preserve the impulsive nature of the optimal solution and enable efficient solution procedures via semi-infinite programming. The resulting algorithm is demonstrated on the highly relevant problem of relative motion control of spacecraft in Low Earth Orbit (LEO) and compared to several other proposed solutions from the literature.
☆ Mechanisms for Quantum Advantage in Global Optimization of Nonconvex Functions
We present new theoretical mechanisms for quantum speedup in the global optimization of nonconvex functions, expanding the scope of quantum advantage beyond traditional tunneling-based explanations. As our main building-block, we demonstrate a rigorous correspondence between the spectral properties of Schr\"{o}dinger operators and the mixing times of classical Langevin diffusion. This correspondence motivates a mechanism for separation on functions with unique global minimum: while quantum algorithms operate on the original potential, classical diffusions correspond to a Schr\"{o}dinger operators with a WKB potential having nearly degenerate global minima. We formalize these ideas by proving that a real-space adiabatic quantum algorithm (RsAA) achieves provably polynomial-time optimization for broad families of nonconvex functions. First, for block-separable functions, we show that RsAA maintains polynomial runtime while known off-the-shelf algorithms require exponential time and structure-aware algorithms exhibit arbitrarily large polynomial runtimes. These results leverage novel non-asymptotic results in semiclassical analysis. Second, we use recent advances in the theory of intrinsic hypercontractivity to demonstrate polynomial runtimes for RsAA on appropriately perturbed strongly convex functions that lack global structure, while off-the-shelf algorithms remain exponentially bottlenecked. In contrast to prior works based on quantum tunneling, these separations do not depend on the geometry of barriers between local minima. Our theoretical claims about classical algorithm runtimes are supported by rigorous analysis and comprehensive numerical benchmarking. These findings establish a rigorous theoretical foundation for quantum advantage in continuous optimization and open new research directions connecting quantum algorithms, stochastic processes, and semiclassical analysis.
♻ ☆ Online Feedback Optimization for Monotone Systems without Timescale Separation
Online Feedback Optimization (OFO) steers a dynamical plant to a cost-efficient steady-state, only relying on input-output sensitivity information, rather than on a full plant model. Unlike traditional feedforward approaches, OFO leverages real-time measurements from the plant, thereby inheriting the robustness and adaptability of feedback control. Unfortunately, existing theoretical guarantees for OFO assume that the controller operates on a slower timescale than the plant, which can affect responsiveness and transient performance. In this paper, we focus on relaxing this ``timescale separation'' assumption. Specifically, we consider the class of monotone systems, and we prove that OFO can achieve an optimal operating point, regardless of the time constants of controller and plant. By leveraging a small gain theorem for monotone systems, we derive several sufficient conditions for global convergence. Notably, these conditions depend only on the steady-state behavior of the plant, and they are entirely independent of the transient dynamics.
♻ ☆ Variance Reduction and Low Sample Complexity in Stochastic Optimization via Proximal Point Method
High-probability guarantees in stochastic optimization are often obtained only under strong noise assumptions such as sub-Gaussian tails. We show that such guarantees can also be achieved under the weaker assumption of bounded variance by developing a stochastic proximal point method. This method combines a proximal subproblem solver, which inherently reduces variance, with a probability booster that amplifies per-iteration reliability into high-confidence results. The analysis demonstrates convergence with low sample complexity, without restrictive noise assumptions or reliance on mini-batching.
comment: 23 pages
♻ ☆ On the $O(\frac{\sqrt{d}}{K^{1/4}})$ Convergence Rate of AdamW Measured by $\ell_1$ Norm NeurIPS
As the default optimizer for training large language models, AdamW has achieved remarkable success in deep learning. However, its convergence behavior is not theoretically well-understood. This paper establishes the convergence rate $\frac{1}{K}\sum_{k=1}^KE\left[||\nabla f(x^k)||_1\right]\leq O(\frac{\sqrt{d}C}{K^{1/4}})$ for AdamW measured by $\ell_1$ norm, where $K$ represents the iteration number, $d$ denotes the model dimension, and $C$ matches the constant in the optimal convergence rate of SGD. Theoretically, we have $||\nabla f(x)||_2\ll ||\nabla f(x)||_1\leq \sqrt{d}||\nabla f(x)||_2$ for any high-dimensional vector $x$ and $E\left[||\nabla f(x)||_1\right]\geq\sqrt{\frac{2d}{\pi}}E\left[||\nabla f(x)||_2\right]$ when each element of $\nabla f(x)$ is generated from Gaussian distribution $\mathcal N(0,1)$. Empirically, our experimental results on real-world deep learning tasks reveal $||\nabla f(x)||_1=\varTheta(\sqrt{d})||\nabla f(x)||_2$. Both support that our convergence rate can be considered to be analogous to the optimal $\frac{1}{K}\sum_{k=1}^KE\left[||\nabla f(x^k)||_2\right]\leq O(\frac{C}{K^{1/4}})$ convergence rate of SGD in the ideal case. We also extend our result to NAdamW, an AdamW variant that employs a double-momentum mechanism, and demonstrate that it maintains the same convergence rate.
comment: V2: NeurIPS Camera-Ready. V3: expand upon the conference version by incorporating the analysis of NAdamW
♻ ☆ Two-point boundary value problems for quasi-monotone dynamical systems
This paper studies the existence of minimal solutions to two-point boundary value problems for quasi-monotone dynamical systems. Specifically, the pointwise infimum of all supersolutions is shown to coincide with the minimal solution. This result is then applied to establish a non-uniqueness result for strong stable solutions to a class of mean field games with a continuum of players.
comment: 20
♻ ☆ A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning with General Function Approximation
The exploration-exploitation dilemma has been a central challenge in reinforcement learning (RL) with complex model classes. In this paper, we propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for RL with general function approximation. Our key algorithmic design includes (1) a general deterministic policy-switching strategy that achieves low switching cost, (2) a monotonic value function structure with carefully controlled function class complexity, and (3) a variance-weighted regression scheme that exploits historical trajectories with high data efficiency. MQL-UCB achieves minimax optimal regret of $\tilde{O}(d\sqrt{HK})$ when $K$ is sufficiently large and near-optimal policy switching cost of $\tilde{O}(dH)$, with $d$ being the eluder dimension of the function class, $H$ being the planning horizon, and $K$ being the number of episodes. Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
comment: 46 pages, 1 table
♻ ☆ A semiconcavity approach to stability of entropic plans and exponential convergence of Sinkhorn's algorithm
We study stability of optimizers and convergence of Sinkhorn's algorithm for the entropic optimal transport problem. In the special case of the quadratic cost, our stability bounds imply that if one of the two entropic potentials is semiconcave, then the relative entropy between optimal plans is controlled by the squared Wasserstein distance between their marginals. When employed in the analysis of Sinkhorn's algorithm, this result gives a natural sufficient condition for its exponential convergence, which does not require the ground cost to be bounded. By controlling from above the Hessians of Sinkhorn potentials in examples of interest, we obtain new exponential convergence results. For instance, for the first time we obtain exponential convergence for log-concave marginals and quadratic costs for all values of the regularization parameter, based on semiconcavity propagation results. Moreover, the convergence rate has a linear dependence on the regularization: this behavior is sharp and had only been previously obtained for compact distributions arXiv:2407.01202. These optimal rates are also established in situations where one of the two marginals does not have subgaussian tails. Other interesting new applications include subspace elastic costs, weakly log-concave marginals, marginals with light tails (where, under reinforced assumptions, we manage to improve the rates obtained in arXiv:2311.04041), the case of Lipschitz costs with bounded Hessian, and compact Riemannian manifolds.
comment: 38 pages, added a generalization of our main results and one example, amended typos
♻ ☆ Linear-quadratic mean-field-type difference games with coupled affine inequality constraints
In this letter, we study a class of linear-quadratic mean-field-type difference games with coupled affine inequality constraints. We show that the mean-field-type equilibrium can be characterized by the existence of a multiplier process which satisfies some implicit complementarity conditions. Further, we show that the equilibrium strategies can be computed by reformulating these conditions as a single large-scale linear complementarity problem. We illustrate our results with an energy storage problem arising in the management of microgrids.
♻ ☆ Generalized open-loop Nash equilibria in linear-quadratic difference games with coupled-affine inequality constraints
In this note, we study a class of deterministic finite-horizon linear-quadratic difference games with coupled affine inequality constraints involving both state and control variables. We show that the necessary conditions for the existence of generalized open-loop Nash equilibria in this game class lead to two strongly coupled discrete-time linear complementarity systems. Subsequently, we derive sufficient conditions by establishing an equivalence between the solutions of these systems and convexity of the players' objective functions. These conditions are then reformulated as a solution to a linear complementarity problem, providing a numerical method to compute these equilibria. We illustrate our results using a network flow game with constraints.
♻ ☆ Iteratively reweighted kernel machines efficiently learn sparse functions
The impressive practical performance of neural networks is often attributed to their ability to learn low-dimensional data representations and hierarchical structure directly from data. In this work, we argue that these two phenomena are not unique to neural networks, and can be elicited from classical kernel methods. Namely, we show that the derivative of the kernel predictor can detect the influential coordinates with low sample complexity. Moreover, by iteratively using the derivatives to reweight the data and retrain kernel machines, one is able to efficiently learn hierarchical polynomials with finite leap complexity. Numerical experiments illustrate the developed theory.
♻ ☆ Convergence rates for regularized unbalanced optimal transport: the discrete case
Unbalanced optimal transport (UOT) is a natural extension of optimal transport (OT) allowing comparison between measures of different masses. It arises naturally in machine learning by offering a robustness against outliers. The aim of this work is to provide convergence rates of the regularized transport cost and plans towards their original solution when both measures are weighted sums of Dirac masses.
comment: 26 pages, 10 figures
♻ ☆ Deterministic and Stochastic Frank-Wolfe Recursion on Probability Spaces
Motivated by applications in emergency response and experimental design, we consider smooth stochastic optimization problems over probability measures supported on compact subsets of the Euclidean space. With the influence function as the variational object, we construct a deterministic Frank-Wolfe (dFW) recursion for probability spaces, made especially possible by a lemma that identifies a ``closed-form'' solution to the infinite-dimensional Frank-Wolfe sub-problem. Each iterate in dFW is expressed as a convex combination of the incumbent iterate and a Dirac measure concentrating on the minimum of the influence function at the incumbent iterate. To address common application contexts that have access only to Monte Carlo observations of the objective and influence function, we construct a stochastic Frank-Wolfe (sFW) variation that generates a random sequence of probability measures constructed using minima of increasingly accurate estimates of the influence function. We demonstrate that sFW's optimality gap sequence exhibits $O(k^{-1})$ iteration complexity almost surely and in expectation for smooth convex objectives, and $O(k^{-1/2})$ (in Frank-Wolfe gap) for smooth non-convex objectives. Furthermore, we show that an easy-to-implement fixed-step, fixed-sample version of (sFW) exhibits exponential convergence to $\varepsilon$-optimality. We end with a central limit theorem on the observed objective values at the sequence of generated random measures. To further intuition, we include several illustrative examples with exact influence function calculations.
comment: To appear in Mathematics of Operations Research
♻ ☆ A Tunneling Method for Nonlinear Multi-objective Optimization Problems
In this paper, a tunneling method is developed for nonlinear multiobjective optimization problems using some ideas of the single objective tunneling method. The proposed method does not require any a priori chosen parameters or ordering information of the objective functions. At any critical point, an auxiliary function is developed to find a different critical point that dominates the previous one. By repeatedly applying the tunneling procedure, it is possible to construct a broader approximation to the global Pareto front in nonconvex multi-objective optimization problems that may contain multiple local Pareto fronts. An algorithm is then designed based on this auxiliary function, and the convergence of this algorithm is justified under some mild assumptions. Finally, several numerical examples are presented to illustrate the effectiveness of the proposed method and to justify the theoretical results.
comment: 19 Pages; 5 Figures; 10 subfigures 1 Table
♻ ☆ Exactly or Approximately Wasserstein Distributionally Robust Estimation According to Wasserstein Radii Being Small or Large
This paper primarily considers the robust estimation problem under Wasserstein distance constraints on the parameter and noise distributions in the linear measurement model with additive noise, which can be formulated as an infinite-dimensional nonconvex minimax problem. We prove that the existence of a saddle point for this problem is equivalent to that for a finite-dimensional minimax problem, and give a counterexample demonstrating that the saddle point may not exist. Motivated by this observation, we present a verifiable necessary and sufficient condition whose parameters can be derived from a convex problem and its dual. Additionally, we also introduce a simplified sufficient condition, which intuitively indicates that when the Wasserstein radii are small enough, the saddle point always exists. In the absence of the saddle point, we solve an finite-dimensional nonconvex minimax problem, obtained by restricting the estimator to be linear. Its optimal value establishes an upper bound on the robust estimation problem, while its optimal solution yields a robust linear estimator. Numerical experiments are also provided to validate our theoretical results.
♻ ☆ Sparse Polynomial Optimization with Matrix Constraints
This paper studies the hierarchy of sparse matrix Moment-SOS relaxations for solving sparse polynomial optimization problems with matrix constraints. First, we prove a sufficient and necessary condition for the sparse hierarchy to be tight. Second, we discuss how to detect the tightness and extract minimizers. Third, for the convex case, we show that the hierarchy of the sparse matrix Moment-SOS relaxations is tight, under some general assumptions. In particular, we show that the sparse matrix Moment-SOS relaxation is tight for every order when the problem is SOS-convex. Numerical experiments are provided to show the efficiency of the sparse relaxations.
comment: 28 pages
♻ ☆ Symplectic Geometry in Hybrid and Impulsive Optimal Control
Hybrid dynamical systems are systems which undergo both continuous and discrete transitions. The Bolza problem from optimal control theory was applied to these systems and a hybrid version of Pontryagin's maximum principle was presented. This hybrid maximum principle was presented to emphasize its geometric nature which made its study amenable to the tools of geometric mechanics and symplectic geometry. One explicit benefit of this geometric approach was that the symplectic structure (and hence the induced volume) was preserved. This allowed for a hybrid analog of caustics and conjugate points. Additionally, an introductory analysis of singular solutions (beating and Zeno) was discussed geometrically. This work concluded on a biological example where beating can occur.
comment: Comments welcome
Computer Vision and Pattern Recognition 104
☆ LEAML: Label-Efficient Adaptation to Out-of-Distribution Visual Tasks for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have achieved strong performance on general visual benchmarks but struggle with out-of-distribution (OOD) tasks in specialized domains such as medical imaging, where labeled data is limited and expensive. We introduce LEAML, a label-efficient adaptation framework that leverages both scarce labeled VQA samples and abundant unlabeled images. Our approach generates domain-relevant pseudo question-answer pairs for unlabeled data using a QA generator regularized by caption distillation. Importantly, we selectively update only those neurons most relevant to question-answering, enabling the QA Generator to efficiently acquire domain-specific knowledge during distillation. Experiments on gastrointestinal endoscopy and sports VQA demonstrate that LEAML consistently outperforms standard fine-tuning under minimal supervision, highlighting the effectiveness of our proposed LEAML framework.
☆ Improving GUI Grounding with Explicit Position-to-Coordinate Mapping
GUI grounding, the task of mapping natural-language instructions to pixel coordinates, is crucial for autonomous agents, yet remains difficult for current VLMs. The core bottleneck is reliable patch-to-pixel mapping, which breaks when extrapolating to high-resolution displays unseen during training. Current approaches generate coordinates as text tokens directly from visual features, forcing the model to infer complex position-to-pixel mappings implicitly; as a result, accuracy degrades and failures proliferate on new resolutions. We address this with two complementary innovations. First, RULER tokens serve as explicit coordinate markers, letting the model reference positions similar to gridlines on a map and adjust rather than generate coordinates from scratch. Second, Interleaved MRoPE (I-MRoPE) improves spatial encoding by ensuring that width and height dimensions are represented equally, addressing the asymmetry of standard positional schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show consistent gains in grounding accuracy, with the largest improvements on high-resolution interfaces. By providing explicit spatial guidance rather than relying on implicit learning, our approach enables more reliable GUI automation across diverse resolutions and platforms.
☆ MIXER: Mixed Hyperspherical Random Embedding Neural Network for Texture Recognition
Randomized neural networks for representation learning have consistently achieved prominent results in texture recognition tasks, effectively combining the advantages of both traditional techniques and learning-based approaches. However, existing approaches have so far focused mainly on improving cross-information prediction, without introducing significant advancements to the overall randomized network architecture. In this paper, we propose Mixer, a novel randomized neural network for texture representation learning. At its core, the method leverages hyperspherical random embeddings coupled with a dual-branch learning module to capture both intra- and inter-channel relationships, further enhanced by a newly formulated optimization problem for building rich texture representations. Experimental results have shown the interesting results of the proposed approach across several pure texture benchmarks, each with distinct characteristics and challenges. The source code will be available upon publication.
☆ Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
We propose a test-time defense mechanism against adversarial attacks: imperceptible image perturbations that significantly alter the predictions of a model. Unlike existing methods that rely on feature filtering or smoothing, which can lead to information loss, we propose to "combat noise with noise" by leveraging stochastic resonance to enhance robustness while minimizing information loss. Our approach introduces small translational perturbations to the input image, aligns the transformed feature embeddings, and aggregates them before mapping back to the original reference image. This can be expressed in a closed-form formula, which can be deployed on diverse existing network architectures without introducing additional network modules or fine-tuning for specific attack types. The resulting method is entirely training-free, architecture-agnostic, and attack-agnostic. Empirical results show state-of-the-art robustness on image classification and, for the first time, establish a generic test-time defense for dense prediction tasks, including stereo matching and optical flow, highlighting the method's versatility and practicality. Specifically, relative to clean (unperturbed) performance, our method recovers up to 68.1% of the accuracy loss on image classification, 71.9% on stereo matching, and 29.2% on optical flow under various types of adversarial attacks.
☆ Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.
comment: 5 pages, 1 figure, 4 tables; Submitted to IEEE Conference for possible publication
☆ MonSTeR: a Unified Model for Motion, Scene, Text Retrieval
Intention drives human movement in complex environments, but such movement can only happen if the surrounding context supports it. Despite the intuitive nature of this mechanism, existing research has not yet provided tools to evaluate the alignment between skeletal movement (motion), intention (text), and the surrounding context (scene). In this work, we introduce MonSTeR, the first MOtioN-Scene-TExt Retrieval model. Inspired by the modeling of higher-order relations, MonSTeR constructs a unified latent space by leveraging unimodal and cross-modal representations. This allows MonSTeR to capture the intricate dependencies between modalities, enabling flexible but robust retrieval across various tasks. Our results show that MonSTeR outperforms trimodal models that rely solely on unimodal representations. Furthermore, we validate the alignment of our retrieval scores with human preferences through a dedicated user study. We demonstrate the versatility of MonSTeR's latent space on zero-shot in-Scene Object Placement and Motion Captioning. Code and pre-trained models are available at github.com/colloroneluca/MonSTeR.
☆ Memory Forcing: Spatio-Temporal Memory for Consistent Scene Generation on Minecraft
Autoregressive video diffusion models have proved effective for world modeling and interactive scene generation, with Minecraft gameplay as a representative application. To faithfully simulate play, a model must generate natural content while exploring new scenes and preserve spatial consistency when revisiting explored areas. Under limited computation budgets, it must compress and exploit historical cues within a finite context window, which exposes a trade-off: Temporal-only memory lacks long-term spatial consistency, whereas adding spatial memory strengthens consistency but may degrade new scene generation quality when the model over-relies on insufficient spatial context. We present Memory Forcing, a learning framework that pairs training protocols with a geometry-indexed spatial memory. Hybrid Training exposes distinct gameplay regimes, guiding the model to rely on temporal memory during exploration and incorporate spatial memory for revisits. Chained Forward Training extends autoregressive training with model rollouts, where chained predictions create larger pose variations and encourage reliance on spatial memory for maintaining consistency. Point-to-Frame Retrieval efficiently retrieves history by mapping currently visible points to their source frames, while Incremental 3D Reconstruction maintains and updates an explicit 3D cache. Extensive experiments demonstrate that Memory Forcing achieves superior long-term spatial consistency and generative quality across diverse environments, while maintaining computational efficiency for extended sequences.
comment: 19 pages, 8 figures
☆ Product-Quantised Image Representation for High-Quality Image Synthesis
Product quantisation (PQ) is a classical method for scalable vector encoding, yet it has seen limited usage for latent representations in high-fidelity image generation. In this work, we introduce PQGAN, a quantised image autoencoder that integrates PQ into the well-known vector quantisation (VQ) framework of VQGAN. PQGAN achieves a noticeable improvement over state-of-the-art methods in terms of reconstruction performance, including both quantisation methods and their continuous counterparts. We achieve a PSNR score of 37dB, where prior work achieves 27dB, and are able to reduce the FID, LPIPS, and CMMD score by up to 96%. Our key to success is a thorough analysis of the interaction between codebook size, embedding dimensionality, and subspace factorisation, with vector and scalar quantisation as special cases. We obtain novel findings, such that the performance of VQ and PQ behaves in opposite ways when scaling the embedding dimension. Furthermore, our analysis shows performance trends for PQ that help guide optimal hyperparameter selection. Finally, we demonstrate that PQGAN can be seamlessly integrated into pre-trained diffusion models. This enables either a significantly faster and more compute-efficient generation, or a doubling of the output resolution at no additional cost, positioning PQ as a strong extension for discrete latent representation in image synthesis.
Dynamic Prompt Generation for Interactive 3D Medical Image Segmentation Training
Interactive 3D biomedical image segmentation requires efficient models that can iteratively refine predictions based on user prompts. Current foundation models either lack volumetric awareness or suffer from limited interactive capabilities. We propose a training strategy that combines dynamic volumetric prompt generation with content-aware adaptive cropping to optimize the use of the image encoder. Our method simulates realistic user interaction patterns during training while addressing the computational challenges of learning from sequential refinement feedback on a single GPU. For efficient training, we initialize our network using the publicly available weights from the nnInteractive segmentation model. Evaluation on the \textbf{Foundation Models for Interactive 3D Biomedical Image Segmentation} competition demonstrates strong performance with an average final Dice score of 0.6385, normalized surface distance of 0.6614, and area-under-the-curve metrics of 2.4799 (Dice) and 2.5671 (NSD).
☆ ROGR: Relightable 3D Objects using Generative Relighting NeurIPS 2025
We introduce ROGR, a novel approach that reconstructs a relightable 3D model of an object captured from multiple views, driven by a generative relighting model that simulates the effects of placing the object under novel environment illuminations. Our method samples the appearance of the object under multiple lighting environments, creating a dataset that is used to train a lighting-conditioned Neural Radiance Field (NeRF) that outputs the object's appearance under any input environmental lighting. The lighting-conditioned NeRF uses a novel dual-branch architecture to encode the general lighting effects and specularities separately. The optimized lighting-conditioned NeRF enables efficient feed-forward relighting under arbitrary environment maps without requiring per-illumination optimization or light transport simulation. We evaluate our approach on the established TensoIR and Stanford-ORB datasets, where it improves upon the state-of-the-art on most metrics, and showcase our approach on real-world object captures.
comment: NeurIPS 2025 Spotlight. Project page: https://tangjiapeng.github.io/ROGR
☆ UniShield: An Adaptive Multi-Agent Framework for Unified Forgery Image Detection and Localization
With the rapid advancements in image generation, synthetic images have become increasingly realistic, posing significant societal risks, such as misinformation and fraud. Forgery Image Detection and Localization (FIDL) thus emerges as essential for maintaining information integrity and societal security. Despite impressive performances by existing domain-specific detection methods, their practical applicability remains limited, primarily due to their narrow specialization, poor cross-domain generalization, and the absence of an integrated adaptive framework. To address these issues, we propose UniShield, the novel multi-agent-based unified system capable of detecting and localizing image forgeries across diverse domains, including image manipulation, document manipulation, DeepFake, and AI-generated images. UniShield innovatively integrates a perception agent with a detection agent. The perception agent intelligently analyzes image features to dynamically select suitable detection models, while the detection agent consolidates various expert detectors into a unified framework and generates interpretable reports. Extensive experiments show that UniShield achieves state-of-the-art results, surpassing both existing unified approaches and domain-specific detectors, highlighting its superior practicality, adaptiveness, and scalability.
☆ SpineBench: A Clinically Salient, Level-Aware Benchmark Powered by the SpineMed-450k Corpus
Spine disorders affect 619 million people globally and are a leading cause of disability, yet AI-assisted diagnosis remains limited by the lack of level-aware, multimodal datasets. Clinical decision-making for spine disorders requires sophisticated reasoning across X-ray, CT, and MRI at specific vertebral levels. However, progress has been constrained by the absence of traceable, clinically-grounded instruction data and standardized, spine-specific benchmarks. To address this, we introduce SpineMed, an ecosystem co-designed with practicing spine surgeons. It features SpineMed-450k, the first large-scale dataset explicitly designed for vertebral-level reasoning across imaging modalities with over 450,000 instruction instances, and SpineBench, a clinically-grounded evaluation framework. SpineMed-450k is curated from diverse sources, including textbooks, guidelines, open datasets, and ~1,000 de-identified hospital cases, using a clinician-in-the-loop pipeline with a two-stage LLM generation method (draft and revision) to ensure high-quality, traceable data for question-answering, multi-turn consultations, and report generation. SpineBench evaluates models on clinically salient axes, including level identification, pathology assessment, and surgical planning. Our comprehensive evaluation of several recently advanced large vision-language models (LVLMs) on SpineBench reveals systematic weaknesses in fine-grained, level-specific reasoning. In contrast, our model fine-tuned on SpineMed-450k demonstrates consistent and significant improvements across all tasks. Clinician assessments confirm the diagnostic clarity and practical utility of our model's outputs.
☆ ReeMark: Reeb Graphs for Simulating Patterns of Life in Spatiotemporal Trajectories
Accurately modeling human mobility is critical for urban planning, epidemiology, and traffic management. In this work, we introduce Markovian Reeb Graphs, a novel framework for simulating spatiotemporal trajectories that preserve Patterns of Life (PoLs) learned from baseline data. By combining individual- and population-level mobility structures within a probabilistic topological model, our approach generates realistic future trajectories that capture both consistency and variability in daily life. Evaluations on the Urban Anomalies dataset (Atlanta and Berlin subsets) using the Jensen-Shannon Divergence (JSD) across population- and agent-level metrics demonstrate that the proposed method achieves strong fidelity while remaining data- and compute-efficient. These results position Markovian Reeb Graphs as a scalable framework for trajectory simulation with broad applicability across diverse urban environments.
comment: 15 pages, 3 figures, 2 algorithms, 1 table
☆ MM-Nav: Multi-View VLA Model for Robust Visual Navigation via Multi-Expert Learning
Visual navigation policy is widely regarded as a promising direction, as it mimics humans by using egocentric visual observations for navigation. However, optical information of visual observations is difficult to be explicitly modeled like LiDAR point clouds or depth maps, which subsequently requires intelligent models and large-scale data. To this end, we propose to leverage the intelligence of the Vision-Language-Action (VLA) model to learn diverse navigation capabilities from synthetic expert data in a teacher-student manner. Specifically, we implement the VLA model, MM-Nav, as a multi-view VLA (with 360 observations) based on pretrained large language models and visual foundation models. For large-scale navigation data, we collect expert data from three reinforcement learning (RL) experts trained with privileged depth information in three challenging tailor-made environments for different navigation capabilities: reaching, squeezing, and avoiding. We iteratively train our VLA model using data collected online from RL experts, where the training ratio is dynamically balanced based on performance on individual capabilities. Through extensive experiments in synthetic environments, we demonstrate that our model achieves strong generalization capability. Moreover, we find that our student VLA model outperforms the RL teachers, demonstrating the synergistic effect of integrating multiple capabilities. Extensive real-world experiments further confirm the effectiveness of our method.
comment: Project page: https://pku-epic.github.io/MM-Nav-Web/
☆ Mask2IV: Interaction-Centric Video Generation via Mask Trajectories
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.
comment: Project page: https://reagan1311.github.io/mask2iv
☆ HAVIR: HierArchical Vision to Image Reconstruction using CLIP-Guided Versatile Diffusion
The reconstruction of visual information from brain activity fosters interdisciplinary integration between neuroscience and computer vision. However, existing methods still face challenges in accurately recovering highly complex visual stimuli. This difficulty stems from the characteristics of natural scenes: low-level features exhibit heterogeneity, while high-level features show semantic entanglement due to contextual overlaps. Inspired by the hierarchical representation theory of the visual cortex, we propose the HAVIR model, which separates the visual cortex into two hierarchical regions and extracts distinct features from each. Specifically, the Structural Generator extracts structural information from spatial processing voxels and converts it into latent diffusion priors, while the Semantic Extractor converts semantic processing voxels into CLIP embeddings. These components are integrated via the Versatile Diffusion model to synthesize the final image. Experimental results demonstrate that HAVIR enhances both the structural and semantic quality of reconstructions, even in complex scenes, and outperforms existing models.
☆ Taming Text-to-Sounding Video Generation via Advanced Modality Condition and Interaction
This study focuses on a challenging yet promising task, Text-to-Sounding-Video (T2SV) generation, which aims to generate a video with synchronized audio from text conditions, meanwhile ensuring both modalities are aligned with text. Despite progress in joint audio-video training, two critical challenges still remain unaddressed: (1) a single, shared text caption where the text for video is equal to the text for audio often creates modal interference, confusing the pretrained backbones, and (2) the optimal mechanism for cross-modal feature interaction remains unclear. To address these challenges, we first propose the Hierarchical Visual-Grounded Captioning (HVGC) framework that generates pairs of disentangled captions, a video caption, and an audio caption, eliminating interference at the conditioning stage. Based on HVGC, we further introduce BridgeDiT, a novel dual-tower diffusion transformer, which employs a Dual CrossAttention (DCA) mechanism that acts as a robust ``bridge" to enable a symmetric, bidirectional exchange of information, achieving both semantic and temporal synchronization. Extensive experiments on three benchmark datasets, supported by human evaluations, demonstrate that our method achieves state-of-the-art results on most metrics. Comprehensive ablation studies further validate the effectiveness of our contributions, offering key insights for the future T2SV task. All the codes and checkpoints will be publicly released.
☆ GeoComplete: Geometry-Aware Diffusion for Reference-Driven Image Completion NeurIPS 2025
Reference-driven image completion, which restores missing regions in a target view using additional images, is particularly challenging when the target view differs significantly from the references. Existing generative methods rely solely on diffusion priors and, without geometric cues such as camera pose or depth, often produce misaligned or implausible content. We propose GeoComplete, a novel framework that incorporates explicit 3D structural guidance to enforce geometric consistency in the completed regions, setting it apart from prior image-only approaches. GeoComplete introduces two key ideas: conditioning the diffusion process on projected point clouds to infuse geometric information, and applying target-aware masking to guide the model toward relevant reference cues. The framework features a dual-branch diffusion architecture. One branch synthesizes the missing regions from the masked target, while the other extracts geometric features from the projected point cloud. Joint self-attention across branches ensures coherent and accurate completion. To address regions visible in references but absent in the target, we project the target view into each reference to detect occluded areas, which are then masked during training. This target-aware masking directs the model to focus on useful cues, enhancing performance in difficult scenarios. By integrating a geometry-aware dual-branch diffusion architecture with a target-aware masking strategy, GeoComplete offers a unified and robust solution for geometry-conditioned image completion. Experiments show that GeoComplete achieves a 17.1 PSNR improvement over state-of-the-art methods, significantly boosting geometric accuracy while maintaining high visual quality.
comment: Accepted by NeurIPS 2025. Project page: https://bb12346.github.io/GeoComplete/
☆ Geometry Meets Vision: Revisiting Pretrained Semantics in Distilled Fields
Semantic distillation in radiance fields has spurred significant advances in open-vocabulary robot policies, e.g., in manipulation and navigation, founded on pretrained semantics from large vision models. While prior work has demonstrated the effectiveness of visual-only semantic features (e.g., DINO and CLIP) in Gaussian Splatting and neural radiance fields, the potential benefit of geometry-grounding in distilled fields remains an open question. In principle, visual-geometry features seem very promising for spatial tasks such as pose estimation, prompting the question: Do geometry-grounded semantic features offer an edge in distilled fields? Specifically, we ask three critical questions: First, does spatial-grounding produce higher-fidelity geometry-aware semantic features? We find that image features from geometry-grounded backbones contain finer structural details compared to their counterparts. Secondly, does geometry-grounding improve semantic object localization? We observe no significant difference in this task. Thirdly, does geometry-grounding enable higher-accuracy radiance field inversion? Given the limitations of prior work and their lack of semantics integration, we propose a novel framework SPINE for inverting radiance fields without an initial guess, consisting of two core components: coarse inversion using distilled semantics, and fine inversion using photometric-based optimization. Surprisingly, we find that the pose estimation accuracy decreases with geometry-grounded features. Our results suggest that visual-only features offer greater versatility for a broader range of downstream tasks, although geometry-grounded features contain more geometric detail. Notably, our findings underscore the necessity of future research on effective strategies for geometry-grounding that augment the versatility and performance of pretrained semantic features.
☆ Latent Diffusion Unlearning: Protecting Against Unauthorized Personalization Through Trajectory Shifted Perturbations
Text-to-image diffusion models have demonstrated remarkable effectiveness in rapid and high-fidelity personalization, even when provided with only a few user images. However, the effectiveness of personalization techniques has lead to concerns regarding data privacy, intellectual property protection, and unauthorized usage. To mitigate such unauthorized usage and model replication, the idea of generating ``unlearnable'' training samples utilizing image poisoning techniques has emerged. Existing methods for this have limited imperceptibility as they operate in the pixel space which results in images with noise and artifacts. In this work, we propose a novel model-based perturbation strategy that operates within the latent space of diffusion models. Our method alternates between denoising and inversion while modifying the starting point of the denoising trajectory: of diffusion models. This trajectory-shifted sampling ensures that the perturbed images maintain high visual fidelity to the original inputs while being resistant to inversion and personalization by downstream generative models. This approach integrates unlearnability into the framework of Latent Diffusion Models (LDMs), enabling a practical and imperceptible defense against unauthorized model adaptation. We validate our approach on four benchmark datasets to demonstrate robustness against state-of-the-art inversion attacks. Results demonstrate that our method achieves significant improvements in imperceptibility ($\sim 8 \% -10\%$ on perceptual metrics including PSNR, SSIM, and FID) and robustness ( $\sim 10\%$ on average across five adversarial settings), highlighting its effectiveness in safeguarding sensitive data.
☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
☆ Neural Posterior Estimation with Autoregressive Tiling for Detecting Objects in Astronomical Images
Upcoming astronomical surveys will produce petabytes of high-resolution images of the night sky, providing information about billions of stars and galaxies. Detecting and characterizing the astronomical objects in these images is a fundamental task in astronomy -- and a challenging one, as most of these objects are faint and many visually overlap with other objects. We propose an amortized variational inference procedure to solve this instance of small-object detection. Our key innovation is a family of spatially autoregressive variational distributions that partition and order the latent space according to a $K$-color checkerboard pattern. By construction, the conditional independencies of this variational family mirror those of the posterior distribution. We fit the variational distribution, which is parameterized by a convolutional neural network, using neural posterior estimation (NPE) to minimize an expectation of the forward KL divergence. Using images from the Sloan Digital Sky Survey, our method achieves state-of-the-art performance. We further demonstrate that the proposed autoregressive structure greatly improves posterior calibration.
☆ InsideOut: An EfficientNetV2-S Based Deep Learning Framework for Robust Multi-Class Facial Emotion Recognition
Facial Emotion Recognition (FER) is a key task in affective computing, enabling applications in human-computer interaction, e-learning, healthcare, and safety systems. Despite advances in deep learning, FER remains challenging due to occlusions, illumination and pose variations, subtle intra-class differences, and dataset imbalance that hinders recognition of minority emotions. We present InsideOut, a reproducible FER framework built on EfficientNetV2-S with transfer learning, strong data augmentation, and imbalance-aware optimization. The approach standardizes FER2013 images, applies stratified splitting and augmentation, and fine-tunes a lightweight classification head with class-weighted loss to address skewed distributions. InsideOut achieves 62.8% accuracy with a macro averaged F1 of 0.590 on FER2013, showing competitive results compared to conventional CNN baselines. The novelty lies in demonstrating that efficient architectures, combined with tailored imbalance handling, can provide practical, transparent, and reproducible FER solutions.
When and Where do Events Switch in Multi-Event Video Generation? ICCV2025
Text-to-video (T2V) generation has surged in response to challenging questions, especially when a long video must depict multiple sequential events with temporal coherence and controllable content. Existing methods that extend to multi-event generation omit an inspection of the intrinsic factor in event shifting. The paper aims to answer the central question: When and where multi-event prompts control event transition during T2V generation. This work introduces MEve, a self-curated prompt suite for evaluating multi-event text-to-video (T2V) generation, and conducts a systematic study of two representative model families, i.e., OpenSora and CogVideoX. Extensive experiments demonstrate the importance of early intervention in denoising steps and block-wise model layers, revealing the essential factor for multi-event video generation and highlighting the possibilities for multi-event conditioning in future models.
comment: Work in Progress. Accepted to ICCV2025 @ LongVid-Foundations
☆ PocketSR: The Super-Resolution Expert in Your Pocket Mobiles
Real-world image super-resolution (RealSR) aims to enhance the visual quality of in-the-wild images, such as those captured by mobile phones. While existing methods leveraging large generative models demonstrate impressive results, the high computational cost and latency make them impractical for edge deployment. In this paper, we introduce PocketSR, an ultra-lightweight, single-step model that brings generative modeling capabilities to RealSR while maintaining high fidelity. To achieve this, we design LiteED, a highly efficient alternative to the original computationally intensive VAE in SD, reducing parameters by 97.5% while preserving high-quality encoding and decoding. Additionally, we propose online annealing pruning for the U-Net, which progressively shifts generative priors from heavy modules to lightweight counterparts, ensuring effective knowledge transfer and further optimizing efficiency. To mitigate the loss of prior knowledge during pruning, we incorporate a multi-layer feature distillation loss. Through an in-depth analysis of each design component, we provide valuable insights for future research. PocketSR, with a model size of 146M parameters, processes 4K images in just 0.8 seconds, achieving a remarkable speedup over previous methods. Notably, it delivers performance on par with state-of-the-art single-step and even multi-step RealSR models, making it a highly practical solution for edge-device applications.
☆ Not every day is a sunny day: Synthetic cloud injection for deep land cover segmentation robustness evaluation across data sources
Supervised deep learning for land cover semantic segmentation (LCS) relies on labeled satellite data. However, most existing Sentinel-2 datasets are cloud-free, which limits their usefulness in tropical regions where clouds are common. To properly evaluate the extent of this problem, we developed a cloud injection algorithm that simulates realistic cloud cover, allowing us to test how Sentinel-1 radar data can fill in the gaps caused by cloud-obstructed optical imagery. We also tackle the issue of losing spatial and/or spectral details during encoder downsampling in deep networks. To mitigate this loss, we propose a lightweight method that injects Normalized Difference Indices (NDIs) into the final decoding layers, enabling the model to retain key spatial features with minimal additional computation. Injecting NDIs enhanced land cover segmentation performance on the DFC2020 dataset, yielding improvements of 1.99% for U-Net and 2.78% for DeepLabV3 on cloud-free imagery. Under cloud-covered conditions, incorporating Sentinel-1 data led to significant performance gains across all models compared to using optical data alone, highlighting the effectiveness of radar-optical fusion in challenging atmospheric scenarios.
☆ Towards Scalable and Consistent 3D Editing
3D editing - the task of locally modifying the geometry or appearance of a 3D asset - has wide applications in immersive content creation, digital entertainment, and AR/VR. However, unlike 2D editing, it remains challenging due to the need for cross-view consistency, structural fidelity, and fine-grained controllability. Existing approaches are often slow, prone to geometric distortions, or dependent on manual and accurate 3D masks that are error-prone and impractical. To address these challenges, we advance both the data and model fronts. On the data side, we introduce 3DEditVerse, the largest paired 3D editing benchmark to date, comprising 116,309 high-quality training pairs and 1,500 curated test pairs. Built through complementary pipelines of pose-driven geometric edits and foundation model-guided appearance edits, 3DEditVerse ensures edit locality, multi-view consistency, and semantic alignment. On the model side, we propose 3DEditFormer, a 3D-structure-preserving conditional transformer. By enhancing image-to-3D generation with dual-guidance attention and time-adaptive gating, 3DEditFormer disentangles editable regions from preserved structure, enabling precise and consistent edits without requiring auxiliary 3D masks. Extensive experiments demonstrate that our framework outperforms state-of-the-art baselines both quantitatively and qualitatively, establishing a new standard for practical and scalable 3D editing. Dataset and code will be released. Project: https://www.lv-lab.org/3DEditFormer/
☆ TIT-Score: Evaluating Long-Prompt Based Text-to-Image Alignment via Text-to-Image-to-Text Consistency
With the rapid advancement of large multimodal models (LMMs), recent text-to-image (T2I) models can generate high-quality images and demonstrate great alignment to short prompts. However, they still struggle to effectively understand and follow long and detailed prompts, displaying inconsistent generation. To address this challenge, we introduce LPG-Bench, a comprehensive benchmark for evaluating long-prompt-based text-to-image generation. LPG-Bench features 200 meticulously crafted prompts with an average length of over 250 words, approaching the input capacity of several leading commercial models. Using these prompts, we generate 2,600 images from 13 state-of-the-art models and further perform comprehensive human-ranked annotations. Based on LPG-Bench, we observe that state-of-the-art T2I alignment evaluation metrics exhibit poor consistency with human preferences on long-prompt-based image generation. To address the gap, we introduce a novel zero-shot metric based on text-to-image-to-text consistency, termed TIT, for evaluating long-prompt-generated images. The core concept of TIT is to quantify T2I alignment by directly comparing the consistency between the raw prompt and the LMM-produced description on the generated image, which includes an efficient score-based instantiation TIT-Score and a large-language-model (LLM) based instantiation TIT-Score-LLM. Extensive experiments demonstrate that our framework achieves superior alignment with human judgment compared to CLIP-score, LMM-score, etc., with TIT-Score-LLM attaining a 7.31% absolute improvement in pairwise accuracy over the strongest baseline. LPG-Bench and TIT methods together offer a deeper perspective to benchmark and foster the development of T2I models. All resources will be made publicly available.
Flip Distribution Alignment VAE for Multi-Phase MRI Synthesis MICCAI 2025
Separating shared and independent features is crucial for multi-phase contrast-enhanced (CE) MRI synthesis. However, existing methods use deep autoencoder generators with low parameter efficiency and lack interpretable training strategies. In this paper, we propose Flip Distribution Alignment Variational Autoencoder (FDA-VAE), a lightweight feature-decoupled VAE model for multi-phase CE MRI synthesis. Our method encodes input and target images into two latent distributions that are symmetric concerning a standard normal distribution, effectively separating shared and independent features. The Y-shaped bidirectional training strategy further enhances the interpretability of feature separation. Experimental results show that compared to existing deep autoencoder-based end-to-end synthesis methods, FDA-VAE significantly reduces model parameters and inference time while effectively improving synthesis quality. The source code is publicly available at https://github.com/QianMuXiao/FDA-VAE.
comment: This paper has been early accept by MICCAI 2025
☆ Confidence and Dispersity as Signals: Unsupervised Model Evaluation and Ranking ICML'23
Assessing model generalization under distribution shift is essential for real-world deployment, particularly when labeled test data is unavailable. This paper presents a unified and practical framework for unsupervised model evaluation and ranking in two common deployment settings: (1) estimating the accuracy of a fixed model on multiple unlabeled test sets (dataset-centric evaluation), and (2) ranking a set of candidate models on a single unlabeled test set (model-centric evaluation). We demonstrate that two intrinsic properties of model predictions, namely confidence (which reflects prediction certainty) and dispersity (which captures the diversity of predicted classes), together provide strong and complementary signals for generalization. We systematically benchmark a set of confidence-based, dispersity-based, and hybrid metrics across a wide range of model architectures, datasets, and distribution shift types. Our results show that hybrid metrics consistently outperform single-aspect metrics on both dataset-centric and model-centric evaluation settings. In particular, the nuclear norm of the prediction matrix provides robust and accurate performance across tasks, including real-world datasets, and maintains reliability under moderate class imbalance. These findings offer a practical and generalizable basis for unsupervised model assessment in deployment scenarios.
comment: 15 pages, 11 figures, extension of ICML'23 work: Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation
Multimodal Carotid Risk Stratification with Large Vision-Language Models: Benchmarking, Fine-Tuning, and Clinical Insights
Reliable risk assessment for carotid atheromatous disease remains a major clinical challenge, as it requires integrating diverse clinical and imaging information in a manner that is transparent and interpretable to clinicians. This study investigates the potential of state-of-the-art and recent large vision-language models (LVLMs) for multimodal carotid plaque assessment by integrating ultrasound imaging (USI) with structured clinical, demographic, laboratory, and protein biomarker data. A framework that simulates realistic diagnostic scenarios through interview-style question sequences is proposed, comparing a range of open-source LVLMs, including both general-purpose and medically tuned models. Zero-shot experiments reveal that even if they are very powerful, not all LVLMs can accurately identify imaging modality and anatomy, while all of them perform poorly in accurate risk classification. To address this limitation, LLaVa-NeXT-Vicuna is adapted to the ultrasound domain using low-rank adaptation (LoRA), resulting in substantial improvements in stroke risk stratification. The integration of multimodal tabular data in the form of text further enhances specificity and balanced accuracy, yielding competitive performance compared to prior convolutional neural network (CNN) baselines trained on the same dataset. Our findings highlight both the promise and limitations of LVLMs in ultrasound-based cardiovascular risk prediction, underscoring the importance of multimodal integration, model calibration, and domain adaptation for clinical translation.
☆ Zero-Shot Robustness of Vision Language Models Via Confidence-Aware Weighting NeurIPS 2025
Vision-language models like CLIP demonstrate impressive zero-shot generalization but remain highly vulnerable to adversarial attacks. In this work, we propose Confidence-Aware Weighting (CAW) to enhance zero-shot robustness in vision-language models. CAW consists of two components: (1) a Confidence-Aware loss that prioritizes uncertain adversarial examples by scaling the KL divergence between clean and adversarial predictions, and (2) a feature alignment regularization that preserves semantic consistency by minimizing the distance between frozen and fine-tuned image encoder features on adversarial inputs. These components work jointly to improve both clean and robust accuracy without sacrificing generalization. Extensive experiments on TinyImageNet and 14 additional datasets show that CAW outperforms recent methods such as PMG-AFT and TGA-ZSR under strong attacks like AutoAttack, while using less memory.
comment: Accepted to the NeurIPS 2025 Workshop on Reliable ML from Unreliable Data
☆ Don't Just Chase "Highlighted Tokens" in MLLMs: Revisiting Visual Holistic Context Retention NeurIPS 2025
Despite their powerful capabilities, Multimodal Large Language Models (MLLMs) suffer from considerable computational overhead due to their reliance on massive visual tokens. Recent studies have explored token pruning to alleviate this problem, which typically uses text-vision cross-attention or [\texttt{CLS}] attention to assess and discard redundant visual tokens. In this work, we identify a critical limitation of such attention-first pruning approaches, i.e., they tend to preserve semantically similar tokens, resulting in pronounced performance drops under high pruning ratios. To this end, we propose {HoloV}, a simple yet effective, plug-and-play visual token pruning framework for efficient inference. Distinct from previous attention-first schemes, HoloV rethinks token retention from a holistic perspective. By adaptively distributing the pruning budget across different spatial crops, HoloV ensures that the retained tokens capture the global visual context rather than isolated salient features. This strategy minimizes representational collapse and maintains task-relevant information even under aggressive pruning. Experimental results demonstrate that our HoloV achieves superior performance across various tasks, MLLM architectures, and pruning ratios compared to SOTA methods. For instance, LLaVA1.5 equipped with HoloV preserves 95.8\% of the original performance after pruning 88.9\% of visual tokens, achieving superior efficiency-accuracy trade-offs.
comment: Accepted by NeurIPS 2025 main
☆ Training-Free Out-Of-Distribution Segmentation With Foundation Models
Detecting unknown objects in semantic segmentation is crucial for safety-critical applications such as autonomous driving. Large vision foundation models, including DINOv2, InternImage, and CLIP, have advanced visual representation learning by providing rich features that generalize well across diverse tasks. While their strength in closed-set semantic tasks is established, their capability to detect out-of-distribution (OoD) regions in semantic segmentation remains underexplored. In this work, we investigate whether foundation models fine-tuned on segmentation datasets can inherently distinguish in-distribution (ID) from OoD regions without any outlier supervision. We propose a simple, training-free approach that utilizes features from the InternImage backbone and applies K-Means clustering alongside confidence thresholding on raw decoder logits to identify OoD clusters. Our method achieves 50.02 Average Precision on the RoadAnomaly benchmark and 48.77 on the benchmark of ADE-OoD with InternImage-L, surpassing several supervised and unsupervised baselines. These results suggest a promising direction for generic OoD segmentation methods that require minimal assumptions or additional data.
comment: 12 pages, 5 figures, 2 tables, ICOMP 2025
☆ One Patch to Caption Them All: A Unified Zero-Shot Captioning Framework
Zero-shot captioners are recently proposed models that utilize common-space vision-language representations to caption images without relying on paired image-text data. To caption an image, they proceed by textually decoding a text-aligned image feature, but they limit their scope to global representations and whole-image captions. We present \frameworkName{}, a unified framework for zero-shot captioning that shifts from an image-centric to a patch-centric paradigm, enabling the captioning of arbitrary regions without the need of region-level supervision. Instead of relying on global image representations, we treat individual patches as atomic captioning units and aggregate them to describe arbitrary regions, from single patches to non-contiguous areas and entire images. We analyze the key ingredients that enable current latent captioners to work in our novel proposed framework. Experiments demonstrate that backbones producing meaningful, dense visual features, such as DINO, are key to achieving state-of-the-art performance in multiple region-based captioning tasks. Compared to other baselines and state-of-the-art competitors, our models achieve better performance on zero-shot dense, region-set, and a newly introduced trace captioning task, highlighting the effectiveness of patch-wise semantic representations for scalable caption generation. Project page at https://paciosoft.com/Patch-ioner/ .
☆ PyRadiomics-cuda: a GPU-accelerated 3D features extraction from medical images within PyRadiomics
PyRadiomics-cuda is a GPU-accelerated extension of the PyRadiomics library, designed to address the computational challenges of extracting three-dimensional shape features from medical images. By offloading key geometric computations to GPU hardware it dramatically reduces processing times for large volumetric datasets. The system maintains full compatibility with the original PyRadiomics API, enabling seamless integration into existing AI workflows without code modifications. This transparent acceleration facilitates efficient, scalable radiomics analysis, supporting rapid feature extraction essential for high-throughput AI pipeline. Tests performed on a typical computational cluster, budget and home devices prove usefulness in all scenarios. PyRadiomics-cuda is implemented in Python and C/CUDA and is freely available under the BSD license at https://github.com/mis-wut/pyradiomics-CUDA Additionally PyRadiomics-cuda test suite is available at https://github.com/mis-wut/pyradiomics-cuda-data-gen. It provides detailed handbook and sample scripts suited for different kinds of workflows plus detailed installation instructions. The dataset used for testing is available at Kaggle https://www.kaggle.com/datasets/sabahesaraki/kidney-tumor-segmentation-challengekits-19
☆ ELMF4EggQ: Ensemble Learning with Multimodal Feature Fusion for Non-Destructive Egg Quality Assessment
Accurate, non-destructive assessment of egg quality is critical for ensuring food safety, maintaining product standards, and operational efficiency in commercial poultry production. This paper introduces ELMF4EggQ, an ensemble learning framework that employs multimodal feature fusion to classify egg grade and freshness using only external attributes - image, shape, and weight. A novel, publicly available dataset of 186 brown-shelled eggs was constructed, with egg grade and freshness levels determined through laboratory-based expert assessments involving internal quality measurements, such as yolk index and Haugh unit. To the best of our knowledge, this is the first study to apply machine learning methods for internal egg quality assessment using only external, non-invasive features, and the first to release a corresponding labeled dataset. The proposed framework integrates deep features extracted from external egg images with structural characteristics such as egg shape and weight, enabling a comprehensive representation of each egg. Image feature extraction is performed using top-performing pre-trained CNN models (ResNet152, DenseNet169, and ResNet152V2), followed by PCA-based dimensionality reduction, SMOTE augmentation, and classification using multiple machine learning algorithms. An ensemble voting mechanism combines predictions from the best-performing classifiers to enhance overall accuracy. Experimental results demonstrate that the multimodal approach significantly outperforms image-only and tabular (shape and weight) only baselines, with the multimodal ensemble approach achieving 86.57% accuracy in grade classification and 70.83% in freshness prediction. All code and data are publicly available at https://github.com/Kenshin-Keeps/Egg_Quality_Prediction_ELMF4EggQ, promoting transparency, reproducibility, and further research in this domain.
comment: 30 pages
☆ Representing Beauty: Towards a Participatory but Objective Latent Aesthetics
What does it mean for a machine to recognize beauty? While beauty remains a culturally and experientially compelling but philosophically elusive concept, deep learning systems increasingly appear capable of modeling aesthetic judgment. In this paper, we explore the capacity of neural networks to represent beauty despite the immense formal diversity of objects for which the term applies. By drawing on recent work on cross-model representational convergence, we show how aesthetic content produces more similar and aligned representations between models which have been trained on distinct data and modalities - while unaesthetic images do not produce more aligned representations. This finding implies that the formal structure of beautiful images has a realist basis - rather than only as a reflection of socially constructed values. Furthermore, we propose that these realist representations exist because of a joint grounding of aesthetic form in physical and cultural substance. We argue that human perceptual and creative acts play a central role in shaping these the latent spaces of deep learning systems, but that a realist basis for aesthetics shows that machines are not mere creative parrots but can produce novel creative insights from the unique vantage point of scale. Our findings suggest that human-machine co-creation is not merely possible, but foundational - with beauty serving as a teleological attractor in both cultural production and machine perception.
☆ Med-K2N: Flexible K-to-N Modality Translation for Medical Image Synthesis ICLR2026
Cross-modal medical image synthesis research focuses on reconstructing missing imaging modalities from available ones to support clinical diagnosis. Driven by clinical necessities for flexible modality reconstruction, we explore K to N medical generation, where three critical challenges emerge: How can we model the heterogeneous contributions of different modalities to various target tasks? How can we ensure fusion quality control to prevent degradation from noisy information? How can we maintain modality identity consistency in multi-output generation? Driven by these clinical necessities, and drawing inspiration from SAM2's sequential frame paradigm and clinicians' progressive workflow of incrementally adding and selectively integrating multi-modal information, we treat multi-modal medical data as sequential frames with quality-driven selection mechanisms. Our key idea is to "learn" adaptive weights for each modality-task pair and "memorize" beneficial fusion patterns through progressive enhancement. To achieve this, we design three collaborative modules: PreWeightNet for global contribution assessment, ThresholdNet for adaptive filtering, and EffiWeightNet for effective weight computation. Meanwhile, to maintain modality identity consistency, we propose the Causal Modality Identity Module (CMIM) that establishes causal constraints between generated images and target modality descriptions using vision-language modeling. Extensive experimental results demonstrate that our proposed Med-K2N outperforms state-of-the-art methods by significant margins on multiple benchmarks. Source code is available.
comment: ICLR2026 under review
☆ Work Zones challenge VLM Trajectory Planning: Toward Mitigation and Robust Autonomous Driving
Visual Language Models (VLMs), with powerful multimodal reasoning capabilities, are gradually integrated into autonomous driving by several automobile manufacturers to enhance planning capability in challenging environments. However, the trajectory planning capability of VLMs in work zones, which often include irregular layouts, temporary traffic control, and dynamically changing geometric structures, is still unexplored. To bridge this gap, we conduct the \textit{first} systematic study of VLMs for work zone trajectory planning, revealing that mainstream VLMs fail to generate correct trajectories in $68.0%$ of cases. To better understand these failures, we first identify candidate patterns via subgraph mining and clustering analysis, and then confirm the validity of $8$ common failure patterns through human verification. Building on these findings, we propose REACT-Drive, a trajectory planning framework that integrates VLMs with Retrieval-Augmented Generation (RAG). Specifically, REACT-Drive leverages VLMs to convert prior failure cases into constraint rules and executable trajectory planning code, while RAG retrieves similar patterns in new scenarios to guide trajectory generation. Experimental results on the ROADWork dataset show that REACT-Drive yields a reduction of around $3\times$ in average displacement error relative to VLM baselines under evaluation with Qwen2.5-VL. In addition, REACT-Drive yields the lowest inference time ($0.58$s) compared with other methods such as fine-tuning ($17.90$s). We further conduct experiments using a real vehicle in 15 work zone scenarios in the physical world, demonstrating the strong practicality of REACT-Drive.
comment: 13 pages,5 figures
☆ VERNIER: an open-source software pushing marker pose estimation down to the micrometer and nanometer scales
Pose estimation is still a challenge at the small scales. Few solutions exist to capture the 6 degrees of freedom of an object with nanometric and microradians resolutions over relatively large ranges. Over the years, we have proposed several fiducial marker and pattern designs to achieve reliable performance for various microscopy applications. Centimeter ranges are possible using pattern encoding methods, while nanometer resolutions can be achieved using phase processing of the periodic frames. This paper presents VERNIER, an open source phase processing software designed to provide fast and reliable pose measurement based on pseudo-periodic patterns. Thanks to a phase-based local thresholding algorithm, the software has proven to be particularly robust to noise, defocus and occlusion. The successive steps of the phase processing are presented, as well as the different types of patterns that address different application needs. The implementation procedure is illustrated with synthetic and experimental images. Finally, guidelines are given for selecting the appropriate pattern design and microscope magnification lenses as a function of the desired performance.
☆ MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .
comment: accepted to emnlp2025 findings
☆ Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.
comment: Project page: https://araseo.github.io/alignyourquery/
☆ OTR: Synthesizing Overlay Text Dataset for Text Removal
Text removal is a crucial task in computer vision with applications such as privacy preservation, image editing, and media reuse. While existing research has primarily focused on scene text removal in natural images, limitations in current datasets hinder out-of-domain generalization or accurate evaluation. In particular, widely used benchmarks such as SCUT-EnsText suffer from ground truth artifacts due to manual editing, overly simplistic text backgrounds, and evaluation metrics that do not capture the quality of generated results. To address these issues, we introduce an approach to synthesizing a text removal benchmark applicable to domains other than scene texts. Our dataset features text rendered on complex backgrounds using object-aware placement and vision-language model-generated content, ensuring clean ground truth and challenging text removal scenarios. The dataset is available at https://huggingface.co/datasets/cyberagent/OTR .
comment: This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 33rd ACM International Conference on Multimedia (MM '25), October 27-31, 2025, Dublin, Ireland, https://doi.org/10.1145/3746027.3758297
☆ GCVAMD: A Modified CausalVAE Model for Causal Age-related Macular Degeneration Risk Factor Detection and Prediction
Age Related Macular Degeneration(AMD) has been one of the most leading causes of permanent vision impairment in ophthalmology. Though treatments, such as anti VEGF drugs or photodynamic therapies, were developed to slow down the degenerative process of AMD, there is still no specific cure to reverse vision loss caused by AMD. Thus, for AMD, detecting existence of risk factors of AMD or AMD itself within the patient retina in early stages is a crucial task to reduce the possibility of vision impairment. Apart from traditional approaches, deep learning based methods, especially attention mechanism based CNNs and GradCAM based XAI analysis on OCT scans, exhibited successful performance in distinguishing AMD retina from normal retinas, making it possible to use AI driven models to aid medical diagnosis and analysis by ophthalmologists regarding AMD. However, though having significant success, previous works mostly focused on prediction performance itself, not pathologies or underlying causal mechanisms of AMD, which can prohibit intervention analysis on specific factors or even lead to less reliable decisions. Thus, this paper introduces a novel causal AMD analysis model: GCVAMD, which incorporates a modified CausalVAE approach that can extract latent causal factors from only raw OCT images. By considering causality in AMD detection, GCVAMD enables causal inference such as treatment simulation or intervention analysis regarding major risk factors: drusen and neovascularization, while returning informative latent causal features that can enhance downstream tasks. Results show that through GCVAMD, drusen status and neovascularization status can be identified with AMD causal mechanisms in GCVAMD latent spaces, which can in turn be used for various tasks from AMD detection(classification) to intervention analysis.
☆ Reasoning Riddles: How Explainability Reveals Cognitive Limits in Vision-Language Models
Vision-Language Models (VLMs) excel at many multimodal tasks, yet their cognitive processes remain opaque on complex lateral thinking challenges like rebus puzzles. While recent work has demonstrated these models struggle significantly with rebus puzzle solving, the underlying reasoning processes and failure patterns remain largely unexplored. We address this gap through a comprehensive explainability analysis that moves beyond performance metrics to understand how VLMs approach these complex lateral thinking challenges. Our study contributes a systematically annotated dataset of 221 rebus puzzles across six cognitive categories, paired with an evaluation framework that separates reasoning quality from answer correctness. We investigate three prompting strategies designed to elicit different types of explanatory processes and reveal critical insights into VLM cognitive processes. Our findings demonstrate that reasoning quality varies dramatically across puzzle categories, with models showing systematic strengths in visual composition while exhibiting fundamental limitations in absence interpretation and cultural symbolism. We also discover that prompting strategy substantially influences both cognitive approach and problem-solving effectiveness, establishing explainability as an integral component of model performance rather than a post-hoc consideration.
☆ AdaRD-key: Adaptive Relevance-Diversity Keyframe Sampling for Long-form Video understanding
Understanding long-form videos remains a significant challenge for vision--language models (VLMs) due to their extensive temporal length and high information density. Most current multimodal large language models (MLLMs) rely on uniform sampling, which often overlooks critical moments, leading to incorrect responses to queries. In parallel, many keyframe selection approaches impose rigid temporal spacing: once a frame is chosen, an exclusion window suppresses adjacent timestamps to reduce redundancy. While effective at limiting overlap, this strategy frequently misses short, fine-grained cues near important events. Other methods instead emphasize visual diversity but neglect query relevance. We propose AdaRD-Key, a training-free keyframe sampling module for query-driven long-form video understanding. AdaRD-Key maximizes a unified Relevance--Diversity Max-Volume (RD-MV) objective, combining a query-conditioned relevance score with a log-determinant diversity component to yield informative yet non-redundant frames. To handle broad queries with weak alignment to the video, AdaRD-Key employs a lightweight relevance-aware gating mechanism; when the relevance distribution indicates weak alignment, the method seamlessly shifts into a diversity-only mode, enhancing coverage without additional supervision. Our pipeline is training-free, computationally efficient (running in real time on a single GPU), and compatible with existing VLMs in a plug-and-play manner. Extensive experiments on LongVideoBench and Video-MME demonstrate state-of-the-art performance, particularly on long-form videos. Code available at https://github.com/Xian867/AdaRD-Key.
☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
☆ Bayesian Test-time Adaptation for Object Recognition and Detection with Vision-language Models
Vision-language models (VLMs) such as CLIP and Grounding DINO have achieved remarkable success in object recognition and detection. However, their performance often degrades under real-world distribution shifts. Test-time adaptation (TTA) aims to mitigate this issue by adapting models during inference. Existing methods either rely on computationally expensive backpropagation, which hinders real-time deployment, or focus solely on likelihood adaptation, which overlooks the critical role of the prior. Our prior work, Bayesian Class Adaptation (BCA), addressed these shortcomings for object recognition by introducing a training-free framework that incorporates adaptive priors. Building upon this foundation, we now present Bayesian Class Adaptation plus (BCA+), a unified, training-free framework for TTA for both object recognition and detection. BCA+ introduces a dynamic cache that adaptively stores and updates class embeddings, spatial scales (for detection), and, crucially, adaptive class priors derived from historical predictions. We formulate adaptation as a Bayesian inference problem, where final predictions are generated by fusing the initial VLM output with a cache-based prediction. This cache-based prediction combines a dynamically updated likelihood (measuring feature and scale similarity) and a prior (reflecting the evolving class distribution). This dual-adaptation mechanism, coupled with uncertainty-guided fusion, enables BCA+ to correct both the model's semantic understanding and its contextual confidence. As a training-free method requiring no backpropagation, BCA+ is highly efficient. Extensive experiments demonstrate that BCA+ achieves state-of-the-art performance on both recognition and detection benchmarks.
comment: Under Review
☆ Retrv-R1: A Reasoning-Driven MLLM Framework for Universal and Efficient Multimodal Retrieval NeurIPS 2025
The success of DeepSeek-R1 demonstrates the immense potential of using reinforcement learning (RL) to enhance LLMs' reasoning capabilities. This paper introduces Retrv-R1, the first R1-style MLLM specifically designed for multimodal universal retrieval, achieving higher performance by employing step-by-step reasoning to produce more accurate retrieval results. We find that directly applying the methods of DeepSeek-R1 to retrieval tasks is not feasible, mainly due to (1) the high computational cost caused by the large token consumption required for multiple candidates with reasoning processes, and (2) the instability and suboptimal results when directly applying RL to train for retrieval tasks. To address these issues, Retrv-R1 introduces an information compression module with a details inspection mechanism, which enhances computational efficiency by reducing the number of tokens while ensuring that critical information for challenging candidates is preserved. Furthermore, a new training paradigm is proposed, including an activation stage using a retrieval-tailored synthetic CoT dataset for more effective optimization, followed by RL with a novel curriculum reward to improve both performance and efficiency. Incorporating these novel designs, Retrv-R1 achieves SOTA performance, high efficiency, and strong generalization ability, as demonstrated by experiments across multiple benchmarks and tasks.
comment: NeurIPS 2025
☆ Net2Net: When Un-trained Meets Pre-trained Networks for Robust Real-World Denoising
Traditional denoising methods for noise removal have largely relied on handcrafted priors, often perform well in controlled environments but struggle to address the complexity and variability of real noise. In contrast, deep learning-based approaches have gained prominence for learning noise characteristics from large datasets, but these methods frequently require extensive labeled data and may not generalize effectively across diverse noise types and imaging conditions. In this paper, we present an innovative method, termed as Net2Net, that combines the strengths of untrained and pre-trained networks to tackle the challenges of real-world noise removal. The innovation of Net2Net lies in its combination of unsupervised DIP and supervised pre-trained model DRUNet by regularization by denoising (RED). The untrained network adapts to the unique noise characteristics of each input image without requiring labeled data, while the pre-trained network leverages learned representations from large-scale datasets to deliver robust denoising performance. This hybrid framework enhances generalization across varying noise patterns and improves performance, particularly in scenarios with limited training data. Extensive experiments on benchmark datasets demonstrate the superiority of our method for real-world noise removal.
☆ From Tokens to Nodes: Semantic-Guided Motion Control for Dynamic 3D Gaussian Splatting
Dynamic 3D reconstruction from monocular videos remains difficult due to the ambiguity inferring 3D motion from limited views and computational demands of modeling temporally varying scenes. While recent sparse control methods alleviate computation by reducing millions of Gaussians to thousands of control points, they suffer from a critical limitation: they allocate points purely by geometry, leading to static redundancy and dynamic insufficiency. We propose a motion-adaptive framework that aligns control density with motion complexity. Leveraging semantic and motion priors from vision foundation models, we establish patch-token-node correspondences and apply motion-adaptive compression to concentrate control points in dynamic regions while suppressing redundancy in static backgrounds. Our approach achieves flexible representational density adaptation through iterative voxelization and motion tendency scoring, directly addressing the fundamental mismatch between control point allocation and motion complexity. To capture temporal evolution, we introduce spline-based trajectory parameterization initialized by 2D tracklets, replacing MLP-based deformation fields to achieve smoother motion representation and more stable optimization. Extensive experiments demonstrate significant improvements in reconstruction quality and efficiency over existing state-of-the-art methods.
☆ Dale meets Langevin: A Multiplicative Denoising Diffusion Model
Gradient descent has proven to be a powerful and effective technique for optimization in numerous machine learning applications. Recent advances in computational neuroscience have shown that learning in standard gradient descent optimization formulation is not consistent with learning in biological systems. This has opened up interesting avenues for building biologically inspired learning techniques. One such approach is inspired by Dale's law, which states that inhibitory and excitatory synapses do not swap roles during the course of learning. The resulting exponential gradient descent optimization scheme leads to log-normally distributed synaptic weights. Interestingly, the density that satisfies the Fokker-Planck equation corresponding to the stochastic differential equation (SDE) with geometric Brownian motion (GBM) is the log-normal density. Leveraging this connection, we start with the SDE governing geometric Brownian motion, and show that discretizing the corresponding reverse-time SDE yields a multiplicative update rule, which surprisingly, coincides with the sampling equivalent of the exponential gradient descent update founded on Dale's law. Furthermore, we propose a new formalism for multiplicative denoising score-matching, subsuming the loss function proposed by Hyvaerinen for non-negative data. Indeed, log-normally distributed data is positive and the proposed score-matching formalism turns out to be a natural fit. This allows for training of score-based models for image data and results in a novel multiplicative update scheme for sample generation starting from a log-normal density. Experimental results on MNIST, Fashion MNIST, and Kuzushiji datasets demonstrate generative capability of the new scheme. To the best of our knowledge, this is the first instance of a biologically inspired generative model employing multiplicative updates, founded on geometric Brownian motion.
☆ MoGIC: Boosting Motion Generation via Intention Understanding and Visual Context
Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC
☆ Image Enhancement Based on Pigment Representation
This paper presents a novel and efficient image enhancement method based on pigment representation. Unlike conventional methods where the color transformation is restricted to pre-defined color spaces like RGB, our method dynamically adapts to input content by transforming RGB colors into a high-dimensional feature space referred to as \textit{pigments}. The proposed pigment representation offers adaptability and expressiveness, achieving superior image enhancement performance. The proposed method involves transforming input RGB colors into high-dimensional pigments, which are then reprojected individually and blended to refine and aggregate the information of the colors in pigment spaces. Those pigments are then transformed back into RGB colors to generate an enhanced output image. The transformation and reprojection parameters are derived from the visual encoder which adaptively estimates such parameters based on the content in the input image. Extensive experimental results demonstrate the superior performance of the proposed method over state-of-the-art methods in image enhancement tasks, including image retouching and tone mapping, while maintaining relatively low computational complexity and small model size.
comment: 14 pages, 9 figures, accepted at IEEE Transactions on Multimedia (TMM)
☆ A Statistical Method for Attack-Agnostic Adversarial Attack Detection with Compressive Sensing Comparison
Adversarial attacks present a significant threat to modern machine learning systems. Yet, existing detection methods often lack the ability to detect unseen attacks or detect different attack types with a high level of accuracy. In this work, we propose a statistical approach that establishes a detection baseline before a neural network's deployment, enabling effective real-time adversarial detection. We generate a metric of adversarial presence by comparing the behavior of a compressed/uncompressed neural network pair. Our method has been tested against state-of-the-art techniques, and it achieves near-perfect detection across a wide range of attack types. Moreover, it significantly reduces false positives, making it both reliable and practical for real-world applications.
☆ A UAV-Based VNIR Hyperspectral Benchmark Dataset for Landmine and UXO Detection
This paper introduces a novel benchmark dataset of Visible and Near-Infrared (VNIR) hyperspectral imagery acquired via an unmanned aerial vehicle (UAV) platform for landmine and unexploded ordnance (UXO) detection research. The dataset was collected over a controlled test field seeded with 143 realistic surrogate landmine and UXO targets, including surface, partially buried, and fully buried configurations. Data acquisition was performed using a Headwall Nano-Hyperspec sensor mounted on a multi-sensor drone platform, flown at an altitude of approximately 20.6 m, capturing 270 contiguous spectral bands spanning 398-1002 nm. Radiometric calibration, orthorectification, and mosaicking were performed followed by reflectance retrieval using a two-point Empirical Line Method (ELM), with reference spectra acquired using an SVC spectroradiometer. Cross-validation against six reference objects yielded RMSE values below 1.0 and SAM values between 1 and 6 degrees in the 400-900 nm range, demonstrating high spectral fidelity. The dataset is released alongside raw radiance cubes, GCP/AeroPoint data, and reference spectra to support reproducible research. This contribution fills a critical gap in open-access UAV-based hyperspectral data for landmine detection and offers a multi-sensor benchmark when combined with previously published drone-based electromagnetic induction (EMI) data from the same test field.
comment: This work has been accepted and will be presented at the Indian Geoscience and Remote Sensing Symposium (InGARSS) 2025 in India and will appear in the IEEE InGARSS 2025 Proceedings
☆ FSFSplatter: Build Surface and Novel Views with Sparse-Views within 3min
Gaussian Splatting has become a leading reconstruction technique, known for its high-quality novel view synthesis and detailed reconstruction. However, most existing methods require dense, calibrated views. Reconstructing from free sparse images often leads to poor surface due to limited overlap and overfitting. We introduce FSFSplatter, a new approach for fast surface reconstruction from free sparse images. Our method integrates end-to-end dense Gaussian initialization, camera parameter estimation, and geometry-enhanced scene optimization. Specifically, FSFSplatter employs a large Transformer to encode multi-view images and generates a dense and geometrically consistent Gaussian scene initialization via a self-splitting Gaussian head. It eliminates local floaters through contribution-based pruning and mitigates overfitting to limited views by leveraging depth and multi-view feature supervision with differentiable camera parameters during rapid optimization. FSFSplatter outperforms current state-of-the-art methods on widely used DTU and Replica.
☆ Smart-GRPO: Smartly Sampling Noise for Efficient RL of Flow-Matching Models
Recent advancements in flow-matching have enabled high-quality text-to-image generation. However, the deterministic nature of flow-matching models makes them poorly suited for reinforcement learning, a key tool for improving image quality and human alignment. Prior work has introduced stochasticity by perturbing latents with random noise, but such perturbations are inefficient and unstable. We propose Smart-GRPO, the first method to optimize noise perturbations for reinforcement learning in flow-matching models. Smart-GRPO employs an iterative search strategy that decodes candidate perturbations, evaluates them with a reward function, and refines the noise distribution toward higher-reward regions. Experiments demonstrate that Smart-GRPO improves both reward optimization and visual quality compared to baseline methods. Our results suggest a practical path toward reinforcement learning in flow-matching frameworks, bridging the gap between efficient training and human-aligned generation.
☆ Sequence-Preserving Dual-FoV Defense for Traffic Sign and Light Recognition in Autonomous Vehicles
Traffic light and sign recognition are key for Autonomous Vehicles (AVs) because perception mistakes directly influence navigation and safety. In addition to digital adversarial attacks, models are vulnerable to existing perturbations (glare, rain, dirt, or graffiti), which could lead to dangerous misclassifications. The current work lacks consideration of temporal continuity, multistatic field-of-view (FoV) sensing, and robustness to both digital and natural degradation. This study proposes a dual FoV, sequence-preserving robustness framework for traffic lights and signs in the USA based on a multi-source dataset built on aiMotive, Udacity, Waymo, and self-recorded videos from the region of Texas. Mid and long-term sequences of RGB images are temporally aligned for four operational design domains (ODDs): highway, night, rainy, and urban. Over a series of experiments on a real-life application of anomaly detection, this study outlines a unified three-layer defense stack framework that incorporates feature squeezing, defensive distillation, and entropy-based anomaly detection, as well as sequence-wise temporal voting for further enhancement. The evaluation measures included accuracy, attack success rate (ASR), risk-weighted misclassification severity, and confidence stability. Physical transferability was confirmed using probes for recapture. The results showed that the Unified Defense Stack achieved 79.8mAP and reduced the ASR to 18.2%, which is superior to YOLOv8, YOLOv9, and BEVFormer, while reducing the high-risk misclassification to 32%.
☆ Deep Generative Continual Learning using Functional LoRA: FunLoRA
Continual adaptation of deep generative models holds tremendous potential and critical importance, given their rapid and expanding usage in text and vision based applications. Incremental training, however, remains highly challenging due to catastrophic forgetting phenomenon, which makes it difficult for neural networks to effectively incorporate new knowledge. A common strategy consists in retraining the generative model on its own synthetic data in order to mitigate forgetting. Yet, such an approach faces two major limitations: (i) the continually increasing training time eventually becomes intractable, and (ii) reliance on synthetic data inevitably leads to long-term performance degradation, since synthetic samples lack the richness of real training data. In this paper, we attenuate these issues by designing a novel and more expressive conditioning mechanism for generative models based on low rank adaptation (LoRA), that exclusively employs rank 1 matrices, whose reparametrized matrix rank is functionally increased using carefully selected functions -- and dubbed functional LoRA: FunLoRA. Using this dynamic conditioning, the generative model is guaranteed to avoid catastrophic forgetting and needs only to be trained on data from the current task. Extensive experiments using flow-matching based models trained from scratch, showcase that our proposed parameter-efficient fine-tuning (PEFT) method surpasses prior state-of-the-art results based on diffusion models, reaching higher classification accuracy scores, while only requiring a fraction of the memory cost and sampling time.
♻ ☆ Equivariant Splitting: Self-supervised learning from incomplete data
Self-supervised learning for inverse problems allows to train a reconstruction network from noise and/or incomplete data alone. These methods have the potential of enabling learning-based solutions when obtaining ground-truth references for training is expensive or even impossible. In this paper, we propose a new self-supervised learning strategy devised for the challenging setting where measurements are observed via a single incomplete observation model. We introduce a new definition of equivariance in the context of reconstruction networks, and show that the combination of self-supervised splitting losses and equivariant reconstruction networks results in the same minimizer in expectation as the one of a supervised loss. Through a series of experiments on image inpainting, accelerated magnetic resonance imaging, and compressive sensing, we demonstrate that the proposed loss achieves state-of-the-art performance in settings with highly rank-deficient forward models.
♻ ☆ Generative Modeling of Weights: Generalization or Memorization?
Generative models have recently been explored for synthesizing neural network weights. These approaches take neural network checkpoints as training data and aim to generate high-performing weights during inference. In this work, we examine four representative, well-known methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Contrary to claims in prior work, we find that these methods synthesize weights largely by memorization: they produce either replicas, or, at best, simple interpolations of the training checkpoints. Moreover, they fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. Our further analysis suggests that this memorization might result from limited data, overparameterized models, and the underuse of structural priors specific to weight data. These findings highlight the need for more careful design and rigorous evaluation of generative models when applied to new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
comment: Project page at https://boyazeng.github.io/weight_memorization
♻ ☆ Revisiting Reweighted Risk for Calibration: AURC, Focal, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal loss, inverse focal loss, and the Area Under the Risk--Coverage Curve (AURC), have been proposed for improving model calibration, yet their theoretical connections to calibration errors remain unclear. In this paper, we revisit a broad class of weighted risk functions commonly used in deep learning and establish a principled connection between calibration error and selective classification. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing selective risk in low-confidence region naturally leads to improved calibration. This loss shares a similar reweighting strategy with dual focal loss but offers greater flexibility through the choice of confidence score functions (CSFs). Our approach uses a bin-based cumulative distribution function (CDF) approximation, enabling efficient gradient-based optimization without requiring expensive sorting and achieving $O(nK)$ complexity. Empirical evaluations demonstrate that our method achieves competitive calibration performance across a range of datasets and model architectures.
♻ ☆ RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives EMNLP 2025
Recent video generative models primarily rely on carefully written text prompts for specific tasks, like inpainting or style editing. They require labor-intensive textual descriptions for input videos, hindering their flexibility to adapt personal/raw videos to user specifications. This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework that supports multiple video editing capabilities such as removal, addition, and modification, through a unified pipeline. RACCooN consists of two principal stages: Video-to-Paragraph (V2P) and Paragraph-to-Video (P2V). In the V2P stage, we automatically describe video scenes in well-structured natural language, capturing both the holistic context and focused object details. Subsequently, in the P2V stage, users can optionally refine these descriptions to guide the video diffusion model, enabling various modifications to the input video, such as removing, changing subjects, and/or adding new objects. The proposed approach stands out from other methods through several significant contributions: (1) RACCooN suggests a multi-granular spatiotemporal pooling strategy to generate well-structured video descriptions, capturing both the broad context and object details without requiring complex human annotations, simplifying precise video content editing based on text for users. (2) Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content. (3) RACCooN also plans to imagine new objects in a given video, so users simply prompt the model to receive a detailed video editing plan for complex video editing. The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
comment: EMNLP 2025 main; The first two authors contribute equally. Project Page: https://raccoon-mllm-gen.github.io/
♻ ☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
♻ ☆ EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning
Exemplar-free Class Incremental Learning (EFCIL) aims to learn from a sequence of tasks without having access to previous task data. In this paper, we consider the challenging Cold Start scenario in which insufficient data is available in the first task to learn a high-quality backbone. This is especially challenging for EFCIL since it requires high plasticity, resulting in feature drift which is difficult to compensate for in the exemplar-free setting. To address this problem, we propose an effective approach to consolidate feature representations by regularizing drift in directions highly relevant to previous tasks while employing prototypes to reduce task-recency bias. Our approach, which we call Elastic Feature Consolidation++ (EFC++) exploits a tractable second-order approximation of feature drift based on a proposed Empirical Feature Matrix (EFM). The EFM induces a pseudo-metric in feature space which we use to regularize feature drift in important directions and to update Gaussian prototypes. In addition, we introduce a post-training prototype re-balancing phase that updates classifiers to compensate for feature drift. Experimental results on CIFAR-100, Tiny-ImageNet, ImageNet-Subset, ImageNet-1K and DomainNet demonstrate that EFC++ is better able to learn new tasks by maintaining model plasticity and significantly outperforms the state-of-the-art.
comment: Extension of our previous conference paper https://openreview.net/forum?id=7D9X2cFnt1
Ultra-Efficient Decoding for End-to-End Neural Compression and Reconstruction NeurIPS 2025
Image compression and reconstruction are crucial for various digital applications. While contemporary neural compression methods achieve impressive compression rates, the adoption of such technology has been largely hindered by the complexity and large computational costs of the convolution-based decoders during data reconstruction. To address the decoder bottleneck in neural compression, we develop a new compression-reconstruction framework based on incorporating low-rank representation in an autoencoder with vector quantization. We demonstrated that performing a series of computationally efficient low-rank operations on the learned latent representation of images can efficiently reconstruct the data with high quality. Our approach dramatically reduces the computational overhead in the decoding phase of neural compression/reconstruction, essentially eliminating the decoder compute bottleneck while maintaining high fidelity of image outputs.
comment: 5 pages, 4 figures, NeurIPS 2025 Workshop MLForSys
Less is More: Lean yet Powerful Vision-Language Model for Autonomous Driving
In this work, we reconceptualize autonomous driving as a generalized language and formulate the trajectory planning task as next waypoint prediction. We introduce Max-V1, a novel framework for one-stage end-to-end autonomous driving. Our framework presents a single-pass generation paradigm that aligns with the inherent sequentiality of driving. This approach leverages the generative capacity of the VLM (Vision-Language Model) to enable end-to-end trajectory prediction directly from front-view camera input. The efficacy of this method is underpinned by a principled supervision strategy derived from statistical modeling. This provides a well-defined learning objective, which makes the framework highly amenable to master complex driving policies through imitation learning from large-scale expert demonstrations. Empirically, our method achieves the state-of-the-art performance on the nuScenes dataset, delivers an overall improvement of over 30% compared to prior baselines. Furthermore, it exhibits superior generalization performance on cross-domain datasets acquired from diverse vehicles, demonstrating notable potential for cross-vehicle robustness and adaptability. Due to these empirical strengths, this work introduces a model enabling fundamental driving behaviors, laying the foundation for the development of more capable self-driving agents. Code will be available upon publication.
♻ ☆ Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.
♻ ☆ PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications. Visit our project page at https://edowhite.github.io/PATS
comment: Accepted at the 2025 4th IEEE International Workshop on Sport Technology and Research. Visit our project page at https://edowhite.github.io/PATS
♻ ☆ So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection
Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
♻ ☆ RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.
♻ ☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios NeurIPS 2025
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action segmentation methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF.
comment: Accepted to NeurIPS 2025. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF
♻ ☆ Ranked from Within: Ranking Large Multimodal Models Without Labels ICML 2025
Can the relative performance of a pre-trained large multimodal model (LMM) be predicted without access to labels? As LMMs proliferate, it becomes increasingly important to develop efficient ways to choose between them when faced with new data or tasks. The usual approach does the equivalent of giving the models an exam and marking them. We opt to avoid marking and the associated labor of determining the ground-truth answers. Instead, we explore other signals elicited and ascertain how well the models know their own limits, evaluating the effectiveness of these signals at unsupervised model ranking. We evaluate $47$ state-of-the-art LMMs (\eg, LLaVA) across $9$ visual question answering benchmarks, analyzing how well uncertainty-based metrics can predict relative model performance. Our findings show that uncertainty scores derived from softmax distributions provide a robust and consistent basis for ranking models across various tasks. This facilitates the ranking of LMMs on unlabeled data, providing a practical approach for selecting models for diverse target domains without requiring manual annotation.
comment: ICML 2025 Camera Ready
♻ ☆ Toward a Holistic Evaluation of Robustness in CLIP Models NeurIPS'23
Contrastive Language-Image Pre-training (CLIP) models have shown significant potential, particularly in zero-shot classification across diverse distribution shifts. Building on existing evaluations of overall classification robustness, this work aims to provide a more comprehensive assessment of CLIP by introducing several new perspectives. First, we investigate their robustness to variations in specific visual factors. Second, we assess two critical safety objectives--confidence uncertainty and out-of-distribution detection--beyond mere classification accuracy. Third, we evaluate the finesse with which CLIP models bridge the image and text modalities. Fourth, we extend our examination to 3D awareness in CLIP models, moving beyond traditional 2D image understanding. Finally, we explore the interaction between vision and language encoders within modern large multimodal models (LMMs) that utilize CLIP as the visual backbone, focusing on how this interaction impacts classification robustness. In each aspect, we consider the impact of six factors on CLIP models: model architecture, training distribution, training set size, fine-tuning, contrastive loss, and test-time prompts. Our study uncovers several previously unknown insights into CLIP. For instance, the architecture of the visual encoder in CLIP plays a significant role in their robustness against 3D corruption. CLIP models tend to exhibit a bias towards shape when making predictions. Moreover, this bias tends to diminish after fine-tuning on ImageNet. Vision-language models like LLaVA, leveraging the CLIP vision encoder, could exhibit benefits in classification performance for challenging categories over CLIP alone. Our findings are poised to offer valuable guidance for enhancing the robustness and reliability of CLIP models.
comment: Accepted to IEEE TPAMI, extension of NeurIPS'23 work: A Closer Look at the Robustness of Contrastive Language-Image Pre-Training (CLIP)
♻ ☆ Gate-Shift-Pose: Enhancing Action Recognition in Sports with Skeleton Information WACV
This paper introduces Gate-Shift-Pose, an enhanced version of Gate-Shift-Fuse networks, designed for athlete fall classification in figure skating by integrating skeleton pose data alongside RGB frames. We evaluate two fusion strategies: early-fusion, which combines RGB frames with Gaussian heatmaps of pose keypoints at the input stage, and late-fusion, which employs a multi-stream architecture with attention mechanisms to combine RGB and pose features. Experiments on the FR-FS dataset demonstrate that Gate-Shift-Pose significantly outperforms the RGB-only baseline, improving accuracy by up to 40% with ResNet18 and 20% with ResNet50. Early-fusion achieves the highest accuracy (98.08%) with ResNet50, leveraging the model's capacity for effective multimodal integration, while late-fusion is better suited for lighter backbones like ResNet18. These results highlight the potential of multimodal architectures for sports action recognition and the critical role of skeleton pose information in capturing complex motion patterns. Visit the project page at https://edowhite.github.io/Gate-Shift-Pose
comment: Accepted at the 2025 Winter Conference on Applications of Computer Vision (WACV) Workshops. Visit the project page at https://edowhite.github.io/Gate-Shift-Pose
♻ ☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding EMNLP 2025
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
comment: Accepted by EMNLP 2025 Industry Track
♻ ☆ Photography Perspective Composition: Towards Aesthetic Perspective Recommendation NeurIPS 2025
Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from less favorable to aesthetically enhanced perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
comment: Accepted at NeurIPS 2025
♻ ☆ SkillFormer: Unified Multi-View Video Understanding for Proficiency Estimation
Assessing human skill levels in complex activities is a challenging problem with applications in sports, rehabilitation, and training. In this work, we present SkillFormer, a parameter-efficient architecture for unified multi-view proficiency estimation from egocentric and exocentric videos. Building on the TimeSformer backbone, SkillFormer introduces a CrossViewFusion module that fuses view-specific features using multi-head cross-attention, learnable gating, and adaptive self-calibration. We leverage Low-Rank Adaptation to fine-tune only a small subset of parameters, significantly reducing training costs. In fact, when evaluated on the EgoExo4D dataset, SkillFormer achieves state-of-the-art accuracy in multi-view settings while demonstrating remarkable computational efficiency, using 4.5x fewer parameters and requiring 3.75x fewer training epochs than prior baselines. It excels in multiple structured tasks, confirming the value of multi-view integration for fine-grained skill assessment. Project page at https://edowhite.github.io/SkillFormer
comment: Accepted at the 2025 18th International Conference on Machine Vision. Project page at https://edowhite.github.io/SkillFormer
♻ ☆ AlignDiT: Multimodal Aligned Diffusion Transformer for Synchronized Speech Generation
In this paper, we address the task of multimodal-to-speech generation, which aims to synthesize high-quality speech from multiple input modalities: text, video, and reference audio. This task has gained increasing attention due to its wide range of applications, such as film production, dubbing, and virtual avatars. Despite recent progress, existing methods still suffer from limitations in speech intelligibility, audio-video synchronization, speech naturalness, and voice similarity to the reference speaker. To address these challenges, we propose AlignDiT, a multimodal Aligned Diffusion Transformer that generates accurate, synchronized, and natural-sounding speech from aligned multimodal inputs. Built upon the in-context learning capability of the DiT architecture, AlignDiT explores three effective strategies to align multimodal representations. Furthermore, we introduce a novel multimodal classifier-free guidance mechanism that allows the model to adaptively balance information from each modality during speech synthesis. Extensive experiments demonstrate that AlignDiT significantly outperforms existing methods across multiple benchmarks in terms of quality, synchronization, and speaker similarity. Moreover, AlignDiT exhibits strong generalization capability across various multimodal tasks, such as video-to-speech synthesis and visual forced alignment, consistently achieving state-of-the-art performance. The demo page is available at https://mm.kaist.ac.kr/projects/AlignDiT.
comment: ACM Multimedia 2025
♻ ☆ Vehicle-Scene Interaction: A Text-Driven 3D Lidar Place Recognition Method for Autonomous Driving
Environment description-based localization in large-scale point cloud maps constructed through remote sensing is critically significant for the advancement of large-scale autonomous systems, such as delivery robots operating in the last mile. However, current approaches encounter challenges due to the inability of point cloud encoders to effectively capture local details and long-range spatial relationships, as well as a significant modality gap between text and point cloud representations. To address these challenges, we present Des4Pos, a novel two-stage text-driven remote sensing localization framework. In the coarse stage, the point-cloud encoder utilizes the Multi-scale Fusion Attention Mechanism (MFAM) to enhance local geometric features, followed by a bidirectional Long Short-Term Memory (LSTM) module to strengthen global spatial relationships. Concurrently, the Stepped Text Encoder (STE) integrates cross-modal prior knowledge from CLIP [1] and aligns text and point-cloud features using this prior knowledge, effectively bridging modality discrepancies. In the fine stage, we introduce a Cascaded Residual Attention (CRA) module to fuse cross-modal features and predict relative localization offsets, thereby achieving greater localization precision. Experiments on the KITTI360Pose test set demonstrate that Des4Pos achieves state-of-the-art performance in text-to-point-cloud place recognition. Specifically, it attains a top-1 accuracy of 40% and a top-10 accuracy of 77% under a 5-meter radius threshold, surpassing the best existing methods by 7% and 7%, respectively.
comment: 13 pages
♻ ☆ A Survey of Defenses against AI-generated Visual Media: Detection, Disruption, and Authentication
Deep generative models have demonstrated impressive performance in various computer vision applications, including image synthesis, video generation, and medical analysis. Despite their significant advancements, these models may be used for malicious purposes, such as misinformation, deception, and copyright violation. In this paper, we provide a systematic and timely review of research efforts on defenses against AI-generated visual media, covering detection, disruption, and authentication. We review existing methods and summarize the mainstream defense-related tasks within a unified passive and proactive framework. Moreover, we survey the derivative tasks concerning the trustworthiness of defenses, such as their robustness and fairness. For each task, we formulate its general pipeline and propose a taxonomy based on methodological strategies that are uniformly applicable to the primary subtasks. Additionally, we summarize the commonly used evaluation datasets, criteria, and metrics. Finally, by analyzing the reviewed studies, we provide insights into current research challenges and suggest possible directions for future research.
comment: Accepted by ACM Computing Surveys
♻ ☆ Learning High-Fidelity Robot Self-Model with Articulated 3D Gaussian Splatting
Self-modeling enables robots to build task-agnostic models of their morphology and kinematics based on data that can be automatically collected, with minimal human intervention and prior information, thereby enhancing machine intelligence. Recent research has highlighted the potential of data-driven technology in modeling the morphology and kinematics of robots. However, existing self-modeling methods suffer from either low modeling quality or excessive data acquisition costs. Beyond morphology and kinematics, texture is also a crucial component of robots, which is challenging to model and remains unexplored. In this work, a high-quality, texture-aware, and link-level method is proposed for robot self-modeling. We utilize three-dimensional (3D) Gaussians to represent the static morphology and texture of robots, and cluster the 3D Gaussians to construct neural ellipsoid bones, whose deformations are controlled by the transformation matrices generated by a kinematic neural network. The 3D Gaussians and kinematic neural network are trained using data pairs composed of joint angles, camera parameters and multi-view images without depth information. By feeding the kinematic neural network with joint angles, we can utilize the well-trained model to describe the corresponding morphology, kinematics and texture of robots at the link level, and render robot images from different perspectives with the aid of 3D Gaussian splatting. Furthermore, we demonstrate that the established model can be exploited to perform downstream tasks such as motion planning and inverse kinematics.
comment: This paper is accepted by IJRR. The code will be open-sourced on GitHub as soon as possible after the paper is officially published
♻ ☆ S-Graphs 2.0 -- A Hierarchical-Semantic Optimization and Loop Closure for SLAM
The hierarchical structure of 3D scene graphs shows a high relevance for representations purposes, as it fits common patterns from man-made environments. But, additionally, the semantic and geometric information in such hierarchical representations could be leveraged to speed up the optimization and management of map elements and robot poses. In this direction, we present our work Situational Graphs 2.0 (S-Graphs 2.0), which leverages the hierarchical structure of indoor scenes for efficient data management and optimization. Our algorithm begins by constructing a situational graph that represents the environment into four layers: Keyframes, Walls, Rooms, and Floors. Our first novelty lies in the front-end, which includes a floor detection module capable of identifying stairways and assigning floor-level semantic relations to the underlying layers. Floor-level semantics allows us to propose a floor-based loop closure strategy, that effectively rejects false positive closures that typically appear due to aliasing between different floors of a building. Our second novelty lies in leveraging our representation hierarchy in the optimization. Our proposal consists of: (1) local optimization over a window of recent keyframes and their connected components across the four representation layers, (2) floor-level global optimization, which focuses only on keyframes and their connections within the current floor during loop closures, and (3) room-level local optimization, marginalizing redundant keyframes that share observations within the room, which reduces the computational footprint. We validate our algorithm extensively in different real multi-floor environments. Our approach shows state-of-art-art accuracy metrics in large-scale multi-floor environments, estimating hierarchical representations up to 10x faster, in average, than competing baselines
comment: 8 pages, 9 figures, Accepted in IEEE RA-L September 2025
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ Addressing Representation Collapse in Vector Quantized Models with One Linear Layer ICCV2025
Vector Quantization (VQ) is essential for discretizing continuous representations in unsupervised learning but suffers from representation collapse, causing low codebook utilization and limiting scalability. Existing solutions often rely on complex optimizations or reduce latent dimensionality, which compromises model capacity and fails to fully solve the problem. We identify the root cause as disjoint codebook optimization, where only a few code vectors are updated via gradient descent. To fix this, we propose \textbf{Sim}ple\textbf{VQ}, which reparameterizes code vectors through a learnable linear transformation layer over a latent basis, optimizing the \textit{entire linear space} rather than nearest \textit{individual code vectors}. Although the multiplication of two linear matrices is equivalent to applying a single linear layer, this simple approach effectively prevents collapse. Extensive experiments on image and audio tasks demonstrate that SimVQ improves codebook usage, is easy to implement, and generalizes well across modalities and architectures. The code is available at https://github.com/youngsheen/SimVQ.
comment: Accepted at ICCV2025
♻ ☆ Contextualized Representation Learning for Effective Human-Object Interaction Detection
Human-Object Interaction (HOI) detection aims to simultaneously localize human-object pairs and recognize their interactions. While recent two-stage approaches have made significant progress, they still face challenges due to incomplete context modeling. In this work, we introduce a Contextualized Representation Learning that integrates both affordance-guided reasoning and contextual prompts with visual cues to better capture complex interactions. We enhance the conventional HOI detection framework by expanding it beyond simple human-object pairs to include multivariate relationships involving auxiliary entities like tools. Specifically, we explicitly model the functional role (affordance) of these auxiliary objects through triplet structures . This enables our model to identify tool-dependent interactions such as 'filling'. Furthermore, the learnable prompt is enriched with instance categories and subsequently integrated with contextual visual features using an attention mechanism. This process aligns language with image content at both global and regional levels. These contextualized representations equip the model with enriched relational cues for more reliable reasoning over complex, context-dependent interactions. Our proposed method demonstrates superior performance on both the HICO-Det and V-COCO datasets in most scenarios. The source code is available at https://github.com/lzzhhh1019/CRL.
♻ ☆ Filter-Guided Diffusion for Controllable Image Generation SIGGRAPH 2024
Recent advances in diffusion-based generative models have shown incredible promise for zero shot image-to-image translation and editing. Most of these approaches work by combining or replacing network-specific features used in the generation of new images with those taken from the inversion of some guide image. Methods of this type are considered the current state-of-the-art in training-free approaches, but have some notable limitations: they tend to be costly in runtime and memory, and often depend on deterministic sampling that limits variation in generated results. We propose Filter-Guided Diffusion (FGD), an alternative approach that leverages fast filtering operations during the diffusion process to support finer control over the strength and frequencies of guidance and can work with non-deterministic samplers to produce greater variety. With its efficiency, FGD can be sampled over multiple seeds and hyperparameters in less time than a single run of other SOTA methods to produce superior results based on structural and semantic metrics. We conduct extensive quantitative and qualitative experiments to evaluate the performance of FGD in translation tasks and also demonstrate its potential in localized editing when used with masks. Project page: https://filterguideddiffusion.github.io/
comment: First two listed authors have equal contribution. The latest version has been accepted to SIGGRAPH 2024
♻ ☆ Enhancing Monocular Height Estimation via Sparse LiDAR-Guided Correction
Monocular height estimation (MHE) from very-high-resolution (VHR) remote sensing imagery via deep learning is notoriously challenging due to the lack of sufficient structural information. Conventional digital elevation models (DEMs), typically derived from airborne LiDAR or multi-view stereo, remain costly and geographically limited. Recently, models trained on synthetic data and refined through domain adaptation have shown remarkable performance in MHE, yet it remains unclear how these models make predictions or how reliable they truly are. In this paper, we investigate a state-of-the-art MHE model trained purely on synthetic data to explore where the model looks when making height predictions. Through systematic analyses, we find that the model relies heavily on shadow cues, a factor that can lead to overestimation or underestimation of heights when shadows deviate from expected norms. Furthermore, the inherent difficulty of evaluating regression tasks with the human eye underscores additional limitations of purely synthetic training. To address these issues, we propose a novel correction pipeline that integrates sparse, imperfect global LiDAR measurements (ICESat-2) with deep-learning outputs to improve local accuracy and achieve spatially consistent corrections. Our method comprises two stages: pre-processing raw ICESat-2 data, followed by a random forest-based approach to densely refine height estimates. Experiments in three representative urban regions -- Saint-Omer, Tokyo, and Sao Paulo -- reveal substantial error reductions, with mean absolute error (MAE) decreased by 22.8\%, 6.9\%, and 4.9\%, respectively. These findings highlight the critical role of shadow awareness in synthetic data-driven models and demonstrate how fusing imperfect real-world LiDAR data can bolster the robustness of MHE, paving the way for more reliable and scalable 3D mapping solutions.
♻ ☆ CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 25 pages, 12 figures, 20 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 ), link: https://icml.cc/virtual/2025/poster/46359
♻ ☆ UniVerse: Unleashing the Scene Prior of Video Diffusion Models for Robust Radiance Field Reconstruction
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations. However, these methods rely heavily on dense observations for robustly optimizing model parameters. To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process. To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images. Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies. Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/
comment: page: https://jin-cao-tma.github.io/UniVerse.github.io/ code: https://github.com/zju3dv/UniVerse
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 34 pages (main paper and supplementary material), 25 figures, 19 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ PointAD+: Learning Hierarchical Representations for Zero-shot 3D Anomaly Detection
In this paper, we aim to transfer CLIP's robust 2D generalization capabilities to identify 3D anomalies across unseen objects of highly diverse class semantics. To this end, we propose a unified framework to comprehensively detect and segment 3D anomalies by leveraging both point- and pixel-level information. We first design PointAD, which leverages point-pixel correspondence to represent 3D anomalies through their associated rendering pixel representations. This approach is referred to as implicit 3D representation, as it focuses solely on rendering pixel anomalies but neglects the inherent spatial relationships within point clouds. Then, we propose PointAD+ to further broaden the interpretation of 3D anomalies by introducing explicit 3D representation, emphasizing spatial abnormality to uncover abnormal spatial relationships. Hence, we propose G-aggregation to involve geometry information to enable the aggregated point representations spatially aware. To simultaneously capture rendering and spatial abnormality, PointAD+ proposes hierarchical representation learning, incorporating implicit and explicit anomaly semantics into hierarchical text prompts: rendering prompts for the rendering layer and geometry prompts for the geometry layer. A cross-hierarchy contrastive alignment is further introduced to promote the interaction between the rendering and geometry layers, facilitating mutual anomaly learning. Finally, PointAD+ integrates anomaly semantics from both layers to capture the generalized anomaly semantics. During the test, PointAD+ can integrate RGB information in a plug-and-play manner and further improve its detection performance. Extensive experiments demonstrate the superiority of PointAD+ in ZS 3D anomaly detection across unseen objects with highly diverse class semantics, achieving a holistic understanding of abnormality.
comment: Submitted to TPAMI
♻ ☆ SoccerSynth-Detection: A Synthetic Dataset for Soccer Player Detection
In soccer video analysis, player detection is essential for identifying key events and reconstructing tactical positions. The presence of numerous players and frequent occlusions, combined with copyright restrictions, severely restricts the availability of datasets, leaving limited options such as SoccerNet-Tracking and SportsMOT. These datasets suffer from a lack of diversity, which hinders algorithms from adapting effectively to varied soccer video contexts. To address these challenges, we developed SoccerSynth-Detection, the first synthetic dataset designed for the detection of synthetic soccer players. It includes a broad range of random lighting and textures, as well as simulated camera motion blur. We validated its efficacy using the object detection model (Yolov8n) against real-world datasets (SoccerNet-Tracking and SportsMoT). In transfer tests, it matched the performance of real datasets and significantly outperformed them in images with motion blur; in pre-training tests, it demonstrated its efficacy as a pre-training dataset, significantly enhancing the algorithm's overall performance. Our work demonstrates the potential of synthetic datasets to replace real datasets for algorithm training in the field of soccer video analysis.
comment: The SoccerSynth-Detection Dataset is available at https://github.com/open-starlab/SoccerSynth-Detection
♻ ☆ ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality.We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings.To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering.Our code repository will be released at: https://github.com/chenttt2001/ExGS
♻ ☆ RichControl: Structure- and Appearance-Rich Training-Free Spatial Control for Text-to-Image Generation
Text-to-image (T2I) diffusion models have shown remarkable success in generating high-quality images from text prompts. Recent efforts extend these models to incorporate conditional images (e.g., canny edge) for fine-grained spatial control. Among them, feature injection methods have emerged as a training-free alternative to traditional fine-tuning-based approaches. However, they often suffer from structural misalignment, condition leakage, and visual artifacts, especially when the condition image diverges significantly from natural RGB distributions. Through an empirical analysis of existing methods, we identify a key limitation: the sampling schedule of condition features, previously unexplored, fails to account for the evolving interplay between structure preservation and domain alignment throughout diffusion steps. Inspired by this observation, we propose a flexible training-free framework that decouples the sampling schedule of condition features from the denoising process, and systematically investigate the spectrum of feature injection schedules for a higher-quality structure guidance in the feature space. Specifically, we find that condition features sampled from a single timestep are sufficient, yielding a simple yet efficient schedule that balances structure alignment and appearance quality. We further enhance the sampling process by introducing a restart refinement schedule, and improve the visual quality with an appearance-rich prompting strategy. Together, these designs enable training-free generation that is both structure-rich and appearance-rich. Extensive experiments show that our approach achieves state-of-the-art results across diverse zero-shot conditioning scenarios.
♻ ☆ SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Extensive experiments show that our method achieves 1.5$\times$ lossless acceleration in LIBERO and 2.4$\times$ in SimplerEnv, with up to 6% average performance gain. Inference frequency and latency improve by 2.2$\times$ in SimplerEnv and 1.4$\times$ in LIBERO.
♻ ☆ SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes toward Intelligent Vehicle Suspension Systems
Speed bumps and potholes are the most common road anomalies, significantly affecting ride comfort and vehicle stability. Preview-based suspension control mitigates their impact by detecting such irregularities in advance and adjusting suspension parameters proactively. Accurate and real-time detection is essential, but embedded deployment is constrained by limited computational resources and the small size of targets in input images.To address these challenges, this paper proposes SBP-YOLO, an efficient detection framework for speed bumps and potholes in embedded systems. Built upon YOLOv11n, it integrates GhostConv and VoVGSCSPC modules in the backbone and neck to reduce computation while enhancing multi-scale semantic features. A P2-level branch improves small-object detection, and a lightweight and efficient detection head (LEDH) maintains accuracy with minimal overhead. A hybrid training strategy further enhances robustness under varying road and environmental conditions, combining NWD loss, BCKD knowledge distillation, and Albumentations-based augmentation. Experiments show that SBP-YOLO achieves 87.0% mAP, outperforming the YOLOv11n baseline by 5.8%. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, yielding a 12.4% speedup over the P2-enhanced YOLOv11. These results demonstrate the framework's suitability for fast, low-latency road condition perception in embedded suspension control systems.
comment: 14pages,11figures
♻ ☆ YOLO-Based Defect Detection for Metal Sheets
In this paper, we propose a YOLO-based deep learning (DL) model for automatic defect detection to solve the time-consuming and labor-intensive tasks in industrial manufacturing. In our experiments, the images of metal sheets are used as the dataset for training the YOLO model to detect the defects on the surfaces and in the holes of metal sheets. However, the lack of metal sheet images significantly degrades the performance of detection accuracy. To address this issue, the ConSinGAN is used to generate a considerable amount of data. Four versions of the YOLO model (i.e., YOLOv3, v4, v7, and v9) are combined with the ConSinGAN for data augmentation. The proposed YOLOv9 model with ConSinGAN outperforms the other YOLO models with an accuracy of 91.3%, and a detection time of 146 ms. The proposed YOLOv9 model is integrated into manufacturing hardware and a supervisory control and data acquisition (SCADA) system to establish a practical automated optical inspection (AOI) system. Additionally, the proposed automated defect detection is easily applied to other components in industrial manufacturing.
comment: 5 pages, 8 figures, 2 tables, and published in IEEE IST 2024
WaveNet-SF: A Hybrid Network for Retinal Disease Detection Based on Wavelet Transform in Spatial-Frequency Domain
Retinal diseases are a leading cause of vision impairment and blindness, with timely diagnosis being critical for effective treatment. Optical Coherence Tomography (OCT) has become a standard imaging modality for retinal disease diagnosis, but OCT images often suffer from issues such as speckle noise, complex lesion shapes, and varying lesion sizes, making interpretation challenging. In this paper, we propose a novel framework, WaveNet-SF, to enhance retinal disease detection by integrating the spatial-domain and frequency-domain learning. The framework utilizes wavelet transforms to decompose OCT images into low- and high-frequency components, enabling the model to extract both global structural features and fine-grained details. To improve lesion detection, we introduce a Multi-Scale Wavelet Spatial Attention (MSW-SA) module, which enhances the model's focus on regions of interest at multiple scales. Additionally, a High-Frequency Feature Compensation (HFFC) block is incorporated to recover edge information lost during wavelet decomposition, suppress noise, and preserve fine details crucial for lesion detection. Our approach achieves state-of-the-art (SOTA) classification accuracies of 97.82% and 99.58% on the OCT-C8 and OCT2017 datasets, respectively, surpassing existing methods. These results demonstrate the efficacy of WaveNet-SF in addressing the challenges of OCT image analysis and its potential as a powerful tool for retinal disease diagnosis.
♻ ☆ Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.
♻ ☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA. Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its "style" to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
MCGS-SLAM: A Multi-Camera SLAM Framework Using Gaussian Splatting for High-Fidelity Mapping
Recent progress in dense SLAM has primarily targeted monocular setups, often at the expense of robustness and geometric coverage. We present MCGS-SLAM, the first purely RGB-based multi-camera SLAM system built on 3D Gaussian Splatting (3DGS). Unlike prior methods relying on sparse maps or inertial data, MCGS-SLAM fuses dense RGB inputs from multiple viewpoints into a unified, continuously optimized Gaussian map. A multi-camera bundle adjustment (MCBA) jointly refines poses and depths via dense photometric and geometric residuals, while a scale consistency module enforces metric alignment across views using low-rank priors. The system supports RGB input and maintains real-time performance at large scale. Experiments on synthetic and real-world datasets show that MCGS-SLAM consistently yields accurate trajectories and photorealistic reconstructions, usually outperforming monocular baselines. Notably, the wide field of view from multi-camera input enables reconstruction of side-view regions that monocular setups miss, critical for safe autonomous operation. These results highlight the promise of multi-camera Gaussian Splatting SLAM for high-fidelity mapping in robotics and autonomous driving.
Artificial Intelligence 163
☆ Reward Models are Metrics in a Trench Coat
The emergence of reinforcement learning in post-training of large language models has sparked significant interest in reward models. Reward models assess the quality of sampled model outputs to generate training signals. This task is also performed by evaluation metrics that monitor the performance of an AI model. We find that the two research areas are mostly separate, leading to redundant terminology and repeated pitfalls. Common challenges include susceptibility to spurious correlations, impact on downstream reward hacking, methods to improve data quality, and approaches to meta-evaluation. Our position paper argues that a closer collaboration between the fields can help overcome these issues. To that end, we show how metrics outperform reward models on specific tasks and provide an extensive survey of the two areas. Grounded in this survey, we point to multiple research topics in which closer alignment can improve reward models and metrics in areas such as preference elicitation methods, avoidance of spurious correlations and reward hacking, and calibration-aware meta-evaluation.
☆ Improving GUI Grounding with Explicit Position-to-Coordinate Mapping
GUI grounding, the task of mapping natural-language instructions to pixel coordinates, is crucial for autonomous agents, yet remains difficult for current VLMs. The core bottleneck is reliable patch-to-pixel mapping, which breaks when extrapolating to high-resolution displays unseen during training. Current approaches generate coordinates as text tokens directly from visual features, forcing the model to infer complex position-to-pixel mappings implicitly; as a result, accuracy degrades and failures proliferate on new resolutions. We address this with two complementary innovations. First, RULER tokens serve as explicit coordinate markers, letting the model reference positions similar to gridlines on a map and adjust rather than generate coordinates from scratch. Second, Interleaved MRoPE (I-MRoPE) improves spatial encoding by ensuring that width and height dimensions are represented equally, addressing the asymmetry of standard positional schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show consistent gains in grounding accuracy, with the largest improvements on high-resolution interfaces. By providing explicit spatial guidance rather than relying on implicit learning, our approach enables more reliable GUI automation across diverse resolutions and platforms.
☆ Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
We propose a test-time defense mechanism against adversarial attacks: imperceptible image perturbations that significantly alter the predictions of a model. Unlike existing methods that rely on feature filtering or smoothing, which can lead to information loss, we propose to "combat noise with noise" by leveraging stochastic resonance to enhance robustness while minimizing information loss. Our approach introduces small translational perturbations to the input image, aligns the transformed feature embeddings, and aggregates them before mapping back to the original reference image. This can be expressed in a closed-form formula, which can be deployed on diverse existing network architectures without introducing additional network modules or fine-tuning for specific attack types. The resulting method is entirely training-free, architecture-agnostic, and attack-agnostic. Empirical results show state-of-the-art robustness on image classification and, for the first time, establish a generic test-time defense for dense prediction tasks, including stereo matching and optical flow, highlighting the method's versatility and practicality. Specifically, relative to clean (unperturbed) performance, our method recovers up to 68.1% of the accuracy loss on image classification, 71.9% on stereo matching, and 29.2% on optical flow under various types of adversarial attacks.
☆ Self-Anchor: Large Language Model Reasoning via Step-by-step Attention Alignment
To solve complex reasoning tasks for Large Language Models (LLMs), prompting-based methods offer a lightweight alternative to fine-tuning and reinforcement learning. However, as reasoning chains extend, critical intermediate steps and the original prompt will be buried in the context, receiving insufficient attention and leading to errors. In this paper, we propose Self-Anchor, a novel pipeline that leverages the inherent structure of reasoning to steer LLM attention. Self-Anchor decomposes reasoning trajectories into structured plans and automatically aligns the model's attention to the most relevant inference steps, allowing the model to maintain focus throughout generation. Our experiment shows that Self-Anchor outperforms SOTA prompting methods across six benchmarks. Notably, Self-Anchor significantly reduces the performance gap between ``non-reasoning'' models and specialized reasoning models, with the potential to enable most LLMs to tackle complex reasoning tasks without retraining.
☆ Abstain and Validate: A Dual-LLM Policy for Reducing Noise in Agentic Program Repair
Agentic Automated Program Repair (APR) is increasingly tackling complex, repository-level bugs in industry, but ultimately agent-generated patches still need to be reviewed by a human before committing them to ensure they address the bug. Showing unlikely patches to developers can lead to substantial noise, wasting valuable developer time and eroding trust in automated code changes. We introduce two complementary LLM-based policies to reduce such noise: bug abstention and patch validation policies. Bug abstention excludes bugs that the agentic APR system is unlikely to fix. Patch validation rejects patches that are unlikely to be a good fix for the given bug. We evaluate both policies on three sets of bugs from Google's codebase, and their candidate patches generated by an internal agentic APR system. On a set of 174 human-reported bugs, removing bugs and patch trajectories rejected by our policies can raise success rates by up to 13 percentage points and 15 percentage points, respectively, and by up to 39 percentage points in combination. On null pointer exceptions and sanitizer-reported bugs with machine-generated bug reports, patch validation also improves average single-sample success rates. This two-policy approach provides a practical path to the reliable, industrial-scale deployment of agentic APR systems.
☆ Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.
comment: 5 pages, 1 figure, 4 tables; Submitted to IEEE Conference for possible publication
Coevolutionary Continuous Discrete Diffusion: Make Your Diffusion Language Model a Latent Reasoner
Diffusion language models, especially masked discrete diffusion models, have achieved great success recently. While there are some theoretical and primary empirical results showing the advantages of latent reasoning with looped transformers or continuous chain-of-thoughts, continuous diffusion models typically underperform their discrete counterparts. In this paper, we argue that diffusion language models do not necessarily need to be in the discrete space. In particular, we prove that continuous diffusion models have stronger expressivity than discrete diffusions and looped transformers. We attribute the contradiction between the theoretical expressiveness and empirical performance to their practical trainability: while continuous diffusion provides intermediate supervision that looped transformers lack, they introduce additional difficulty decoding tokens into the discrete token space from the continuous representation space. We therefore propose Coevolutionary Continuous Discrete Diffusion (CCDD), which defines a joint multimodal diffusion process on the union of a continuous representation space and a discrete token space, leveraging a single model to simultaneously denoise in the joint space. By combining two modalities, CCDD is expressive with rich semantics in the latent space, as well as good trainability and sample quality with the help of explicit discrete tokens. We also propose effective architectures and advanced training/sampling techniques for CCDD, which reveals strong empirical performance in extensive language modeling experiments on real-world tasks.
comment: 27 pages
☆ CoDA: Agentic Systems for Collaborative Data Visualization
Deep research has revolutionized data analysis, yet data scientists still devote substantial time to manually crafting visualizations, highlighting the need for robust automation from natural language queries. However, current systems struggle with complex datasets containing multiple files and iterative refinement. Existing approaches, including simple single- or multi-agent systems, often oversimplify the task, focusing on initial query parsing while failing to robustly manage data complexity, code errors, or final visualization quality. In this paper, we reframe this challenge as a collaborative multi-agent problem. We introduce CoDA, a multi-agent system that employs specialized LLM agents for metadata analysis, task planning, code generation, and self-reflection. We formalize this pipeline, demonstrating how metadata-focused analysis bypasses token limits and quality-driven refinement ensures robustness. Extensive evaluations show CoDA achieves substantial gains in the overall score, outperforming competitive baselines by up to 41.5%. This work demonstrates that the future of visualization automation lies not in isolated code generation but in integrated, collaborative agentic workflows.
comment: 31 pages, 6 figures, 5 tables
Simulation to Rules: A Dual-VLM Framework for Formal Visual Planning
Vision Language Models (VLMs) show strong potential for visual planning but struggle with precise spatial and long-horizon reasoning. In contrast, Planning Domain Definition Language (PDDL) planners excel at long-horizon formal planning, but cannot interpret visual inputs. Recent works combine these complementary advantages by enabling VLMs to turn visual planning problems into PDDL files for formal planning. However, while VLMs can generate PDDL problem files satisfactorily, they struggle to accurately generate the PDDL domain files, which describe all the planning rules. As a result, prior methods rely on human experts to predefine domain files or on constant environment access for refinement. We propose VLMFP, a Dual-VLM-guided framework that can autonomously generate both PDDL problem and domain files for formal visual planning. VLMFP introduces two VLMs to ensure reliable PDDL file generation: A SimVLM that simulates action consequences based on input rule descriptions, and a GenVLM that generates and iteratively refines PDDL files by comparing the PDDL and SimVLM execution results. VLMFP unleashes multiple levels of generalizability: The same generated PDDL domain file works for all the different instances under the same problem, and VLMs generalize to different problems with varied appearances and rules. We evaluate VLMFP with 6 grid-world domains and test its generalization to unseen instances, appearance, and game rules. On average, SimVLM accurately describes 95.5%, 82.6% of scenarios, simulates 85.5%, 87.8% of action sequence, and judges 82.4%, 85.6% goal reaching for seen and unseen appearances, respectively. With the guidance of SimVLM, VLMFP can generate PDDL files to reach 70.0%, 54.1% valid plans for unseen instances in seen and unseen appearances, respectively. Project page: https://sites.google.com/view/vlmfp.
comment: 30 pages, 5 figures, 5 tables
☆ Topic Modeling as Long-Form Generation: Can Long-Context LLMs revolutionize NTM via Zero-Shot Prompting?
Traditional topic models such as neural topic models rely on inference and generation networks to learn latent topic distributions. This paper explores a new paradigm for topic modeling in the era of large language models, framing TM as a long-form generation task whose definition is updated in this paradigm. We propose a simple but practical approach to implement LLM-based topic model tasks out of the box (sample a data subset, generate topics and representative text with our prompt, text assignment with keyword match). We then investigate whether the long-form generation paradigm can beat NTMs via zero-shot prompting. We conduct a systematic comparison between NTMs and LLMs in terms of topic quality and empirically examine the claim that "a majority of NTMs are outdated."
☆ UniShield: An Adaptive Multi-Agent Framework for Unified Forgery Image Detection and Localization
With the rapid advancements in image generation, synthetic images have become increasingly realistic, posing significant societal risks, such as misinformation and fraud. Forgery Image Detection and Localization (FIDL) thus emerges as essential for maintaining information integrity and societal security. Despite impressive performances by existing domain-specific detection methods, their practical applicability remains limited, primarily due to their narrow specialization, poor cross-domain generalization, and the absence of an integrated adaptive framework. To address these issues, we propose UniShield, the novel multi-agent-based unified system capable of detecting and localizing image forgeries across diverse domains, including image manipulation, document manipulation, DeepFake, and AI-generated images. UniShield innovatively integrates a perception agent with a detection agent. The perception agent intelligently analyzes image features to dynamically select suitable detection models, while the detection agent consolidates various expert detectors into a unified framework and generates interpretable reports. Extensive experiments show that UniShield achieves state-of-the-art results, surpassing both existing unified approaches and domain-specific detectors, highlighting its superior practicality, adaptiveness, and scalability.
☆ SpineBench: A Clinically Salient, Level-Aware Benchmark Powered by the SpineMed-450k Corpus
Spine disorders affect 619 million people globally and are a leading cause of disability, yet AI-assisted diagnosis remains limited by the lack of level-aware, multimodal datasets. Clinical decision-making for spine disorders requires sophisticated reasoning across X-ray, CT, and MRI at specific vertebral levels. However, progress has been constrained by the absence of traceable, clinically-grounded instruction data and standardized, spine-specific benchmarks. To address this, we introduce SpineMed, an ecosystem co-designed with practicing spine surgeons. It features SpineMed-450k, the first large-scale dataset explicitly designed for vertebral-level reasoning across imaging modalities with over 450,000 instruction instances, and SpineBench, a clinically-grounded evaluation framework. SpineMed-450k is curated from diverse sources, including textbooks, guidelines, open datasets, and ~1,000 de-identified hospital cases, using a clinician-in-the-loop pipeline with a two-stage LLM generation method (draft and revision) to ensure high-quality, traceable data for question-answering, multi-turn consultations, and report generation. SpineBench evaluates models on clinically salient axes, including level identification, pathology assessment, and surgical planning. Our comprehensive evaluation of several recently advanced large vision-language models (LVLMs) on SpineBench reveals systematic weaknesses in fine-grained, level-specific reasoning. In contrast, our model fine-tuned on SpineMed-450k demonstrates consistent and significant improvements across all tasks. Clinician assessments confirm the diagnostic clarity and practical utility of our model's outputs.
☆ Stimulus-Voltage-Based Prediction of Action Potential Onset Timing: Classical vs. Quantum-Inspired Approaches
Accurate modeling of neuronal action potential (AP) onset timing is crucial for understanding neural coding of danger signals. Traditional leaky integrate-and-fire (LIF) models, while widely used, exhibit high relative error in predicting AP onset latency, especially under strong or rapidly changing stimuli. Inspired by recent experimental findings and quantum theory, we present a quantum-inspired leaky integrate-and-fire (QI-LIF) model that treats AP onset as a probabilistic event, represented by a Gaussian wave packet in time. This approach captures the biological variability and uncertainty inherent in neuronal firing. We systematically compare the relative error of AP onset predictions between the classical LIF and QI-LIF models using synthetic data from hippocampal and sensory neurons subjected to varying stimulus amplitudes. Our results demonstrate that the QI-LIF model significantly reduces prediction error, particularly for high-intensity stimuli, aligning closely with observed biological responses. This work highlights the potential of quantum-inspired computational frameworks in advancing the accuracy of neural modeling and has implications for quantum engineering approaches to brain-inspired computing.
☆ Improving Cooperation in Collaborative Embodied AI
The integration of Large Language Models (LLMs) into multiagent systems has opened new possibilities for collaborative reasoning and cooperation with AI agents. This paper explores different prompting methods and evaluates their effectiveness in enhancing agent collaborative behaviour and decision-making. We enhance CoELA, a framework designed for building Collaborative Embodied Agents that leverage LLMs for multi-agent communication, reasoning, and task coordination in shared virtual spaces. Through systematic experimentation, we examine different LLMs and prompt engineering strategies to identify optimised combinations that maximise collaboration performance. Furthermore, we extend our research by integrating speech capabilities, enabling seamless collaborative voice-based interactions. Our findings highlight the effectiveness of prompt optimisation in enhancing collaborative agent performance; for example, our best combination improved the efficiency of the system running with Gemma3 by 22% compared to the original CoELA system. In addition, the speech integration provides a more engaging user interface for iterative system development and demonstrations.
comment: In proceedings of UKCI 2025
☆ Signature-Informed Transformer for Asset Allocation
Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation
☆ A Study of Rule Omission in Raven's Progressive Matrices
Analogical reasoning lies at the core of human cognition and remains a fundamental challenge for artificial intelligence. Raven's Progressive Matrices (RPM) serve as a widely used benchmark to assess abstract reasoning by requiring the inference of underlying structural rules. While many vision-based and language-based models have achieved success on RPM tasks, it remains unclear whether their performance reflects genuine reasoning ability or reliance on statistical shortcuts. This study investigates the generalization capacity of modern AI systems under conditions of incomplete training by deliberately omitting several structural rules during training. Both sequence-to-sequence transformer models and vision-based architectures such as CoPINet and the Dual-Contrast Network are evaluated on the Impartial-RAVEN (I-RAVEN) dataset. Experiments reveal that although transformers demonstrate strong performance on familiar rules, their accuracy declines sharply when faced with novel or omitted rules. Moreover, the gap between token-level accuracy and complete answer accuracy highlights fundamental limitations in current approaches. These findings provide new insights into the reasoning mechanisms underlying deep learning models and underscore the need for architectures that move beyond pattern recognition toward robust abstract reasoning.
☆ HAVIR: HierArchical Vision to Image Reconstruction using CLIP-Guided Versatile Diffusion
The reconstruction of visual information from brain activity fosters interdisciplinary integration between neuroscience and computer vision. However, existing methods still face challenges in accurately recovering highly complex visual stimuli. This difficulty stems from the characteristics of natural scenes: low-level features exhibit heterogeneity, while high-level features show semantic entanglement due to contextual overlaps. Inspired by the hierarchical representation theory of the visual cortex, we propose the HAVIR model, which separates the visual cortex into two hierarchical regions and extracts distinct features from each. Specifically, the Structural Generator extracts structural information from spatial processing voxels and converts it into latent diffusion priors, while the Semantic Extractor converts semantic processing voxels into CLIP embeddings. These components are integrated via the Versatile Diffusion model to synthesize the final image. Experimental results demonstrate that HAVIR enhances both the structural and semantic quality of reconstructions, even in complex scenes, and outperforms existing models.
☆ Distilled Protein Backbone Generation
Diffusion- and flow-based generative models have recently demonstrated strong performance in protein backbone generation tasks, offering unprecedented capabilities for de novo protein design. However, while achieving notable performance in generation quality, these models are limited by their generating speed, often requiring hundreds of iterative steps in the reverse-diffusion process. This computational bottleneck limits their practical utility in large-scale protein discovery, where thousands to millions of candidate structures are needed. To address this challenge, we explore the techniques of score distillation, which has shown great success in reducing the number of sampling steps in the vision domain while maintaining high generation quality. However, a straightforward adaptation of these methods results in unacceptably low designability. Through extensive study, we have identified how to appropriately adapt Score identity Distillation (SiD), a state-of-the-art score distillation strategy, to train few-step protein backbone generators which significantly reduce sampling time, while maintaining comparable performance to their pretrained teacher model. In particular, multistep generation combined with inference time noise modulation is key to the success. We demonstrate that our distilled few-step generators achieve more than a 20-fold improvement in sampling speed, while achieving similar levels of designability, diversity, and novelty as the Proteina teacher model. This reduction in inference cost enables large-scale in silico protein design, thereby bringing diffusion-based models closer to real-world protein engineering applications.
☆ From Facts to Foils: Designing and Evaluating Counterfactual Explanations for Smart Environments
Explainability is increasingly seen as an essential feature of rule-based smart environments. While counterfactual explanations, which describe what could have been done differently to achieve a desired outcome, are a powerful tool in eXplainable AI (XAI), no established methods exist for generating them in these rule-based domains. In this paper, we present the first formalization and implementation of counterfactual explanations tailored to this domain. It is implemented as a plugin that extends an existing explanation engine for smart environments. We conducted a user study (N=17) to evaluate our generated counterfactuals against traditional causal explanations. The results show that user preference is highly contextual: causal explanations are favored for their linguistic simplicity and in time-pressured situations, while counterfactuals are preferred for their actionable content, particularly when a user wants to resolve a problem. Our work contributes a practical framework for a new type of explanation in smart environments and provides empirical evidence to guide the choice of when each explanation type is most effective.
comment: Accepted at Ex-ASE 2025, co-located with the 40th IEEE/ACM International Conference on Automated Software Engineering (ASE 2025)
☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
☆ A Study of Neural Polar Decoders for Communication
In this paper, we adapt and analyze Neural Polar Decoders (NPDs) for end-to-end communication systems. While prior work demonstrated the effectiveness of NPDs on synthetic channels, this study extends the NPD to real-world communication systems. The NPD was adapted to complete OFDM and single-carrier communication systems. To satisfy practical system requirements, the NPD is extended to support any code length via rate matching, higher-order modulations, and robustness across diverse channel conditions. The NPD operates directly on channels with memory, exploiting their structure to achieve higher data rates without requiring pilots and a cyclic prefix. Although NPD entails higher computational complexity than the standard 5G polar decoder, its neural network architecture enables an efficient representation of channel statistics, resulting in manageable complexity suitable for practical systems. Experimental results over 5G channels demonstrate that the NPD consistently outperforms the 5G polar decoder in terms of BER, BLER, and throughput. These improvements are particularly significant for low-rate and short-block configurations, which are prevalent in 5G control channels. Furthermore, NPDs applied to single-carrier systems offer performance comparable to OFDM with lower PAPR, enabling effective single-carrier transmission over 5G channels. These results position the NPD as a high-performance, pilotless, and robust decoding solution.
☆ A Unified Deep Reinforcement Learning Approach for Close Enough Traveling Salesman Problem
In recent years, deep reinforcement learning (DRL) has gained traction for solving the NP-hard traveling salesman problem (TSP). However, limited attention has been given to the close-enough TSP (CETSP), primarily due to the challenge introduced by its neighborhood-based visitation criterion, wherein a node is considered visited if the agent enters a compact neighborhood around it. In this work, we formulate a Markov decision process (MDP) for CETSP using a discretization scheme and propose a novel unified dual-decoder DRL (UD3RL) framework that separates decision-making into node selection and waypoint determination. Specifically, an adapted encoder is employed for effective feature extraction, followed by a node-decoder and a loc-decoder to handle the two sub-tasks, respectively. A k-nearest neighbors subgraph interaction strategy is further introduced to enhance spatial reasoning during location decoding. Furthermore, we customize the REINFORCE algorithm to train UD3RL as a unified model capable of generalizing across different problem sizes and varying neighborhood radius types (i.e., constant and random radii). Experimental results show that UD3RL outperforms conventional methods in both solution quality and runtime, while exhibiting strong generalization across problem scales, spatial distributions, and radius ranges, as well as robustness to dynamic environments.
☆ Comparative Analysis of Parameterized Action Actor-Critic Reinforcement Learning Algorithms for Web Search Match Plan Generation
This study evaluates the performance of Soft Actor Critic (SAC), Greedy Actor Critic (GAC), and Truncated Quantile Critics (TQC) in high-dimensional decision-making tasks using fully observable environments. The focus is on parametrized action (PA) spaces, eliminating the need for recurrent networks, with benchmarks Platform-v0 and Goal-v0 testing discrete actions linked to continuous action-parameter spaces. Hyperparameter optimization was performed with Microsoft NNI, ensuring reproducibility by modifying the codebase for GAC and TQC. Results show that Parameterized Action Greedy Actor-Critic (PAGAC) outperformed other algorithms, achieving the fastest training times and highest returns across benchmarks, completing 5,000 episodes in 41:24 for the Platform game and 24:04 for the Robot Soccer Goal game. Its speed and stability provide clear advantages in complex action spaces. Compared to PASAC and PATQC, PAGAC demonstrated superior efficiency and reliability, making it ideal for tasks requiring rapid convergence and robust performance. Future work could explore hybrid strategies combining entropy-regularization with truncation-based methods to enhance stability and expand investigations into generalizability.
comment: 10 pages, 10th International Congress on Information and Communication Technology (ICICT 2025)
☆ Semantic Differentiation in Speech Emotion Recognition: Insights from Descriptive and Expressive Speech Roles EMNLP2025
Speech Emotion Recognition (SER) is essential for improving human-computer interaction, yet its accuracy remains constrained by the complexity of emotional nuances in speech. In this study, we distinguish between descriptive semantics, which represents the contextual content of speech, and expressive semantics, which reflects the speaker's emotional state. After watching emotionally charged movie segments, we recorded audio clips of participants describing their experiences, along with the intended emotion tags for each clip, participants' self-rated emotional responses, and their valence/arousal scores. Through experiments, we show that descriptive semantics align with intended emotions, while expressive semantics correlate with evoked emotions. Our findings inform SER applications in human-AI interaction and pave the way for more context-aware AI systems.
comment: Accepted to the *SEM conference collocated with EMNLP2025
☆ ZeroShotOpt: Towards Zero-Shot Pretrained Models for Efficient Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt
When and Where do Events Switch in Multi-Event Video Generation? ICCV2025
Text-to-video (T2V) generation has surged in response to challenging questions, especially when a long video must depict multiple sequential events with temporal coherence and controllable content. Existing methods that extend to multi-event generation omit an inspection of the intrinsic factor in event shifting. The paper aims to answer the central question: When and where multi-event prompts control event transition during T2V generation. This work introduces MEve, a self-curated prompt suite for evaluating multi-event text-to-video (T2V) generation, and conducts a systematic study of two representative model families, i.e., OpenSora and CogVideoX. Extensive experiments demonstrate the importance of early intervention in denoising steps and block-wise model layers, revealing the essential factor for multi-event video generation and highlighting the possibilities for multi-event conditioning in future models.
comment: Work in Progress. Accepted to ICCV2025 @ LongVid-Foundations
☆ CHORD: Customizing Hybrid-precision On-device Model for Sequential Recommendation with Device-cloud Collaboration ACM MM'25
With the advancement of mobile device capabilities, deploying reranking models directly on devices has become feasible, enabling real-time contextual recommendations. When migrating models from cloud to devices, resource heterogeneity inevitably necessitates model compression. Recent quantization methods show promise for efficient deployment, yet they overlook device-specific user interests, resulting in compromised recommendation accuracy. While on-device finetuning captures personalized user preference, it imposes additional computational burden through local retraining. To address these challenges, we propose a framework for \underline{\textbf{C}}ustomizing \underline{\textbf{H}}ybrid-precision \underline{\textbf{O}}n-device model for sequential \underline{\textbf{R}}ecommendation with \underline{\textbf{D}}evice-cloud collaboration (\textbf{CHORD}), leveraging channel-wise mixed-precision quantization to simultaneously achieve personalization and resource-adaptive deployment. CHORD distributes randomly initialized models across heterogeneous devices and identifies user-specific critical parameters through auxiliary hypernetwork modules on the cloud. Our parameter sensitivity analysis operates across multiple granularities (layer, filter, and element levels), enabling precise mapping from user profiles to quantization strategy. Through on-device mixed-precision quantization, CHORD delivers dynamic model adaptation and accelerated inference without backpropagation, eliminating costly retraining cycles. We minimize communication overhead by encoding quantization strategies using only 2 bits per channel instead of 32-bit weights. Experiments on three real-world datasets with two popular backbones (SASRec and Caser) demonstrate the accuracy, efficiency, and adaptivity of CHORD.
comment: accepted by ACM MM'25
☆ Investigating The Smells of LLM Generated Code
Context: Large Language Models (LLMs) are increasingly being used to generate program code. Much research has been reported on the functional correctness of generated code, but there is far less on code quality. Objectives: In this study, we propose a scenario-based method of evaluating the quality of LLM-generated code to identify the weakest scenarios in which the quality of LLM generated code should be improved. Methods: The method measures code smells, an important indicator of code quality, and compares them with a baseline formed from reference solutions of professionally written code. The test dataset is divided into various subsets according to the topics of the code and complexity of the coding tasks to represent different scenarios of using LLMs for code generation. We will also present an automated test system for this purpose and report experiments with the Java programs generated in response to prompts given to four state-of-the-art LLMs: Gemini Pro, ChatGPT, Codex, and Falcon. Results: We find that LLM-generated code has a higher incidence of code smells compared to reference solutions. Falcon performed the least badly, with a smell increase of 42.28%, followed by Gemini Pro (62.07%), ChatGPT (65.05%) and finally Codex (84.97%). The average smell increase across all LLMs was 63.34%, comprising 73.35% for implementation smells and 21.42% for design smells. We also found that the increase in code smells is greater for more complex coding tasks and for more advanced topics, such as those involving object-orientated concepts. Conclusion: In terms of code smells, LLM's performances on various coding task complexities and topics are highly correlated to the quality of human written code in the corresponding scenarios. However, the quality of LLM generated code is noticeably poorer than human written code.
☆ Learning Robust Diffusion Models from Imprecise Supervision
Conditional diffusion models have achieved remarkable success in various generative tasks recently, but their training typically relies on large-scale datasets that inevitably contain imprecise information in conditional inputs. Such supervision, often stemming from noisy, ambiguous, or incomplete labels, will cause condition mismatch and degrade generation quality. To address this challenge, we propose DMIS, a unified framework for training robust Diffusion Models from Imprecise Supervision, which is the first systematic study within diffusion models. Our framework is derived from likelihood maximization and decomposes the objective into generative and classification components: the generative component models imprecise-label distributions, while the classification component leverages a diffusion classifier to infer class-posterior probabilities, with its efficiency further improved by an optimized timestep sampling strategy. Extensive experiments on diverse forms of imprecise supervision, covering tasks of image generation, weakly supervised learning, and noisy dataset condensation demonstrate that DMIS consistently produces high-quality and class-discriminative samples.
☆ BrainIB++: Leveraging Graph Neural Networks and Information Bottleneck for Functional Brain Biomarkers in Schizophrenia
The development of diagnostic models is gaining traction in the field of psychiatric disorders. Recently, machine learning classifiers based on resting-state functional magnetic resonance imaging (rs-fMRI) have been developed to identify brain biomarkers that differentiate psychiatric disorders from healthy controls. However, conventional machine learning-based diagnostic models often depend on extensive feature engineering, which introduces bias through manual intervention. While deep learning models are expected to operate without manual involvement, their lack of interpretability poses significant challenges in obtaining explainable and reliable brain biomarkers to support diagnostic decisions, ultimately limiting their clinical applicability. In this study, we introduce an end-to-end innovative graph neural network framework named BrainIB++, which applies the information bottleneck (IB) principle to identify the most informative data-driven brain regions as subgraphs during model training for interpretation. We evaluate the performance of our model against nine established brain network classification methods across three multi-cohort schizophrenia datasets. It consistently demonstrates superior diagnostic accuracy and exhibits generalizability to unseen data. Furthermore, the subgraphs identified by our model also correspond with established clinical biomarkers in schizophrenia, particularly emphasizing abnormalities in the visual, sensorimotor, and higher cognition brain functional network. This alignment enhances the model's interpretability and underscores its relevance for real-world diagnostic applications.
comment: This manuscript has been accepted by Biomedical Signal Processing and Control and the code is available at https://github.com/TianzhengHU/BrainIB_coding/tree/main/BrainIB_GIB
☆ From high-frequency sensors to noon reports: Using transfer learning for shaft power prediction in maritime
With the growth of global maritime transportation, energy optimization has become crucial for reducing costs and ensuring operational efficiency. Shaft power is the mechanical power transmitted from the engine to the shaft and directly impacts fuel consumption, making its accurate prediction a paramount step in optimizing vessel performance. Power consumption is highly correlated with ship parameters such as speed and shaft rotation per minute, as well as weather and sea conditions. Frequent access to this operational data can improve prediction accuracy. However, obtaining high-quality sensor data is often infeasible and costly, making alternative sources such as noon reports a viable option. In this paper, we propose a transfer learning-based approach for predicting vessels shaft power, where a model is initially trained on high-frequency data from a vessel and then fine-tuned with low-frequency daily noon reports from other vessels. We tested our approach on sister vessels (identical dimensions and configurations), a similar vessel (slightly larger with a different engine), and a different vessel (distinct dimensions and configurations). The experiments showed that the mean absolute percentage error decreased by 10.6 percent for sister vessels, 3.6 percent for a similar vessel, and 5.3 percent for a different vessel, compared to the model trained solely on noon report data.
comment: Keywords: transfer learning, shaft power prediction, noon reports, sensor data, maritime
☆ Untargeted Jailbreak Attack
Existing gradient-based jailbreak attacks on Large Language Models (LLMs), such as Greedy Coordinate Gradient (GCG) and COLD-Attack, typically optimize adversarial suffixes to align the LLM output with a predefined target response. However, by restricting the optimization objective as inducing a predefined target, these methods inherently constrain the adversarial search space, which limit their overall attack efficacy. Furthermore, existing methods typically require a large number of optimization iterations to fulfill the large gap between the fixed target and the original model response, resulting in low attack efficiency. To overcome the limitations of targeted jailbreak attacks, we propose the first gradient-based untargeted jailbreak attack (UJA), aiming to elicit an unsafe response without enforcing any predefined patterns. Specifically, we formulate an untargeted attack objective to maximize the unsafety probability of the LLM response, which can be quantified using a judge model. Since the objective is non-differentiable, we further decompose it into two differentiable sub-objectives for optimizing an optimal harmful response and the corresponding adversarial prompt, with a theoretical analysis to validate the decomposition. In contrast to targeted jailbreak attacks, UJA's unrestricted objective significantly expands the search space, enabling a more flexible and efficient exploration of LLM vulnerabilities.Extensive evaluations demonstrate that \textsc{UJA} can achieve over 80\% attack success rates against recent safety-aligned LLMs with only 100 optimization iterations, outperforming the state-of-the-art gradient-based attacks such as I-GCG and COLD-Attack by over 20\%.
☆ Onto-Epistemological Analysis of AI Explanations
Artificial intelligence (AI) is being applied in almost every field. At the same time, the currently dominant deep learning methods are fundamentally black-box systems that lack explanations for their inferences, significantly limiting their trustworthiness and adoption. Explainable AI (XAI) methods aim to overcome this challenge by providing explanations of the models' decision process. Such methods are often proposed and developed by engineers and scientists with a predominantly technical background and incorporate their assumptions about the existence, validity, and explanatory utility of different conceivable explanatory mechanisms. However, the basic concept of an explanation -- what it is, whether we can know it, whether it is absolute or relative -- is far from trivial and has been the subject of deep philosophical debate for millennia. As we point out here, the assumptions incorporated into different XAI methods are not harmless and have important consequences for the validity and interpretation of AI explanations in different domains. We investigate ontological and epistemological assumptions in explainability methods when they are applied to AI systems, meaning the assumptions we make about the existence of explanations and our ability to gain knowledge about those explanations. Our analysis shows how seemingly small technical changes to an XAI method may correspond to important differences in the underlying assumptions about explanations. We furthermore highlight the risks of ignoring the underlying onto-epistemological paradigm when choosing an XAI method for a given application, and we discuss how to select and adapt appropriate XAI methods for different domains of application.
☆ AI Generated Child Sexual Abuse Material -- What's the Harm?
The development of generative artificial intelligence (AI) tools capable of producing wholly or partially synthetic child sexual abuse material (AI CSAM) presents profound challenges for child protection, law enforcement, and societal responses to child exploitation. While some argue that the harmfulness of AI CSAM differs fundamentally from other CSAM due to a perceived absence of direct victimization, this perspective fails to account for the range of risks associated with its production and consumption. AI has been implicated in the creation of synthetic CSAM of children who have not previously been abused, the revictimization of known survivors of abuse, the facilitation of grooming, coercion and sexual extortion, and the normalization of child sexual exploitation. Additionally, AI CSAM may serve as a new or enhanced pathway into offending by lowering barriers to engagement, desensitizing users to progressively extreme content, and undermining protective factors for individuals with a sexual interest in children. This paper provides a primer on some key technologies, critically examines the harms associated with AI CSAM, and cautions against claims that it may function as a harm reduction tool, emphasizing how some appeals to harmlessness obscure its real risks and may contribute to inertia in ecosystem responses.
☆ Corrosion Risk Estimation for Heritage Preservation: An Internet of Things and Machine Learning Approach Using Temperature and Humidity
Proactive preservation of steel structures at culturally significant heritage sites like the San Sebastian Basilica in the Philippines requires accurate corrosion forecasting. This study developed an Internet of Things hardware system connected with LoRa wireless communications to monitor heritage buildings with steel structures. From a three year dataset generated by the IoT system, we built a machine learning framework for predicting atmospheric corrosion rates using only temperature and relative humidity data. Deployed via a Streamlit dashboard with ngrok tunneling for public access, the framework provides real-time corrosion monitoring and actionable preservation recommendations. This minimal-data approach is scalable and cost effective for heritage sites with limited monitoring resources, showing that advanced regression can extract accurate corrosion predictions from basic meteorological data enabling proactive preservation of culturally significant structures worldwide without requiring extensive sensor networks
comment: 17 pages
☆ Grounding Large Language Models in Clinical Evidence: A Retrieval-Augmented Generation System for Querying UK NICE Clinical Guidelines
This paper presents the development and evaluation of a Retrieval-Augmented Generation (RAG) system for querying the United Kingdom's National Institute for Health and Care Excellence (NICE) clinical guidelines using Large Language Models (LLMs). The extensive length and volume of these guidelines can impede their utilisation within a time-constrained healthcare system, a challenge this project addresses through the creation of a system capable of providing users with precisely matched information in response to natural language queries. The system's retrieval architecture, composed of a hybrid embedding mechanism, was evaluated against a database of 10,195 text chunks derived from three hundred guidelines. It demonstrates high performance, with a Mean Reciprocal Rank (MRR) of 0.814, a Recall of 81% at the first chunk and of 99.1% within the top ten retrieved chunks, when evaluated on 7901 queries. The most significant impact of the RAG system was observed during the generation phase. When evaluated on a manually curated dataset of seventy question-answer pairs, RAG-enhanced models showed substantial gains in performance. Faithfulness, the measure of whether an answer is supported by the source text, was increased by 64.7 percentage points to 99.5% for the RAG-enhanced O4-Mini model and significantly outperformed the medical-focused Meditron3-8B LLM, which scored 43%. This, combined with a perfect Context Precision score of 1 for all RAG-enhanced models, confirms the system's ability to prevent information fabrication by grounding its answers in relevant source material. This study thus establishes RAG as an effective, reliable, and scalable approach for applying generative AI in healthcare, enabling cost-effective access to medical guidelines.
☆ Ergodic Risk Measures: Towards a Risk-Aware Foundation for Continual Reinforcement Learning
Continual reinforcement learning (continual RL) seeks to formalize the notions of lifelong learning and endless adaptation in RL. In particular, the aim of continual RL is to develop RL agents that can maintain a careful balance between retaining useful information and adapting to new situations. To date, continual RL has been explored almost exclusively through the lens of risk-neutral decision-making, in which the agent aims to optimize the expected (or mean) long-run performance. In this work, we present the first formal theoretical treatment of continual RL through the lens of risk-aware decision-making, in which the agent aims to optimize a reward-based measure of long-run performance beyond the mean. In particular, we show that the classical theory of risk measures, widely used as a theoretical foundation in non-continual risk-aware RL, is, in its current form, incompatible with the continual setting. Then, building on this insight, we extend risk measure theory into the continual setting by introducing a new class of ergodic risk measures that are compatible with continual learning. Finally, we provide a case study of risk-aware continual learning, along with empirical results, which show the intuitive appeal and theoretical soundness of ergodic risk measures.
Multimodal Carotid Risk Stratification with Large Vision-Language Models: Benchmarking, Fine-Tuning, and Clinical Insights
Reliable risk assessment for carotid atheromatous disease remains a major clinical challenge, as it requires integrating diverse clinical and imaging information in a manner that is transparent and interpretable to clinicians. This study investigates the potential of state-of-the-art and recent large vision-language models (LVLMs) for multimodal carotid plaque assessment by integrating ultrasound imaging (USI) with structured clinical, demographic, laboratory, and protein biomarker data. A framework that simulates realistic diagnostic scenarios through interview-style question sequences is proposed, comparing a range of open-source LVLMs, including both general-purpose and medically tuned models. Zero-shot experiments reveal that even if they are very powerful, not all LVLMs can accurately identify imaging modality and anatomy, while all of them perform poorly in accurate risk classification. To address this limitation, LLaVa-NeXT-Vicuna is adapted to the ultrasound domain using low-rank adaptation (LoRA), resulting in substantial improvements in stroke risk stratification. The integration of multimodal tabular data in the form of text further enhances specificity and balanced accuracy, yielding competitive performance compared to prior convolutional neural network (CNN) baselines trained on the same dataset. Our findings highlight both the promise and limitations of LVLMs in ultrasound-based cardiovascular risk prediction, underscoring the importance of multimodal integration, model calibration, and domain adaptation for clinical translation.
☆ WavInWav: Time-domain Speech Hiding via Invertible Neural Network
Data hiding is essential for secure communication across digital media, and recent advances in Deep Neural Networks (DNNs) provide enhanced methods for embedding secret information effectively. However, previous audio hiding methods often result in unsatisfactory quality when recovering secret audio, due to their inherent limitations in the modeling of time-frequency relationships. In this paper, we explore these limitations and introduce a new DNN-based approach. We use a flow-based invertible neural network to establish a direct link between stego audio, cover audio, and secret audio, enhancing the reversibility of embedding and extracting messages. To address common issues from time-frequency transformations that degrade secret audio quality during recovery, we implement a time-frequency loss on the time-domain signal. This approach not only retains the benefits of time-frequency constraints but also enhances the reversibility of message recovery, which is vital for practical applications. We also add an encryption technique to protect the hidden data from unauthorized access. Experimental results on the VCTK and LibriSpeech datasets demonstrate that our method outperforms previous approaches in terms of subjective and objective metrics and exhibits robustness to various types of noise, suggesting its utility in targeted secure communication scenarios.
comment: 13 pages, 5 figures, project page: https://cyberrrange.github.io/project/wavinwav
☆ FeDABoost: Fairness Aware Federated Learning with Adaptive Boosting ECML-PKDD 2025
This work focuses on improving the performance and fairness of Federated Learning (FL) in non IID settings by enhancing model aggregation and boosting the training of underperforming clients. We propose FeDABoost, a novel FL framework that integrates a dynamic boosting mechanism and an adaptive gradient aggregation strategy. Inspired by the weighting mechanism of the Multiclass AdaBoost (SAMME) algorithm, our aggregation method assigns higher weights to clients with lower local error rates, thereby promoting more reliable contributions to the global model. In parallel, FeDABoost dynamically boosts underperforming clients by adjusting the focal loss focusing parameter, emphasizing hard to classify examples during local training. We have evaluated FeDABoost on three benchmark datasets MNIST, FEMNIST, and CIFAR10, and compared its performance with those of FedAvg and Ditto. The results show that FeDABoost achieves improved fairness and competitive performance.
comment: Presented in WAFL@ECML-PKDD 2025
☆ FinReflectKG -- MultiHop: Financial QA Benchmark for Reasoning with Knowledge Graph Evidence
Multi-hop reasoning over financial disclosures is often a retrieval problem before it becomes a reasoning or generation problem: relevant facts are dispersed across sections, filings, companies, and years, and LLMs often expend excessive tokens navigating noisy context. Without precise Knowledge Graph (KG)-guided selection of relevant context, even strong reasoning models either fail to answer or consume excessive tokens, whereas KG-linked evidence enables models to focus their reasoning on composing already retrieved facts. We present FinReflectKG - MultiHop, a benchmark built on FinReflectKG, a temporally indexed financial KG that links audited triples to source chunks from S&P 100 filings (2022-2024). Mining frequent 2-3 hop subgraph patterns across sectors (via GICS taxonomy), we generate financial analyst style questions with exact supporting evidence from the KG. A two-phase pipeline first creates QA pairs via pattern-specific prompts, followed by a multi-criteria quality control evaluation to ensure QA validity. We then evaluate three controlled retrieval scenarios: (S1) precise KG-linked paths; (S2) text-only page windows centered on relevant text spans; and (S3) relevant page windows with randomizations and distractors. Across both reasoning and non-reasoning models, KG-guided precise retrieval yields substantial gains on the FinReflectKG - MultiHop QA benchmark dataset, boosting correctness scores by approximately 24 percent while reducing token utilization by approximately 84.5 percent compared to the page window setting, which reflects the traditional vector retrieval paradigm. Spanning intra-document, inter-year, and cross-company scopes, our work underscores the pivotal role of knowledge graphs in efficiently connecting evidence for multi-hop financial QA. We also release a curated subset of the benchmark (555 QA Pairs) to catalyze further research.
☆ DMark: Order-Agnostic Watermarking for Diffusion Large Language Models
Diffusion large language models (dLLMs) offer faster generation than autoregressive models while maintaining comparable quality, but existing watermarking methods fail on them due to their non-sequential decoding. Unlike autoregressive models that generate tokens left-to-right, dLLMs can finalize tokens in arbitrary order, breaking the causal design underlying traditional watermarks. We present DMark, the first watermarking framework designed specifically for dLLMs. DMark introduces three complementary strategies to restore watermark detectability: predictive watermarking uses model-predicted tokens when actual context is unavailable; bidirectional watermarking exploits both forward and backward dependencies unique to diffusion decoding; and predictive-bidirectional watermarking combines both approaches to maximize detection strength. Experiments across multiple dLLMs show that DMark achieves 92.0-99.5% detection rates at 1% false positive rate while maintaining text quality, compared to only 49.6-71.2% for naive adaptations of existing methods. DMark also demonstrates robustness against text manipulations, establishing that effective watermarking is feasible for non-autoregressive language models.
Global Convergence of Policy Gradient for Entropy Regularized Linear-Quadratic Control with multiplicative noise
Reinforcement Learning (RL) has emerged as a powerful framework for sequential decision-making in dynamic environments, particularly when system parameters are unknown. This paper investigates RL-based control for entropy-regularized Linear Quadratic control (LQC) problems with multiplicative noises over an infinite time horizon. First, we adapt the Regularized Policy Gradient (RPG) algorithm to stochastic optimal control settings, proving that despite the non-convexity of the problem, RPG converges globally under conditions of gradient domination and near-smoothness. Second, based on zero-order optimization approach, we introduce a novel model free RL algorithm: Sample-Based Regularized Policy Gradient (SB-RPG). SB-RPG operates without knowledge of system parameters yet still retains strong theoretical guarantees of global convergence. Our model leverages entropy regularization to accelerate convergence and address the exploration versus exploitation trade-off inherent in RL. Numerical simulations validate the theoretical results and demonstrate the efficacy of SB-RPG in unknown-parameters environments.
comment: 33 pages, 4 figures
☆ Consolidating Reinforcement Learning for Multimodal Discrete Diffusion Models
Optimizing discrete diffusion model (DDM) with rewards remains a challenge: the non-autoregressive paradigm makes importance sampling intractable and rollout complex, puzzling reinforcement learning methods such as Group Relative Policy Optimization (GRPO). In this study, we introduce MaskGRPO, the first viable approach to enable scalable multimodal reinforcement learning in discrete diffusion with effective importance sampling and modality-specific adaptations. To this end, we first clarify the theoretical foundation for DDMs, which facilitates building an importance estimator that captures valuable token fluctuation for gradient updates. We then delicately tailored the rollout method for visual sequences, which yields diverse completions and reliable optimization gradients. Upon math reasoning, coding, and visual generation benchmarks, MaskGRPO brings more stable and efficient updates, leading to stronger reasoning performance and better generation quality. This study establishes MaskGRPO as a systematic policy optimization approach and the first practical way for discretized visual diffusion.
comment: Project Page: https://github.com/martian422/MaskGRPO
☆ Representing Beauty: Towards a Participatory but Objective Latent Aesthetics
What does it mean for a machine to recognize beauty? While beauty remains a culturally and experientially compelling but philosophically elusive concept, deep learning systems increasingly appear capable of modeling aesthetic judgment. In this paper, we explore the capacity of neural networks to represent beauty despite the immense formal diversity of objects for which the term applies. By drawing on recent work on cross-model representational convergence, we show how aesthetic content produces more similar and aligned representations between models which have been trained on distinct data and modalities - while unaesthetic images do not produce more aligned representations. This finding implies that the formal structure of beautiful images has a realist basis - rather than only as a reflection of socially constructed values. Furthermore, we propose that these realist representations exist because of a joint grounding of aesthetic form in physical and cultural substance. We argue that human perceptual and creative acts play a central role in shaping these the latent spaces of deep learning systems, but that a realist basis for aesthetics shows that machines are not mere creative parrots but can produce novel creative insights from the unique vantage point of scale. Our findings suggest that human-machine co-creation is not merely possible, but foundational - with beauty serving as a teleological attractor in both cultural production and machine perception.
☆ Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.
comment: 35 pages, 14 figures, 10 tables. Open-source implementation with 91% test coverage available at https://github.com/jahidul-arafat/constraint_satisfaction_wordle_arxiv_preprint
☆ Reward Model Routing in Alignment
Reinforcement learning from human or AI feedback (RLHF / RLAIF) has become the standard paradigm for aligning large language models (LLMs). However, most pipelines rely on a single reward model (RM), limiting alignment quality and risking overfitting. Recent work explores RM routing--dynamically selecting an RM from a candidate pool to exploit complementary strengths while maintaining $O(1)$ RM calls--but existing methods suffer from cold-start and insufficient exploration. We propose BayesianRouter, a hybrid routing framework that combines offline RM strengths learning with online Bayesian selection. In the offline stage, a multi-task router is trained on preference data to estimate per-RM reliability. In the online stage, a Bayesian Thompson sampling router performs per-query RM selection, initializing RM-specific weight vectors with offline embeddings as Gaussian priors and adaptively updating their posteriors with online rewards to adapt to the evolving policy distribution. Extensive experiments on instruction-following (AlpacaEval-2, Arena-Hard, MT-Bench) and reasoning (GSM8K, MMLU) benchmarks show that BayesianRouter consistently outperforms individual RMs, RM ensembling, and existing routing methods.
☆ Flamed-TTS: Flow Matching Attention-Free Models for Efficient Generating and Dynamic Pacing Zero-shot Text-to-Speech
Zero-shot Text-to-Speech (TTS) has recently advanced significantly, enabling models to synthesize speech from text using short, limited-context prompts. These prompts serve as voice exemplars, allowing the model to mimic speaker identity, prosody, and other traits without extensive speaker-specific data. Although recent approaches incorporating language models, diffusion, and flow matching have proven their effectiveness in zero-shot TTS, they still encounter challenges such as unreliable synthesis caused by token repetition or unexpected content transfer, along with slow inference and substantial computational overhead. Moreover, temporal diversity-crucial for enhancing the naturalness of synthesized speech-remains largely underexplored. To address these challenges, we propose Flamed-TTS, a novel zero-shot TTS framework that emphasizes low computational cost, low latency, and high speech fidelity alongside rich temporal diversity. To achieve this, we reformulate the flow matching training paradigm and incorporate both discrete and continuous representations corresponding to different attributes of speech. Experimental results demonstrate that Flamed-TTS surpasses state-of-the-art models in terms of intelligibility, naturalness, speaker similarity, acoustic characteristics preservation, and dynamic pace. Notably, Flamed-TTS achieves the best WER of 4% compared to the leading zero-shot TTS baselines, while maintaining low latency in inference and high fidelity in generated speech. Code and audio samples are available at our demo page https://flamed-tts.github.io.
☆ Take Goodhart Seriously: Principled Limit on General-Purpose AI Optimization
A common but rarely examined assumption in machine learning is that training yields models that actually satisfy their specified objective function. We call this the Objective Satisfaction Assumption (OSA). Although deviations from OSA are acknowledged, their implications are overlooked. We argue, in a learning-paradigm-agnostic framework, that OSA fails in realistic conditions: approximation, estimation, and optimization errors guarantee systematic deviations from the intended objective, regardless of the quality of its specification. Beyond these technical limitations, perfectly capturing and translating the developer's intent, such as alignment with human preferences, into a formal objective is practically impossible, making misspecification inevitable. Building on recent mathematical results, absent a mathematical characterization of these gaps, they are indistinguishable from those that collapse into Goodhart's law failure modes under strong optimization pressure. Because the Goodhart breaking point cannot be located ex ante, a principled limit on the optimization of General-Purpose AI systems is necessary. Absent such a limit, continued optimization is liable to push systems into predictable and irreversible loss of control.
comment: 9 pages, 1 figure. Under review
☆ Knowledge-Aware Modeling with Frequency Adaptive Learning for Battery Health Prognostics
Battery health prognostics are critical for ensuring safety, efficiency, and sustainability in modern energy systems. However, it has been challenging to achieve accurate and robust prognostics due to complex battery degradation behaviors with nonlinearity, noise, capacity regeneration, etc. Existing data-driven models capture temporal degradation features but often lack knowledge guidance, which leads to unreliable long-term health prognostics. To overcome these limitations, we propose Karma, a knowledge-aware model with frequency-adaptive learning for battery capacity estimation and remaining useful life prediction. The model first performs signal decomposition to derive battery signals in different frequency bands. A dual-stream deep learning architecture is developed, where one stream captures long-term low-frequency degradation trends and the other models high-frequency short-term dynamics. Karma regulates the prognostics with knowledge, where battery degradation is modeled as a double exponential function based on empirical studies. Our dual-stream model is used to optimize the parameters of the knowledge with particle filters to ensure physically consistent and reliable prognostics and uncertainty quantification. Experimental study demonstrates Karma's superior performance, achieving average error reductions of 50.6% and 32.6% over state-of-the-art algorithms for battery health prediction on two mainstream datasets, respectively. These results highlight Karma's robustness, generalizability, and potential for safer and more reliable battery management across diverse applications.
comment: 12 pages, 4 figures, 4 tables
☆ Beyond the Final Answer: Evaluating the Reasoning Trajectories of Tool-Augmented Agents
Although recent tool-augmented benchmarks incorporate complex user requests and diverse tools, the evaluation methods for most of them remain limited to answer matching. However, as the number of steps required to resolve a user request increases, a proper evaluation of an agent's performance must go beyond the final answer to also assess the problem-solving trajectory, including previously ignored aspects such as efficiency, hallucination, and adaptivity. The most straightforward method for evaluating these aspects is to compare an agent's trajectory with the ground-truth trajectory, but this approach is fundamentally limited since annotating all valid ground-truth trajectories is prohibitively expensive. However, a simple LLM-based evaluator struggles to assess trajectories in detail without ground truth. To effectively evaluate the agents in this manner, we introduce TRACE, a framework for the multi-dimensional evaluation of tool-augmented LLM agent performance. By incorporating an evidence bank, which accumulates knowledge gathered from preceding reasoning steps, TRACE enables a multi-faceted analysis and evaluation of an agent's reasoning trajectory effectively. To validate our framework, we develop a new meta-evaluation dataset by augmenting existing benchmarks with diverse and flawed trajectories, each labeled with multi-faceted performance scores. Our results confirm that TRACE accurately evaluates these complex behaviors in a scalable and cost-effective manner, even with small open-source LLMs. Furthermore, we apply our method to evaluate the trajectories that agents produce while solving tool-augmented tasks, presenting previously unreported observations and their corresponding insights.
comment: Preprint. Under Review
☆ Evaluating Large Language Models for IUCN Red List Species Information
Large Language Models (LLMs) are rapidly being adopted in conservation to address the biodiversity crisis, yet their reliability for species evaluation is uncertain. This study systematically validates five leading models on 21,955 species across four core IUCN Red List assessment components: taxonomy, conservation status, distribution, and threats. A critical paradox was revealed: models excelled at taxonomic classification (94.9%) but consistently failed at conservation reasoning (27.2% for status assessment). This knowledge-reasoning gap, evident across all models, suggests inherent architectural constraints, not just data limitations. Furthermore, models exhibited systematic biases favoring charismatic vertebrates, potentially amplifying existing conservation inequities. These findings delineate clear boundaries for responsible LLM deployment: they are powerful tools for information retrieval but require human oversight for judgment-based decisions. A hybrid approach is recommended, where LLMs augment expert capacity while human experts retain sole authority over risk assessment and policy.
comment: 20 pages, 7 figures
☆ NCV: A Node-Wise Consistency Verification Approach for Low-Cost Structured Error Localization in LLM Reasoning
Verifying multi-step reasoning in large language models is difficult due to imprecise error localization and high token costs. Existing methods either assess entire reasoning chains, suffering attention dilution, or rely on expensive multi-sampling. We introduce Node-wise Consistency Verification (NCV), a training-free framework that recasts verification as lightweight binary consistency checks at the node level. By decomposing the chain of thought into interconnected verification nodes, NCV precisely localizes errors and avoids unnecessary long-form generation. Experiments demonstrate that our approach enhances interpretability and efficiency, presenting a scalable solution for reliable LLM reasoning verification. On public datasets, NCV achieves a 10\% to 25\% improvement in F1 scores over baselines while utilizing $6\times$~$58\times$ fewer tokens than traditional methods like CoT-based verifiers.
☆ A Computational Framework for Interpretable Text-Based Personality Assessment from Social Media
Personality refers to individual differences in behavior, thinking, and feeling. With the growing availability of digital footprints, especially from social media, automated methods for personality assessment have become increasingly important. Natural language processing (NLP) enables the analysis of unstructured text data to identify personality indicators. However, two main challenges remain central to this thesis: the scarcity of large, personality-labeled datasets and the disconnect between personality psychology and NLP, which restricts model validity and interpretability. To address these challenges, this thesis presents two datasets -- MBTI9k and PANDORA -- collected from Reddit, a platform known for user anonymity and diverse discussions. The PANDORA dataset contains 17 million comments from over 10,000 users and integrates the MBTI and Big Five personality models with demographic information, overcoming limitations in data size, quality, and label coverage. Experiments on these datasets show that demographic variables influence model validity. In response, the SIMPA (Statement-to-Item Matching Personality Assessment) framework was developed - a computational framework for interpretable personality assessment that matches user-generated statements with validated questionnaire items. By using machine learning and semantic similarity, SIMPA delivers personality assessments comparable to human evaluations while maintaining high interpretability and efficiency. Although focused on personality assessment, SIMPA's versatility extends beyond this domain. Its model-agnostic design, layered cue detection, and scalability make it suitable for various research and practical applications involving complex label taxonomies and variable cue associations with target concepts.
comment: Phd thesis
☆ Dissecting Transformers: A CLEAR Perspective towards Green AI
The rapid adoption of Large Language Models (LLMs) has raised significant environmental concerns. Unlike the one-time cost of training, LLM inference occurs continuously at a global scale and now dominates the AI energy footprint. Yet, most sustainability studies report only coarse, model-level metrics due to the lack of fine-grained measurement methods, treating energy efficiency more as an afterthought than as a primary objective. We present the first fine-grained empirical analysis of inference energy across core components of transformer architecture. We propose a novel methodology, Component-Level Energy Assessment via Repeated sampling (CLEAR), to overcome temporal mismatch between microsecond scale component execution and monitoring of millisecond (ms) scale energy sensors. Using CLEAR, we evaluate 15 models spanning four distinct architecture types and consistently keep component-wise energy variance below 9.5\% while capturing more than 90\% of the model's total energy as individual components. Our empirical analysis reveals that Attention blocks consume significantly more energy per floating-point operation (FLOP), indicating that energy consumption is not proportionally aligned with FLOP counts. This shows that FLOPs alone fail to capture the true energy cost at a component level. Our findings establish detailed component-level energy baselines and provide insight as an initial step to build energy-efficient transformer models through component-level optimizations.
☆ Relevance-Aware Thresholding in Online Conformal Prediction for Time Series
Uncertainty quantification has received considerable interest in recent works in Machine Learning. In particular, Conformal Prediction (CP) gains ground in this field. For the case of time series, Online Conformal Prediction (OCP) becomes an option to address the problem of data distribution shift over time. Indeed, the idea of OCP is to update a threshold of some quantity (whether the miscoverage level or the quantile) based on the distribution observation. To evaluate the performance of OCP methods, two key aspects are typically considered: the coverage validity and the prediction interval width minimization. Recently, new OCP methods have emerged, offering long-run coverage guarantees and producing more informative intervals. However, during the threshold update step, most of these methods focus solely on the validity of the prediction intervals~--~that is, whether the ground truth falls inside or outside the interval~--~without accounting for their relevance. In this paper, we aim to leverage this overlooked aspect. Specifically, we propose enhancing the threshold update step by replacing the binary evaluation (inside/outside) with a broader class of functions that quantify the relevance of the prediction interval using the ground truth. This approach helps prevent abrupt threshold changes, potentially resulting in narrower prediction intervals. Indeed, experimental results on real-world datasets suggest that these functions can produce tighter intervals compared to existing OCP methods while maintaining coverage validity.
☆ Work Zones challenge VLM Trajectory Planning: Toward Mitigation and Robust Autonomous Driving
Visual Language Models (VLMs), with powerful multimodal reasoning capabilities, are gradually integrated into autonomous driving by several automobile manufacturers to enhance planning capability in challenging environments. However, the trajectory planning capability of VLMs in work zones, which often include irregular layouts, temporary traffic control, and dynamically changing geometric structures, is still unexplored. To bridge this gap, we conduct the \textit{first} systematic study of VLMs for work zone trajectory planning, revealing that mainstream VLMs fail to generate correct trajectories in $68.0%$ of cases. To better understand these failures, we first identify candidate patterns via subgraph mining and clustering analysis, and then confirm the validity of $8$ common failure patterns through human verification. Building on these findings, we propose REACT-Drive, a trajectory planning framework that integrates VLMs with Retrieval-Augmented Generation (RAG). Specifically, REACT-Drive leverages VLMs to convert prior failure cases into constraint rules and executable trajectory planning code, while RAG retrieves similar patterns in new scenarios to guide trajectory generation. Experimental results on the ROADWork dataset show that REACT-Drive yields a reduction of around $3\times$ in average displacement error relative to VLM baselines under evaluation with Qwen2.5-VL. In addition, REACT-Drive yields the lowest inference time ($0.58$s) compared with other methods such as fine-tuning ($17.90$s). We further conduct experiments using a real vehicle in 15 work zone scenarios in the physical world, demonstrating the strong practicality of REACT-Drive.
comment: 13 pages,5 figures
☆ OptunaHub: A Platform for Black-Box Optimization
Black-box optimization (BBO) drives advances in domains such as AutoML and Materials Informatics, yet research efforts often remain fragmented across domains. We introduce OptunaHub (https://hub.optuna.org/), a community platform that centralizes BBO methods and benchmarks. OptunaHub provides unified Python APIs, a contributor package registry, and a web interface to promote searchability and cross-domain research. OptunaHub aims to foster a virtuous cycle of contributions and applications. The source code is publicly available in the optunahub, optunahub-registry, and optunahub-web repositories under the Optuna organization on GitHub (https://github.com/optuna/).
comment: Submitted to Journal of machine learning research
☆ Pareto-optimal Non-uniform Language Generation
Kleinberg and Mullainathan (2024) recently proposed an interesting model for language generation in the limit: Given a countable collection of languages, and an adversary enumerating the strings of some language $L$ from the collection, the objective is to generate new strings from the target language, such that all strings generated beyond some finite time are valid. Li, Raman and Tewari (2024) and Charikar and Pabbaraju (2024) showed strong non-uniform generation guarantees in this model, giving algorithms that generate new valid strings from $L$ after seeing a number of distinct input strings $t(L)$ that depends only on $L$ (and the collection), but not the enumeration order. However, for both these works, the language-wise generation times $t(L)$ of the algorithm can be strictly sub-optimal. In this work, we study Pareto-optimality of non-uniform language generation in the limit. We propose an algorithm, whose generation times $t^\star(L)$ are (almost) Pareto-optimal: any other algorithm whose generation time for some language $L$ is strictly smaller than $t^\star(L)$, must satisfy that its generation time for some other language $L'$ is strictly worse than $t^\star(L')$. Pareto-optimality is essentially the best that one can achieve for non-uniform generation. Our algorithmic framework conveniently adapts to further give Pareto-optimal non-uniform generation algorithms in the practically motivated settings of noisy as well as representative generation.
comment: 24 pages, 1 figure
☆ MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .
comment: accepted to emnlp2025 findings
☆ Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.
comment: Project page: https://araseo.github.io/alignyourquery/
☆ Fusing Multi- and Hyperspectral Satellite Data for Harmful Algal Bloom Monitoring with Self-Supervised and Hierarchical Deep Learning
We present a self-supervised machine learning framework for detecting and mapping harmful algal bloom (HAB) severity and speciation using multi-sensor satellite data. By fusing reflectance data from operational instruments (VIIRS, MODIS, Sentinel-3, PACE) with TROPOMI solar-induced fluorescence (SIF), our framework, called SIT-FUSE, generates HAB severity and speciation products without requiring per-instrument labeled datasets. The framework employs self-supervised representation learning, hierarchical deep clustering to segment phytoplankton concentrations and speciations into interpretable classes, validated against in-situ data from the Gulf of Mexico and Southern California (2018-2025). Results show strong agreement with total phytoplankton, Karenia brevis, Alexandrium spp., and Pseudo-nitzschia spp. measurements. This work advances scalable HAB monitoring in label-scarce environments while enabling exploratory analysis via hierarchical embeddings: a critical step toward operationalizing self-supervised learning for global aquatic biogeochemistry.
☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
☆ Prototyping Digital Social Spaces through Metaphor-Driven Design: Translating Spatial Concepts into an Interactive Social Simulation
Social media platforms are central to communication, yet their designs remain narrowly focused on engagement and scale. While researchers have proposed alternative visions for online spaces, these ideas are difficult to prototype within platform constraints. In this paper, we introduce a metaphor-driven system to help users imagine and explore new social media environments. The system translates users' metaphors into structured sets of platform features and generates interactive simulations populated with LLM-driven agents. To evaluate this approach, we conducted a study where participants created and interacted with simulated social media spaces. Our findings show that metaphors allow users to express distinct social expectations, and that perceived authenticity of the simulation depended on how well it captured dynamics like intimacy, participation, and temporal engagement. We conclude by discussing how metaphor-driven simulation can be a powerful design tool for prototyping alternative social architectures and expanding the design space for future social platforms.
comment: 25 pages, in submission to CHI 2026
☆ SAE-RNA: A Sparse Autoencoder Model for Interpreting RNA Language Model Representations
Deep learning, particularly with the advancement of Large Language Models, has transformed biomolecular modeling, with protein advances (e.g., ESM) inspiring emerging RNA language models such as RiNALMo. Yet how and what these RNA Language Models internally encode about messenger RNA (mRNA) or non-coding RNA (ncRNA) families remains unclear. We present SAE- RNA, interpretability model that analyzes RiNALMo representations and maps them to known human-level biological features. Our work frames RNA interpretability as concept discovery in pretrained embeddings, without end-to-end retraining, and provides practical tools to probe what RNA LMs may encode about ncRNA families. The model can be extended to close comparisons between RNA groups, and supporting hypothesis generation about previously unrecognized relationships.
comment: preprint
☆ TravelBench : Exploring LLM Performance in Low-Resource Domains
Results on existing LLM benchmarks capture little information over the model capabilities in low-resource tasks, making it difficult to develop effective solutions in these domains. To address these challenges, we curated 14 travel-domain datasets spanning 7 common NLP tasks using anonymised data from real-world scenarios, and analysed the performance across LLMs. We report on the accuracy, scaling behaviour, and reasoning capabilities of LLMs in a variety of tasks. Our results confirm that general benchmarking results are insufficient for understanding model performance in low-resource tasks. Despite the amount of training FLOPs, out-of-the-box LLMs hit performance bottlenecks in complex, domain-specific scenarios. Furthermore, reasoning provides a more significant boost for smaller LLMs by making the model a better judge on certain tasks.
comment: 10 pages, 3 figures
☆ CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks
The rapid expansion of the Internet of Things (IoT) has revolutionized modern industries by enabling smart automation and real time connectivity. However, this evolution has also introduced complex cybersecurity challenges due to the heterogeneous, resource constrained, and distributed nature of these environments. To address these challenges, this research presents CST AFNet, a novel dual attention based deep learning framework specifically designed for robust intrusion detection in IoT networks. The model integrates multi scale Convolutional Neural Networks (CNNs) for spatial feature extraction, Bidirectional Gated Recurrent Units (BiGRUs) for capturing temporal dependencies, and a dual attention mechanism, channel and temporal attention, to enhance focus on critical patterns in the data. The proposed method was trained and evaluated on the Edge IIoTset dataset, a comprehensive and realistic benchmark containing more than 2.2 million labeled instances spanning 15 attack types and benign traffic, collected from a seven layer industrial testbed. Our proposed model achieves outstanding accuracy for both 15 attack types and benign traffic. CST AFNet achieves 99.97 percent accuracy. Moreover, this model demonstrates exceptional performance with macro averaged precision, recall, and F1 score all above 99.3 percent. Experimental results show that CST AFNet achieves superior detection accuracy, significantly outperforming traditional deep learning models. The findings confirm that CST AFNet is a powerful and scalable solution for real time cyber threat detection in complex IoT and IIoT environments, paving the way for more secure, intelligent, and adaptive cyber physical systems.
comment: 9 pages, 9 figures, 5 tables
☆ A $1000\times$ Faster LLM-enhanced Algorithm For Path Planning in Large-scale Grid Maps
Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6\%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}
☆ Fully automated inverse co-optimization of templates and block copolymer blending recipes for DSA lithography
The directed self-assembly (DSA) of block copolymers (BCPs) offers a highly promising approach for the fabrication of contact holes or vertical interconnect access at sub-7nm technology nodes. To fabricate circular holes with precisely controlled size and positions, the self-assembly of block copolymers requires guidance from a properly designed template. Effectively parameterizing the template shape to enable efficient optimization remains a critical yet challenging problem. Moreover, the optimized template must possess excellent manufacturability for practical applications. In this work, we propose a Gaussian descriptor for characterizing the template shape with only two parameters. We further propose to use AB/AB binary blends instead of pure diblock copolymer to improve the adaptability of the block copolymer system to the template shape. The Bayesian optimization (BO) is applied to co-optimize the binary blend and the template shape. Our results demonstrate that BO based on the Gaussian descriptor can efficiently yield the optimal templates for diverse multi-hole patterns, all leading to highly matched self-assembled morphologies. Moreover, by imposing constraints on the variation of curvature of the template during optimization, superior manufacturability is ensured for each optimized template. It is noteworthy that each key parameter of the blend exhibits a relatively wide tunable window under the requirement of rather high precision. Our work provides valuable insights for advancing DSA technology, and thus potentially propels its practical applications forward.
☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present the first comprehensive survival analysis of conversational AI robustness, analyzing 36,951 conversation turns across 9 state-of-the-art LLMs to model failure as a time-to-event process. Our survival modeling framework-employing Cox proportional hazards, Accelerated Failure Time, and Random Survival Forest approaches-reveals extraordinary temporal dynamics. We find that abrupt, prompt-to-prompt(P2P) semantic drift is catastrophic, dramatically increasing the hazard of conversational failure. In stark contrast, gradual, cumulative drift is highly protective, vastly reducing the failure hazard and enabling significantly longer dialogues. AFT models with interactions demonstrate superior performance, achieving excellent discrimination and exceptional calibration. These findings establish survival analysis as a powerful paradigm for evaluating LLM robustness, offer concrete insights for designing resilient conversational agents, and challenge prevailing assumptions about the necessity of semantic consistency in conversational AI Systems.
☆ A Novel Unified Lightweight Temporal-Spatial Transformer Approach for Intrusion Detection in Drone Networks
The growing integration of drones across commercial, industrial, and civilian domains has introduced significant cybersecurity challenges, particularly due to the susceptibility of drone networks to a wide range of cyberattacks. Existing intrusion detection mechanisms often lack the adaptability, efficiency, and generalizability required for the dynamic and resource constrained environments in which drones operate. This paper proposes TSLT-Net, a novel lightweight and unified Temporal Spatial Transformer based intrusion detection system tailored specifically for drone networks. By leveraging self attention mechanisms, TSLT-Net effectively models both temporal patterns and spatial dependencies in network traffic, enabling accurate detection of diverse intrusion types. The framework includes a streamlined preprocessing pipeline and supports both multiclass attack classification and binary anomaly detection within a single architecture. Extensive experiments conducted on the ISOT Drone Anomaly Detection Dataset, consisting of more than 2.3 million labeled records, demonstrate the superior performance of TSLT-Net with 99.99 percent accuracy in multiclass detection and 100 percent in binary anomaly detection, while maintaining a minimal memory footprint of only 0.04 MB and 9722 trainable parameters. These results establish TSLT-Net as an effective and scalable solution for real time drone cybersecurity, particularly suitable for deployment on edge devices in mission critical UAV systems.
comment: 21 pages, 18 figures, 5 tables
☆ RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization ICLR 2026
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value conservatism and restricted policy classes, whereas expressive policies are only used in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)} framework, which couples an \emph{expressive generative actor} with a distributional critic. The RAMAC differentiates composite objective combining distributional risk and BC loss through the generative path, achieving risk-sensitive learning in complex multimodal scenarios. We instantiate RAMAC with diffusion and flow-matching actors and observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns on most Stochastic-D4RL tasks. Code: https://github.com/KaiFukazawa/RAMAC.git
comment: Under review as a conference paper at ICLR 2026, 21 pages, 8 figures. The HTML preview may misrender some figures; please refer to the PDF
☆ Fine-Tuning Diffusion Models via Intermediate Distribution Shaping
Diffusion models are widely used for generative tasks across domains. While pre-trained diffusion models effectively capture the training data distribution, it is often desirable to shape these distributions using reward functions to align with downstream applications. Policy gradient methods, such as Proximal Policy Optimization (PPO), are widely used in the context of autoregressive generation. However, the marginal likelihoods required for such methods are intractable for diffusion models, leading to alternative proposals and relaxations. In this context, we unify variants of Rejection sAmpling based Fine-Tuning (RAFT) as GRAFT, and show that this implicitly performs PPO with reshaped rewards. We then introduce P-GRAFT to shape distributions at intermediate noise levels and demonstrate empirically that this can lead to more effective fine-tuning. We mathematically explain this via a bias-variance tradeoff. Motivated by this, we propose inverse noise correction to improve flow models without leveraging explicit rewards. We empirically evaluate our methods on text-to-image(T2I) generation, layout generation, molecule generation and unconditional image generation. Notably, our framework, applied to Stable Diffusion 2, improves over policy gradient methods on popular T2I benchmarks in terms of VQAScore and shows an $8.81\%$ relative improvement over the base model. For unconditional image generation, inverse noise correction improves FID of generated images at lower FLOPs/image.
☆ Can Data-Driven Dynamics Reveal Hidden Physics? There Is A Need for Interpretable Neural Operators
Recently, neural operators have emerged as powerful tools for learning mappings between function spaces, enabling data-driven simulations of complex dynamics. Despite their successes, a deeper understanding of their learning mechanisms remains underexplored. In this work, we classify neural operators into two types: (1) Spatial domain models that learn on grids and (2) Functional domain models that learn with function bases. We present several viewpoints based on this classification and focus on learning data-driven dynamics adhering to physical principles. Specifically, we provide a way to explain the prediction-making process of neural operators and show that neural operator can learn hidden physical patterns from data. However, this explanation method is limited to specific situations, highlighting the urgent need for generalizable explanation methods. Next, we show that a simple dual-space multi-scale model can achieve SOTA performance and we believe that dual-space multi-spatio-scale models hold significant potential to learn complex physics and require further investigation. Lastly, we discuss the critical need for principled frameworks to incorporate known physics into neural operators, enabling better generalization and uncovering more hidden physical phenomena.
☆ Automated Constraint Specification for Job Scheduling by Regulating Generative Model with Domain-Specific Representation
Advanced Planning and Scheduling (APS) systems have become indispensable for modern manufacturing operations, enabling optimized resource allocation and production efficiency in increasingly complex and dynamic environments. While algorithms for solving abstracted scheduling problems have been extensively investigated, the critical prerequisite of specifying manufacturing requirements into formal constraints remains manual and labor-intensive. Although recent advances of generative models, particularly Large Language Models (LLMs), show promise in automating constraint specification from heterogeneous raw manufacturing data, their direct application faces challenges due to natural language ambiguity, non-deterministic outputs, and limited domain-specific knowledge. This paper presents a constraint-centric architecture that regulates LLMs to perform reliable automated constraint specification for production scheduling. The architecture defines a hierarchical structural space organized across three levels, implemented through domain-specific representation to ensure precision and reliability while maintaining flexibility. Furthermore, an automated production scenario adaptation algorithm is designed and deployed to efficiently customize the architecture for specific manufacturing configurations. Experimental results demonstrate that the proposed approach successfully balances the generative capabilities of LLMs with the reliability requirements of manufacturing systems, significantly outperforming pure LLM-based approaches in constraint specification tasks.
comment: Accepted for publication in IEEE Transactions on Automation Science and Engineering
☆ ARMs: Adaptive Red-Teaming Agent against Multimodal Models with Plug-and-Play Attacks
As vision-language models (VLMs) gain prominence, their multimodal interfaces also introduce new safety vulnerabilities, making the safety evaluation challenging and critical. Existing red-teaming efforts are either restricted to a narrow set of adversarial patterns or depend heavily on manual engineering, lacking scalable exploration of emerging real-world VLM vulnerabilities. To bridge this gap, we propose ARMs, an adaptive red-teaming agent that systematically conducts comprehensive risk assessments for VLMs. Given a target harmful behavior or risk definition, ARMs automatically optimizes diverse red-teaming strategies with reasoning-enhanced multi-step orchestration, to effectively elicit harmful outputs from target VLMs. We propose 11 novel multimodal attack strategies, covering diverse adversarial patterns of VLMs (e.g., reasoning hijacking, contextual cloaking), and integrate 17 red-teaming algorithms into ARMs via model context protocol (MCP). To balance the diversity and effectiveness of the attack, we design a layered memory with an epsilon-greedy attack exploration algorithm. Extensive experiments on instance- and policy-based benchmarks show that ARMs achieves SOTA attack success rates, exceeding baselines by an average of 52.1% and surpassing 90% on Claude-4-Sonnet. We show that the diversity of red-teaming instances generated by ARMs is significantly higher, revealing emerging vulnerabilities in VLMs. Leveraging ARMs, we construct ARMs-Bench, a large-scale multimodal safety dataset comprising over 30K red-teaming instances spanning 51 diverse risk categories, grounded in both real-world multimodal threats and regulatory risks. Safety fine-tuning with ARMs-Bench substantially improves the robustness of VLMs while preserving their general utility, providing actionable guidance to improve multimodal safety alignment against emerging threats.
comment: 60 pages, 16 figures
☆ To Compress or Not? Pushing the Frontier of Lossless GenAI Model Weights Compression with Exponent Concentration
The scaling of Generative AI (GenAI) models into the hundreds of billions of parameters makes low-precision computation indispensable for efficient deployment. We argue that the fundamental solution lies in developing low-precision floating-point formats, which inherently provide numerical stability, memory savings, and hardware efficiency without dequantization overhead. In this paper, we present a theoretical and empirical study of an exponent concentration phenomenon in GenAI weights: exponents consistently exhibit low entropy across architectures and modalities. We show that this arises naturally from $\alpha$-stable distributions induced by stochastic gradient descent, and we prove tight bounds on the entropy of exponents. Our analysis establishes a theoretical compression limit near FP4.67, which motivates the design of a practical FP8 format. Building on these insights, we propose Exponent-Concentrated FP8 (ECF8), a lossless compression framework with entropy-aware encoding and GPU-optimized decoding. Experiments on LLMs and DiTs up to 671B parameters demonstrate up to 26.9% memory savings and 177.1% throughput acceleration, with perfectly lossless computations, i.e., no deviation in model outputs. Our results establish exponent concentration as a statistical law of trained models and open a principled path for lossless low-precision floating-point design in the FP8 era.
☆ HALO: Memory-Centric Heterogeneous Accelerator with 2.5D Integration for Low-Batch LLM Inference
The rapid adoption of Large Language Models (LLMs) has driven a growing demand for efficient inference, particularly in latency-sensitive applications such as chatbots and personalized assistants. Unlike traditional deep neural networks, LLM inference proceeds in two distinct phases: the prefill phase, which processes the full input sequence in parallel, and the decode phase, which generates tokens sequentially. These phases exhibit highly diverse compute and memory requirements, which makes accelerator design particularly challenging. Prior works have primarily been optimized for high-batch inference or evaluated only short input context lengths, leaving the low-batch and long context regime, which is critical for interactive applications, largely underexplored. We propose HALO, a heterogeneous memory centric accelerator designed for these unique challenges of prefill and decode phases in low-batch LLM inference. HALO integrates HBM based Compute-in-DRAM (CiD) with an on-chip analog Compute-in-Memory (CiM), co-packaged using 2.5D integration. To further improve the hardware utilization, we introduce a phase-aware mapping strategy that adapts to the distinct demands of the prefill and decode phases. Compute bound operations in the prefill phase are mapped to CiM to exploit its high throughput matrix multiplication capability, while memory-bound operations in the decode phase are executed on CiD to benefit from reduced data movement within DRAM. Additionally, we present an analysis of the performance tradeoffs of LLMs under two architectural extremes: a fully CiD and a fully on-chip analog CiM design to highlight the need for a heterogeneous design. We evaluate HALO on LLaMA-2 7B and Qwen3 8B models. Our experimental results show that LLMs mapped to HALO achieve up to 18x geometric mean speedup over AttAcc, an attention-optimized mapping and 2.5x over CENT, a fully CiD based mapping.
☆ AutoMaAS: Self-Evolving Multi-Agent Architecture Search for Large Language Models
Multi-agent systems powered by large language models have demonstrated remarkable capabilities across diverse domains, yet existing automated design approaches seek monolithic solutions that fail to adapt resource allocation based on query complexity and domain requirements. This paper introduces AutoMaAS, a self-evolving multi-agent architecture search framework that leverages neural architecture search principles to automatically discover optimal agent configurations through dynamic operator lifecycle management and automated machine learning techniques. Our approach incorporates four key innovations: (1) automatic operator generation, fusion, and elimination based on performance-cost analysis, (2) dynamic cost-aware optimization with real-time parameter adjustment, (3) online feedback integration for continuous architecture refinement, and (4) enhanced interpretability through decision tracing mechanisms. Extensive experiments across six benchmarks demonstrate that AutoMaAS achieves 1.0-7.1\% performance improvement while reducing inference costs by 3-5\% compared to state-of-the-art methods. The framework shows superior transferability across datasets and LLM backbones, establishing a new paradigm for automated multi-agent system design in the era of large language models.
☆ AgenticRAG: Tool-Augmented Foundation Models for Zero-Shot Explainable Recommender Systems
Foundation models have revolutionized artificial intelligence, yet their application in recommender systems remains limited by reasoning opacity and knowledge constraints. This paper introduces AgenticRAG, a novel framework that combines tool-augmented foundation models with retrieval-augmented generation for zero-shot explainable recommendations. Our approach integrates external tool invocation, knowledge retrieval, and chain-of-thought reasoning to create autonomous recommendation agents capable of transparent decision-making without task-specific training. Experimental results on three real-world datasets demonstrate that AgenticRAG achieves consistent improvements over state-of-the-art baselines, with NDCG@10 improvements of 0.4\% on Amazon Electronics, 0.8\% on MovieLens-1M, and 1.6\% on Yelp datasets. The framework exhibits superior explainability while maintaining computational efficiency comparable to traditional methods.
☆ TutorBench: A Benchmark To Assess Tutoring Capabilities Of Large Language Models
As students increasingly adopt large language models (LLMs) as learning aids, it is crucial to build models that are adept at handling the nuances of tutoring: they need to identify the core needs of students, be adaptive, provide personalized guidance, and be accurate. To this end, we introduce TutorBench, a dataset and evaluation benchmark designed to rigorously evaluate the core tutoring skills of LLMs. The dataset comprises 1,490 samples curated by human experts, focused on high-school and AP-level curricula. The samples are drawn from three common tutoring tasks: (i) generating adaptive explanations tailored to a student's confusion, (ii) providing actionable feedback on a student's work, and (iii) promoting active learning through effective hint generation. To account for the inherent complexity of tutoring, samples are accompanied by sample-specific rubrics which are used to judge model responses during evaluation. TutorBench uses a reliable and fine-grained automatic evaluation method that uses an LLM-judge and the sample-specific rubrics. We evaluate 16 frontier LLMs on TutorBench and present a detailed analysis of their performance and behavior. Our results show that none of the frontier LLMs achieve a score of greater than $56\%$, showing a large room for improvement. We find that LLMs fall short in exhibiting the full range of tutoring skills needed to guide, diagnose, and support students effectively, with all the frontier models achieving less than a $60\%$ pass rate on rubric criteria related to these skills. We also find that different model families exhibit varied strengths and limitations: the Claude models outperform others in supporting active learning, while they lag behind in the other two use cases. By releasing TutorBench, we provide a comprehensive and unsaturated benchmark to guide the development of the next-generation of AI tutors.
☆ When Researchers Say Mental Model/Theory of Mind of AI, What Are They Really Talking About?
When researchers claim AI systems possess ToM or mental models, they are fundamentally discussing behavioral predictions and bias corrections rather than genuine mental states. This position paper argues that the current discourse conflates sophisticated pattern matching with authentic cognition, missing a crucial distinction between simulation and experience. While recent studies show LLMs achieving human-level performance on ToM laboratory tasks, these results are based only on behavioral mimicry. More importantly, the entire testing paradigm may be flawed in applying individual human cognitive tests to AI systems, but assessing human cognition directly in the moment of human-AI interaction. I suggest shifting focus toward mutual ToM frameworks that acknowledge the simultaneous contributions of human cognition and AI algorithms, emphasizing the interaction dynamics, instead of testing AI in isolation.
☆ A Concept of Possibility for Real-World Events
This paper offers a new concept of {\it possibility} as an alternative to the now-a-days standard concept originally introduced by L.A. Zadeh in 1978. This new version was inspired by the original but, formally, has nothing in common with it other than that they both adopt the {\L}ukasiewicz multivalent interpretation of the logical connectives. Moreover, rather than seeking to provide a general notion of possibility, this focuses specifically on the possibility of a real-world event. An event is viewed as having prerequisites that enable its occurrence and constraints that may impede its occurrence, and the possibility of the event is computed as a function of the probabilities that the prerequisites hold and the constraints do not. This version of possibility might appropriately be applied to problems of planning. When there are multiple plans available for achieving a goal, this theory can be used to determine which plan is most possible, i.e., easiest or most feasible to complete. It is speculated that this model of reasoning correctly captures normal human reasoning about plans. The theory is elaborated and an illustrative example for vehicle route planning is provided. There is also a suggestion of potential future applications.
☆ Geolog-IA: Conversational System for Academic Theses
This study presents the development of Geolog-IA, a novel conversational system based on artificial intelligence that responds naturally to questions about geology theses from the Central University of Ecuador. Our proposal uses the Llama 3.1 and Gemini 2.5 language models, which are complemented by a Retrieval Augmented Generation (RAG) architecture and an SQLite database. This strategy allows us to overcome problems such as hallucinations and outdated knowledge. The evaluation of Geolog-IA's performance with the BLEU metric reaches an average of 0.87, indicating high consistency and accuracy in the responses generated. The system offers an intuitive, web-based interface that facilitates interaction and information retrieval for directors, teachers, students, and administrative staff at the institution. This tool can be a key support in education, training, and research and establishes a basis for future applications in other disciplines.
comment: 17 pages, in Spanish language
☆ Automatic Building Code Review: A Case Study
Building officials, particularly those in resource-constrained or rural jurisdictions, face labor-intensive, error-prone, and costly manual reviews of design documents as projects increase in size and complexity. The growing adoption of Building Information Modeling (BIM) and Large Language Models (LLMs) presents opportunities for automated code review (ACR) solutions. This study introduces a novel agent-driven framework that integrates BIM-based data extraction with automated verification using both retrieval-augmented generation (RAG) and Model Context Protocol (MCP) agent pipelines. The framework employs LLM-enabled agents to extract geometry, schedules, and system attributes from heterogeneous file types, which are then processed for building code checking through two complementary mechanisms: (1) direct API calls to the US Department of Energy COMcheck engine, providing deterministic and audit-ready outputs, and (2) RAG-based reasoning over rule provisions, enabling flexible interpretation where coverage is incomplete or ambiguous. The framework was evaluated through case demonstrations, including automated extraction of geometric attributes (such as surface area, tilt, and insulation values), parsing of operational schedules, and validation of lighting allowances under ASHRAE Standard 90.1-2022. Comparative performance tests across multiple LLMs showed that GPT-4o achieved the best balance of efficiency and stability, while smaller models exhibited inconsistencies or failures. Results confirm that MCP agent pipelines outperform RAG reasoning pipelines in rigor and reliability. This work advances ACR research by demonstrating a scalable, interoperable, and production-ready approach that bridges BIM with authoritative code review tools.
☆ A Trajectory Generator for High-Density Traffic and Diverse Agent-Interaction Scenarios
Accurate trajectory prediction is fundamental to autonomous driving, as it underpins safe motion planning and collision avoidance in complex environments. However, existing benchmark datasets suffer from a pronounced long-tail distribution problem, with most samples drawn from low-density scenarios and simple straight-driving behaviors. This underrepresentation of high-density scenarios and safety critical maneuvers such as lane changes, overtaking and turning is an obstacle to model generalization and leads to overly optimistic evaluations. To address these challenges, we propose a novel trajectory generation framework that simultaneously enhances scenarios density and enriches behavioral diversity. Specifically, our approach converts continuous road environments into a structured grid representation that supports fine-grained path planning, explicit conflict detection, and multi-agent coordination. Built upon this representation, we introduce behavior-aware generation mechanisms that combine rule-based decision triggers with Frenet-based trajectory smoothing and dynamic feasibility constraints. This design allows us to synthesize realistic high-density scenarios and rare behaviors with complex interactions that are often missing in real data. Extensive experiments on the large-scale Argoverse 1 and Argoverse 2 datasets demonstrate that our method significantly improves both agent density and behavior diversity, while preserving motion realism and scenario-level safety. Our synthetic data also benefits downstream trajectory prediction models and enhances performance in challenging high-density scenarios.
♻ ☆ LLAMAFUZZ: Large Language Model Enhanced Greybox Fuzzing
Greybox fuzzing has achieved success in revealing bugs and vulnerabilities in programs. However, randomized mutation strategies have limited the fuzzer's performance on structured data. Specialized fuzzers can handle complex structured data, but require additional efforts in grammar and suffer from low throughput. In this paper, we explore the potential of utilizing the Large Language Model to enhance greybox fuzzing for structured data. We utilize the pre-trained knowledge of LLM about data conversion and format to generate new valid inputs. We further fine-tuned it with paired mutation seeds to learn structured format and mutation strategies effectively. Our LLM-based fuzzer, LLAMAFUZZ, integrates the power of LLM to understand and mutate structured data to fuzzing. We conduct experiments on the standard bug-based benchmark Magma and a wide variety of real-world programs. LLAMAFUZZ outperforms our top competitor by 41 bugs on average. We also identified 47 unique bugs across all trials. Moreover, LLAMAFUZZ demonstrated consistent performance on both bug trigger and bug reached. Compared to AFL++, LLAMAFUZZ achieved 27.19% more branches in real-world program sets on average. We also demonstrate a case study to explain how LLMs enhance the fuzzing process in terms of code coverage.
♻ ☆ MobiLLM: An Agentic AI Framework for Closed-Loop Threat Mitigation in 6G Open RANs
The evolution toward 6G networks is being accelerated by the Open Radio Access Network (O-RAN) paradigm -- an open, interoperable architecture that enables intelligent, modular applications across public telecom and private enterprise domains. While this openness creates unprecedented opportunities for innovation, it also expands the attack surface, demanding resilient, low-cost, and autonomous security solutions. Legacy defenses remain largely reactive, labor-intensive, and inadequate for the scale and complexity of next-generation systems. Current O-RAN applications focus mainly on network optimization or passive threat detection, with limited capability for closed-loop, automated response. To address this critical gap, we present an agentic AI framework for fully automated, end-to-end threat mitigation in 6G O-RAN environments. MobiLLM orchestrates security workflows through a modular multi-agent system powered by Large Language Models (LLMs). The framework features a Threat Analysis Agent for real-time data triage, a Threat Classification Agent that uses Retrieval-Augmented Generation (RAG) to map anomalies to specific countermeasures, and a Threat Response Agent that safely operationalizes mitigation actions via O-RAN control interfaces. Grounded in trusted knowledge bases such as the MITRE FiGHT framework and 3GPP specifications, and equipped with robust safety guardrails, MobiLLM provides a blueprint for trustworthy AI-driven network security. Initial evaluations demonstrate that MobiLLM can effectively identify and orchestrate complex mitigation strategies, significantly reducing response latency and showcasing the feasibility of autonomous security operations in 6G.
♻ ☆ Controlled Generation with Equivariant Variational Flow Matching
We derive a controlled generation objective within the framework of Variational Flow Matching (VFM), which casts flow matching as a variational inference problem. We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem, enabling post hoc control of unconditional models without retraining. Furthermore, we establish the conditions required for equivariant generation and provide an equivariant formulation of VFM tailored for molecular generation, ensuring invariance to rotations, translations, and permutations. We evaluate our approach on both uncontrolled and controlled molecular generation, achieving state-of-the-art performance on uncontrolled generation and outperforming state-of-the-art models in controlled generation, both with end-to-end training and in the Bayesian inference setting. This work strengthens the connection between flow-based generative modeling and Bayesian inference, offering a scalable and principled framework for constraint-driven and symmetry-aware generation.
♻ ☆ MIRROR: Modular Internal Processing for Personalized Safety in LLM Dialogue
Large language models frequently generate harmful recommendations in personal multi-turn dialogue by ignoring user-specific safety context, exhibiting sycophantic agreement, and compromising user safety for larger group preferences. We introduce MIRROR, a modular production-focused architecture that prevents these failures through a persistent, bounded internal state that preserves personal conversational information across conversational turns. Our dual-component design inspired by Dual Process Theory separates immediate response generation (Talker) from asynchronous deliberative processing (Thinker), which synthesizes parallel reasoning threads between turns with marginal latency. On the CuRaTe personalized safety benchmark, MIRROR-augmented models achieve a 21% relative improvement (69% to 84%) across seven diverse frontier models, with open-source Llama 4 and Mistral 3 variants surpassing both GPT-4o and Claude 3.7 Sonnet at only \$0.0028 to \$0.0172 additional cost per turn, narrowing the gap between affordable open-source models to frontier systems in the safety space. The modular architecture enables flexible deployment: full internal processing for affordable models or single-component configurations for expensive systems, democratizing access to safer, personalized AI.
♻ ☆ FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods -- whether sparse or dense -- often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 26K expert-annotated examples on S&P-500 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance.
comment: 6 pages
♻ ☆ Tuning LLM-based Code Optimization via Meta-Prompting: An Industrial Perspective
There is a growing interest in leveraging multiple large language models (LLMs) for automated code optimization. However, industrial platforms deploying multiple LLMs face a critical challenge: prompts optimized for one LLM often fail with others, requiring expensive model-specific prompt engineering. This cross-model prompt engineering bottleneck severely limits the practical deployment of multi-LLM systems in production environments. We introduce Meta-Prompted Code Optimization (MPCO), a framework that automatically generates high-quality, task-specific prompts across diverse LLMs while maintaining industrial efficiency requirements. MPCO leverages metaprompting to dynamically synthesize context-aware optimization prompts by integrating project metadata, task requirements, and LLM-specific contexts. It is an essential part of the ARTEMIS code optimization platform for automated validation and scaling. Our comprehensive evaluation on five real-world codebases with 366 hours of runtime benchmarking demonstrates MPCO's effectiveness: it achieves overall performance improvements up to 19.06% with the best statistical rank across all systems compared to baseline methods. Analysis shows that 96% of the top-performing optimizations stem from meaningful edits. Through systematic ablation studies and meta-prompter sensitivity analysis, we identify that comprehensive context integration is essential for effective meta-prompting and that major LLMs can serve effectively as meta-prompters, providing actionable insights for industrial practitioners.
comment: Accepted by ASE'25 Industry Showcase
♻ ☆ Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
The rapid advancement of language models has demonstrated the potential of artificial intelligence in the healthcare industry. However, small language models struggle with specialized domains in low-resource languages like Persian. While numerous medical-domain websites exist in Persian, no curated dataset or corpus has been available making ours the first of its kind. This study introduces a newly curated dataset comprising 20k doctor-patient Q\&A pairs and 60\% of a 90-million-token crawled corpus from medical magazines. Using a parameter-efficient fine-tuning approach, we enhanced the medical knowledge of the baseline model, aya-expanse-8b. Benchmark evaluations demonstrate that the fine-tuned model achieves improved accuracy in medical question answering and successfully passed the Iranian Basic Medical Science Entrance Exam (IBSEE) in September 2023, which the baseline model did not. Additionally, the fine-tuned model improved Persian-translated MMLU accuracy by an average of 2.67\%. This work highlights the potential of leveraging open-access online data to enrich small language models in medical fields, providing a novel solution for Persian medical AI applications suitable for resource-constrained environments. Future research could explore multimodal input to further enhance performance.
comment: 8 pages, 7 figures
♻ ☆ Putnam-like dataset summary: LLMs as mathematical competition contestants
In this paper we summarize the results of the Putnam-like benchmark published by Google DeepMind. This dataset consists of 96 original problems in the spirit of the Putnam Competition and 576 solutions of LLMs. We analyse the performance of models on this set of problems to verify their ability to solve problems from mathematical contests.
comment: 11 pages, 11 figures
♻ ☆ RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives EMNLP 2025
Recent video generative models primarily rely on carefully written text prompts for specific tasks, like inpainting or style editing. They require labor-intensive textual descriptions for input videos, hindering their flexibility to adapt personal/raw videos to user specifications. This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework that supports multiple video editing capabilities such as removal, addition, and modification, through a unified pipeline. RACCooN consists of two principal stages: Video-to-Paragraph (V2P) and Paragraph-to-Video (P2V). In the V2P stage, we automatically describe video scenes in well-structured natural language, capturing both the holistic context and focused object details. Subsequently, in the P2V stage, users can optionally refine these descriptions to guide the video diffusion model, enabling various modifications to the input video, such as removing, changing subjects, and/or adding new objects. The proposed approach stands out from other methods through several significant contributions: (1) RACCooN suggests a multi-granular spatiotemporal pooling strategy to generate well-structured video descriptions, capturing both the broad context and object details without requiring complex human annotations, simplifying precise video content editing based on text for users. (2) Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content. (3) RACCooN also plans to imagine new objects in a given video, so users simply prompt the model to receive a detailed video editing plan for complex video editing. The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
comment: EMNLP 2025 main; The first two authors contribute equally. Project Page: https://raccoon-mllm-gen.github.io/
♻ ☆ Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Experiments
Large language models (LLMs) are increasingly used to simulate or automate human behavior in complex sequential decision-making settings. A natural question is then whether LLMs exhibit similar decision-making behavior to humans, and can achieve comparable (or superior) performance. In this work, we focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty. We employ canonical multi-armed bandit (MAB) experiments introduced in the cognitive science and psychiatry literature to conduct a comparative study of the E&E strategies of LLMs, humans, and MAB algorithms. We use interpretable choice models to capture the E&E strategies of the agents and investigate how enabling thinking traces, through both prompting strategies and thinking models, shapes LLM decision-making. We find that enabling thinking in LLMs shifts their behavior toward more human-like behavior, characterized by a mix of random and directed exploration. In a simple stationary setting, thinking-enabled LLMs exhibit similar levels of random and directed exploration compared to humans. However, in more complex, non-stationary environments, LLMs struggle to match human adaptability, particularly in effective directed exploration, despite achieving similar regret in certain scenarios. Our findings highlight both the promise and limits of LLMs as simulators of human behavior and tools for automated decision-making and point to potential areas for improvement.
♻ ☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
♻ ☆ jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking
jina-reranker-v3 is a 0.6B-parameter multilingual listwise reranker that introduces a novel "last but not late" interaction. Unlike late interaction models like ColBERT that encode documents separately before multi-vector matching, our approach applies causal attention between the query and all candidate documents in the same context window, enabling rich interactions before extracting contextual embeddings from each document's final token. The new model achieves state-of-the-art BEIR performance with 61.94 nDCG@10 while being significantly smaller than other models with comparable performance.
comment: early draft, CodeIR table needs to be updated (qwen baselines are missing)
♻ ☆ Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs ACL 2025
Multi-head Latent Attention (MLA) is an innovative architecture proposed by DeepSeek, designed to ensure efficient and economical inference by significantly compressing the Key-Value (KV) cache into a latent vector. Compared to MLA, standard LLMs employing Multi-Head Attention (MHA) and its variants such as Grouped-Query Attention (GQA) exhibit significant cost disadvantages. Enabling well-trained LLMs (e.g., Llama) to rapidly adapt to MLA without pre-training from scratch is both meaningful and challenging. This paper proposes the first data-efficient fine-tuning method for transitioning from MHA to MLA (MHA2MLA), which includes two key components: for partial-RoPE, we remove RoPE from dimensions of queries and keys that contribute less to the attention scores, for low-rank approximation, we introduce joint SVD approximations based on the pre-trained parameters of keys and values. These carefully designed strategies enable MHA2MLA to recover performance using only a small fraction (0.3% to 0.6%) of the data, significantly reducing inference costs while seamlessly integrating with compression techniques such as KV cache quantization. For example, the KV cache size of Llama2-7B is reduced by 92.19%, with only a 0.5% drop in LongBench performance.
comment: 16 pages, 8 figures; Accepted to ACL 2025
Less is More: Lean yet Powerful Vision-Language Model for Autonomous Driving
In this work, we reconceptualize autonomous driving as a generalized language and formulate the trajectory planning task as next waypoint prediction. We introduce Max-V1, a novel framework for one-stage end-to-end autonomous driving. Our framework presents a single-pass generation paradigm that aligns with the inherent sequentiality of driving. This approach leverages the generative capacity of the VLM (Vision-Language Model) to enable end-to-end trajectory prediction directly from front-view camera input. The efficacy of this method is underpinned by a principled supervision strategy derived from statistical modeling. This provides a well-defined learning objective, which makes the framework highly amenable to master complex driving policies through imitation learning from large-scale expert demonstrations. Empirically, our method achieves the state-of-the-art performance on the nuScenes dataset, delivers an overall improvement of over 30% compared to prior baselines. Furthermore, it exhibits superior generalization performance on cross-domain datasets acquired from diverse vehicles, demonstrating notable potential for cross-vehicle robustness and adaptability. Due to these empirical strengths, this work introduces a model enabling fundamental driving behaviors, laying the foundation for the development of more capable self-driving agents. Code will be available upon publication.
♻ ☆ Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.
♻ ☆ Efficient & Correct Predictive Equivalence for Decision Trees
The Rashomon set of decision trees (DTs) finds importance uses. Recent work showed that DTs computing the same classification function, i.e. predictive equivalent DTs, can represent a significant fraction of the Rashomon set. Such redundancy is undesirable. For example, feature importance based on the Rashomon set becomes inaccurate due the existence of predictive equivalent DTs, i.e. DTs with the same prediction for every possible input. In recent work, McTavish et al. proposed solutions for several computational problems related with DTs, including that of deciding predictive equivalent DTs. The approach of McTavish et al. consists of applying the well-known method of Quine-McCluskey (QM) for obtaining minimum-size DNF (disjunctive normal form) representations of DTs, which are then used for comparing DTs for predictive equivalence. Furthermore, the minimum-size DNF representation was also applied to computing explanations for the predictions made by DTs, and to finding predictions in the presence of missing data. However, the problem of formula minimization is hard for the second level of the polynomial hierarchy, and the QM method may exhibit worst-case exponential running time and space. This paper first demonstrates that there exist decision trees that trigger the worst-case exponential running time and space of the QM method. Second, the paper shows that the QM method may incorrectly decide predictive equivalence, if two key constraints are not respected, and one may be difficult to formally guarantee. Third, the paper shows that any of the problems to which the smallest DNF representation has been applied to can be solved in polynomial time, in the size of the DT. The experiments confirm that, for DTs for which the worst-case of the QM method is triggered, the algorithms proposed in this paper are orders of magnitude faster than the ones proposed by McTavish et al.
♻ ☆ RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.
♻ ☆ Permissioned LLMs: Enforcing Access Control in Large Language Models
In enterprise settings, organizational data is segregated, siloed and carefully protected by elaborate access control frameworks. These access control structures can completely break down if an LLM fine-tuned on the siloed data serves requests, for downstream tasks, from individuals with disparate access privileges. We propose Permissioned LLMs (PermLLM), a new class of LLMs that superimpose the organizational data access control structures on query responses they generate. We formalize abstractions underpinning the means to determine whether access control enforcement happens correctly over LLM query responses. Our formalism introduces the notion of a relevant response that can be used to prove whether a PermLLM mechanism has been implemented correctly. We also introduce a novel metric, called access advantage, to empirically evaluate the efficacy of a PermLLM mechanism. We introduce three novel PermLLM mechanisms that build on Parameter Efficient Fine-Tuning to achieve the desired access control. We furthermore present two instantiations of access advantage--(i) Domain Distinguishability Index (DDI) based on Membership Inference Attacks, and (ii) Utility Gap Index (UGI) based on LLM utility evaluation. We demonstrate the efficacy of our PermLLM mechanisms through extensive experiments on five public datasets (GPQA, RCV1, SimpleQA, WMDP, and PubMedQA), in addition to evaluating the validity of DDI and UGI metrics themselves for quantifying access control in LLMs.
♻ ☆ A Survey of Deep Learning for Complex Speech Spectrograms
Recent advancements in deep learning have significantly impacted the field of speech signal processing, particularly in the analysis and manipulation of complex spectrograms. This survey provides a comprehensive overview of the state-of-the-art techniques leveraging deep neural networks for processing complex spectrograms, which encapsulate both magnitude and phase information. We begin by introducing complex spectrograms and their associated features for various speech processing tasks. Next, we examine the key components and architectures of complex-valued neural networks, which are specifically designed to handle complex-valued data and have been applied to complex spectrogram processing. As recent studies have primarily focused on applying real-valued neural networks to complex spectrograms, we revisit these approaches and their architectural designs. We then discuss various training strategies and loss functions tailored for training neural networks to process and model complex spectrograms. The survey further examines key applications, including phase retrieval, speech enhancement, and speaker separation, where deep learning has achieved significant progress by leveraging complex spectrograms or their derived feature representations. Additionally, we examine the intersection of complex spectrograms with generative models. This survey aims to serve as a valuable resource for researchers and practitioners in the field of speech signal processing, deep learning and related fields.
♻ ☆ Improved Monte Carlo Planning via Causal Disentanglement for Structurally-Decomposed Markov Decision Processes
Markov Decision Processes (MDPs), as a general-purpose framework, often overlook the benefits of incorporating the causal structure of the transition and reward dynamics. For a subclass of resource allocation problems, we introduce the Structurally Decomposed MDP (SD-MDP), which leverages causal disentanglement to partition an MDP's temporal causal graph into independent components. By exploiting this disentanglement, SD-MDP enables dimensionality reduction and computational efficiency gains in optimal value function estimation. We reduce the sequential optimization problem to a fractional knapsack problem with log-linear complexity $O(T \log T)$, outperforming traditional stochastic programming methods that exhibit polynomial complexity with respect to the time horizon $T$. Additionally, SD-MDP's computational advantages are independent of state-action space size, making it viable for high-dimensional spaces. Furthermore, our approach integrates seamlessly with Monte Carlo Tree Search (MCTS), achieving higher expected rewards under constrained simulation budgets while providing a vanishing simple regret bound. Empirical results demonstrate superior policy performance over benchmarks across various logistics and finance domains.
comment: Conference Paper. 7th International Conference on Distributed Artificial Intelligence (DAI)
♻ ☆ Better by Comparison: Retrieval-Augmented Contrastive Reasoning for Automatic Prompt Optimization
Automatic prompt optimization has recently emerged as a strategy for improving the quality of prompts used in Large Language Models (LLMs), with the goal of generating more accurate and useful responses. However, most prior work focuses on direct prompt refinement or model fine-tuning, overlooking the potential of leveraging LLMs' inherent reasoning capability to learn from contrasting examples. In this paper, we present Contrastive Reasoning Prompt Optimization (CRPO), a novel framework that formulates prompt optimization as a retrieval-augmented reasoning process. Our approach retrieves top k reference prompt-response pairs from the HelpSteer2 dataset, an open source collection where each response is annotated for helpfulness, correctness, coherence, complexity, and verbosity, and constructs two complementary optimization paradigms: (1) tiered contrastive reasoning, where the LLM compares high-, medium-, and low-quality exemplars (both prompts and responses) to refine its own generation through reflective reasoning, and (2) multi-metric contrastive reasoning, where the LLM analyzes the best exemplars along each evaluation dimension and integrates their strengths into an optimized prompt. By explicitly contrasting high and low quality exemplars, CRPO enables the model to deduce why certain prompts succeed while others fail, thereby achieving more robust and interpretable optimization. Experimental results on the HelpSteer2 benchmark demonstrate that CRPO significantly outperforms baselines. Our findings highlight the promise of contrastive, retrieval-augmented reasoning for advancing automatic prompt optimization.
comment: Preprint
♻ ☆ Rethinking the Vulnerability of Concept Erasure and a New Method
The proliferation of text-to-image diffusion models has raised significant privacy and security concerns, particularly regarding the generation of copyrighted or harmful images. In response, concept erasure (defense) methods have been developed to "unlearn" specific concepts through post-hoc finetuning. However, recent concept restoration (attack) methods have demonstrated that these supposedly erased concepts can be recovered using adversarially crafted prompts, revealing a critical vulnerability in current defense mechanisms. In this work, we first investigate the fundamental sources of adversarial vulnerability and reveal that vulnerabilities are pervasive in the prompt embedding space of concept-erased models, a characteristic inherited from the original pre-unlearned model. Furthermore, we introduce **RECORD**, a novel coordinate-descent-based restoration algorithm that consistently outperforms existing restoration methods by up to 17.8 times. We conduct extensive experiments to assess its compute-performance tradeoff and propose acceleration strategies.
♻ ☆ DatawiseAgent: A Notebook-Centric LLM Agent Framework for Adaptive and Robust Data Science Automation EMNLP 2025
Existing large language model (LLM) agents for automating data science show promise, but they remain constrained by narrow task scopes, limited generalization across tasks and models, and over-reliance on state-of-the-art (SOTA) LLMs. We introduce DatawiseAgent, a notebook-centric LLM agent framework for adaptive and robust data science automation. Inspired by how human data scientists work in computational notebooks, DatawiseAgent introduces a unified interaction representation and a multi-stage architecture based on finite-state transducers (FSTs). This design enables flexible long-horizon planning, progressive solution development, and robust recovery from execution failures. Extensive experiments across diverse data science scenarios and models show that DatawiseAgent consistently achieves SOTA performance by surpassing strong baselines such as AutoGen and TaskWeaver, demonstrating superior effectiveness and adaptability. Further evaluations reveal graceful performance degradation under weaker or smaller models, underscoring the robustness and scalability.
comment: The camera-ready version for EMNLP 2025 Main Conference
♻ ☆ THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.
comment: 22 pages, 13 figures
♻ ☆ A Survey of Pun Generation: Datasets, Evaluations and Methodologies EMNLP 2025
Pun generation seeks to creatively modify linguistic elements in text to produce humour or evoke double meanings. It also aims to preserve coherence and contextual appropriateness, making it useful in creative writing and entertainment across various media and contexts. Although pun generation has received considerable attention in computational linguistics, there is currently no dedicated survey that systematically reviews this specific area. To bridge this gap, this paper provides a comprehensive review of pun generation datasets and methods across different stages, including conventional approaches, deep learning techniques, and pre-trained language models. Additionally, we summarise both automated and human evaluation metrics used to assess the quality of pun generation. Finally, we discuss the research challenges and propose promising directions for future work.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!
Large Language Model (LLM) safety is one of the most pressing challenges for enabling wide-scale deployment. While most studies and global discussions focus on generic harms, such as models assisting users in harming themselves or others, enterprises face a more fundamental concern: whether LLM-based agents are safe for their intended use case. To address this, we introduce operational safety, defined as an LLM's ability to appropriately accept or refuse user queries when tasked with a specific purpose. We further propose OffTopicEval, an evaluation suite and benchmark for measuring operational safety both in general and within specific agentic use cases. Our evaluations on six model families comprising 20 open-weight LLMs reveal that while performance varies across models, all of them remain highly operationally unsafe. Even the strongest models - Qwen-3 (235B) with 77.77% and Mistral (24B) with 79.96% - fall far short of reliable operational safety, while GPT models plateau in the 62-73% range, Phi achieves only mid-level scores (48-70%), and Gemma and Llama-3 collapse to 39.53% and 23.84%, respectively. While operational safety is a core model alignment issue, to suppress these failures, we propose prompt-based steering methods: query grounding (Q-ground) and system-prompt grounding (P-ground), which substantially improve OOD refusal. Q-ground provides consistent gains of up to 23%, while P-ground delivers even larger boosts, raising Llama-3.3 (70B) by 41% and Qwen-3 (30B) by 27%. These results highlight both the urgent need for operational safety interventions and the promise of prompt-based steering as a first step toward more reliable LLM-based agents.
♻ ☆ Not a nuisance but a useful heuristic: Outlier dimensions favor frequent tokens in language models
We study last-layer outlier dimensions, i.e. dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: Published as workshop paper at BlackBox NLP 2025
♻ ☆ GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
As large language models (LLMs) are increasingly trained on massive, uncurated corpora, understanding both model representations and the data they internalize has become a major challenge. In this work, we show that pairing LLMs with sparse autoencoders (SAEs) enables interpretation not only of model behavior but also of the deeper structures, themes, and biases embedded in the training data. We train a GPT-style transformer model exclusively on the novels of Jane Austen, a corpus rich in social constructs and narrative patterns. We then apply SAEs to hidden states across multiple layers, uncovering sparse, interpretable features that reflect the key narratives and concepts present in the corpus, including gender, class, and societal duty. Our findings demonstrate that LLMs combined with SAEs can act as scalable probes into complex datasets, offering a new path for corpus exploration, bias discovery, and model interpretability at scale.
comment: Preprint. Draft version, subject to revision
♻ ☆ MTRec: Learning to Align with User Preferences via Mental Reward Models
Recommendation models are predominantly trained using implicit user feedback, since explicit feedback is often costly to obtain. However, implicit feedback, such as clicks, does not always reflect users' real preferences. For example, a user might click on a news article because of its attractive headline, but end up feeling uncomfortable after reading the content. In the absence of explicit feedback, such erroneous implicit signals may severely mislead recommender systems. In this paper, we propose MTRec, a novel sequential recommendation framework designed to align with real user preferences by uncovering their internal satisfaction on recommended items. Specifically, we introduce a mental reward model to quantify user satisfaction and propose a distributional inverse reinforcement learning approach to learn it. The learned mental reward model is then used to guide recommendation models to better align with users' real preferences. Our experiments show that MTRec brings significant improvements to a variety of recommendation models. We also deploy MTRec on an industrial short video platform and observe a 7 percent increase in average user viewing time.
♻ ☆ Efficient Preimage Approximation for Neural Network Certification
The growing reliance on artificial intelligence in safety- and security-critical applications demands effective neural network certification. A challenging real-world use case is "patch attacks", where adversarial patches or lighting conditions obscure parts of images, for example, traffic signs. A significant step towards certification against patch attacks was recently achieved using PREMAP, which uses under- and over-approximations of the preimage, the set of inputs that lead to a specified output, for the certification. While the PREMAP approach is versatile, it is currently limited to fully-connected neural networks of moderate dimensionality. In order to tackle broader real-world use cases, we present novel algorithmic extensions to PREMAP involving tighter bounds, adaptive Monte Carlo sampling, and improved branching heuristics. Firstly, we demonstrate that these efficiency improvements significantly outperform the original PREMAP and enable scaling to convolutional neural networks that were previously intractable. Secondly, we showcase the potential of preimage approximation methodology for analysing and certifying reliability and robustness on a range of use cases from computer vision and control.
comment: Code available at https://github.com/Anton-Bjorklund/Premap2
♻ ☆ Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed
The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks can transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.
♻ ☆ Enhancing LLM Steering through Sparse Autoencoder-Based Vector Refinement
Steering has emerged as a promising approach in controlling large language models (LLMs) without modifying model parameters. However, most existing steering methods rely on large-scale datasets to learn clear behavioral information, which limits their applicability in many real-world scenarios. The steering vectors extracted from small dataset often contain task-irrelevant noising features, which degrades their effectiveness. To refine the steering vectors learned from limited data, we introduce Refinement of Steering Vector via Sparse Autoencoder (SAE-RSV) that leverages SAEs to semantically denoise and augment the steering vectors. In our framework, we first remove task-irrelevant features according to their semantics provided by SAEs, and then enrich task-relevant features missing from the small dataset through their semantic similarity to the identified relevant features. Extensive experiments demonstrate that the proposed SAE-RSV substantially outperforms all the baseline methods including supervised fine-tuning. Our findings show that effective steering vector can be constructed from limited training data by refining the original steering vector through SAEs.
comment: 19 pages, 11 figures, 7 tables
♻ ☆ LayerCake: Token-Aware Contrastive Decoding within Large Language Model Layers
Large language models (LLMs) excel at natural language understanding and generation but remain vulnerable to factual errors, limiting their reliability in knowledge-intensive tasks. While decoding-time strategies provide a promising efficient solution without training, existing methods typically treat token-level and layer-level signals in isolation, overlooking the joint dynamics between them. In this work, we introduce a token-aware, layer-localized contrastive decoding method that aligns specific token types with their most influential transformer layers to improve factual generation. Through empirical attention analysis, we identify two key patterns: punctuation tokens receive dominant attention in early layers, while conceptual tokens govern semantic reasoning in intermediate layers. By selectively suppressing attention to these token types at their respective depths, we achieve the induction of controlled factual degradation and derive contrastive signals to guide the final factual decoding. Our method requires no additional training or model modification, and experiments demonstrate that our method consistently improves factuality across multiple LLMs and various benchmarks.
comment: The submission was made before undergoing the required review by the co-authors' affiliated institutions. We are withdrawing the paper to allow for the completion of the institutional review process
♻ ☆ ViLBias: Detecting and Reasoning about Bias in Multimodal Content
Detecting bias in multimodal news requires models that reason over text--image pairs, not just classify text. In response, we present ViLBias, a VQA-style benchmark and framework for detecting and reasoning about bias in multimodal news. The dataset comprises 40,945 text--image pairs from diverse outlets, each annotated with a bias label and concise rationale using a two-stage LLM-as-annotator pipeline with hierarchical majority voting and human-in-the-loop validation. We evaluate Small Language Models (SLMs), Large Language Models (LLMs), and Vision--Language Models (VLMs) across closed-ended classification and open-ended reasoning (oVQA), and compare parameter-efficient tuning strategies. Results show that incorporating images alongside text improves detection accuracy by 3--5\%, and that LLMs/VLMs better capture subtle framing and text--image inconsistencies than SLMs. Parameter-efficient methods (LoRA/QLoRA/Adapters) recover 97--99\% of full fine-tuning performance with $<5\%$ trainable parameters. For oVQA, reasoning accuracy spans 52--79\% and faithfulness 68--89\%, both improved by instruction tuning; closed accuracy correlates strongly with reasoning ($r = 0.91$). ViLBias offers a scalable benchmark and strong baselines for multimodal bias detection and rationale quality.
comment: Under review
♻ ☆ Graph Neural Networks for Transmission Grid Topology Control: Busbar Information Asymmetry and Heterogeneous Representations
Factors such as the proliferation of renewable energy and electrification contribute to grid congestion as a pressing problem. Topology control is an appealing method for relieving congestion, but traditional approaches for topology discovery have proven too slow for practical application. Recent research has focused on machine learning (ML) as an efficient alternative. Graph neural networks (GNNs) are particularly well-suited for topology control applications due to their ability to model the graph structure of power grids. This study investigates the effect of the graph representation on GNN effectiveness for topology control. We identify the busbar information asymmetry problem inherent to the popular homogeneous graph representation. We propose a heterogeneous graph representation that resolves this problem. We apply GNNs with both representations and a fully connected neural network (FCNN) baseline on an imitation learning task. The models are evaluated by classification accuracy and grid operation ability. We find that heterogeneous GNNs perform best on in-distribution network configurations, followed by FCNNs, and lastly, homogeneous GNNs. We also find that both GNN types generalize better to out-of-distribution network configurations than FCNNs.
comment: 31 pages, 9 figures. Submitted to Applied Energy. Previous versions were uploaded to arXiv with the title "Generalizable Graph Neural Networks for Robust Power Grid Topology Control"
♻ ☆ AlignDiT: Multimodal Aligned Diffusion Transformer for Synchronized Speech Generation
In this paper, we address the task of multimodal-to-speech generation, which aims to synthesize high-quality speech from multiple input modalities: text, video, and reference audio. This task has gained increasing attention due to its wide range of applications, such as film production, dubbing, and virtual avatars. Despite recent progress, existing methods still suffer from limitations in speech intelligibility, audio-video synchronization, speech naturalness, and voice similarity to the reference speaker. To address these challenges, we propose AlignDiT, a multimodal Aligned Diffusion Transformer that generates accurate, synchronized, and natural-sounding speech from aligned multimodal inputs. Built upon the in-context learning capability of the DiT architecture, AlignDiT explores three effective strategies to align multimodal representations. Furthermore, we introduce a novel multimodal classifier-free guidance mechanism that allows the model to adaptively balance information from each modality during speech synthesis. Extensive experiments demonstrate that AlignDiT significantly outperforms existing methods across multiple benchmarks in terms of quality, synchronization, and speaker similarity. Moreover, AlignDiT exhibits strong generalization capability across various multimodal tasks, such as video-to-speech synthesis and visual forced alignment, consistently achieving state-of-the-art performance. The demo page is available at https://mm.kaist.ac.kr/projects/AlignDiT.
comment: ACM Multimedia 2025
♻ ☆ Quantum-RAG and PunGPT2: Advancing Low-Resource Language Generation and Retrieval for the Punjabi Language
Despite rapid advances in large language models (LLMs), low-resource languages remain excluded from NLP, limiting digital access for millions. We present PunGPT2, the first fully open-source Punjabi generative model suite, trained on a 35GB corpus covering literature, religious texts, news, social discourse, etc. PunGPT2 captures Punjabi's syntactic and morphological richness through a tokenizer optimized for Gurmukhi and Shahmukhi scripts. We introduce Pun-RAG, a retrieval-augmented framework integrating PunGPT2 with a FAISS retriever over a curated Punjabi knowledge base, and Pun-Instruct, an instruction-tuned variant using QLoRA for robust zero-shot summarization, translation, and question answering. Our key innovation, Quantum-RAG, fuses sparse, dense, and quantum kernel embeddings for efficient, context-aware retrieval with low memory overhead, marking the first practical quantum-inspired retrieval in a low-resource LLM. Our models outperform multilingual baselines (mBERT, mT5, MuRIL, BLOOM) on FLORES-200, IndicGenBench, and a new PunjabiEval suite. Quantum-RAG yields +7.4 Recall@10 over FAISS and +3.5 BLEU over mT5 on PunjabiEval. We publicly release all training scripts, hyperparameters, evaluation pipelines, the 35GB Punjabi corpus, the PunjabiEval benchmark, and all model weights, establishing new state-of-the-art results for Punjabi language generation and retrieval.
♻ ☆ An Architecture for Spatial Networking
Physical spaces are increasingly dense with networked devices, promising seamless coordination and ambient intelligence. Yet today, cloud-first architectures force all communication through wide-area networks regardless of physical proximity. We lack an abstraction for spatial networking: using physical spaces to create boundaries for private, robust, and low-latency communication. We introduce $\textit{Bifr\"ost}$, a programming model that realizes spatial networking using bigraphs to express both containment and connectivity, enabling policies to be scoped by physical boundaries, devices to be named by location, the instantiation of spatial services, and the composition of spaces while maintaining local autonomy. Bifr\"ost enables a new class of spatially-aware applications, where co-located devices communicate directly, physical barriers require explicit gateways, and local control bridges to global coordination.
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: The original paper has issues and has been restructured in the work; it is no longer suitable, so I am applying for withdrawal
♻ ☆ SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
While reasoning models demonstrate exceptional performance on complex tasks, they often exhibit tendencies of overthinking on simple problems. This phenomenon not only leads to excessive computational resource consumption but also significantly degrades user experience. To address this challenge, we propose SelfBudgeter - a novel user-friendly adaptive controllable reasoning framework that incorporates a budget estimation mechanism prior to reasoning. The framework adopts a dual-phase training paradigm: during the cold-start phase, the model learns to predict token budgets before executing reasoning in a standardized format; in the reinforcement learning phase, the model is trained to autonomously plan budgets based on problem difficulty and strictly adhere to them when generating responses. Since the model outputs budget estimates at the initial stage, users can immediately anticipate waiting duration, enabling flexible decisions on whether to interrupt or continue the generation process. Notably, our method supports manual control of reasoning length through pre-filled budget fields. Experimental results demonstrate that SelfBudgeter can dynamically allocate budgets according to problem complexity, yielding an average response length compression of 61% for the 1.5B model on GSM8K, MATH500, and AIME2025, and 48% for the 7B model, while maintaining nearly undiminished accuracy.
♻ ☆ XBreaking: Explainable Artificial Intelligence for Jailbreaking LLMs
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. In response to this, LLM Jailbreaking is a significant threat to such protections, and many previous approaches have already demonstrated its effectiveness across diverse domains. Existing jailbreak proposals mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted jailbreak attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel jailbreak attack that exploits these unique patterns to break the security constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our attack.
♻ ☆ Manipulating 3D Molecules in a Fixed-Dimensional E(3)-Equivariant Latent Space NeurIPS 2025
Medicinal chemists often optimize drugs considering their 3D structures and designing structurally distinct molecules that retain key features, such as shapes, pharmacophores, or chemical properties. Previous deep learning approaches address this through supervised tasks like molecule inpainting or property-guided optimization. In this work, we propose a flexible zero-shot molecule manipulation method by navigating in a shared latent space of 3D molecules. We introduce a Variational AutoEncoder (VAE) for 3D molecules, named MolFLAE, which learns a fixed-dimensional, E(3)-equivariant latent space independent of atom counts. MolFLAE encodes 3D molecules using an E(3)-equivariant neural network into fixed number of latent nodes, distinguished by learned embeddings. The latent space is regularized, and molecular structures are reconstructed via a Bayesian Flow Network (BFN) conditioned on the encoder's latent output. MolFLAE achieves competitive performance on standard unconditional 3D molecule generation benchmarks. Moreover, the latent space of MolFLAE enables zero-shot molecule manipulation, including atom number editing, structure reconstruction, and coordinated latent interpolation for both structure and properties. We further demonstrate our approach on a drug optimization task for the human glucocorticoid receptor, generating molecules with improved hydrophilicity while preserving key interactions, under computational evaluations. These results highlight the flexibility, robustness, and real-world utility of our method, opening new avenues for molecule editing and optimization.
comment: This version (v2) includes minor edits. The paper has been accepted to NeurIPS 2025. Code is available at: https://github.com/MuZhao2333/MolFLAE
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city road networks. This dataset features graphs with over 100k nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs based on local node eccentricities, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement-particularly by focusing on over-smoothing and influence score dilution-which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
comment: work in progress
♻ ☆ PropRAG: Guiding Retrieval with Beam Search over Proposition Paths EMNLP 2025
Retrieval Augmented Generation (RAG) has become the standard approach for equipping Large Language Models (LLMs) with up-to-date knowledge. However, standard RAG, relying on independent passage retrieval, often fails to capture the interconnected nature of information required for complex, multi-hop reasoning. While structured RAG methods attempt to address this using knowledge graphs built from triples, we argue that the inherent context loss of triples (context collapse) limits the fidelity of the knowledge representation. We introduce PropRAG, a novel RAG framework that shifts from triples to context-rich propositions and introduces an efficient, LLM-free online beam search over proposition paths to discover multi-step reasoning chains. By coupling a higher-fidelity knowledge representation with explicit path discovery, PropRAG achieves state-of-the-art zero-shot Recall@5 and F1 scores on 2Wiki, HotpotQA, and MuSiQue, advancing non-parametric knowledge integration by improving evidence retrieval through richer representation and efficient reasoning path discovery.
comment: Accepted to EMNLP 2025 (Main Conference). Camera-ready version. Code and data: https://github.com/ReLink-Inc/PropRAG
♻ ☆ DiffusionBlocks: Block-wise Neural Network Training via Diffusion Interpretation
End-to-end backpropagation requires storing activations throughout all layers, creating memory bottlenecks that limit model scalability. Existing block-wise training methods offer means to alleviate this problem, but they rely on ad-hoc local objectives and remain largely unexplored beyond classification tasks. We propose $\textit{DiffusionBlocks}$, a principled framework for transforming transformer-based networks into genuinely independent trainable blocks that maintain competitive performance with end-to-end training. Our key insight leverages the fact that residual connections naturally correspond to updates in a dynamical system. With minimal modifications to this system, we can convert the updates to those of a denoising process, where each block can be learned independently by leveraging the score matching objective. This independence enables training with gradients for only one block at a time, thereby reducing memory requirements in proportion to the number of blocks. Our experiments on a range of transformer architectures (vision, diffusion, autoregressive, recurrent-depth, and masked diffusion) demonstrate that DiffusionBlocks training matches the performance of end-to-end training while enabling scalable block-wise training on practical tasks beyond small-scale classification. DiffusionBlocks provides a theoretically grounded approach that successfully scales to modern generative tasks across diverse architectures.
comment: Under review
♻ ☆ Semantic Preprocessing for LLM-based Malware Analysis
In a context of malware analysis, numerous approaches rely on Artificial Intelligence to handle a large volume of data. However, these techniques focus on data view (images, sequences) and not on an expert's view. Noticing this issue, we propose a preprocessing that focuses on expert knowledge to improve malware semantic analysis and result interpretability. We propose a new preprocessing method which creates JSON reports for Portable Executable files. These reports gather features from both static and behavioral analysis, and incorporate packer signature detection, MITRE ATT\&CK and Malware Behavior Catalog (MBC) knowledge. The purpose of this preprocessing is to gather a semantic representation of binary files, understandable by malware analysts, and that can enhance AI models' explainability for malicious files analysis. Using this preprocessing to train a Large Language Model for Malware classification, we achieve a weighted-average F1-score of 0.94 on a complex dataset, representative of market reality.
♻ ☆ Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training EMNLP 2025
Large Language Models (LLMs) have shown remarkable advancements in specialized fields such as finance, law, and medicine. However, in cybersecurity, we have noticed a lack of open-source datasets, with a particular lack of high-quality cybersecurity pretraining corpora, even though much research indicates that LLMs acquire their knowledge during pretraining. To address this, we present a comprehensive suite of datasets covering all major training stages, including pretraining, instruction fine-tuning, and reasoning distillation with cybersecurity-specific self-reflection data. Extensive ablation studies demonstrate their effectiveness on public cybersecurity benchmarks. In particular, continual pre-training on our dataset yields a 15.9% improvement in the aggregate score, while reasoning distillation leads to a 15.8% gain in security certification (CISSP). We will release all datasets and trained cybersecurity LLMs under the ODC-BY and MIT licenses to encourage further research in the community. For access to all datasets and model weights, please refer to https://huggingface.co/collections/trendmicro-ailab/primus-67b1fd27052b802b4af9d243.
comment: Accepted to EMNLP 2025
♻ ☆ Bridging Ethical Principles and Algorithmic Methods: An Alternative Approach for Assessing Trustworthiness in AI Systems
Artificial Intelligence (AI) technology epitomizes the complex challenges posed by human-made artifacts, particularly those widely integrated into society and exerting significant influence, highlighting potential benefits and their negative consequences. While other technologies may also pose substantial risks, AI's pervasive reach makes its societal effects especially profound. The complexity of AI systems, coupled with their remarkable capabilities, can lead to a reliance on technologies that operate beyond direct human oversight or understanding. To mitigate the risks that arise, several theoretical tools and guidelines have been developed, alongside efforts to create technological tools aimed at safeguarding Trustworthy AI. The guidelines take a more holistic view of the issue but fail to provide techniques for quantifying trustworthiness. Conversely, while technological tools are better at achieving such quantification, they lack a holistic perspective, focusing instead on specific aspects of Trustworthy AI. This paper aims to introduce an assessment method that combines the ethical components of Trustworthy AI with the algorithmic processes of PageRank and TrustRank. The goal is to establish an assessment framework that minimizes the subjectivity inherent in the self-assessment techniques prevalent in the field by introducing algorithmic criteria. The application of our approach indicates that a holistic assessment of an AI system's trustworthiness can be achieved by providing quantitative insights while considering the theoretical content of relevant guidelines.
♻ ☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
♻ ☆ STORI: A Benchmark and Taxonomy for Stochastic Environments
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.
comment: v2. New mathematical formulation and renamed notation; added additional experiments and a detailed analytical case study on error behaviors in world models under different stochasticity types; link to code repository for reproducibility: https://github.com/ARY2260/stori
♻ ☆ MarketSenseAI 2.0: Enhancing Stock Analysis through LLM Agents
MarketSenseAI is a novel framework for holistic stock analysis which leverages Large Language Models (LLMs) to process financial news, historical prices, company fundamentals and the macroeconomic environment to support decision making in stock analysis and selection. In this paper, we present the latest advancements on MarketSenseAI, driven by rapid technological expansion in LLMs. Through a novel architecture combining Retrieval-Augmented Generation and LLM agents, the framework processes SEC filings and earnings calls, while enriching macroeconomic analysis through systematic processing of diverse institutional reports. We demonstrate a significant improvement in fundamental analysis accuracy over the previous version. Empirical evaluation on S\&P 100 stocks over two years (2023-2024) shows MarketSenseAI achieving cumulative returns of 125.9% compared to the index return of 73.5%, while maintaining comparable risk profiles. Further validation on S\&P 500 stocks during 2024 demonstrates the framework's scalability, delivering a 33.8% higher Sortino ratio than the market. This work marks a significant advancement in applying LLM technology to financial analysis, offering insights into the robustness of LLM-driven investment strategies.
comment: 25 pages, 7 figures, Under review at Financial Innovation (FIN)
♻ ☆ Observation-Free Attacks on Online Learning to Rank
Online learning to rank (OLTR) plays a critical role in information retrieval and machine learning systems, with a wide range of applications in search engines and content recommenders. However, despite their extensive adoption, the susceptibility of OLTR algorithms to coordinated adversarial attacks remains poorly understood. In this work, we present a novel framework for attacking some of the widely used OLTR algorithms. Our framework is designed to promote a set of target items so that they appear in the list of top-K recommendations for T - o(T) rounds, while simultaneously inducing linear regret in the learning algorithm. We propose two novel attack strategies: CascadeOFA for CascadeUCB1 and PBMOFA for PBM-UCB . We provide theoretical guarantees showing that both strategies require only O(log T) manipulations to succeed. Additionally, we supplement our theoretical analysis with empirical results on real-world data.
♻ ☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
♻ ☆ SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro expands annotations of the additional part to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent advances. Each clip receives at least five ratings from professional annotators, ensuring reliability and consistency. Furthermore, we explore how to effectively utilize MOS data annotated under different standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset can be accessed at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
comment: 4 pages, 5 figures;
♻ ☆ Optimizing Container Loading and Unloading through Dual-Cycling and Dockyard Rehandle Reduction Using a Hybrid Genetic Algorithm
This paper addresses the NP-hard problem of optimizing container handling at ports by integrating Quay Crane Dual-Cycling (QCDC) and dockyard rehandle minimization. We realized that there are interdependencies between the unloading sequence of QCDC and the dockyard plan and propose the Quay Crane Dual Cycle - Dockyard Rehandle Genetic Algorithm (QCDC-DR-GA), a hybrid Genetic Algorithm (GA) that holistically optimizes both aspects: maximizing the number of Dual Cycles (DCs) and minimizing the number of dockyard rehandles. QCDC-DR-GA employs specialized crossover and mutation strategies. Extensive experiments on various ship sizes demonstrate that QCDC-DR-GA reduces total operation time by 15-20% for large ships compared to existing methods. Statistical validation via two-tailed paired t-tests confirms significant improvements at a 5% significance level. The results underscore the inefficiency of isolated optimization and highlight the critical need for integrated algorithms in port operations. This approach increases resource utilization and operational efficiency, offering a cost-effective solution for ports to decrease turnaround times without infrastructure investments.
♻ ☆ JALMBench: Benchmarking Jailbreak Vulnerabilities in Audio Language Models
Audio Language Models (ALMs) have made significant progress recently. These models integrate the audio modality directly into the model, rather than converting speech into text and inputting text to Large Language Models (LLMs). While jailbreak attacks on LLMs have been extensively studied, the security of ALMs with audio modalities remains largely unexplored. Currently, there is a lack of an adversarial audio dataset and a unified framework specifically designed to evaluate and compare attacks and ALMs. In this paper, we present JALMBench, a comprehensive benchmark to assess the safety of ALMs against jailbreak attacks. JALMBench includes a dataset containing 11,316 text samples and 245,355 audio samples with over 1,000 hours. It supports 12 mainstream ALMs, 4 text-transferred and 4 audio-originated attack methods, and 5 defense methods. Using JALMBench, we provide an in-depth analysis of attack efficiency, topic sensitivity, voice diversity, and architecture. Additionally, we explore mitigation strategies for the attacks at both the prompt level and the response level.
♻ ☆ CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 25 pages, 12 figures, 20 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 ), link: https://icml.cc/virtual/2025/poster/46359
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 34 pages (main paper and supplementary material), 25 figures, 19 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ A Comprehensive Review on Harnessing Large Language Models to Overcome Recommender System Challenges
Recommender systems have traditionally followed modular architectures comprising candidate generation, multi-stage ranking, and re-ranking, each trained separately with supervised objectives and hand-engineered features. While effective in many domains, such systems face persistent challenges including sparse and noisy interaction data, cold-start problems, limited personalization depth, and inadequate semantic understanding of user and item content. The recent emergence of Large Language Models (LLMs) offers a new paradigm for addressing these limitations through unified, language-native mechanisms that can generalize across tasks, domains, and modalities. In this paper, we present a comprehensive technical survey of how LLMs can be leveraged to tackle key challenges in modern recommender systems. We examine the use of LLMs for prompt-driven candidate retrieval, language-native ranking, retrieval-augmented generation (RAG), and conversational recommendation, illustrating how these approaches enhance personalization, semantic alignment, and interpretability without requiring extensive task-specific supervision. LLMs further enable zero- and few-shot reasoning, allowing systems to operate effectively in cold-start and long-tail scenarios by leveraging external knowledge and contextual cues. We categorize these emerging LLM-driven architectures and analyze their effectiveness in mitigating core bottlenecks of conventional pipelines. In doing so, we provide a structured framework for understanding the design space of LLM-enhanced recommenders, and outline the trade-offs between accuracy, scalability, and real-time performance. Our goal is to demonstrate that LLMs are not merely auxiliary components but foundational enablers for building more adaptive, semantically rich, and user-centric recommender systems
♻ ☆ Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
OpenAI's o3-preview reasoning model exceeded human accuracy on the ARC-AGI benchmark, but does that mean state-of-the-art models recognize and reason with the abstractions that the task creators intended? We investigate models' abstraction abilities on ConceptARC. We evaluate models under settings that vary the input modality (textual vs. visual), whether the model is permitted to use external Python tools, and, for reasoning models, the amount of reasoning effort. In addition to measuring output accuracy, we perform fine-grained evaluation of the natural-language rules that models generate to explain their solutions. This dual evaluation lets us assess whether models solve tasks using the abstractions ConceptARC was designed to elicit, rather than relying on surface-level patterns. Our results show that, while some models using text-based representations match human output accuracy, the best models' rules are often based on surface-level ``shortcuts'' and capture intended abstractions far less often than humans. Thus their capabilities for general abstract reasoning may be overestimated by evaluations based on accuracy alone. In the visual modality, AI models' output accuracy drops sharply, yet our rule-level analysis reveals that models might be underestimated, as they still exhibit a substantial share of rules that capture intended abstractions, but are often unable to correctly apply these rules. In short, our results show that models still lag humans in abstract reasoning, and that using accuracy alone to evaluate abstract reasoning on ARC-like tasks may overestimate abstract-reasoning capabilities in textual modalities and underestimate it in visual modalities. We believe that our evaluation framework offers a more faithful picture of multimodal models' abstract reasoning abilities and a more principled way to track progress toward human-like, abstraction-centered intelligence.
comment: 10 pages, 4 figures
♻ ☆ SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Extensive experiments show that our method achieves 1.5$\times$ lossless acceleration in LIBERO and 2.4$\times$ in SimplerEnv, with up to 6% average performance gain. Inference frequency and latency improve by 2.2$\times$ in SimplerEnv and 1.4$\times$ in LIBERO.
♻ ☆ OML: A Primitive for Reconciling Open Access with Owner Control in AI Model Distribution
The current paradigm of AI model distribution presents a fundamental dichotomy: models are either closed and API-gated, sacrificing transparency and local execution, or openly distributed, sacrificing monetization and control. We introduce OML(Open-access, Monetizable, and Loyal AI Model Serving), a primitive that enables a new distribution paradigm where models can be freely distributed for local execution while maintaining cryptographically enforced usage authorization. We are the first to introduce and formalize this problem, introducing rigorous security definitions tailored to the unique challenge of white-box model protection: model extraction resistance and permission forgery resistance. We prove fundamental bounds on the achievability of OML properties and characterize the complete design space of potential constructions, from obfuscation-based approaches to cryptographic solutions. To demonstrate practical feasibility, we present OML 1.0, a novel OML construction leveraging AI-native model fingerprinting coupled with crypto-economic enforcement mechanisms. Through extensive theoretical analysis and empirical evaluation, we establish OML as a foundational primitive necessary for sustainable AI ecosystems. This work opens a new research direction at the intersection of cryptography, machine learning, and mechanism design, with critical implications for the future of AI distribution and governance.
comment: 53 pages; Under review; We look forward to any suggestions/discussion around OML
♻ ☆ A Study on the Framework for Evaluating the Ethics and Trustworthiness of Generative AI
This study provides an in_depth analysis of the ethical and trustworthiness challenges emerging alongside the rapid advancement of generative artificial intelligence (AI) technologies and proposes a comprehensive framework for their systematic evaluation. While generative AI, such as ChatGPT, demonstrates remarkable innovative potential, it simultaneously raises ethical and social concerns, including bias, harmfulness, copyright infringement, privacy violations, and hallucination. Current AI evaluation methodologies, which mainly focus on performance and accuracy, are insufficient to address these multifaceted issues. Thus, this study emphasizes the need for new human_centered criteria that also reflect social impact. To this end, it identifies key dimensions for evaluating the ethics and trustworthiness of generative AI_fairness, transparency, accountability, safety, privacy, accuracy, consistency, robustness, explainability, copyright and intellectual property protection, and source traceability and develops detailed indicators and assessment methodologies for each. Moreover, it provides a comparative analysis of AI ethics policies and guidelines in South Korea, the United States, the European Union, and China, deriving key approaches and implications from each. The proposed framework applies across the AI lifecycle and integrates technical assessments with multidisciplinary perspectives, thereby offering practical means to identify and manage ethical risks in real_world contexts. Ultimately, the study establishes an academic foundation for the responsible advancement of generative AI and delivers actionable insights for policymakers, developers, users, and other stakeholders, supporting the positive societal contributions of AI technologies.
comment: 22 pages, 3 figures, 6 tables
♻ ☆ SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes toward Intelligent Vehicle Suspension Systems
Speed bumps and potholes are the most common road anomalies, significantly affecting ride comfort and vehicle stability. Preview-based suspension control mitigates their impact by detecting such irregularities in advance and adjusting suspension parameters proactively. Accurate and real-time detection is essential, but embedded deployment is constrained by limited computational resources and the small size of targets in input images.To address these challenges, this paper proposes SBP-YOLO, an efficient detection framework for speed bumps and potholes in embedded systems. Built upon YOLOv11n, it integrates GhostConv and VoVGSCSPC modules in the backbone and neck to reduce computation while enhancing multi-scale semantic features. A P2-level branch improves small-object detection, and a lightweight and efficient detection head (LEDH) maintains accuracy with minimal overhead. A hybrid training strategy further enhances robustness under varying road and environmental conditions, combining NWD loss, BCKD knowledge distillation, and Albumentations-based augmentation. Experiments show that SBP-YOLO achieves 87.0% mAP, outperforming the YOLOv11n baseline by 5.8%. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, yielding a 12.4% speedup over the P2-enhanced YOLOv11. These results demonstrate the framework's suitability for fast, low-latency road condition perception in embedded suspension control systems.
comment: 14pages,11figures
♻ ☆ GUI-PRA: Process Reward Agent for GUI Tasks
Graphical User Interface (GUI) Agents powered by Multimodal Large Language Models (MLLMs) show significant potential for automating tasks. However, they often struggle with long-horizon tasks, leading to frequent failures. Process Reward Models (PRMs) are a promising solution, as they can guide these agents with crucial process signals during inference. Nevertheless, their application to the GUI domain presents unique challenges. When processing dense artificial inputs with long history data, PRMs suffer from a "lost in the middle" phenomenon, where the overwhelming historical context compromises the evaluation of the current step. Furthermore, standard PRMs lacks GUI changing awareness, providing static evaluations that are disconnected from the dynamic consequences of actions, a critical mismatch with the inherently dynamic nature of GUI tasks. In response to these challenges, we introduce GUI-PRA (Process Reward Agent for GUI Tasks), a judge agent designed to better provide process reward than standard PRM by intelligently processing historical context and actively perceiving UI state changes. Specifically, to directly combat the ``lost in the middle'' phenomenon, we introduce a dynamic memory mechanism consisting of two core components: a Relevance-based Retrieval Module to actively fetch pertinent information from long histories and a Progressive Summarization Module to dynamically condense growing interaction data, ensuring the model focuses on relevant context. Moreover, to address the lack of UI changing awareness, we introduce an Aadaptive UI Perception mechanism. This mechanism enables the agent to reason about UI state changes and dynamically select the most appropriate tool to gather grounded visual evidence, ensuring its evaluation is always informed by the current UI context.
♻ ☆ Learning to Decide with Just Enough: Information-Theoretic Context Summarization for CMDPs
Contextual Markov Decision Processes (CMDPs) offer a framework for sequential decision-making under external signals, but existing methods often fail to generalize in high-dimensional or unstructured contexts, resulting in excessive computation and unstable performance. We propose an information-theoretic summarization approach that uses large language models (LLMs) to compress contextual inputs into low-dimensional, semantically rich summaries. These summaries augment states by preserving decision-critical cues while reducing redundancy. Building on the notion of approximate context sufficiency, we provide, to our knowledge, the first regret bounds and a latency-entropy trade-off characterization for CMDPs. Our analysis clarifies how informativeness impacts computational cost. Experiments across discrete, continuous, visual, and recommendation benchmarks show that our method outperforms raw-context and non-context baselines, improving reward, success rate, and sample efficiency, while reducing latency and memory usage. These findings demonstrate that LLM-based summarization offers a scalable and interpretable solution for efficient decision-making in context-rich, resource-constrained environments.
♻ ☆ Continuous Thought Machines NeurIPS 2025
Biological brains demonstrate complex neural activity, where neural dynamics are critical to how brains process information. Most artificial neural networks ignore the complexity of individual neurons. We challenge that paradigm. By incorporating neuron-level processing and synchronization, we reintroduce neural timing as a foundational element. We present the Continuous Thought Machine (CTM), a model designed to leverage neural dynamics as its core representation. The CTM has two innovations: (1) neuron-level temporal processing, where each neuron uses unique weight parameters to process incoming histories; and (2) neural synchronization as a latent representation. The CTM aims to strike a balance between neuron abstractions and biological realism. It operates at a level of abstraction that effectively captures essential temporal dynamics while remaining computationally tractable. We demonstrate the CTM's performance and versatility across a range of tasks, including solving 2D mazes, ImageNet-1K classification, parity computation, and more. Beyond displaying rich internal representations and offering a natural avenue for interpretation owing to its internal process, the CTM is able to perform tasks that require complex sequential reasoning. The CTM can also leverage adaptive compute, where it can stop earlier for simpler tasks, or keep computing when faced with more challenging instances. The goal of this work is to share the CTM and its associated innovations, rather than pushing for new state-of-the-art results. To that end, we believe the CTM represents a significant step toward developing more biologically plausible and powerful artificial intelligence systems. We provide an accompanying interactive online demonstration at https://pub.sakana.ai/ctm/ and an extended technical report at https://pub.sakana.ai/ctm/paper .
comment: Technical report accompanied by online project page: https://pub.sakana.ai/ctm/ Accepted as a spotlight paper at NeurIPS 2025
♻ ☆ YOLO-Based Defect Detection for Metal Sheets
In this paper, we propose a YOLO-based deep learning (DL) model for automatic defect detection to solve the time-consuming and labor-intensive tasks in industrial manufacturing. In our experiments, the images of metal sheets are used as the dataset for training the YOLO model to detect the defects on the surfaces and in the holes of metal sheets. However, the lack of metal sheet images significantly degrades the performance of detection accuracy. To address this issue, the ConSinGAN is used to generate a considerable amount of data. Four versions of the YOLO model (i.e., YOLOv3, v4, v7, and v9) are combined with the ConSinGAN for data augmentation. The proposed YOLOv9 model with ConSinGAN outperforms the other YOLO models with an accuracy of 91.3%, and a detection time of 146 ms. The proposed YOLOv9 model is integrated into manufacturing hardware and a supervisory control and data acquisition (SCADA) system to establish a practical automated optical inspection (AOI) system. Additionally, the proposed automated defect detection is easily applied to other components in industrial manufacturing.
comment: 5 pages, 8 figures, 2 tables, and published in IEEE IST 2024
♻ ☆ L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
Reasoning language models have shown an uncanny ability to improve performance at test-time by ``thinking longer''-that is, by generating longer chain-of-thought sequences and hence using more compute. However, the length of their chain-of-thought reasoning is not controllable, making it impossible to allocate test-time compute to achieve a desired level of performance. We introduce Length Controlled Policy Optimization (LCPO), a simple reinforcement learning method that optimizes for accuracy and adherence to user-specified length constraints. We use LCPO to train L1, a reasoning language model that produces outputs satisfying a length constraint given in its prompt. L1's length control allows for smoothly trading off computational cost and accuracy on a wide range of tasks, and outperforms the state-of-the-art S1 method for length control. Furthermore, we uncover an unexpected short chain-of-thought capability in models trained with LCPO. Specifically, using LCPO we derive Short Reasoning Models (SRMs), that exhibit similar reasoning patterns as full-length reasoning models, but can generate CoT lengths comparable to non-reasoning models. They demonstrate significant performance gains, for instance, our 1.5B L1 model surpasses GPT-4o at equal reasoning lengths. Overall, LCPO enables precise control over reasoning length, allowing for fine-grained allocation of test-time compute and accuracy. We release code and models at https://www.cmu-l3.github.io/l1
comment: Accepted at COLM 2025
♻ ☆ Rubrics as Rewards: Reinforcement Learning Beyond Verifiable Domains
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for complex reasoning tasks with clear correctness signals such as math and coding. However, extending it to real-world reasoning tasks is challenging, as evaluation depends on nuanced, multi-criteria judgments rather than binary correctness. Instance-specific rubrics have recently been used in evaluation benchmarks to capture such judgments, but their potential as reward signals for on-policy post-training remains underexplored. We introduce $\textbf{Rubrics as Rewards}$ (RaR), an on-policy reinforcement learning method that extends RLVR beyond verifiable domains by using rubric-based feedback. Across both medical and science domains, we evaluate multiple strategies for aggregating rubric feedback into rewards. The best RaR variant achieves relative improvements of up to $31\%$ on HealthBench and $7\%$ on GPQA-Diamond over popular LLM-as-judge baselines that rely on direct Likert-based rewards. These results demonstrate that RaR-trained policies adapt well to diverse evaluation formats, performing strongly on both rubric-based and multiple-choice tasks. Moreover, we find that using rubrics as structured reward signals yields better alignment for smaller judges and reduces performance variance across judge scales.
comment: preprint
♻ ☆ Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.
♻ ☆ Grounding Multimodal LLMs to Embodied Agents that Ask for Help with Reinforcement Learning
Embodied agents operating in household environments must interpret ambiguous and under-specified human instructions. A capable household robot should recognize ambiguity and ask relevant clarification questions to infer the user intent accurately, leading to more effective task execution. To study this problem, we introduce the Ask-to-Act task, where an embodied agent is tasked with a single or multi-object rearrangement task using an under-specified instruction in a home environment. The agent must strategically ask minimal, yet relevant, clarification questions to resolve ambiguity while navigating under partial observability. To address this challenge, we propose a novel approach that fine-tunes multi-modal large language models (MLLMs) as vision-language-action (VLA) policies using online reinforcement learning (RL) with LLM-generated rewards. Our method eliminates the need for large-scale human demonstrations or manually engineered rewards for training such agents. We benchmark against strong zero-shot baselines including GPT-4o as well as supervised fine-tuned MLLMs on our task. Our results show that our RL-finetuned MLLM outperforms all baselines by a significant margin (10.4-16.5%), generalizing well to novel scenes and tasks. To the best of our knowledge, this is the first demonstration of adapting MLLMs as VLA agents that can act and ask for help using LLM-generated rewards with online RL.
♻ ☆ When Long Helps Short: How Context Length in Supervised Fine-tuning Affects Behavior of Large Language Models
Large language models (LLMs) have achieved impressive performance across natural language processing (NLP) tasks. As real-world applications increasingly demand longer context windows, continued pretraining and supervised fine-tuning (SFT) on long-context data has become a common approach. While the effects of data length in continued pretraining have been extensively studied, their implications for SFT remain unclear. In this work, we systematically investigate how SFT data length influences LLM behavior on short-context tasks. Counterintuitively, we find that long-context SFT improves short-context performance, contrary to the commonly observed degradation from long-context pretraining. To uncover the underlying mechanisms of this phenomenon, we first decouple and analyze two key components, Multi-Head Attention (MHA) and Feed-Forward Network (FFN), and show that both independently benefit from long-context SFT. We further study their interaction and reveal a knowledge preference bias: long-context SFT promotes contextual knowledge, while short-context SFT favors parametric knowledge, making exclusive reliance on long-context SFT suboptimal. Finally, we demonstrate that hybrid training mitigates this bias, offering explainable guidance for fine-tuning LLMs.
♻ ☆ Understanding Generative Recommendation with Semantic IDs from a Model-scaling View
Recent advancements in generative models have allowed the emergence of a promising paradigm for recommender systems (RS), known as Generative Recommendation (GR), which tries to unify rich item semantics and collaborative filtering signals. One popular modern approach is to use semantic IDs (SIDs), which are discrete codes quantized from the embeddings of modality encoders (e.g., large language or vision models), to represent items in an autoregressive user interaction sequence modeling setup (henceforth, SID-based GR). While generative models in other domains exhibit well-established scaling laws, our work reveals that SID-based GR shows significant bottlenecks while scaling up the model. In particular, the performance of SID-based GR quickly saturates as we enlarge each component: the modality encoder, the quantization tokenizer, and the RS itself. In this work, we identify the limited capacity of SIDs to encode item semantic information as one of the fundamental bottlenecks. Motivated by this observation, as an initial effort to obtain GR models with better scaling behaviors, we revisit another GR paradigm that directly uses large language models (LLMs) as recommenders (henceforth, LLM-as-RS). Our experiments show that the LLM-as-RS paradigm has superior model scaling properties and achieves up to 20 percent improvement over the best achievable performance of SID-based GR through scaling. We also challenge the prevailing belief that LLMs struggle to capture collaborative filtering information, showing that their ability to model user-item interactions improves as LLMs scale up. Our analyses on both SID-based GR and LLMs across model sizes from 44M to 14B parameters underscore the intrinsic scaling limits of SID-based GR and position LLM-as-RS as a promising path toward foundation models for GR.
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ OT Score: An OT based Confidence Score for Source Free Unsupervised Domain Adaptation
We address the computational and theoretical limitations of current distributional alignment methods for source-free unsupervised domain adaptation (SFUDA). In particular, we focus on estimating classification performance and confidence in the absence of target labels. Current theoretical frameworks for these methods often yield computationally intractable quantities and fail to adequately reflect the properties of the alignment algorithms employed. To overcome these challenges, we introduce the Optimal Transport (OT) score, a confidence metric derived from a novel theoretical analysis that exploits the flexibility of decision boundaries induced by Semi-Discrete Optimal Transport alignment. The proposed OT score is intuitively interpretable and theoretically rigorous. It provides principled uncertainty estimates for any given set of target pseudo-labels. Experimental results demonstrate that OT score outperforms existing confidence scores. Moreover, it improves SFUDA performance through training-time reweighting and provides a reliable, label-free proxy for model performance.
Machine Learning 177
☆ Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
We propose a test-time defense mechanism against adversarial attacks: imperceptible image perturbations that significantly alter the predictions of a model. Unlike existing methods that rely on feature filtering or smoothing, which can lead to information loss, we propose to "combat noise with noise" by leveraging stochastic resonance to enhance robustness while minimizing information loss. Our approach introduces small translational perturbations to the input image, aligns the transformed feature embeddings, and aggregates them before mapping back to the original reference image. This can be expressed in a closed-form formula, which can be deployed on diverse existing network architectures without introducing additional network modules or fine-tuning for specific attack types. The resulting method is entirely training-free, architecture-agnostic, and attack-agnostic. Empirical results show state-of-the-art robustness on image classification and, for the first time, establish a generic test-time defense for dense prediction tasks, including stereo matching and optical flow, highlighting the method's versatility and practicality. Specifically, relative to clean (unperturbed) performance, our method recovers up to 68.1% of the accuracy loss on image classification, 71.9% on stereo matching, and 29.2% on optical flow under various types of adversarial attacks.
☆ Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
Cache-to-Cache: Direct Semantic Communication Between Large Language Models
Multi-LLM systems harness the complementary strengths of diverse Large Language Models, achieving performance and efficiency gains unattainable by a single model. In existing designs, LLMs communicate through text, forcing internal representations to be transformed into output token sequences. This process both loses rich semantic information and incurs token-by-token generation latency. Motivated by these limitations, we ask: Can LLMs communicate beyond text? Oracle experiments show that enriching the KV-Cache semantics can improve response quality without increasing cache size, supporting KV-Cache as an effective medium for inter-model communication. Thus, we propose Cache-to-Cache (C2C), a new paradigm for direct semantic communication between LLMs. C2C uses a neural network to project and fuse the source model's KV-cache with that of the target model to enable direct semantic transfer. A learnable gating mechanism selects the target layers that benefit from cache communication. Compared with text communication, C2C utilizes the deep, specialized semantics from both models, while avoiding explicit intermediate text generation. Experiments show that C2C achieves 8.5-10.5% higher average accuracy than individual models. It further outperforms the text communication paradigm by approximately 3.0-5.0%, while delivering an average 2.0x speedup in latency. Our code is available at https://github.com/thu-nics/C2C.
☆ Joint Bidding on Intraday and Frequency Containment Reserve Markets
As renewable energy integration increases supply variability, battery energy storage systems (BESS) present a viable solution for balancing supply and demand. This paper proposes a novel approach for optimizing battery BESS participation in multiple electricity markets. We develop a joint bidding strategy that combines participation in the primary frequency reserve market with continuous trading in the intraday market, addressing a gap in the extant literature which typically considers these markets in isolation or simplifies the continuous nature of intraday trading. Our approach utilizes a mixed integer linear programming implementation of the rolling intrinsic algorithm for intraday decisions and state of charge recovery, alongside a learned classifier strategy (LCS) that determines optimal capacity allocation between markets. A comprehensive out-of-sample backtest over more than one year of historical German market data validates our approach: The LCS increases overall profits by over 4% compared to the best-performing static strategy and by more than 3% over a naive dynamic benchmark. Crucially, our method closes the gap to a theoretical perfect foresight strategy to just 4%, demonstrating the effectiveness of dynamic, learning-based allocation in a complex, multi-market environment.
☆ To Distill or Decide? Understanding the Algorithmic Trade-off in Partially Observable Reinforcement Learning NeurIPS 2025
Partial observability is a notorious challenge in reinforcement learning (RL), due to the need to learn complex, history-dependent policies. Recent empirical successes have used privileged expert distillation--which leverages availability of latent state information during training (e.g., from a simulator) to learn and imitate the optimal latent, Markovian policy--to disentangle the task of "learning to see" from "learning to act". While expert distillation is more computationally efficient than RL without latent state information, it also has well-documented failure modes. In this paper--through a simple but instructive theoretical model called the perturbed Block MDP, and controlled experiments on challenging simulated locomotion tasks--we investigate the algorithmic trade-off between privileged expert distillation and standard RL without privileged information. Our main findings are: (1) The trade-off empirically hinges on the stochasticity of the latent dynamics, as theoretically predicted by contrasting approximate decodability with belief contraction in the perturbed Block MDP; and (2) The optimal latent policy is not always the best latent policy to distill. Our results suggest new guidelines for effectively exploiting privileged information, potentially advancing the efficiency of policy learning across many practical partially observable domains.
comment: 45 pages, 9 figures, published at NeurIPS 2025
☆ Automatic Generation of Digital Twins for Network Testing
The increased use of software in the operation and management of telecommunication networks has moved the industry one step closer to realizing autonomous network operation. One consequence of this shift is the significantly increased need for testing and validation before such software can be deployed. Complementing existing simulation or hardware-based approaches, digital twins present an environment to achieve this testing; however, they require significant time and human effort to configure and execute. This paper explores the automatic generation of digital twins to provide efficient and accurate validation tools, aligned to the ITU-T autonomous network architecture's experimentation subsystem. We present experimental results for an initial use case, demonstrating that the approach is feasible in automatically creating efficient digital twins with sufficient accuracy to be included as part of existing validation pipelines.
comment: Accepted to ANMS at ICDCS 2025
☆ Best-of-Majority: Minimax-Optimal Strategy for Pass@$k$ Inference Scaling
LLM inference often generates a batch of candidates for a prompt and selects one via strategies like majority voting or Best-of- N (BoN). For difficult tasks, this single-shot selection often underperforms. Consequently, evaluations commonly report Pass@$k$: the agent may submit up to $k$ responses, and only the best of them is used when computing regret. Motivated by this, we study inference scaling in the more general Pass@$k$ inference setting, and prove that neither majority voting nor BoN exhibits the desirable scaling with $k$ and the sampling budget $N$. Combining the advantages of majority voting and BoN, we propose a new inference strategy called Best-of-Majority (BoM), with a pivotal step that restricts the candidates to the responses with high frequency in the $N$ samples before selecting the top-$k$ rewards. We prove that when the sampling budget is $N=\tilde\Omega(C^*)$, the regret of BoM is $O(\epsilon_{\mathrm{opt}}+\sqrt{\epsilon_{\mathrm{RM}}^2C^*/k})$, where $C^*$ is the coverage coefficient, $\epsilon_{\mathrm{RM}}$ is the estimation error of the reward model, and $\epsilon_{\mathrm{opt}}$ is the estimation error of reward at the optimal response. We further establish a matching lower bound, certifying that our algorithm is minimax optimal. Beyond optimality, BoM has a key advantage: unlike majority voting and BoN, its performance does not degrade when increasing $N$. Experimental results of inference on math problems show BoM outperforming both majority voting and BoN.
comment: 29 pages, 3 figures
Estimation of Resistance Training RPE using Inertial Sensors and Electromyography
Accurate estimation of rating of perceived exertion (RPE) can enhance resistance training through personalized feedback and injury prevention. This study investigates the application of machine learning models to estimate RPE during single-arm dumbbell bicep curls, using data from wearable inertial and electromyography (EMG) sensors. A custom dataset of 69 sets and over 1000 repetitions was collected, with statistical features extracted for model training. Among the models evaluated, a random forest classifier achieved the highest performance, with 41.4% exact accuracy and 85.9% $\pm1$ RPE accuracy. While the inclusion of EMG data slightly improved model accuracy over inertial sensors alone, its utility may have been limited by factors such as data quality and placement sensitivity. Feature analysis highlighted eccentric repetition time as the strongest RPE predictor. The results demonstrate the feasibility of wearable-sensor-based RPE estimation and identify key challenges for improving model generalizability.
☆ Superposition disentanglement of neural representations reveals hidden alignment
The superposition hypothesis states that a single neuron within a population may participate in the representation of multiple features in order for the population to represent more features than the number of neurons. In neuroscience and AI, representational alignment metrics measure the extent to which different deep neural networks (DNNs) or brains represent similar information. In this work, we explore a critical question: \textit{does superposition interact with alignment metrics in any undesirable way?} We hypothesize that models which represent the same features in \textit{different superposition arrangements}, i.e., their neurons have different linear combinations of the features, will interfere with predictive mapping metrics (semi-matching, soft-matching, linear regression), producing lower alignment than expected. We first develop a theory for how the strict permutation metrics are dependent on superposition arrangements. This is tested by training sparse autoencoders (SAEs) to disentangle superposition in toy models, where alignment scores are shown to typically increase when a model's base neurons are replaced with its sparse overcomplete latent codes. We find similar increases for DNN\(\rightarrow\)DNN and DNN\(\rightarrow\)brain linear regression alignment in the visual domain. Our results suggest that superposition disentanglement is necessary for mapping metrics to uncover the true representational alignment between neural codes.
☆ PRISM-Physics: Causal DAG-Based Process Evaluation for Physics Reasoning
Benchmarks for competition-style reasoning have advanced evaluation in mathematics and programming, yet physics remains comparatively explored. Most existing physics benchmarks evaluate only final answers, which fail to capture reasoning processes, while recent stepwise methods rely on heuristic LLM-as-judge scoring or restrictive linear assumptions, limiting reliability and diagnostic validity. We introduce PRISM-Physics, a process-level evaluation framework and benchmark for complex physics reasoning problems. Solutions are represented as directed acyclic graphs (DAGs) of formulas, explicitly encoding causal dependencies among intermediate steps to enable fine-grained, interpretable, and theoretically grounded scoring. We prove the optimality of the DAG representation and the corresponding scoring policy. Combining with a fully rule-based method for symbolic formula equivalence matching that we developed, we ensure consistent validation across diverse formulations without heuristic judgments. Results show that our evaluation framework is more aligned with human experts' scoring. Experiments on state-of-the-art LLMs reveal persistent reasoning failures in physics, while step-level scoring offers both diagnostic insight and rich signals for later training. By combining structural rigor, theoretical guarantees, and symbolic validation, PRISM-Physics provides a principled foundation for advancing process-level evaluation and guiding the development of models with deeper scientific reasoning capabilities.
☆ Q-Learning with Shift-Aware Upper Confidence Bound in Non-Stationary Reinforcement Learning
We study the Non-Stationary Reinforcement Learning (RL) under distribution shifts in both finite-horizon episodic and infinite-horizon discounted Markov Decision Processes (MDPs). In the finite-horizon case, the transition functions may suddenly change at a particular episode. In the infinite-horizon setting, such changes can occur at an arbitrary time step during the agent's interaction with the environment. While the Q-learning Upper Confidence Bound algorithm (QUCB) can discover a proper policy during learning, due to the distribution shifts, this policy can exploit sub-optimal rewards after the shift happens. To address this issue, we propose Density-QUCB (DQUCB), a shift-aware Q-learning~UCB algorithm, which uses a transition density function to detect distribution shifts, then leverages its likelihood to enhance the uncertainty estimation quality of Q-learning~UCB, resulting in a balance between exploration and exploitation. Theoretically, we prove that our oracle DQUCB achieves a better regret guarantee than QUCB. Empirically, our DQUCB enjoys the computational efficiency of model-free RL and outperforms QUCB baselines by having a lower regret across RL tasks, as well as a real-world COVID-19 patient hospital allocation task using a Deep-Q-learning architecture.
☆ Improving Online-to-Nonconvex Conversion for Smooth Optimization via Double Optimism
A recent breakthrough in nonconvex optimization is the online-to-nonconvex conversion framework of \cite{cutkosky2023optimal}, which reformulates the task of finding an $\varepsilon$-first-order stationary point as an online learning problem. When both the gradient and the Hessian are Lipschitz continuous, instantiating this framework with two different online learners achieves a complexity of $\mathcal{O}(\varepsilon^{-1.75}\log(1/\varepsilon))$ in the deterministic case and a complexity of $\mathcal{O}(\varepsilon^{-3.5})$ in the stochastic case. However, this approach suffers from several limitations: (i) the deterministic method relies on a complex double-loop scheme that solves a fixed-point equation to construct hint vectors for an optimistic online learner, introducing an extra logarithmic factor; (ii) the stochastic method assumes a bounded second-order moment of the stochastic gradient, which is stronger than standard variance bounds; and (iii) different online learning algorithms are used in the two settings. In this paper, we address these issues by introducing an online optimistic gradient method based on a novel \textit{doubly optimistic hint function}. Specifically, we use the gradient at an extrapolated point as the hint, motivated by two optimistic assumptions: that the difference between the hint and the target gradient remains near constant, and that consecutive update directions change slowly due to smoothness. Our method eliminates the need for a double loop and removes the logarithmic factor. Furthermore, by simply replacing full gradients with stochastic gradients and under the standard assumption that their variance is bounded by $\sigma^2$, we obtain a unified algorithm with complexity $\mathcal{O}(\varepsilon^{-1.75} + \sigma^2 \varepsilon^{-3.5})$, smoothly interpolating between the best-known deterministic rate and the optimal stochastic rate.
comment: 32 pages
☆ FTTE: Federated Learning on Resource-Constrained Devices
Federated learning (FL) enables collaborative model training across distributed devices while preserving data privacy, but deployment on resource-constrained edge nodes remains challenging due to limited memory, energy, and communication bandwidth. Traditional synchronous and asynchronous FL approaches further suffer from straggler induced delays and slow convergence in heterogeneous, large scale networks. We present FTTE (Federated Tiny Training Engine),a novel semi-asynchronous FL framework that uniquely employs sparse parameter updates and a staleness-weighted aggregation based on both age and variance of client updates. Extensive experiments across diverse models and data distributions - including up to 500 clients and 90% stragglers - demonstrate that FTTE not only achieves 81% faster convergence, 80% lower on-device memory usage, and 69% communication payload reduction than synchronous FL (eg.FedAVG), but also consistently reaches comparable or higher target accuracy than semi-asynchronous (eg.FedBuff) in challenging regimes. These results establish FTTE as the first practical and scalable solution for real-world FL deployments on heterogeneous and predominantly resource-constrained edge devices.
☆ Why Do We Need Warm-up? A Theoretical Perspective
Learning rate warm-up - increasing the learning rate at the beginning of training - has become a ubiquitous heuristic in modern deep learning, yet its theoretical foundations remain poorly understood. In this work, we provide a principled explanation for why warm-up improves training. We rely on a generalization of the $(L_0, L_1)$-smoothness condition, which bounds local curvature as a linear function of the loss sub-optimality and exhibits desirable closure properties. We demonstrate both theoretically and empirically that this condition holds for common neural architectures trained with mean-squared error and cross-entropy losses. Under this assumption, we prove that Gradient Descent with a warm-up schedule achieves faster convergence than with a fixed step-size, establishing upper and lower complexity bounds. Finally, we validate our theoretical insights through experiments on language and vision models, confirming the practical benefits of warm-up schedules.
☆ Calibrated Uncertainty Sampling for Active Learning
We study the problem of actively learning a classifier with a low calibration error. One of the most popular Acquisition Functions (AFs) in pool-based Active Learning (AL) is querying by the model's uncertainty. However, we recognize that an uncalibrated uncertainty model on the unlabeled pool may significantly affect the AF effectiveness, leading to sub-optimal generalization and high calibration error on unseen data. Deep Neural Networks (DNNs) make it even worse as the model uncertainty from DNN is usually uncalibrated. Therefore, we propose a new AF by estimating calibration errors and query samples with the highest calibration error before leveraging DNN uncertainty. Specifically, we utilize a kernel calibration error estimator under the covariate shift and formally show that AL with this AF eventually leads to a bounded calibration error on the unlabeled pool and unseen test data. Empirically, our proposed method surpasses other AF baselines by having a lower calibration and generalization error across pool-based AL settings.
☆ Stimulus-Voltage-Based Prediction of Action Potential Onset Timing: Classical vs. Quantum-Inspired Approaches
Accurate modeling of neuronal action potential (AP) onset timing is crucial for understanding neural coding of danger signals. Traditional leaky integrate-and-fire (LIF) models, while widely used, exhibit high relative error in predicting AP onset latency, especially under strong or rapidly changing stimuli. Inspired by recent experimental findings and quantum theory, we present a quantum-inspired leaky integrate-and-fire (QI-LIF) model that treats AP onset as a probabilistic event, represented by a Gaussian wave packet in time. This approach captures the biological variability and uncertainty inherent in neuronal firing. We systematically compare the relative error of AP onset predictions between the classical LIF and QI-LIF models using synthetic data from hippocampal and sensory neurons subjected to varying stimulus amplitudes. Our results demonstrate that the QI-LIF model significantly reduces prediction error, particularly for high-intensity stimuli, aligning closely with observed biological responses. This work highlights the potential of quantum-inspired computational frameworks in advancing the accuracy of neural modeling and has implications for quantum engineering approaches to brain-inspired computing.
☆ ReeMark: Reeb Graphs for Simulating Patterns of Life in Spatiotemporal Trajectories
Accurately modeling human mobility is critical for urban planning, epidemiology, and traffic management. In this work, we introduce Markovian Reeb Graphs, a novel framework for simulating spatiotemporal trajectories that preserve Patterns of Life (PoLs) learned from baseline data. By combining individual- and population-level mobility structures within a probabilistic topological model, our approach generates realistic future trajectories that capture both consistency and variability in daily life. Evaluations on the Urban Anomalies dataset (Atlanta and Berlin subsets) using the Jensen-Shannon Divergence (JSD) across population- and agent-level metrics demonstrate that the proposed method achieves strong fidelity while remaining data- and compute-efficient. These results position Markovian Reeb Graphs as a scalable framework for trajectory simulation with broad applicability across diverse urban environments.
comment: 15 pages, 3 figures, 2 algorithms, 1 table
☆ Mixture of Many Zero-Compute Experts: A High-Rate Quantization Theory Perspective
This paper uses classical high-rate quantization theory to provide new insights into mixture-of-experts (MoE) models for regression tasks. Our MoE is defined by a segmentation of the input space to regions, each with a single-parameter expert that acts as a constant predictor with zero-compute at inference. Motivated by high-rate quantization theory assumptions, we assume that the number of experts is sufficiently large to make their input-space regions very small. This lets us to study the approximation error of our MoE model class: (i) for one-dimensional inputs, we formulate the test error and its minimizing segmentation and experts; (ii) for multidimensional inputs, we formulate an upper bound for the test error and study its minimization. Moreover, we consider the learning of the expert parameters from a training dataset, given an input-space segmentation, and formulate their statistical learning properties. This leads us to theoretically and empirically show how the tradeoff between approximation and estimation errors in MoE learning depends on the number of experts.
☆ Taming Imperfect Process Verifiers: A Sampling Perspective on Backtracking
Test-time algorithms that combine the generative power of language models with process verifiers that assess the quality of partial generations offer a promising lever for eliciting new reasoning capabilities, but the algorithmic design space and computational scaling properties of such approaches are still opaque, and their benefits are far from apparent when one accounts for the cost of learning a high-quality verifier. Our starting point is the observation that seemingly benign errors in a learned verifier can lead to catastrophic failures for standard decoding techniques due to error amplification during the course of generation. We then ask: can this be improved with more sophisticated decoding strategies? We introduce a new process-guided test-time sampling algorithm, VGB, which uses theoretically grounded backtracking to achieve provably better robustness to verifier errors. VGB interprets autoregressive generation as a random walk on a tree of partial generations, with transition probabilities guided by the process verifier and base model; crucially, backtracking occurs probabilistically. This process generalizes the seminal Sinclair-Jerrum random walk (Sinclair & Jerrum, 1989) from the literature on approximate counting and sampling in theoretical computer science, and a conceptual contribution of our work is to highlight parallels with this literature. Empirically, we demonstrate on both synthetic and real language modeling tasks that VGB outperforms baselines on a variety of metrics.
☆ The Computational Complexity of Almost Stable Clustering with Penalties
We investigate the complexity of stable (or perturbation-resilient) instances of $\mathrm{k-M\small{EANS}}$ and $\mathrm{k-M\small{EDIAN}}$ clustering problems in metrics with small doubling dimension. While these problems have been extensively studied under multiplicative perturbation resilience in low-dimensional Euclidean spaces (e.g., (Friggstad et al., 2019; Cohen-Addad and Schwiegelshohn, 2017)), we adopt a more general notion of stability, termed ``almost stable'', which is closer to the notion of $(\alpha, \varepsilon)$-perturbation resilience introduced by Balcan and Liang (2016). Additionally, we extend our results to $\mathrm{k-M\small{EANS}}$/$\mathrm{k-M\small{EDIAN}}$ with penalties, where each data point is either assigned to a cluster centre or incurs a penalty. We show that certain special cases of almost stable $\mathrm{k-M\small{EANS}}$/$\mathrm{k-M\small{EDIAN}}$ (with penalties) are solvable in polynomial time. To complement this, we also examine the hardness of almost stable instances and $(1 + \frac{1}{poly(n)})$-stable instances of $\mathrm{k-M\small{EANS}}$/$\mathrm{k-M\small{EDIAN}}$ (with penalties), proving super-polynomial lower bounds on the runtime of any exact algorithm under the widely believed Exponential Time Hypothesis (ETH).
☆ Enhancing XAI Narratives through Multi-Narrative Refinement and Knowledge Distillation
Explainable Artificial Intelligence has become a crucial area of research, aiming to demystify the decision-making processes of deep learning models. Among various explainability techniques, counterfactual explanations have been proven particularly promising, as they offer insights into model behavior by highlighting minimal changes that would alter a prediction. Despite their potential, these explanations are often complex and technical, making them difficult for non-experts to interpret. To address this challenge, we propose a novel pipeline that leverages Language Models, large and small, to compose narratives for counterfactual explanations. We employ knowledge distillation techniques along with a refining mechanism to enable Small Language Models to perform comparably to their larger counterparts while maintaining robust reasoning abilities. In addition, we introduce a simple but effective evaluation method to assess natural language narratives, designed to verify whether the models' responses are in line with the factual, counterfactual ground truth. As a result, our proposed pipeline enhances both the reasoning capabilities and practical performance of student models, making them more suitable for real-world use cases.
☆ Signature-Informed Transformer for Asset Allocation
Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation
☆ Real Time Headway Predictions in Urban Rail Systems and Implications for Service Control: A Deep Learning Approach
Efficient real-time dispatching in urban metro systems is essential for ensuring service reliability, maximizing resource utilization, and improving passenger satisfaction. This study presents a novel deep learning framework centered on a Convolutional Long Short-Term Memory (ConvLSTM) model designed to predict the complex spatiotemporal propagation of train headways across an entire metro line. By directly incorporating planned terminal headways as a critical input alongside historical headway data, the proposed model accurately forecasts future headway dynamics, effectively capturing both their temporal evolution and spatial dependencies across all stations. This capability empowers dispatchers to evaluate the impact of various terminal headway control decisions without resorting to computationally intensive simulations. We introduce a flexible methodology to simulate diverse dispatcher strategies, ranging from maintaining even headways to implementing custom patterns derived from observed terminal departures. In contrast to existing research primarily focused on passenger load predictioning or atypical disruption scenarios, our approach emphasizes proactive operational control. Evaluated on a large-scale dataset from an urban metro line, the proposed ConvLSTM model demonstrates promising headway predictions, offering actionable insights for real-time decision-making. This framework provides rail operators with a powerful, computationally efficient tool to optimize dispatching strategies, thereby significantly improving service consistency and passenger satisfaction.
☆ AdaBet: Gradient-free Layer Selection for Efficient Training of Deep Neural Networks
To utilize pre-trained neural networks on edge and mobile devices, we often require efficient adaptation to user-specific runtime data distributions while operating under limited compute and memory resources. On-device retraining with a target dataset can facilitate such adaptations; however, it remains impractical due to the increasing depth of modern neural nets, as well as the computational overhead associated with gradient-based optimization across all layers. Current approaches reduce training cost by selecting a subset of layers for retraining, however, they rely on labeled data, at least one full-model backpropagation, or server-side meta-training; limiting their suitability for constrained devices. We introduce AdaBet, a gradient-free layer selection approach to rank important layers by analyzing topological features of their activation spaces through Betti Numbers and using forward passes alone. AdaBet allows selecting layers with high learning capacity, which are important for retraining and adaptation, without requiring labels or gradients. Evaluating AdaBet on sixteen pairs of benchmark models and datasets, shows AdaBet achieves an average gain of 5% more classification accuracy over gradient-based baselines while reducing average peak memory consumption by 40%.
☆ Adaptive Node Feature Selection For Graph Neural Networks
We propose an adaptive node feature selection approach for graph neural networks (GNNs) that identifies and removes unnecessary features during training. The ability to measure how features contribute to model output is key for interpreting decisions, reducing dimensionality, and even improving performance by eliminating unhelpful variables. However, graph-structured data introduces complex dependencies that may not be amenable to classical feature importance metrics. Inspired by this challenge, we present a model- and task-agnostic method that determines relevant features during training based on changes in validation performance upon permuting feature values. We theoretically motivate our intervention-based approach by characterizing how GNN performance depends on the relationships between node data and graph structure. Not only do we return feature importance scores once training concludes, we also track how relevance evolves as features are successively dropped. We can therefore monitor if features are eliminated effectively and also evaluate other metrics with this technique. Our empirical results verify the flexibility of our approach to different graph architectures as well as its adaptability to more challenging graph learning settings.
☆ Distilled Protein Backbone Generation
Diffusion- and flow-based generative models have recently demonstrated strong performance in protein backbone generation tasks, offering unprecedented capabilities for de novo protein design. However, while achieving notable performance in generation quality, these models are limited by their generating speed, often requiring hundreds of iterative steps in the reverse-diffusion process. This computational bottleneck limits their practical utility in large-scale protein discovery, where thousands to millions of candidate structures are needed. To address this challenge, we explore the techniques of score distillation, which has shown great success in reducing the number of sampling steps in the vision domain while maintaining high generation quality. However, a straightforward adaptation of these methods results in unacceptably low designability. Through extensive study, we have identified how to appropriately adapt Score identity Distillation (SiD), a state-of-the-art score distillation strategy, to train few-step protein backbone generators which significantly reduce sampling time, while maintaining comparable performance to their pretrained teacher model. In particular, multistep generation combined with inference time noise modulation is key to the success. We demonstrate that our distilled few-step generators achieve more than a 20-fold improvement in sampling speed, while achieving similar levels of designability, diversity, and novelty as the Proteina teacher model. This reduction in inference cost enables large-scale in silico protein design, thereby bringing diffusion-based models closer to real-world protein engineering applications.
☆ Bootstrap Learning for Combinatorial Graph Alignment with Sequential GNNs
Graph neural networks (GNNs) have struggled to outperform traditional optimization methods on combinatorial problems, limiting their practical impact. We address this gap by introducing a novel chaining procedure for the graph alignment problem, a fundamental NP-hard task of finding optimal node correspondences between unlabeled graphs using only structural information. Our method trains a sequence of GNNs where each network learns to iteratively refine similarity matrices produced by previous networks. During inference, this creates a bootstrap effect: each GNN improves upon partial solutions by incorporating discrete ranking information about node alignment quality from prior iterations. We combine this with a powerful architecture that operates on node pairs rather than individual nodes, capturing global structural patterns essential for alignment that standard message-passing networks cannot represent. Extensive experiments on synthetic benchmarks demonstrate substantial improvements: our chained GNNs achieve over 3x better accuracy than existing methods on challenging instances, and uniquely solve regular graphs where all competing approaches fail. When combined with traditional optimization as post-processing, our method substantially outperforms state-of-the-art solvers on the graph alignment benchmark.
comment: 27 pages, 10 figures, 12 tables
☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
☆ A Unified Deep Reinforcement Learning Approach for Close Enough Traveling Salesman Problem
In recent years, deep reinforcement learning (DRL) has gained traction for solving the NP-hard traveling salesman problem (TSP). However, limited attention has been given to the close-enough TSP (CETSP), primarily due to the challenge introduced by its neighborhood-based visitation criterion, wherein a node is considered visited if the agent enters a compact neighborhood around it. In this work, we formulate a Markov decision process (MDP) for CETSP using a discretization scheme and propose a novel unified dual-decoder DRL (UD3RL) framework that separates decision-making into node selection and waypoint determination. Specifically, an adapted encoder is employed for effective feature extraction, followed by a node-decoder and a loc-decoder to handle the two sub-tasks, respectively. A k-nearest neighbors subgraph interaction strategy is further introduced to enhance spatial reasoning during location decoding. Furthermore, we customize the REINFORCE algorithm to train UD3RL as a unified model capable of generalizing across different problem sizes and varying neighborhood radius types (i.e., constant and random radii). Experimental results show that UD3RL outperforms conventional methods in both solution quality and runtime, while exhibiting strong generalization across problem scales, spatial distributions, and radius ranges, as well as robustness to dynamic environments.
☆ Comparative Analysis of Parameterized Action Actor-Critic Reinforcement Learning Algorithms for Web Search Match Plan Generation
This study evaluates the performance of Soft Actor Critic (SAC), Greedy Actor Critic (GAC), and Truncated Quantile Critics (TQC) in high-dimensional decision-making tasks using fully observable environments. The focus is on parametrized action (PA) spaces, eliminating the need for recurrent networks, with benchmarks Platform-v0 and Goal-v0 testing discrete actions linked to continuous action-parameter spaces. Hyperparameter optimization was performed with Microsoft NNI, ensuring reproducibility by modifying the codebase for GAC and TQC. Results show that Parameterized Action Greedy Actor-Critic (PAGAC) outperformed other algorithms, achieving the fastest training times and highest returns across benchmarks, completing 5,000 episodes in 41:24 for the Platform game and 24:04 for the Robot Soccer Goal game. Its speed and stability provide clear advantages in complex action spaces. Compared to PASAC and PATQC, PAGAC demonstrated superior efficiency and reliability, making it ideal for tasks requiring rapid convergence and robust performance. Future work could explore hybrid strategies combining entropy-regularization with truncation-based methods to enhance stability and expand investigations into generalizability.
comment: 10 pages, 10th International Congress on Information and Communication Technology (ICICT 2025)
☆ ZeroShotOpt: Towards Zero-Shot Pretrained Models for Efficient Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt
☆ Bayesian E(3)-Equivariant Interatomic Potential with Iterative Restratification of Many-body Message Passing
Machine learning potentials (MLPs) have become essential for large-scale atomistic simulations, enabling ab initio-level accuracy with computational efficiency. However, current MLPs struggle with uncertainty quantification, limiting their reliability for active learning, calibration, and out-of-distribution (OOD) detection. We address these challenges by developing Bayesian E(3) equivariant MLPs with iterative restratification of many-body message passing. Our approach introduces the joint energy-force negative log-likelihood (NLL$_\text{JEF}$) loss function, which explicitly models uncertainty in both energies and interatomic forces, yielding superior accuracy compared to conventional NLL losses. We systematically benchmark multiple Bayesian approaches, including deep ensembles with mean-variance estimation, stochastic weight averaging Gaussian, improved variational online Newton, and laplace approximation by evaluating their performance on uncertainty prediction, OOD detection, calibration, and active learning tasks. We further demonstrate that NLL$_\text{JEF}$ facilitates efficient active learning by quantifying energy and force uncertainties. Using Bayesian active learning by disagreement (BALD), our framework outperforms random sampling and energy-uncertainty-based sampling. Our results demonstrate that Bayesian MLPs achieve competitive accuracy with state-of-the-art models while enabling uncertainty-guided active learning, OOD detection, and energy/forces calibration. This work establishes Bayesian equivariant neural networks as a powerful framework for developing uncertainty-aware MLPs for atomistic simulations at scale.
☆ CHORD: Customizing Hybrid-precision On-device Model for Sequential Recommendation with Device-cloud Collaboration ACM MM'25
With the advancement of mobile device capabilities, deploying reranking models directly on devices has become feasible, enabling real-time contextual recommendations. When migrating models from cloud to devices, resource heterogeneity inevitably necessitates model compression. Recent quantization methods show promise for efficient deployment, yet they overlook device-specific user interests, resulting in compromised recommendation accuracy. While on-device finetuning captures personalized user preference, it imposes additional computational burden through local retraining. To address these challenges, we propose a framework for \underline{\textbf{C}}ustomizing \underline{\textbf{H}}ybrid-precision \underline{\textbf{O}}n-device model for sequential \underline{\textbf{R}}ecommendation with \underline{\textbf{D}}evice-cloud collaboration (\textbf{CHORD}), leveraging channel-wise mixed-precision quantization to simultaneously achieve personalization and resource-adaptive deployment. CHORD distributes randomly initialized models across heterogeneous devices and identifies user-specific critical parameters through auxiliary hypernetwork modules on the cloud. Our parameter sensitivity analysis operates across multiple granularities (layer, filter, and element levels), enabling precise mapping from user profiles to quantization strategy. Through on-device mixed-precision quantization, CHORD delivers dynamic model adaptation and accelerated inference without backpropagation, eliminating costly retraining cycles. We minimize communication overhead by encoding quantization strategies using only 2 bits per channel instead of 32-bit weights. Experiments on three real-world datasets with two popular backbones (SASRec and Caser) demonstrate the accuracy, efficiency, and adaptivity of CHORD.
comment: accepted by ACM MM'25
☆ Lightweight Transformer for EEG Classification via Balanced Signed Graph Algorithm Unrolling
Samples of brain signals collected by EEG sensors have inherent anti-correlations that are well modeled by negative edges in a finite graph. To differentiate epilepsy patients from healthy subjects using collected EEG signals, we build lightweight and interpretable transformer-like neural nets by unrolling a spectral denoising algorithm for signals on a balanced signed graph -- graph with no cycles of odd number of negative edges. A balanced signed graph has well-defined frequencies that map to a corresponding positive graph via similarity transform of the graph Laplacian matrices. We implement an ideal low-pass filter efficiently on the mapped positive graph via Lanczos approximation, where the optimal cutoff frequency is learned from data. Given that two balanced signed graph denoisers learn posterior probabilities of two different signal classes during training, we evaluate their reconstruction errors for binary classification of EEG signals. Experiments show that our method achieves classification performance comparable to representative deep learning schemes, while employing dramatically fewer parameters.
☆ Differentially Private Wasserstein Barycenters
The Wasserstein barycenter is defined as the mean of a set of probability measures under the optimal transport metric, and has numerous applications spanning machine learning, statistics, and computer graphics. In practice these input measures are empirical distributions built from sensitive datasets, motivating a differentially private (DP) treatment. We present, to our knowledge, the first algorithms for computing Wasserstein barycenters under differential privacy. Empirically, on synthetic data, MNIST, and large-scale U.S. population datasets, our methods produce high-quality private barycenters with strong accuracy-privacy tradeoffs.
comment: 24 pages, 9 figures
☆ Learning Robust Diffusion Models from Imprecise Supervision
Conditional diffusion models have achieved remarkable success in various generative tasks recently, but their training typically relies on large-scale datasets that inevitably contain imprecise information in conditional inputs. Such supervision, often stemming from noisy, ambiguous, or incomplete labels, will cause condition mismatch and degrade generation quality. To address this challenge, we propose DMIS, a unified framework for training robust Diffusion Models from Imprecise Supervision, which is the first systematic study within diffusion models. Our framework is derived from likelihood maximization and decomposes the objective into generative and classification components: the generative component models imprecise-label distributions, while the classification component leverages a diffusion classifier to infer class-posterior probabilities, with its efficiency further improved by an optimized timestep sampling strategy. Extensive experiments on diverse forms of imprecise supervision, covering tasks of image generation, weakly supervised learning, and noisy dataset condensation demonstrate that DMIS consistently produces high-quality and class-discriminative samples.
☆ Distributional Inverse Reinforcement Learning
We propose a distributional framework for offline Inverse Reinforcement Learning (IRL) that jointly models uncertainty over reward functions and full distributions of returns. Unlike conventional IRL approaches that recover a deterministic reward estimate or match only expected returns, our method captures richer structure in expert behavior, particularly in learning the reward distribution, by minimizing first-order stochastic dominance (FSD) violations and thus integrating distortion risk measures (DRMs) into policy learning, enabling the recovery of both reward distributions and distribution-aware policies. This formulation is well-suited for behavior analysis and risk-aware imitation learning. Empirical results on synthetic benchmarks, real-world neurobehavioral data, and MuJoCo control tasks demonstrate that our method recovers expressive reward representations and achieves state-of-the-art imitation performance.
☆ BrainIB++: Leveraging Graph Neural Networks and Information Bottleneck for Functional Brain Biomarkers in Schizophrenia
The development of diagnostic models is gaining traction in the field of psychiatric disorders. Recently, machine learning classifiers based on resting-state functional magnetic resonance imaging (rs-fMRI) have been developed to identify brain biomarkers that differentiate psychiatric disorders from healthy controls. However, conventional machine learning-based diagnostic models often depend on extensive feature engineering, which introduces bias through manual intervention. While deep learning models are expected to operate without manual involvement, their lack of interpretability poses significant challenges in obtaining explainable and reliable brain biomarkers to support diagnostic decisions, ultimately limiting their clinical applicability. In this study, we introduce an end-to-end innovative graph neural network framework named BrainIB++, which applies the information bottleneck (IB) principle to identify the most informative data-driven brain regions as subgraphs during model training for interpretation. We evaluate the performance of our model against nine established brain network classification methods across three multi-cohort schizophrenia datasets. It consistently demonstrates superior diagnostic accuracy and exhibits generalizability to unseen data. Furthermore, the subgraphs identified by our model also correspond with established clinical biomarkers in schizophrenia, particularly emphasizing abnormalities in the visual, sensorimotor, and higher cognition brain functional network. This alignment enhances the model's interpretability and underscores its relevance for real-world diagnostic applications.
comment: This manuscript has been accepted by Biomedical Signal Processing and Control and the code is available at https://github.com/TianzhengHU/BrainIB_coding/tree/main/BrainIB_GIB
☆ From high-frequency sensors to noon reports: Using transfer learning for shaft power prediction in maritime
With the growth of global maritime transportation, energy optimization has become crucial for reducing costs and ensuring operational efficiency. Shaft power is the mechanical power transmitted from the engine to the shaft and directly impacts fuel consumption, making its accurate prediction a paramount step in optimizing vessel performance. Power consumption is highly correlated with ship parameters such as speed and shaft rotation per minute, as well as weather and sea conditions. Frequent access to this operational data can improve prediction accuracy. However, obtaining high-quality sensor data is often infeasible and costly, making alternative sources such as noon reports a viable option. In this paper, we propose a transfer learning-based approach for predicting vessels shaft power, where a model is initially trained on high-frequency data from a vessel and then fine-tuned with low-frequency daily noon reports from other vessels. We tested our approach on sister vessels (identical dimensions and configurations), a similar vessel (slightly larger with a different engine), and a different vessel (distinct dimensions and configurations). The experiments showed that the mean absolute percentage error decreased by 10.6 percent for sister vessels, 3.6 percent for a similar vessel, and 5.3 percent for a different vessel, compared to the model trained solely on noon report data.
comment: Keywords: transfer learning, shaft power prediction, noon reports, sensor data, maritime
☆ FR-LUX: Friction-Aware, Regime-Conditioned Policy Optimization for Implementable Portfolio Management
Transaction costs and regime shifts are major reasons why paper portfolios fail in live trading. We introduce FR-LUX (Friction-aware, Regime-conditioned Learning under eXecution costs), a reinforcement learning framework that learns after-cost trading policies and remains robust across volatility-liquidity regimes. FR-LUX integrates three ingredients: (i) a microstructure-consistent execution model combining proportional and impact costs, directly embedded in the reward; (ii) a trade-space trust region that constrains changes in inventory flow rather than logits, yielding stable low-turnover updates; and (iii) explicit regime conditioning so the policy specializes to LL/LH/HL/HH states without fragmenting the data. On a 4 x 5 grid of regimes and cost levels with multiple random seeds, FR-LUX achieves the top average Sharpe ratio with narrow bootstrap confidence intervals, maintains a flatter cost-performance slope than strong baselines, and attains superior risk-return efficiency for a given turnover budget. Pairwise scenario-level improvements are strictly positive and remain statistically significant after multiple-testing corrections. We provide formal guarantees on optimality under convex frictions, monotonic improvement under a KL trust region, long-run turnover bounds and induced inaction bands due to proportional costs, positive value advantage for regime-conditioned policies, and robustness to cost misspecification. The methodology is implementable: costs are calibrated from standard liquidity proxies, scenario-level inference avoids pseudo-replication, and all figures and tables are reproducible from released artifacts.
comment: 19 pages, 7 figures, includes theoretical guarantees and empirical evaluation, submitted to AI/ML in Finance track
☆ Oracle-based Uniform Sampling from Convex Bodies
We propose new Markov chain Monte Carlo algorithms to sample a uniform distribution on a convex body $K$. Our algorithms are based on the Alternating Sampling Framework/proximal sampler, which uses Gibbs sampling on an augmented distribution and assumes access to the so-called restricted Gaussian oracle (RGO). The key contribution of this work is the efficient implementation of RGO for uniform sampling on $K$ via rejection sampling and access to either a projection oracle or a separation oracle on $K$. In both oracle cases, we establish non-asymptotic complexities to obtain unbiased samples where the accuracy is measured in R\'enyi divergence or $\chi^2$-divergence.
comment: 24 pages
☆ oRANS: Online optimisation of RANS machine learning models with embedded DNS data generation
Deep learning (DL) has demonstrated promise for accelerating and enhancing the accuracy of flow physics simulations, but progress is constrained by the scarcity of high-fidelity training data, which is costly to generate and inherently limited to a small set of flow conditions. Consequently, closures trained in the conventional offline paradigm tend to overfit and fail to generalise to new regimes. We introduce an online optimisation framework for DL-based Reynolds-averaged Navier--Stokes (RANS) closures which seeks to address the challenge of limited high-fidelity datasets. Training data is dynamically generated by embedding a direct numerical simulation (DNS) within a subdomain of the RANS domain. The RANS solution supplies boundary conditions to the DNS, while the DNS provides mean velocity and turbulence statistics that are used to update a DL closure model during the simulation. This feedback loop enables the closure to adapt to the embedded DNS target flow, avoiding reliance on precomputed datasets and improving out-of-distribution performance. The approach is demonstrated for the stochastically forced Burgers equation and for turbulent channel flow at $Re_\tau=180$, $270$, $395$ and $590$ with varying embedded domain lengths $1\leq L_0/L\leq 8$. Online-optimised RANS models significantly outperform both offline-trained and literature-calibrated closures, with accurate training achieved using modest DNS subdomains. Performance degrades primarily when boundary-condition contamination dominates or when domains are too short to capture low-wavenumber modes. This framework provides a scalable route to physics-informed machine learning closures, enabling data-adaptive reduced-order models that generalise across flow regimes without requiring large precomputed training datasets.
☆ Confidence and Dispersity as Signals: Unsupervised Model Evaluation and Ranking ICML'23
Assessing model generalization under distribution shift is essential for real-world deployment, particularly when labeled test data is unavailable. This paper presents a unified and practical framework for unsupervised model evaluation and ranking in two common deployment settings: (1) estimating the accuracy of a fixed model on multiple unlabeled test sets (dataset-centric evaluation), and (2) ranking a set of candidate models on a single unlabeled test set (model-centric evaluation). We demonstrate that two intrinsic properties of model predictions, namely confidence (which reflects prediction certainty) and dispersity (which captures the diversity of predicted classes), together provide strong and complementary signals for generalization. We systematically benchmark a set of confidence-based, dispersity-based, and hybrid metrics across a wide range of model architectures, datasets, and distribution shift types. Our results show that hybrid metrics consistently outperform single-aspect metrics on both dataset-centric and model-centric evaluation settings. In particular, the nuclear norm of the prediction matrix provides robust and accurate performance across tasks, including real-world datasets, and maintains reliability under moderate class imbalance. These findings offer a practical and generalizable basis for unsupervised model assessment in deployment scenarios.
comment: 15 pages, 11 figures, extension of ICML'23 work: Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation
☆ ContextFlow: Context-Aware Flow Matching For Trajectory Inference From Spatial Omics Data
Inferring trajectories from longitudinal spatially-resolved omics data is fundamental to understanding the dynamics of structural and functional tissue changes in development, regeneration and repair, disease progression, and response to treatment. We propose ContextFlow, a novel context-aware flow matching framework that incorporates prior knowledge to guide the inference of structural tissue dynamics from spatially resolved omics data. Specifically, ContextFlow integrates local tissue organization and ligand-receptor communication patterns into a transition plausibility matrix that regularizes the optimal transport objective. By embedding these contextual constraints, ContextFlow generates trajectories that are not only statistically consistent but also biologically meaningful, making it a generalizable framework for modeling spatiotemporal dynamics from longitudinal, spatially resolved omics data. Evaluated on three datasets, ContextFlow consistently outperforms state-of-the-art flow matching methods across multiple quantitative and qualitative metrics of inference accuracy and biological coherence. Our code is available at: \href{https://github.com/santanurathod/ContextFlow}{ContextFlow}
comment: 26 pages, 9 figures, 13 tables
☆ Ergodic Risk Measures: Towards a Risk-Aware Foundation for Continual Reinforcement Learning
Continual reinforcement learning (continual RL) seeks to formalize the notions of lifelong learning and endless adaptation in RL. In particular, the aim of continual RL is to develop RL agents that can maintain a careful balance between retaining useful information and adapting to new situations. To date, continual RL has been explored almost exclusively through the lens of risk-neutral decision-making, in which the agent aims to optimize the expected (or mean) long-run performance. In this work, we present the first formal theoretical treatment of continual RL through the lens of risk-aware decision-making, in which the agent aims to optimize a reward-based measure of long-run performance beyond the mean. In particular, we show that the classical theory of risk measures, widely used as a theoretical foundation in non-continual risk-aware RL, is, in its current form, incompatible with the continual setting. Then, building on this insight, we extend risk measure theory into the continual setting by introducing a new class of ergodic risk measures that are compatible with continual learning. Finally, we provide a case study of risk-aware continual learning, along with empirical results, which show the intuitive appeal and theoretical soundness of ergodic risk measures.
☆ RAxSS: Retrieval-Augmented Sparse Sampling for Explainable Variable-Length Medical Time Series Classification NeurIPS 2025
Medical time series analysis is challenging due to data sparsity, noise, and highly variable recording lengths. Prior work has shown that stochastic sparse sampling effectively handles variable-length signals, while retrieval-augmented approaches improve explainability and robustness to noise and weak temporal correlations. In this study, we generalize the stochastic sparse sampling framework for retrieval-informed classification. Specifically, we weight window predictions by within-channel similarity and aggregate them in probability space, yielding convex series-level scores and an explicit evidence trail for explainability. Our method achieves competitive iEEG classification performance and provides practitioners with greater transparency and explainability. We evaluate our method in iEEG recordings collected in four medical centers, demonstrating its potential for reliable and explainable clinical variable-length time series classification.
comment: Accepted at the NeurIPS 2025 Workshop on Learning from Time Series for Health
☆ Scalable Quantum Optimisation using HADOF: Hamiltonian Auto-Decomposition Optimisation Framework ECAI
Quantum Annealing (QA) and QAOA are promising quantum optimisation algorithms used for finding approximate solutions to combinatorial problems on near-term NISQ systems. Many NP-hard problems can be reformulated as Quadratic Unconstrained Binary Optimisation (QUBO), which maps naturally onto quantum Hamiltonians. However, the limited qubit counts of current NISQ devices restrict practical deployment of such algorithms. In this study, we present the Hamiltonian Auto-Decomposition Optimisation Framework (HADOF), which leverages an iterative strategy to automatically divide the Quadratic Unconstrained Binary Optimisation (QUBO) Hamiltonian into sub-Hamiltonians which can be optimised separately using Hamiltonian based optimisers such as QAOA, QA or Simulated Annealing (SA) and aggregated into a global solution. We compare HADOF with Simulated Annealing (SA) and the CPLEX exact solver, showing scalability to problem sizes far exceeding available qubits while maintaining competitive accuracy and runtime. Furthermore, we realise HADOF for a toy problem on an IBM quantum computer, showing promise for practical applications of quantum optimisation.
comment: Sankar, N., Miliotis, G. and Caton, S. Scalable Quantum Optimisation using HADOF: Hamiltonian Auto-Decomposition Optimisation Framework. In 3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), at the 28th European Conference on Artificial Intelligence (ECAI), October 25-30, 2025, Bologna, Italy
☆ Mechanistic Interpretability of Code Correctness in LLMs via Sparse Autoencoders
As Large Language Models become integral to software development, with substantial portions of AI-suggested code entering production, understanding their internal correctness mechanisms becomes critical for safe deployment. We apply sparse autoencoders to decompose LLM representations, identifying directions that correspond to code correctness. We select predictor directions using t-statistics and steering directions through separation scores from base model representations, then analyze their mechanistic properties through steering, attention analysis, and weight orthogonalization. We find that code correctness directions in LLMs reliably predict incorrect code, while correction capabilities, though statistically significant, involve tradeoffs between fixing errors and preserving correct code. Mechanistically, successful code generation depends on attending to test cases rather than problem descriptions. Moreover, directions identified in base models retain their effectiveness after instruction-tuning, suggesting code correctness mechanisms learned during pre-training are repurposed during fine-tuning. Our mechanistic insights suggest three practical applications: prompting strategies should prioritize test examples over elaborate problem descriptions, predictor directions can serve as error alarms for developer review, and these same predictors can guide selective steering, intervening only when errors are anticipated to prevent the code corruption from constant steering.
☆ SALSA-V: Shortcut-Augmented Long-form Synchronized Audio from Videos
We propose SALSA-V, a multimodal video-to-audio generation model capable of synthesizing highly synchronized, high-fidelity long-form audio from silent video content. Our approach introduces a masked diffusion objective, enabling audio-conditioned generation and the seamless synthesis of audio sequences of unconstrained length. Additionally, by integrating a shortcut loss into our training process, we achieve rapid generation of high-quality audio samples in as few as eight sampling steps, paving the way for near-real-time applications without requiring dedicated fine-tuning or retraining. We demonstrate that SALSA-V significantly outperforms existing state-of-the-art methods in both audiovisual alignment and synchronization with video content in quantitative evaluation and a human listening study. Furthermore, our use of random masking during training enables our model to match spectral characteristics of reference audio samples, broadening its applicability to professional audio synthesis tasks such as Foley generation and sound design.
☆ WavInWav: Time-domain Speech Hiding via Invertible Neural Network
Data hiding is essential for secure communication across digital media, and recent advances in Deep Neural Networks (DNNs) provide enhanced methods for embedding secret information effectively. However, previous audio hiding methods often result in unsatisfactory quality when recovering secret audio, due to their inherent limitations in the modeling of time-frequency relationships. In this paper, we explore these limitations and introduce a new DNN-based approach. We use a flow-based invertible neural network to establish a direct link between stego audio, cover audio, and secret audio, enhancing the reversibility of embedding and extracting messages. To address common issues from time-frequency transformations that degrade secret audio quality during recovery, we implement a time-frequency loss on the time-domain signal. This approach not only retains the benefits of time-frequency constraints but also enhances the reversibility of message recovery, which is vital for practical applications. We also add an encryption technique to protect the hidden data from unauthorized access. Experimental results on the VCTK and LibriSpeech datasets demonstrate that our method outperforms previous approaches in terms of subjective and objective metrics and exhibits robustness to various types of noise, suggesting its utility in targeted secure communication scenarios.
comment: 13 pages, 5 figures, project page: https://cyberrrange.github.io/project/wavinwav
☆ FeDABoost: Fairness Aware Federated Learning with Adaptive Boosting ECML-PKDD 2025
This work focuses on improving the performance and fairness of Federated Learning (FL) in non IID settings by enhancing model aggregation and boosting the training of underperforming clients. We propose FeDABoost, a novel FL framework that integrates a dynamic boosting mechanism and an adaptive gradient aggregation strategy. Inspired by the weighting mechanism of the Multiclass AdaBoost (SAMME) algorithm, our aggregation method assigns higher weights to clients with lower local error rates, thereby promoting more reliable contributions to the global model. In parallel, FeDABoost dynamically boosts underperforming clients by adjusting the focal loss focusing parameter, emphasizing hard to classify examples during local training. We have evaluated FeDABoost on three benchmark datasets MNIST, FEMNIST, and CIFAR10, and compared its performance with those of FedAvg and Ditto. The results show that FeDABoost achieves improved fairness and competitive performance.
comment: Presented in WAFL@ECML-PKDD 2025
☆ Learning Explicit Single-Cell Dynamics Using ODE Representations
Modeling the dynamics of cellular differentiation is fundamental to advancing the understanding and treatment of diseases associated with this process, such as cancer. With the rapid growth of single-cell datasets, this has also become a particularly promising and active domain for machine learning. Current state-of-the-art models, however, rely on computationally expensive optimal transport preprocessing and multi-stage training, while also not discovering explicit gene interactions. To address these challenges we propose Cell-Mechanistic Neural Networks (Cell-MNN), an encoder-decoder architecture whose latent representation is a locally linearized ODE governing the dynamics of cellular evolution from stem to tissue cells. Cell-MNN is fully end-to-end (besides a standard PCA pre-processing) and its ODE representation explicitly learns biologically consistent and interpretable gene interactions. Empirically, we show that Cell-MNN achieves competitive performance on single-cell benchmarks, surpasses state-of-the-art baselines in scaling to larger datasets and joint training across multiple datasets, while also learning interpretable gene interactions that we validate against the TRRUST database of gene interactions.
comment: 26 pages, 10 figures. Preprint under review
☆ DMark: Order-Agnostic Watermarking for Diffusion Large Language Models
Diffusion large language models (dLLMs) offer faster generation than autoregressive models while maintaining comparable quality, but existing watermarking methods fail on them due to their non-sequential decoding. Unlike autoregressive models that generate tokens left-to-right, dLLMs can finalize tokens in arbitrary order, breaking the causal design underlying traditional watermarks. We present DMark, the first watermarking framework designed specifically for dLLMs. DMark introduces three complementary strategies to restore watermark detectability: predictive watermarking uses model-predicted tokens when actual context is unavailable; bidirectional watermarking exploits both forward and backward dependencies unique to diffusion decoding; and predictive-bidirectional watermarking combines both approaches to maximize detection strength. Experiments across multiple dLLMs show that DMark achieves 92.0-99.5% detection rates at 1% false positive rate while maintaining text quality, compared to only 49.6-71.2% for naive adaptations of existing methods. DMark also demonstrates robustness against text manipulations, establishing that effective watermarking is feasible for non-autoregressive language models.
☆ RoiRL: Efficient, Self-Supervised Reasoning with Offline Iterative Reinforcement Learning
Reinforcement learning (RL) is central to improving reasoning in large language models (LLMs) but typically requires ground-truth rewards. Test-Time Reinforcement Learning (TTRL) removes this need by using majority-vote rewards, but relies on heavy online RL and incurs substantial computational cost. We propose RoiRL: Reasoning with offline iterative Reinforcement Learning, a family of lightweight offline learning alternatives that can target the same regularized optimal policies. Unlike TTRL, RoiRL eliminates the need to maintain a reference model and instead optimizes weighted log-likelihood objectives, enabling stable training with significantly lower memory and compute requirements. Experimental results show that RoiRL trains to 2.5x faster and consistently outperforms TTRL on reasoning benchmarks, establishing a scalable path to self-improving LLMs without labels.
comment: Accepted to the Efficient Reasoning Workshop at NeuRIPS 2025
☆ ELMF4EggQ: Ensemble Learning with Multimodal Feature Fusion for Non-Destructive Egg Quality Assessment
Accurate, non-destructive assessment of egg quality is critical for ensuring food safety, maintaining product standards, and operational efficiency in commercial poultry production. This paper introduces ELMF4EggQ, an ensemble learning framework that employs multimodal feature fusion to classify egg grade and freshness using only external attributes - image, shape, and weight. A novel, publicly available dataset of 186 brown-shelled eggs was constructed, with egg grade and freshness levels determined through laboratory-based expert assessments involving internal quality measurements, such as yolk index and Haugh unit. To the best of our knowledge, this is the first study to apply machine learning methods for internal egg quality assessment using only external, non-invasive features, and the first to release a corresponding labeled dataset. The proposed framework integrates deep features extracted from external egg images with structural characteristics such as egg shape and weight, enabling a comprehensive representation of each egg. Image feature extraction is performed using top-performing pre-trained CNN models (ResNet152, DenseNet169, and ResNet152V2), followed by PCA-based dimensionality reduction, SMOTE augmentation, and classification using multiple machine learning algorithms. An ensemble voting mechanism combines predictions from the best-performing classifiers to enhance overall accuracy. Experimental results demonstrate that the multimodal approach significantly outperforms image-only and tabular (shape and weight) only baselines, with the multimodal ensemble approach achieving 86.57% accuracy in grade classification and 70.83% in freshness prediction. All code and data are publicly available at https://github.com/Kenshin-Keeps/Egg_Quality_Prediction_ELMF4EggQ, promoting transparency, reproducibility, and further research in this domain.
comment: 30 pages
☆ Knowledge-Aware Modeling with Frequency Adaptive Learning for Battery Health Prognostics
Battery health prognostics are critical for ensuring safety, efficiency, and sustainability in modern energy systems. However, it has been challenging to achieve accurate and robust prognostics due to complex battery degradation behaviors with nonlinearity, noise, capacity regeneration, etc. Existing data-driven models capture temporal degradation features but often lack knowledge guidance, which leads to unreliable long-term health prognostics. To overcome these limitations, we propose Karma, a knowledge-aware model with frequency-adaptive learning for battery capacity estimation and remaining useful life prediction. The model first performs signal decomposition to derive battery signals in different frequency bands. A dual-stream deep learning architecture is developed, where one stream captures long-term low-frequency degradation trends and the other models high-frequency short-term dynamics. Karma regulates the prognostics with knowledge, where battery degradation is modeled as a double exponential function based on empirical studies. Our dual-stream model is used to optimize the parameters of the knowledge with particle filters to ensure physically consistent and reliable prognostics and uncertainty quantification. Experimental study demonstrates Karma's superior performance, achieving average error reductions of 50.6% and 32.6% over state-of-the-art algorithms for battery health prediction on two mainstream datasets, respectively. These results highlight Karma's robustness, generalizability, and potential for safer and more reliable battery management across diverse applications.
comment: 12 pages, 4 figures, 4 tables
☆ Subject-Adaptive Sparse Linear Models for Interpretable Personalized Health Prediction from Multimodal Lifelog Data
Improved prediction of personalized health outcomes -- such as sleep quality and stress -- from multimodal lifelog data could have meaningful clinical and practical implications. However, state-of-the-art models, primarily deep neural networks and gradient-boosted ensembles, sacrifice interpretability and fail to adequately address the significant inter-individual variability inherent in lifelog data. To overcome these challenges, we propose the Subject-Adaptive Sparse Linear (SASL) framework, an interpretable modeling approach explicitly designed for personalized health prediction. SASL integrates ordinary least squares regression with subject-specific interactions, systematically distinguishing global from individual-level effects. We employ an iterative backward feature elimination method based on nested $F$-tests to construct a sparse and statistically robust model. Additionally, recognizing that health outcomes often represent discretized versions of continuous processes, we develop a regression-then-thresholding approach specifically designed to maximize macro-averaged F1 scores for ordinal targets. For intrinsically challenging predictions, SASL selectively incorporates outputs from compact LightGBM models through confidence-based gating, enhancing accuracy without compromising interpretability. Evaluations conducted on the CH-2025 dataset -- which comprises roughly 450 daily observations from ten subjects -- demonstrate that the hybrid SASL-LightGBM framework achieves predictive performance comparable to that of sophisticated black-box methods, but with significantly fewer parameters and substantially greater transparency, thus providing clear and actionable insights for clinicians and practitioners.
comment: 6 pages, ICTC 2025
☆ The land use-climate change-biodiversity nexus in European islands stakeholders
To promote climate adaptation and mitigation, it is crucial to understand stakeholder perspectives and knowledge gaps on land use and climate changes. Stakeholders across 21 European islands were consulted on climate and land use change issues affecting ecosystem services. Climate change perceptions included temperature, precipitation, humidity, extremes, and wind. Land use change perceptions included deforestation, coastal degradation, habitat protection, renewable energy facilities, wetlands, and others. Additional concerns such as invasive species, water or energy scarcity, infrastructure problems, and austerity were also considered. Climate and land use change impact perceptions were analysed with machine learning to quantify their influence. The predominant climatic characteristic is temperature, and the predominant land use characteristic is deforestation. Water-related problems are top priorities for stakeholders. Energy-related problems, including energy deficiency and issues with wind and solar facilities, rank high as combined climate and land use risks. Stakeholders generally perceive climate change impacts on ecosystem services as negative, with natural habitat destruction and biodiversity loss identified as top issues. Land use change impacts are also negative but more complex, with more explanatory variables. Stakeholders share common perceptions on biodiversity impacts despite geographic disparity, but they differentiate between climate and land use impacts. Water, energy, and renewable energy issues pose serious concerns, requiring management measures.
comment: In press at the Environmental Impact Assessment Review journal. Pre-proof author's version
Multi-scale Autoregressive Models are Laplacian, Discrete, and Latent Diffusion Models in Disguise
We revisit Visual Autoregressive (VAR) models through the lens of an iterative-refinement framework. Rather than viewing VAR solely as next-scale autoregression, we formalise it as a deterministic forward process that constructs a Laplacian-style latent pyramid, paired with a learned backward process that reconstructs it in a small number of coarse-to-fine steps. This view connects VAR to denoising diffusion and isolates three design choices that help explain its efficiency and fidelity: refining in a learned latent space, casting prediction as discrete classification over code indices, and partitioning the task by spatial frequency. We run controlled experiments to quantify each factor's contribution to fidelity and speed, and we outline how the same framework extends to permutation-invariant graph generation and to probabilistic, ensemble-style medium-range weather forecasting. The framework also suggests practical interfaces for VAR to leverage tools from the diffusion ecosystem while retaining few-step, scale-parallel generation.
☆ The Curious Case of In-Training Compression of State Space Models
State Space Models (SSMs), developed to tackle long sequence modeling tasks efficiently, offer both parallelizable training and fast inference. At their core are recurrent dynamical systems that maintain a hidden state, with update costs scaling with the state dimension. A key design challenge is striking the right balance between maximizing expressivity and limiting this computational burden. Control theory, and more specifically Hankel singular value analysis, provides a potent framework for the measure of energy for each state, as well as the balanced truncation of the original system down to a smaller representation with performance guarantees. Leveraging the eigenvalue stability properties of Hankel matrices, we apply this lens to SSMs during training, where only dimensions of high influence are identified and preserved. Our approach applies to Linear Time-Invariant SSMs such as Linear Recurrent Units, but is also extendable to selective models. Experiments show that in-training reduction significantly accelerates optimization while preserving expressivity, with compressed models retaining task-critical structure lost by models trained directly at smaller dimension. In other words, SSMs that begin large and shrink during training achieve computational efficiency while maintaining higher performance.
☆ FlexiQ: Adaptive Mixed-Precision Quantization for Latency/Accuracy Trade-Offs in Deep Neural Networks
Neural networks commonly execute on hardware accelerators such as NPUs and GPUs for their size and computation overhead. These accelerators are costly and it is hard to scale their resources to handle real-time workload fluctuations. We present FlexiQ, an adaptive mixed-precision quantization scheme for computer vision models. FlexiQ selectively applies low-bitwidth computation to feature channels with small value ranges and employs an efficient bit-lowering method to minimize quantization errors while maintaining inference accuracy. Furthermore, FlexiQ adjusts its low-bitwidth channel ratio in real time, enabling quantized models to effectively manage fluctuating inference workload. We implemented FlexiQ prototype, including the mixed-precision inference runtime on our custom NPU and GPUs. Evaluated on eleven convolution- and transformer-based vision models, FlexiQ achieves on average 6.6% higher accuracy for 4-bit models with finetuning and outperforms four state-of-the-art quantization techniques. Moreover, our mixed-precision models achieved an efficient accuracy-latency trade-off, with the 50% 4-bit model incurring only 0.6% accuracy loss while achieving 40% of the speedup of the 100% 4-bit model over 8-bit model. Latency evaluations on our NPU and GPUs confirmed that FlexiQ introduces minimal runtime overhead, demonstrating its hardware efficiency and overall performance benefits.
comment: 16 pages. 14 figures. To be published in the Proceedings of the European Conference on Computer Systems (EUROSYS '26)
☆ Online Learning in the Random Order Model
In the random-order model for online learning, the sequence of losses is chosen upfront by an adversary and presented to the learner after a random permutation. Any random-order input is \emph{asymptotically} equivalent to a stochastic i.i.d. one, but, for finite times, it may exhibit significant {\em non-stationarity}, which can hinder the performance of stochastic learning algorithms. While algorithms for adversarial inputs naturally maintain their regret guarantees in random order, simple no-regret algorithms exist for the stochastic model that fail against random-order instances. In this paper, we propose a general template to adapt stochastic learning algorithms to the random-order model without substantially affecting their regret guarantees. This allows us to recover improved regret bounds for prediction with delays, online learning with constraints, and bandits with switching costs. Finally, we investigate online classification and prove that, in random order, learnability is characterized by the VC dimension rather than the Littlestone dimension, thus providing a further separation from the general adversarial model.
☆ Mitigating Spurious Correlation via Distributionally Robust Learning with Hierarchical Ambiguity Sets
Conventional supervised learning methods are often vulnerable to spurious correlations, particularly under distribution shifts in test data. To address this issue, several approaches, most notably Group DRO, have been developed. While these methods are highly robust to subpopulation or group shifts, they remain vulnerable to intra-group distributional shifts, which frequently occur in minority groups with limited samples. We propose a hierarchical extension of Group DRO that addresses both inter-group and intra-group uncertainties, providing robustness to distribution shifts at multiple levels. We also introduce new benchmark settings that simulate realistic minority group distribution shifts-an important yet previously underexplored challenge in spurious correlation research. Our method demonstrates strong robustness under these conditions-where existing robust learning methods consistently fail-while also achieving superior performance on standard benchmarks. These results highlight the importance of broadening the ambiguity set to better capture both inter-group and intra-group distributional uncertainties.
☆ Dissecting Transformers: A CLEAR Perspective towards Green AI
The rapid adoption of Large Language Models (LLMs) has raised significant environmental concerns. Unlike the one-time cost of training, LLM inference occurs continuously at a global scale and now dominates the AI energy footprint. Yet, most sustainability studies report only coarse, model-level metrics due to the lack of fine-grained measurement methods, treating energy efficiency more as an afterthought than as a primary objective. We present the first fine-grained empirical analysis of inference energy across core components of transformer architecture. We propose a novel methodology, Component-Level Energy Assessment via Repeated sampling (CLEAR), to overcome temporal mismatch between microsecond scale component execution and monitoring of millisecond (ms) scale energy sensors. Using CLEAR, we evaluate 15 models spanning four distinct architecture types and consistently keep component-wise energy variance below 9.5\% while capturing more than 90\% of the model's total energy as individual components. Our empirical analysis reveals that Attention blocks consume significantly more energy per floating-point operation (FLOP), indicating that energy consumption is not proportionally aligned with FLOP counts. This shows that FLOPs alone fail to capture the true energy cost at a component level. Our findings establish detailed component-level energy baselines and provide insight as an initial step to build energy-efficient transformer models through component-level optimizations.
☆ Relevance-Aware Thresholding in Online Conformal Prediction for Time Series
Uncertainty quantification has received considerable interest in recent works in Machine Learning. In particular, Conformal Prediction (CP) gains ground in this field. For the case of time series, Online Conformal Prediction (OCP) becomes an option to address the problem of data distribution shift over time. Indeed, the idea of OCP is to update a threshold of some quantity (whether the miscoverage level or the quantile) based on the distribution observation. To evaluate the performance of OCP methods, two key aspects are typically considered: the coverage validity and the prediction interval width minimization. Recently, new OCP methods have emerged, offering long-run coverage guarantees and producing more informative intervals. However, during the threshold update step, most of these methods focus solely on the validity of the prediction intervals~--~that is, whether the ground truth falls inside or outside the interval~--~without accounting for their relevance. In this paper, we aim to leverage this overlooked aspect. Specifically, we propose enhancing the threshold update step by replacing the binary evaluation (inside/outside) with a broader class of functions that quantify the relevance of the prediction interval using the ground truth. This approach helps prevent abrupt threshold changes, potentially resulting in narrower prediction intervals. Indeed, experimental results on real-world datasets suggest that these functions can produce tighter intervals compared to existing OCP methods while maintaining coverage validity.
☆ OptunaHub: A Platform for Black-Box Optimization
Black-box optimization (BBO) drives advances in domains such as AutoML and Materials Informatics, yet research efforts often remain fragmented across domains. We introduce OptunaHub (https://hub.optuna.org/), a community platform that centralizes BBO methods and benchmarks. OptunaHub provides unified Python APIs, a contributor package registry, and a web interface to promote searchability and cross-domain research. OptunaHub aims to foster a virtuous cycle of contributions and applications. The source code is publicly available in the optunahub, optunahub-registry, and optunahub-web repositories under the Optuna organization on GitHub (https://github.com/optuna/).
comment: Submitted to Journal of machine learning research
☆ Pareto-optimal Non-uniform Language Generation
Kleinberg and Mullainathan (2024) recently proposed an interesting model for language generation in the limit: Given a countable collection of languages, and an adversary enumerating the strings of some language $L$ from the collection, the objective is to generate new strings from the target language, such that all strings generated beyond some finite time are valid. Li, Raman and Tewari (2024) and Charikar and Pabbaraju (2024) showed strong non-uniform generation guarantees in this model, giving algorithms that generate new valid strings from $L$ after seeing a number of distinct input strings $t(L)$ that depends only on $L$ (and the collection), but not the enumeration order. However, for both these works, the language-wise generation times $t(L)$ of the algorithm can be strictly sub-optimal. In this work, we study Pareto-optimality of non-uniform language generation in the limit. We propose an algorithm, whose generation times $t^\star(L)$ are (almost) Pareto-optimal: any other algorithm whose generation time for some language $L$ is strictly smaller than $t^\star(L)$, must satisfy that its generation time for some other language $L'$ is strictly worse than $t^\star(L')$. Pareto-optimality is essentially the best that one can achieve for non-uniform generation. Our algorithmic framework conveniently adapts to further give Pareto-optimal non-uniform generation algorithms in the practically motivated settings of noisy as well as representative generation.
comment: 24 pages, 1 figure
☆ Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.
comment: Project page: https://araseo.github.io/alignyourquery/
☆ Optimal Rates for Generalization of Gradient Descent for Deep ReLU Classification NeurIPS 2025
Recent advances have significantly improved our understanding of the generalization performance of gradient descent (GD) methods in deep neural networks. A natural and fundamental question is whether GD can achieve generalization rates comparable to the minimax optimal rates established in the kernel setting. Existing results either yield suboptimal rates of $O(1/\sqrt{n})$, or focus on networks with smooth activation functions, incurring exponential dependence on network depth $L$. In this work, we establish optimal generalization rates for GD with deep ReLU networks by carefully trading off optimization and generalization errors, achieving only polynomial dependence on depth. Specifically, under the assumption that the data are NTK separable from the margin $\gamma$, we prove an excess risk rate of $\widetilde{O}(L^4 (1 + \gamma L^2) / (n \gamma^2))$, which aligns with the optimal SVM-type rate $\widetilde{O}(1 / (n \gamma^2))$ up to depth-dependent factors. A key technical contribution is our novel control of activation patterns near a reference model, enabling a sharper Rademacher complexity bound for deep ReLU networks trained with gradient descent.
comment: Accepted at NeurIPS 2025. Camera-ready version to appear
☆ A Granular Study of Safety Pretraining under Model Abliteration NeurIPS 2025
Open-weight LLMs can be modified at inference time with simple activation edits, which raises a practical question for safety: do common safety interventions like refusal training or metatag training survive such edits? We study model abliteration, a lightweight projection technique designed to remove refusal-sensitive directions, and conduct a controlled evaluation across a granular sequence of Safety Pretraining checkpoints for SmolLM2-1.7B, alongside widely used open baselines. For each of 20 systems, original and abliterated, we issue 100 prompts with balanced harmful and harmless cases, classify responses as **Refusal** or **Non-Refusal** using multiple judges, and validate judge fidelity on a small human-labeled subset. We also probe whether models can identify refusal in their own outputs. Our study produces a checkpoint-level characterization of which data-centric safety components remain robust under abliteration, quantifies how judge selection influences evaluation outcomes, and outlines a practical protocol for integrating inference-time edits into safety assessments. Code: https://github.com/shashankskagnihotri/safety_pretraining.
comment: Accepted at NeurIPS 2025 bWorkshop Lock-LLM. *Equal Contribution
☆ Curl Descent: Non-Gradient Learning Dynamics with Sign-Diverse Plasticity
Gradient-based algorithms are a cornerstone of artificial neural network training, yet it remains unclear whether biological neural networks use similar gradient-based strategies during learning. Experiments often discover a diversity of synaptic plasticity rules, but whether these amount to an approximation to gradient descent is unclear. Here we investigate a previously overlooked possibility: that learning dynamics may include fundamentally non-gradient "curl"-like components while still being able to effectively optimize a loss function. Curl terms naturally emerge in networks with inhibitory-excitatory connectivity or Hebbian/anti-Hebbian plasticity, resulting in learning dynamics that cannot be framed as gradient descent on any objective. To investigate the impact of these curl terms, we analyze feedforward networks within an analytically tractable student-teacher framework, systematically introducing non-gradient dynamics through neurons exhibiting rule-flipped plasticity. Small curl terms preserve the stability of the original solution manifold, resulting in learning dynamics similar to gradient descent. Beyond a critical value, strong curl terms destabilize the solution manifold. Depending on the network architecture, this loss of stability can lead to chaotic learning dynamics that destroy performance. In other cases, the curl terms can counterintuitively speed learning compared to gradient descent by allowing the weight dynamics to escape saddles by temporarily ascending the loss. Our results identify specific architectures capable of supporting robust learning via diverse learning rules, providing an important counterpoint to normative theories of gradient-based learning in neural networks.
☆ Fusing Multi- and Hyperspectral Satellite Data for Harmful Algal Bloom Monitoring with Self-Supervised and Hierarchical Deep Learning
We present a self-supervised machine learning framework for detecting and mapping harmful algal bloom (HAB) severity and speciation using multi-sensor satellite data. By fusing reflectance data from operational instruments (VIIRS, MODIS, Sentinel-3, PACE) with TROPOMI solar-induced fluorescence (SIF), our framework, called SIT-FUSE, generates HAB severity and speciation products without requiring per-instrument labeled datasets. The framework employs self-supervised representation learning, hierarchical deep clustering to segment phytoplankton concentrations and speciations into interpretable classes, validated against in-situ data from the Gulf of Mexico and Southern California (2018-2025). Results show strong agreement with total phytoplankton, Karenia brevis, Alexandrium spp., and Pseudo-nitzschia spp. measurements. This work advances scalable HAB monitoring in label-scarce environments while enabling exploratory analysis via hierarchical embeddings: a critical step toward operationalizing self-supervised learning for global aquatic biogeochemistry.
☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
TokenFlow: Responsive LLM Text Streaming Serving under Request Burst via Preemptive Scheduling EuroSys 2026
Real-time LLM interactions demand streamed token generations, where text tokens are progressively generated and delivered to users while balancing two objectives: responsiveness (i.e., low time-to-first-token) and steady generation (i.e.,required time-between-tokens). Standard LLM serving systems suffer from the inflexibility caused by non-preemptive request scheduling and reactive memory management, leading to poor resource utilization and low request processing parallelism under request bursts. Therefore, we present TokenFlow, a novel LLM serving system with enhanced text streaming performance via preemptive request scheduling and proactive key-value (KV) cache management. TokenFlow dynamically prioritizes requests based on real-time token buffer occupancy and token consumption rate, while actively transferring KV cache between GPU and CPU memory in the background and overlapping I/O with computation to minimize request preemption overhead. Extensive experiments on Llama3-8B and Qwen2.5-32B across multiple GPUs (RTX 4090, A6000, H200) demonstrate that TokenFlow achieves up to 82.5% higher effective throughput (accounting for actual user consumption) while reducing P99 TTFT by up to 80.2%, without degrading overall token throughput.
comment: Accepted by EuroSys 2026
☆ Neural Jump ODEs as Generative Models
In this work, we explore how Neural Jump ODEs (NJODEs) can be used as generative models for It\^o processes. Given (discrete observations of) samples of a fixed underlying It\^o process, the NJODE framework can be used to approximate the drift and diffusion coefficients of the process. Under standard regularity assumptions on the It\^o processes, we prove that, in the limit, we recover the true parameters with our approximation. Hence, using these learned coefficients to sample from the corresponding It\^o process generates, in the limit, samples with the same law as the true underlying process. Compared to other generative machine learning models, our approach has the advantage that it does not need adversarial training and can be trained solely as a predictive model on the observed samples without the need to generate any samples during training to empirically approximate the distribution. Moreover, the NJODE framework naturally deals with irregularly sampled data with missing values as well as with path-dependent dynamics, allowing to apply this approach in real-world settings. In particular, in the case of path-dependent coefficients of the It\^o processes, the NJODE learns their optimal approximation given the past observations and therefore allows generating new paths conditionally on discrete, irregular, and incomplete past observations in an optimal way.
☆ Flow with the Force Field: Learning 3D Compliant Flow Matching Policies from Force and Demonstration-Guided Simulation Data
While visuomotor policy has made advancements in recent years, contact-rich tasks still remain a challenge. Robotic manipulation tasks that require continuous contact demand explicit handling of compliance and force. However, most visuomotor policies ignore compliance, overlooking the importance of physical interaction with the real world, often leading to excessive contact forces or fragile behavior under uncertainty. Introducing force information into vision-based imitation learning could help improve awareness of contacts, but could also require a lot of data to perform well. One remedy for data scarcity is to generate data in simulation, yet computationally taxing processes are required to generate data good enough not to suffer from the Sim2Real gap. In this work, we introduce a framework for generating force-informed data in simulation, instantiated by a single human demonstration, and show how coupling with a compliant policy improves the performance of a visuomotor policy learned from synthetic data. We validate our approach on real-robot tasks, including non-prehensile block flipping and a bi-manual object moving, where the learned policy exhibits reliable contact maintenance and adaptation to novel conditions. Project Website: https://flow-with-the-force-field.github.io/webpage/
☆ Quantitative Convergence Analysis of Projected Stochastic Gradient Descent for Non-Convex Losses via the Goldstein Subdifferential
Stochastic gradient descent (SGD) is the main algorithm behind a large body of work in machine learning. In many cases, constraints are enforced via projections, leading to projected stochastic gradient algorithms. In recent years, a large body of work has examined the convergence properties of projected SGD for non-convex losses in asymptotic and non-asymptotic settings. Strong quantitative guarantees are available for convergence measured via Moreau envelopes. However, these results cannot be compared directly with work on unconstrained SGD, since the Moreau envelope construction changes the gradient. Other common measures based on gradient mappings have the limitation that convergence can only be guaranteed if variance reduction methods, such as mini-batching, are employed. This paper presents an analysis of projected SGD for non-convex losses over compact convex sets. Convergence is measured via the distance of the gradient to the Goldstein subdifferential generated by the constraints. Our proposed convergence criterion directly reduces to commonly used criteria in the unconstrained case, and we obtain convergence without requiring variance reduction. We obtain results for data that are independent, identically distributed (IID) or satisfy mixing conditions ($L$-mixing). In these cases, we derive asymptotic convergence and $O(N^{-1/3})$ non-asymptotic bounds in expectation, where $N$ is the number of steps. In the case of IID sub-Gaussian data, we obtain almost-sure asymptotic convergence and high-probability non-asymptotic $O(N^{-1/5})$ bounds. In particular, these are the first non-asymptotic high-probability bounds for projected SGD with non-convex losses.
comment: 40 pages, 2 figures, under review for 37th International Conference on Algorithmic Learning Theory
☆ Hybrid-Collaborative Augmentation and Contrastive Sample Adaptive-Differential Awareness for Robust Attributed Graph Clustering
Due to its powerful capability of self-supervised representation learning and clustering, contrastive attributed graph clustering (CAGC) has achieved great success, which mainly depends on effective data augmentation and contrastive objective setting. However, most CAGC methods utilize edges as auxiliary information to obtain node-level embedding representation and only focus on node-level embedding augmentation. This approach overlooks edge-level embedding augmentation and the interactions between node-level and edge-level embedding augmentations across various granularity. Moreover, they often treat all contrastive sample pairs equally, neglecting the significant differences between hard and easy positive-negative sample pairs, which ultimately limits their discriminative capability. To tackle these issues, a novel robust attributed graph clustering (RAGC), incorporating hybrid-collaborative augmentation (HCA) and contrastive sample adaptive-differential awareness (CSADA), is proposed. First, node-level and edge-level embedding representations and augmentations are simultaneously executed to establish a more comprehensive similarity measurement criterion for subsequent contrastive learning. In turn, the discriminative similarity further consciously guides edge augmentation. Second, by leveraging pseudo-label information with high confidence, a CSADA strategy is elaborately designed, which adaptively identifies all contrastive sample pairs and differentially treats them by an innovative weight modulation function. The HCA and CSADA modules mutually reinforce each other in a beneficent cycle, thereby enhancing discriminability in representation learning. Comprehensive graph clustering evaluations over six benchmark datasets demonstrate the effectiveness of the proposed RAGC against several state-of-the-art CAGC methods.
☆ Dale meets Langevin: A Multiplicative Denoising Diffusion Model
Gradient descent has proven to be a powerful and effective technique for optimization in numerous machine learning applications. Recent advances in computational neuroscience have shown that learning in standard gradient descent optimization formulation is not consistent with learning in biological systems. This has opened up interesting avenues for building biologically inspired learning techniques. One such approach is inspired by Dale's law, which states that inhibitory and excitatory synapses do not swap roles during the course of learning. The resulting exponential gradient descent optimization scheme leads to log-normally distributed synaptic weights. Interestingly, the density that satisfies the Fokker-Planck equation corresponding to the stochastic differential equation (SDE) with geometric Brownian motion (GBM) is the log-normal density. Leveraging this connection, we start with the SDE governing geometric Brownian motion, and show that discretizing the corresponding reverse-time SDE yields a multiplicative update rule, which surprisingly, coincides with the sampling equivalent of the exponential gradient descent update founded on Dale's law. Furthermore, we propose a new formalism for multiplicative denoising score-matching, subsuming the loss function proposed by Hyvaerinen for non-negative data. Indeed, log-normally distributed data is positive and the proposed score-matching formalism turns out to be a natural fit. This allows for training of score-based models for image data and results in a novel multiplicative update scheme for sample generation starting from a log-normal density. Experimental results on MNIST, Fashion MNIST, and Kuzushiji datasets demonstrate generative capability of the new scheme. To the best of our knowledge, this is the first instance of a biologically inspired generative model employing multiplicative updates, founded on geometric Brownian motion.
Accuracy Law for the Future of Deep Time Series Forecasting
Deep time series forecasting has emerged as a booming direction in recent years. Despite the exponential growth of community interests, researchers are sometimes confused about the direction of their efforts due to minor improvements on standard benchmarks. In this paper, we notice that, unlike image recognition, whose well-acknowledged and realizable goal is 100% accuracy, time series forecasting inherently faces a non-zero error lower bound due to its partially observable and uncertain nature. To pinpoint the research objective and release researchers from saturated tasks, this paper focuses on a fundamental question: how to estimate the performance upper bound of deep time series forecasting? Going beyond classical series-wise predictability metrics, e.g., ADF test, we realize that the forecasting performance is highly related to window-wise properties because of the sequence-to-sequence forecasting paradigm of deep time series models. Based on rigorous statistical tests of over 2,800 newly trained deep forecasters, we discover a significant exponential relationship between the minimum forecasting error of deep models and the complexity of window-wise series patterns, which is termed the accuracy law. The proposed accuracy law successfully guides us to identify saturated tasks from widely used benchmarks and derives an effective training strategy for large time series models, offering valuable insights for future research.
☆ Hyperparameter Loss Surfaces Are Simple Near their Optima
Hyperparameters greatly impact models' capabilities; however, modern models are too large for extensive search. Instead, researchers design recipes that train well across scales based on their understanding of the hyperparameters. Despite this importance, few tools exist for understanding the hyperparameter loss surface. We discover novel structure in it and propose a new theory yielding such tools. The loss surface is complex, but as you approach the optimum simple structure emerges. It becomes characterized by a few basic features, like its effective dimension and the best possible loss. To uncover this asymptotic regime, we develop a novel technique based on random search. Within this regime, the best scores from random search take on a new distribution we discover. Its parameters are exactly the features defining the loss surface in the asymptotic regime. From these features, we derive a new asymptotic law for random search that can explain and extrapolate its convergence. These new tools enable new analyses, such as confidence intervals for the best possible performance or determining the effective number of hyperparameters. We make these tools available at https://github.com/nicholaslourie/opda .
comment: Accepted to COLM 2025. 23 pages, 8 figures
☆ CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks
The rapid expansion of the Internet of Things (IoT) has revolutionized modern industries by enabling smart automation and real time connectivity. However, this evolution has also introduced complex cybersecurity challenges due to the heterogeneous, resource constrained, and distributed nature of these environments. To address these challenges, this research presents CST AFNet, a novel dual attention based deep learning framework specifically designed for robust intrusion detection in IoT networks. The model integrates multi scale Convolutional Neural Networks (CNNs) for spatial feature extraction, Bidirectional Gated Recurrent Units (BiGRUs) for capturing temporal dependencies, and a dual attention mechanism, channel and temporal attention, to enhance focus on critical patterns in the data. The proposed method was trained and evaluated on the Edge IIoTset dataset, a comprehensive and realistic benchmark containing more than 2.2 million labeled instances spanning 15 attack types and benign traffic, collected from a seven layer industrial testbed. Our proposed model achieves outstanding accuracy for both 15 attack types and benign traffic. CST AFNet achieves 99.97 percent accuracy. Moreover, this model demonstrates exceptional performance with macro averaged precision, recall, and F1 score all above 99.3 percent. Experimental results show that CST AFNet achieves superior detection accuracy, significantly outperforming traditional deep learning models. The findings confirm that CST AFNet is a powerful and scalable solution for real time cyber threat detection in complex IoT and IIoT environments, paving the way for more secure, intelligent, and adaptive cyber physical systems.
comment: 9 pages, 9 figures, 5 tables
☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present the first comprehensive survival analysis of conversational AI robustness, analyzing 36,951 conversation turns across 9 state-of-the-art LLMs to model failure as a time-to-event process. Our survival modeling framework-employing Cox proportional hazards, Accelerated Failure Time, and Random Survival Forest approaches-reveals extraordinary temporal dynamics. We find that abrupt, prompt-to-prompt(P2P) semantic drift is catastrophic, dramatically increasing the hazard of conversational failure. In stark contrast, gradual, cumulative drift is highly protective, vastly reducing the failure hazard and enabling significantly longer dialogues. AFT models with interactions demonstrate superior performance, achieving excellent discrimination and exceptional calibration. These findings establish survival analysis as a powerful paradigm for evaluating LLM robustness, offer concrete insights for designing resilient conversational agents, and challenge prevailing assumptions about the necessity of semantic consistency in conversational AI Systems.
☆ A Novel Unified Lightweight Temporal-Spatial Transformer Approach for Intrusion Detection in Drone Networks
The growing integration of drones across commercial, industrial, and civilian domains has introduced significant cybersecurity challenges, particularly due to the susceptibility of drone networks to a wide range of cyberattacks. Existing intrusion detection mechanisms often lack the adaptability, efficiency, and generalizability required for the dynamic and resource constrained environments in which drones operate. This paper proposes TSLT-Net, a novel lightweight and unified Temporal Spatial Transformer based intrusion detection system tailored specifically for drone networks. By leveraging self attention mechanisms, TSLT-Net effectively models both temporal patterns and spatial dependencies in network traffic, enabling accurate detection of diverse intrusion types. The framework includes a streamlined preprocessing pipeline and supports both multiclass attack classification and binary anomaly detection within a single architecture. Extensive experiments conducted on the ISOT Drone Anomaly Detection Dataset, consisting of more than 2.3 million labeled records, demonstrate the superior performance of TSLT-Net with 99.99 percent accuracy in multiclass detection and 100 percent in binary anomaly detection, while maintaining a minimal memory footprint of only 0.04 MB and 9722 trainable parameters. These results establish TSLT-Net as an effective and scalable solution for real time drone cybersecurity, particularly suitable for deployment on edge devices in mission critical UAV systems.
comment: 21 pages, 18 figures, 5 tables
☆ A Statistical Method for Attack-Agnostic Adversarial Attack Detection with Compressive Sensing Comparison
Adversarial attacks present a significant threat to modern machine learning systems. Yet, existing detection methods often lack the ability to detect unseen attacks or detect different attack types with a high level of accuracy. In this work, we propose a statistical approach that establishes a detection baseline before a neural network's deployment, enabling effective real-time adversarial detection. We generate a metric of adversarial presence by comparing the behavior of a compressed/uncompressed neural network pair. Our method has been tested against state-of-the-art techniques, and it achieves near-perfect detection across a wide range of attack types. Moreover, it significantly reduces false positives, making it both reliable and practical for real-world applications.
☆ RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization ICLR 2026
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value conservatism and restricted policy classes, whereas expressive policies are only used in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)} framework, which couples an \emph{expressive generative actor} with a distributional critic. The RAMAC differentiates composite objective combining distributional risk and BC loss through the generative path, achieving risk-sensitive learning in complex multimodal scenarios. We instantiate RAMAC with diffusion and flow-matching actors and observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns on most Stochastic-D4RL tasks. Code: https://github.com/KaiFukazawa/RAMAC.git
comment: Under review as a conference paper at ICLR 2026, 21 pages, 8 figures. The HTML preview may misrender some figures; please refer to the PDF
☆ Fine-Tuning Diffusion Models via Intermediate Distribution Shaping
Diffusion models are widely used for generative tasks across domains. While pre-trained diffusion models effectively capture the training data distribution, it is often desirable to shape these distributions using reward functions to align with downstream applications. Policy gradient methods, such as Proximal Policy Optimization (PPO), are widely used in the context of autoregressive generation. However, the marginal likelihoods required for such methods are intractable for diffusion models, leading to alternative proposals and relaxations. In this context, we unify variants of Rejection sAmpling based Fine-Tuning (RAFT) as GRAFT, and show that this implicitly performs PPO with reshaped rewards. We then introduce P-GRAFT to shape distributions at intermediate noise levels and demonstrate empirically that this can lead to more effective fine-tuning. We mathematically explain this via a bias-variance tradeoff. Motivated by this, we propose inverse noise correction to improve flow models without leveraging explicit rewards. We empirically evaluate our methods on text-to-image(T2I) generation, layout generation, molecule generation and unconditional image generation. Notably, our framework, applied to Stable Diffusion 2, improves over policy gradient methods on popular T2I benchmarks in terms of VQAScore and shows an $8.81\%$ relative improvement over the base model. For unconditional image generation, inverse noise correction improves FID of generated images at lower FLOPs/image.
☆ EvoSpeak: Large Language Models for Interpretable Genetic Programming-Evolved Heuristics
Genetic programming (GP) has demonstrated strong effectiveness in evolving tree-structured heuristics for complex optimization problems. Yet, in dynamic and large-scale scenarios, the most effective heuristics are often highly complex, hindering interpretability, slowing convergence, and limiting transferability across tasks. To address these challenges, we present EvoSpeak, a novel framework that integrates GP with large language models (LLMs) to enhance the efficiency, transparency, and adaptability of heuristic evolution. EvoSpeak learns from high-quality GP heuristics, extracts knowledge, and leverages this knowledge to (i) generate warm-start populations that accelerate convergence, (ii) translate opaque GP trees into concise natural-language explanations that foster interpretability and trust, and (iii) enable knowledge transfer and preference-aware heuristic generation across related tasks. We verify the effectiveness of EvoSpeak through extensive experiments on dynamic flexible job shop scheduling (DFJSS), under both single- and multi-objective formulations. The results demonstrate that EvoSpeak produces more effective heuristics, improves evolutionary efficiency, and delivers human-readable reports that enhance usability. By coupling the symbolic reasoning power of GP with the interpretative and generative strengths of LLMs, EvoSpeak advances the development of intelligent, transparent, and user-aligned heuristics for real-world optimization problems.
☆ Can Data-Driven Dynamics Reveal Hidden Physics? There Is A Need for Interpretable Neural Operators
Recently, neural operators have emerged as powerful tools for learning mappings between function spaces, enabling data-driven simulations of complex dynamics. Despite their successes, a deeper understanding of their learning mechanisms remains underexplored. In this work, we classify neural operators into two types: (1) Spatial domain models that learn on grids and (2) Functional domain models that learn with function bases. We present several viewpoints based on this classification and focus on learning data-driven dynamics adhering to physical principles. Specifically, we provide a way to explain the prediction-making process of neural operators and show that neural operator can learn hidden physical patterns from data. However, this explanation method is limited to specific situations, highlighting the urgent need for generalizable explanation methods. Next, we show that a simple dual-space multi-scale model can achieve SOTA performance and we believe that dual-space multi-spatio-scale models hold significant potential to learn complex physics and require further investigation. Lastly, we discuss the critical need for principled frameworks to incorporate known physics into neural operators, enabling better generalization and uncovering more hidden physical phenomena.
☆ ARMs: Adaptive Red-Teaming Agent against Multimodal Models with Plug-and-Play Attacks
As vision-language models (VLMs) gain prominence, their multimodal interfaces also introduce new safety vulnerabilities, making the safety evaluation challenging and critical. Existing red-teaming efforts are either restricted to a narrow set of adversarial patterns or depend heavily on manual engineering, lacking scalable exploration of emerging real-world VLM vulnerabilities. To bridge this gap, we propose ARMs, an adaptive red-teaming agent that systematically conducts comprehensive risk assessments for VLMs. Given a target harmful behavior or risk definition, ARMs automatically optimizes diverse red-teaming strategies with reasoning-enhanced multi-step orchestration, to effectively elicit harmful outputs from target VLMs. We propose 11 novel multimodal attack strategies, covering diverse adversarial patterns of VLMs (e.g., reasoning hijacking, contextual cloaking), and integrate 17 red-teaming algorithms into ARMs via model context protocol (MCP). To balance the diversity and effectiveness of the attack, we design a layered memory with an epsilon-greedy attack exploration algorithm. Extensive experiments on instance- and policy-based benchmarks show that ARMs achieves SOTA attack success rates, exceeding baselines by an average of 52.1% and surpassing 90% on Claude-4-Sonnet. We show that the diversity of red-teaming instances generated by ARMs is significantly higher, revealing emerging vulnerabilities in VLMs. Leveraging ARMs, we construct ARMs-Bench, a large-scale multimodal safety dataset comprising over 30K red-teaming instances spanning 51 diverse risk categories, grounded in both real-world multimodal threats and regulatory risks. Safety fine-tuning with ARMs-Bench substantially improves the robustness of VLMs while preserving their general utility, providing actionable guidance to improve multimodal safety alignment against emerging threats.
comment: 60 pages, 16 figures
☆ To Compress or Not? Pushing the Frontier of Lossless GenAI Model Weights Compression with Exponent Concentration
The scaling of Generative AI (GenAI) models into the hundreds of billions of parameters makes low-precision computation indispensable for efficient deployment. We argue that the fundamental solution lies in developing low-precision floating-point formats, which inherently provide numerical stability, memory savings, and hardware efficiency without dequantization overhead. In this paper, we present a theoretical and empirical study of an exponent concentration phenomenon in GenAI weights: exponents consistently exhibit low entropy across architectures and modalities. We show that this arises naturally from $\alpha$-stable distributions induced by stochastic gradient descent, and we prove tight bounds on the entropy of exponents. Our analysis establishes a theoretical compression limit near FP4.67, which motivates the design of a practical FP8 format. Building on these insights, we propose Exponent-Concentrated FP8 (ECF8), a lossless compression framework with entropy-aware encoding and GPU-optimized decoding. Experiments on LLMs and DiTs up to 671B parameters demonstrate up to 26.9% memory savings and 177.1% throughput acceleration, with perfectly lossless computations, i.e., no deviation in model outputs. Our results establish exponent concentration as a statistical law of trained models and open a principled path for lossless low-precision floating-point design in the FP8 era.
☆ Uncertainty as Feature Gaps: Epistemic Uncertainty Quantification of LLMs in Contextual Question-Answering
Uncertainty Quantification (UQ) research has primarily focused on closed-book factual question answering (QA), while contextual QA remains unexplored, despite its importance in real-world applications. In this work, we focus on UQ for the contextual QA task and propose a theoretically grounded approach to quantify epistemic uncertainty. We begin by introducing a task-agnostic, token-level uncertainty measure defined as the cross-entropy between the predictive distribution of the given model and the unknown true distribution. By decomposing this measure, we isolate the epistemic component and approximate the true distribution by a perfectly prompted, idealized model. We then derive an upper bound for epistemic uncertainty and show that it can be interpreted as semantic feature gaps in the given model's hidden representations relative to the ideal model. We further apply this generic framework to the contextual QA task and hypothesize that three features approximate this gap: context-reliance (using the provided context rather than parametric knowledge), context comprehension (extracting relevant information from context), and honesty (avoiding intentional lies). Using a top-down interpretability approach, we extract these features by using only a small number of labeled samples and ensemble them to form a robust uncertainty score. Experiments on multiple QA benchmarks in both in-distribution and out-of-distribution settings show that our method substantially outperforms state-of-the-art unsupervised (sampling-free and sampling-based) and supervised UQ methods, achieving up to a 13-point PRR improvement while incurring a negligible inference overhead.
☆ Topological Invariance and Breakdown in Learning
We prove that for a broad class of permutation-equivariant learning rules (including SGD, Adam, and others), the training process induces a bi-Lipschitz mapping between neurons and strongly constrains the topology of the neuron distribution during training. This result reveals a qualitative difference between small and large learning rates $\eta$. With a learning rate below a topological critical point $\eta^*$, the training is constrained to preserve all topological structure of the neurons. In contrast, above $\eta^*$, the learning process allows for topological simplification, making the neuron manifold progressively coarser and thereby reducing the model's expressivity. Viewed in combination with the recent discovery of the edge of stability phenomenon, the learning dynamics of neuron networks under gradient descent can be divided into two phases: first they undergo smooth optimization under topological constraints, and then enter a second phase where they learn through drastic topological simplifications. A key feature of our theory is that it is independent of specific architectures or loss functions, enabling the universal application of topological methods to the study of deep learning.
☆ TutorBench: A Benchmark To Assess Tutoring Capabilities Of Large Language Models
As students increasingly adopt large language models (LLMs) as learning aids, it is crucial to build models that are adept at handling the nuances of tutoring: they need to identify the core needs of students, be adaptive, provide personalized guidance, and be accurate. To this end, we introduce TutorBench, a dataset and evaluation benchmark designed to rigorously evaluate the core tutoring skills of LLMs. The dataset comprises 1,490 samples curated by human experts, focused on high-school and AP-level curricula. The samples are drawn from three common tutoring tasks: (i) generating adaptive explanations tailored to a student's confusion, (ii) providing actionable feedback on a student's work, and (iii) promoting active learning through effective hint generation. To account for the inherent complexity of tutoring, samples are accompanied by sample-specific rubrics which are used to judge model responses during evaluation. TutorBench uses a reliable and fine-grained automatic evaluation method that uses an LLM-judge and the sample-specific rubrics. We evaluate 16 frontier LLMs on TutorBench and present a detailed analysis of their performance and behavior. Our results show that none of the frontier LLMs achieve a score of greater than $56\%$, showing a large room for improvement. We find that LLMs fall short in exhibiting the full range of tutoring skills needed to guide, diagnose, and support students effectively, with all the frontier models achieving less than a $60\%$ pass rate on rubric criteria related to these skills. We also find that different model families exhibit varied strengths and limitations: the Claude models outperform others in supporting active learning, while they lag behind in the other two use cases. By releasing TutorBench, we provide a comprehensive and unsaturated benchmark to guide the development of the next-generation of AI tutors.
☆ Optimal Characteristics of Inspection Vehicle for Drive-by Bridge Inspection
Drive-by inspection for bridge health monitoring has gained increasing attention over the past decade. This method involves analysing the coupled vehicle-bridge response, recorded by an instrumented inspection vehicle, to assess structural integrity and detect damage. However, the vehicles mechanical and dynamic properties significantly influence detection performance, limiting the effectiveness of the approach. This study presents a framework for optimising the inspection vehicle to enhance damage sensitivity. An unsupervised deep learning methodbased on adversarial autoencoders (AAE)is used to reconstruct the frequency-domain representation of acceleration responses. The mass and stiffness of the tyre suspension system of a two-axle vehicle are optimised by minimising the Wasserstein distance between damage index distributions for healthy and damaged bridge states. A Kriging meta-model is employed to approximate this objective function efficiently and identify optimal vehicle configurations in both dimensional and non-dimensional parameter spaces. Results show that vehicles with frequency ratios between 0.3 and 0.7 relative to the bridges' first natural frequency are most effective, while those near resonance perform poorly. Lighter vehicles require lower natural frequencies for optimal detection. This is the first study to rigorously optimise the sensing platform for drive-by sensing and to propose a purpose-built inspection vehicle.
☆ HyperAdaLoRA: Accelerating LoRA Rank Allocation During Training via Hypernetworks without Sacrificing Performance
Parameter-Efficient Fine-Tuning (PEFT), especially Low-Rank Adaptation (LoRA), has emerged as a promising approach to fine-tuning large language models(LLMs) while reducing computational and memory overhead. However, LoRA assumes a uniform rank \textit{r} for each incremental matrix, not accounting for the varying significance of weight matrices across different modules and layers. AdaLoRA leverages Singular Value Decomposition (SVD) to parameterize updates and employs pruning of singular values to introduce dynamic rank allocation, thereby enhancing adaptability. However, during the training process, it often encounters issues of slow convergence speed and high computational overhead. To address this issue, we propose HyperAdaLoRA, a novel framework that accelerates the convergence of AdaLoRA by leveraging a hypernetwork. Instead of directly optimizing the components of Singular Value Decomposition $(P, \Lambda, Q)$, HyperAdaLoRA employs a hypernetwork based on attention mechanisms to dynamically generate these parameters. By pruning the outputs of the hypernetwork that generates the singular values, dynamic rank allocation is achieved. Comprehensive experiments on various datasets and models demonstrate that our method achieves faster convergence without sacrificing performance. Additionally, further extension experiments on other LoRA-based approaches validate the broad applicability of our method.
comment: 13 pages
☆ TabImpute: Accurate and Fast Zero-Shot Missing-Data Imputation with a Pre-Trained Transformer
Missing data is a pervasive problem in tabular settings. Existing solutions range from simple averaging to complex generative adversarial networks. However, due to huge variance in performance across real-world domains and time-consuming hyperparameter tuning, no default imputation method exists. Building on TabPFN, a recent tabular foundation model for supervised learning, we propose TabImpute, a pre-trained transformer that delivers accurate and fast zero-shot imputations requiring no fitting or hyperparameter tuning at inference-time. To train and evaluate TabImpute, we introduce (i) an entry-wise featurization for tabular settings, which enables a $100\times$ speedup over the previous TabPFN imputation method, (ii) a synthetic training data generation pipeline incorporating realistic missingness patterns, which boosts test-time performance, and (iii) MissBench, a comprehensive benchmark for evaluation of imputation methods with $42$ OpenML datasets and $13$ missingness patterns. MissBench spans domains such as medicine, finance, and engineering, showcasing TabImpute's robust performance compared to $11$ established imputation methods.
♻ ☆ Generative Modeling of Weights: Generalization or Memorization?
Generative models have recently been explored for synthesizing neural network weights. These approaches take neural network checkpoints as training data and aim to generate high-performing weights during inference. In this work, we examine four representative, well-known methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Contrary to claims in prior work, we find that these methods synthesize weights largely by memorization: they produce either replicas, or, at best, simple interpolations of the training checkpoints. Moreover, they fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. Our further analysis suggests that this memorization might result from limited data, overparameterized models, and the underuse of structural priors specific to weight data. These findings highlight the need for more careful design and rigorous evaluation of generative models when applied to new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
comment: Project page at https://boyazeng.github.io/weight_memorization
♻ ☆ MobiLLM: An Agentic AI Framework for Closed-Loop Threat Mitigation in 6G Open RANs
The evolution toward 6G networks is being accelerated by the Open Radio Access Network (O-RAN) paradigm -- an open, interoperable architecture that enables intelligent, modular applications across public telecom and private enterprise domains. While this openness creates unprecedented opportunities for innovation, it also expands the attack surface, demanding resilient, low-cost, and autonomous security solutions. Legacy defenses remain largely reactive, labor-intensive, and inadequate for the scale and complexity of next-generation systems. Current O-RAN applications focus mainly on network optimization or passive threat detection, with limited capability for closed-loop, automated response. To address this critical gap, we present an agentic AI framework for fully automated, end-to-end threat mitigation in 6G O-RAN environments. MobiLLM orchestrates security workflows through a modular multi-agent system powered by Large Language Models (LLMs). The framework features a Threat Analysis Agent for real-time data triage, a Threat Classification Agent that uses Retrieval-Augmented Generation (RAG) to map anomalies to specific countermeasures, and a Threat Response Agent that safely operationalizes mitigation actions via O-RAN control interfaces. Grounded in trusted knowledge bases such as the MITRE FiGHT framework and 3GPP specifications, and equipped with robust safety guardrails, MobiLLM provides a blueprint for trustworthy AI-driven network security. Initial evaluations demonstrate that MobiLLM can effectively identify and orchestrate complex mitigation strategies, significantly reducing response latency and showcasing the feasibility of autonomous security operations in 6G.
♻ ☆ Controlled Generation with Equivariant Variational Flow Matching
We derive a controlled generation objective within the framework of Variational Flow Matching (VFM), which casts flow matching as a variational inference problem. We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem, enabling post hoc control of unconditional models without retraining. Furthermore, we establish the conditions required for equivariant generation and provide an equivariant formulation of VFM tailored for molecular generation, ensuring invariance to rotations, translations, and permutations. We evaluate our approach on both uncontrolled and controlled molecular generation, achieving state-of-the-art performance on uncontrolled generation and outperforming state-of-the-art models in controlled generation, both with end-to-end training and in the Bayesian inference setting. This work strengthens the connection between flow-based generative modeling and Bayesian inference, offering a scalable and principled framework for constraint-driven and symmetry-aware generation.
♻ ☆ The Challenges of Hyperparameter Tuning for Accurate Causal Effect Estimation
ML is playing an increasingly crucial role in estimating causal effects of treatments on outcomes from observational data. Many ML methods (`causal estimators') have been proposed for this task. All of these methods, as with any ML approach, require extensive hyperparameter tuning. For non-causal predictive tasks, there is a consensus on the choice of tuning metrics (e.g. mean squared error), making it simple to compare models. However, for causal inference tasks, such a consensus is yet to be reached, making any comparison of causal models difficult. On top of that, there is no ideal metric on which to tune causal estimators, so one must rely on proxies. Furthermore, the fact that model selection in causal inference involves multiple components (causal estimator, ML regressor, hyperparameters, metric), complicates the issue even further. In order to evaluate the importance of each component, we perform an extensive empirical study on their combination. Our experimental setup involves many commonly used causal estimators, regressors (`base learners' henceforth) and metrics applied to four well-known causal inference benchmark datasets. Our results show that hyperparameter tuning increased the probability of reaching state-of-the-art performance in average ($65\% {\rightarrow} 81\%$) and individualised ($50\% {\rightarrow} 57\%$) effect estimation with only commonly used estimators. We also show that the performance of standard metrics can be inconsistent across different scenarios. Our findings highlight the need for further research to establish whether metrics uniformly capable of state-of-the-art performance in causal model evaluation can be found.
comment: Substantially revised version. 18 pages of main content (33 pages in total), 4 main figures (11 in total)
♻ ☆ Exponential Family Variational Flow Matching for Tabular Data Generation
While denoising diffusion and flow matching have driven major advances in generative modeling, their application to tabular data remains limited, despite its ubiquity in real-world applications. To this end, we develop TabbyFlow, a variational Flow Matching (VFM) method for tabular data generation. To apply VFM to data with mixed continuous and discrete features, we introduce Exponential Family Variational Flow Matching (EF-VFM), which represents heterogeneous data types using a general exponential family distribution. We hereby obtain an efficient, data-driven objective based on moment matching, enabling principled learning of probability paths over mixed continuous and discrete variables. We also establish a connection between variational flow matching and generalized flow matching objectives based on Bregman divergences. Evaluation on tabular data benchmarks demonstrates state-of-the-art performance compared to baselines.
comment: 14 pages, 1 figure, and 9 tables; To be published in the Proceedings of the Forty-Second International Conference on Machine Learning
♻ ☆ IntrusionX: A Hybrid Convolutional-LSTM Deep Learning Framework with Squirrel Search Optimization for Network Intrusion Detection
Intrusion Detection Systems (IDS) face persistent challenges due to evolving cyberattacks, high-dimensional traffic data, and severe class imbalance in benchmark datasets such as NSL-KDD. To address these issues, we propose IntrusionX, a hybrid deep learning framework that integrates Convolutional Neural Networks (CNNs) for local feature extraction and Long Short-Term Memory (LSTM) networks for temporal modeling. The architecture is further optimized using the Squirrel Search Algorithm (SSA), enabling effective hyperparameter tuning while maintaining computational efficiency. Our pipeline incorporates rigorous preprocessing, stratified data splitting, and dynamic class weighting to enhance the detection of rare classes. Experimental evaluation on NSL-KDD demonstrates that IntrusionX achieves 98% accuracy in binary classification and 87% in 5-class classification, with significant improvements in minority class recall (U2R: 71%, R2L: 93%). The novelty of IntrusionX lies in its reproducible, imbalance-aware design with metaheuristic optimization.
♻ ☆ Understanding How CodeLLMs (Mis)Predict Types with Activation Steering
Large Language Models (LLMs) are widely used by software engineers for programming tasks. However, research shows that LLMs often lack a deep understanding of program semantics. Even minor changes to syntax, such as renaming variables, can significantly degrade performance across various tasks. In this work, we examine the task of type prediction: given a partially typed program, can a model predict a missing type annotations such that the resulting program is more typed? We construct a dataset of adversarial examples where models initially predict the correct types, but begin to fail after semantically irrelevant edits. This is problematic, as models should ideally generalize across different syntactic forms of semantically equivalent code. This lack of robustness suggests that models may have a shallow understanding of code semantics. Despite this, we provide evidence that LLMs do, in fact, learn robust mechanisms for type prediction-though these mechanisms often fail to activate in adversarial scenarios. By using activation steering, a method that manipulates a model's internal activations to guide it toward using latent knowledge, we restore accurate predictions on adversarial inputs. We show that steering successfully activates a type prediction mechanism that is shared by both Python and TypeScript, and is more effective than prompting with in-context examples. Across five different models, our comprehensive evaluation demonstrates that LLMs can learn generalizable representations of code semantics that transfer across programming languages.
comment: 40 pages, 67 figures. To be published at BlackBoxNLP 2025
♻ ☆ Putnam-like dataset summary: LLMs as mathematical competition contestants
In this paper we summarize the results of the Putnam-like benchmark published by Google DeepMind. This dataset consists of 96 original problems in the spirit of the Putnam Competition and 576 solutions of LLMs. We analyse the performance of models on this set of problems to verify their ability to solve problems from mathematical contests.
comment: 11 pages, 11 figures
♻ ☆ Fixing That Free Lunch: When, Where, and Why Synthetic Data Fails in Model-Based Policy Optimization
Synthetic data is a core component of data-efficient Dyna-style model-based reinforcement learning, yet it can also degrade performance. We study when it helps, where it fails, and why, and we show that addressing the resulting failure modes enables policy improvement that was previously unattainable. We focus on Model-Based Policy Optimization (MBPO), which performs actor and critic updates using synthetic action counterfactuals. Despite reports of strong and generalizable sample-efficiency gains in OpenAI Gym, recent work shows that MBPO often underperforms its model-free counterpart, Soft Actor-Critic (SAC), in the DeepMind Control Suite (DMC). Although both suites involve continuous control with proprioceptive robots, this shift leads to sharp performance losses across seven challenging DMC tasks, with MBPO failing in cases where claims of generalization from Gym would imply success. This reveals how environment-specific assumptions can become implicitly encoded into algorithm design when evaluation is limited. We identify two coupled issues behind these failures: scale mismatches between dynamics and reward models that induce critic underestimation and hinder policy improvement during model-policy coevolution, and a poor choice of target representation that inflates model variance and produces error-prone rollouts. Addressing these failure modes enables policy improvement where none was previously possible, allowing MBPO to outperform SAC in five of seven tasks while preserving the strong performance previously reported in OpenAI Gym. Rather than aiming only for incremental average gains, we hope our findings motivate the community to develop taxonomies that tie MDP task- and environment-level structure to algorithmic failure modes, pursue unified solutions where possible, and clarify how benchmark choices ultimately shape the conditions under which algorithms generalize.
♻ ☆ SCOPED: Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion
Out-of-distribution (OOD) detection is essential for reliable deployment of machine learning systems in vision, robotics, reinforcement learning, and beyond. We introduce Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion (SCOPED), a fast and general-purpose OOD detection method for diffusion models that reduces the number of forward passes on the trained model by an order of magnitude compared to prior methods, outperforming most diffusion-based baselines and closely approaching the accuracy of the strongest ones. SCOPED is computed from a single diffusion model trained once on a diverse dataset, and combines the Jacobian trace and squared norm of the model's score function into a single test statistic. Rather than thresholding on a fixed value, we estimate the in-distribution density of SCOPED scores using kernel density estimation, enabling a flexible, unsupervised test that, in the simplest case, only requires a single forward pass and one Jacobian-vector product (JVP), made efficient by Hutchinson's trace estimator. On four vision benchmarks, SCOPED achieves competitive or state-of-the-art precision-recall scores despite its low computational cost. The same method generalizes to robotic control tasks with shared state and action spaces, identifying distribution shifts across reward functions and training regimes. These results position SCOPED as a practical foundation for fast and reliable OOD detection in real-world domains, including perceptual artifacts in vision, outlier detection in autoregressive models, exploration in reinforcement learning, and dataset curation for unsupervised training.
♻ ☆ Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Experiments
Large language models (LLMs) are increasingly used to simulate or automate human behavior in complex sequential decision-making settings. A natural question is then whether LLMs exhibit similar decision-making behavior to humans, and can achieve comparable (or superior) performance. In this work, we focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty. We employ canonical multi-armed bandit (MAB) experiments introduced in the cognitive science and psychiatry literature to conduct a comparative study of the E&E strategies of LLMs, humans, and MAB algorithms. We use interpretable choice models to capture the E&E strategies of the agents and investigate how enabling thinking traces, through both prompting strategies and thinking models, shapes LLM decision-making. We find that enabling thinking in LLMs shifts their behavior toward more human-like behavior, characterized by a mix of random and directed exploration. In a simple stationary setting, thinking-enabled LLMs exhibit similar levels of random and directed exploration compared to humans. However, in more complex, non-stationary environments, LLMs struggle to match human adaptability, particularly in effective directed exploration, despite achieving similar regret in certain scenarios. Our findings highlight both the promise and limits of LLMs as simulators of human behavior and tools for automated decision-making and point to potential areas for improvement.
♻ ☆ Batched Nonparametric Contextual Bandits
We study nonparametric contextual bandits under batch constraints, where the expected reward for each action is modeled as a smooth function of covariates, and the policy updates are made at the end of each batch of observations. We establish a minimax regret lower bound for this setting and propose a novel batch learning algorithm that achieves the optimal regret (up to logarithmic factors). In essence, our procedure dynamically splits the covariate space into smaller bins, carefully aligning their widths with the batch size. Our theoretical results suggest that for nonparametric contextual bandits, a nearly constant number of policy updates can attain optimal regret in the fully online setting.
♻ ☆ Post Reinforcement Learning Inference
We study estimation and inference using data collected by reinforcement learning (RL) algorithms. These algorithms adaptively experiment by interacting with individual units over multiple stages, updating their strategies based on past outcomes. Our goal is to evaluate a counterfactual policy after data collection and estimate structural parameters, such as dynamic treatment effects, that support credit assignment and quantify the impact of early actions on final outcomes. These parameters can often be defined as solutions to moment equations, motivating moment-based estimation methods developed for static data. In RL settings, however, data are often collected adaptively under nonstationary behavior policies. As a result, standard estimators fail to achieve asymptotic normality due to time-varying variance. We propose a weighted generalized method of moments (GMM) approach that uses adaptive weights to stabilize this variance. We characterize weighting schemes that ensure consistency and asymptotic normality of the weighted GMM estimators, enabling valid hypothesis testing and uniform confidence region construction. Key applications include dynamic treatment effect estimation and dynamic off-policy evaluation.
♻ ☆ To Backtrack or Not to Backtrack: When Sequential Search Limits Model Reasoning
Recent advancements in large language models (LLMs) have significantly improved their reasoning abilities, particularly through techniques involving search and backtracking. Backtracking naturally scales test-time compute by enabling sequential, linearized exploration via long chain-of-thought (CoT) generation. However, this is not the only strategy for scaling test time-compute: parallel sampling with best-of-N selection provides an alternative that generates diverse solutions simultaneously. Despite the growing adoption of sequential search, its advantages over parallel sampling-especially under a fixed compute budget-remain poorly understood. In this paper, we systematically compare these two approaches on two challenging reasoning tasks: CountDown and Sudoku. Surprisingly, we find that sequential search underperforms parallel sampling on CountDown but outperforms it on Sudoku, suggesting that backtracking is not universally beneficial. We identify two factors that can cause backtracking to degrade performance: (1) training on fixed search traces can lock models intro suboptimal strategies, and (2) explicit CoT supervision can discourage implicit (non verbalized) reasoning. Extending our analysis to reinforcement learning (RL), we show that models with backtracking capabilities benefit significantly from RL fine-tuning, while models without backtracking see limited, mixed gains. Together, these findings challenge the assumption that backtracking universally enhances LLM reasoning, instead revealing a complex interaction between task structure, training data, model scale, and learning paradigm.
comment: COLM 2025 Camera Ready
♻ ☆ Highly Efficient and Effective LLMs with Multi-Boolean Architectures
Weight binarization has emerged as a promising strategy to reduce the complexity of large language models (LLMs). Existing approaches fall into post-training binarization, which is simple but causes severe performance loss, and training-aware methods, which depend on full-precision latent weights, adding complexity and limiting efficiency. We propose a novel framework that represents LLMs with multi-kernel Boolean parameters and, for the first time, enables direct finetuning LMMs in the Boolean domain, eliminating the need for latent weights. This enhances representational capacity and dramatically reduces complexity during both finetuning and inference. Extensive experiments across diverse LLMs show our method outperforms recent ultra low-bit quantization and binarization techniques.
comment: Preprint. Under Review
♻ ☆ C2AL: Cohort-Contrastive Auxiliary Learning for Large-scale Recommendation Systems ICLR 2026
Training large-scale recommendation models under a single global objective implicitly assumes homogeneity across user populations. However, real-world data are composites of heterogeneous cohorts with distinct conditional distributions. As models increase in scale and complexity and as more data is used for training, they become dominated by central distribution patterns, neglecting head and tail regions. This imbalance limits the model's learning ability and can result in inactive attention weights or dead neurons. In this paper, we reveal how the attention mechanism can play a key role in factorization machines for shared embedding selection, and propose to address this challenge by analyzing the substructures in the dataset and exposing those with strong distributional contrast through auxiliary learning. Unlike previous research, which heuristically applies weighted labels or multi-task heads to mitigate such biases, we leverage partially conflicting auxiliary labels to regularize the shared representation. This approach customizes the learning process of attention layers to preserve mutual information with minority cohorts while improving global performance. We evaluated C2AL on massive production datasets with billions of data points each for six SOTA models. Experiments show that the factorization machine is able to capture fine-grained user-ad interactions using the proposed method, achieving up to a 0.16% reduction in normalized entropy overall and delivering gains exceeding 0.30% on targeted minority cohorts.
comment: Submitted to ICLR 2026
Ultra-Efficient Decoding for End-to-End Neural Compression and Reconstruction NeurIPS 2025
Image compression and reconstruction are crucial for various digital applications. While contemporary neural compression methods achieve impressive compression rates, the adoption of such technology has been largely hindered by the complexity and large computational costs of the convolution-based decoders during data reconstruction. To address the decoder bottleneck in neural compression, we develop a new compression-reconstruction framework based on incorporating low-rank representation in an autoencoder with vector quantization. We demonstrated that performing a series of computationally efficient low-rank operations on the learned latent representation of images can efficiently reconstruct the data with high quality. Our approach dramatically reduces the computational overhead in the decoding phase of neural compression/reconstruction, essentially eliminating the decoder compute bottleneck while maintaining high fidelity of image outputs.
comment: 5 pages, 4 figures, NeurIPS 2025 Workshop MLForSys
♻ ☆ Morphlux: Transforming Torus Fabrics for Efficient Multi-tenant ML
We develop Morphlux, a server-scale programmable photonic fabric to interconnect accelerators within servers. We show that augmenting state-of-the-art torus-based ML data-centers with Morphlux can improve the bandwidth of tenant compute allocations by up to 66%, reduce compute fragmentation by up to 70%, and minimize the blast radius of chip failures. We develop a novel end-to-end hardware prototype of Morphlux to demonstrate these performance benefits which translate to 1.72X improvement in training throughput of ML models. By rapidly programming the server-scale fabric in our hardware testbed, Morphlux can replace a failed accelerator chip with a healthy one in 1.2 seconds.
♻ ☆ Risk-Sensitive Agent Compositions
From software development to robot control, modern agentic systems decompose complex objectives into a sequence of subtasks and choose a set of specialized AI agents to complete them. We formalize agentic workflows as directed acyclic graphs, called agent graphs, where edges represent AI agents and paths correspond to feasible compositions of agents. Real-world deployment requires selecting agent compositions that not only maximize task success but also minimize violations of safety, fairness, and privacy requirements which demands a careful analysis of the low-probability (tail) behaviors of compositions of agents. In this work, we consider risk minimization over the set of feasible agent compositions and seek to minimize the value-at-risk of the loss distribution of the agent composition where the loss quantifies violations of these requirements. We introduce an efficient algorithm which traverses the agent graph and finds a near-optimal composition of agents. It uses a dynamic programming approach to approximate the value-at-risk of agent compositions by exploiting a union bound. Furthermore, we prove that the approximation is near-optimal asymptotically for a broad class of practical loss functions. To evaluate our framework, we consider a suite of video game-like control benchmarks that require composing several agents trained with reinforcement learning and demonstrate our algorithm's effectiveness in approximating the value-at-risk and identifying the optimal agent composition.
comment: 17 pages, 6 figures
♻ ☆ Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.
♻ ☆ Modern Methods in Associative Memory ICML 2025
Associative Memories like the famous Hopfield Networks are elegant models for describing fully recurrent neural networks whose fundamental job is to store and retrieve information. In the past few years they experienced a surge of interest due to novel theoretical results pertaining to their information storage capabilities, and their relationship with SOTA AI architectures, such as Transformers and Diffusion Models. These connections open up possibilities for interpreting the computation of traditional AI networks through the theoretical lens of Associative Memories. Additionally, novel Lagrangian formulations of these networks make it possible to design powerful distributed models that learn useful representations and inform the design of novel architectures. This tutorial provides an approachable introduction to Associative Memories, emphasizing the modern language and methods used in this area of research, with practical hands-on mathematical derivations and coding notebooks.
comment: Tutorial at ICML 2025
♻ ☆ Efficient & Correct Predictive Equivalence for Decision Trees
The Rashomon set of decision trees (DTs) finds importance uses. Recent work showed that DTs computing the same classification function, i.e. predictive equivalent DTs, can represent a significant fraction of the Rashomon set. Such redundancy is undesirable. For example, feature importance based on the Rashomon set becomes inaccurate due the existence of predictive equivalent DTs, i.e. DTs with the same prediction for every possible input. In recent work, McTavish et al. proposed solutions for several computational problems related with DTs, including that of deciding predictive equivalent DTs. The approach of McTavish et al. consists of applying the well-known method of Quine-McCluskey (QM) for obtaining minimum-size DNF (disjunctive normal form) representations of DTs, which are then used for comparing DTs for predictive equivalence. Furthermore, the minimum-size DNF representation was also applied to computing explanations for the predictions made by DTs, and to finding predictions in the presence of missing data. However, the problem of formula minimization is hard for the second level of the polynomial hierarchy, and the QM method may exhibit worst-case exponential running time and space. This paper first demonstrates that there exist decision trees that trigger the worst-case exponential running time and space of the QM method. Second, the paper shows that the QM method may incorrectly decide predictive equivalence, if two key constraints are not respected, and one may be difficult to formally guarantee. Third, the paper shows that any of the problems to which the smallest DNF representation has been applied to can be solved in polynomial time, in the size of the DT. The experiments confirm that, for DTs for which the worst-case of the QM method is triggered, the algorithms proposed in this paper are orders of magnitude faster than the ones proposed by McTavish et al.
♻ ☆ Permissioned LLMs: Enforcing Access Control in Large Language Models
In enterprise settings, organizational data is segregated, siloed and carefully protected by elaborate access control frameworks. These access control structures can completely break down if an LLM fine-tuned on the siloed data serves requests, for downstream tasks, from individuals with disparate access privileges. We propose Permissioned LLMs (PermLLM), a new class of LLMs that superimpose the organizational data access control structures on query responses they generate. We formalize abstractions underpinning the means to determine whether access control enforcement happens correctly over LLM query responses. Our formalism introduces the notion of a relevant response that can be used to prove whether a PermLLM mechanism has been implemented correctly. We also introduce a novel metric, called access advantage, to empirically evaluate the efficacy of a PermLLM mechanism. We introduce three novel PermLLM mechanisms that build on Parameter Efficient Fine-Tuning to achieve the desired access control. We furthermore present two instantiations of access advantage--(i) Domain Distinguishability Index (DDI) based on Membership Inference Attacks, and (ii) Utility Gap Index (UGI) based on LLM utility evaluation. We demonstrate the efficacy of our PermLLM mechanisms through extensive experiments on five public datasets (GPQA, RCV1, SimpleQA, WMDP, and PubMedQA), in addition to evaluating the validity of DDI and UGI metrics themselves for quantifying access control in LLMs.
♻ ☆ Statistical Inference for Temporal Difference Learning with Linear Function Approximation
We investigate the statistical properties of Temporal Difference (TD) learning with Polyak-Ruppert averaging, arguably one of the most widely used algorithms in reinforcement learning, for the task of estimating the parameters of the optimal linear approximation to the value function. Assuming independent samples, we make three theoretical contributions that improve upon the current state-of-the-art results: (i) we derive sharper high probability convergence guarantees that depend explicitly on the asymptotic variance and hold under weaker conditions than those adopted in the literature; (ii) we establish refined high-dimensional Berry-Esseen bounds over the class of convex sets, achieving faster rates than the best known results, and (iii) we propose and analyze a novel, computationally efficient online plug-in estimator of the asymptotic covariance matrix. These results enable the construction of confidence regions and simultaneous confidence intervals for the linear parameters of the value function approximation, with guaranteed finite-sample coverage. We demonstrate the applicability of our theoretical findings through numerical experiments.
♻ ☆ Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
This paper presents a novel topology-aware dimensionality reduction approach aiming at accurately visualizing the cyclic patterns present in high dimensional data. To that end, we build on the Topological Autoencoders (TopoAE) formulation. First, we provide a novel theoretical analysis of its associated loss and show that a zero loss indeed induces identical persistence pairs (in high and low dimensions) for the $0$-dimensional persistent homology (PH$^0$) of the Rips filtration. We also provide a counter example showing that this property no longer holds for a naive extension of TopoAE to PH$^d$ for $d\ge 1$. Based on this observation, we introduce a novel generalization of TopoAE to $1$-dimensional persistent homology (PH$^1$), called TopoAE++, for the accurate generation of cycle-aware planar embeddings, addressing the above failure case. This generalization is based on the notion of cascade distortion, a new penalty term favoring an isometric embedding of the $2$-chains filling persistent $1$-cycles, hence resulting in more faithful geometrical reconstructions of the $1$-cycles in the plane. We further introduce a novel, fast algorithm for the exact computation of PH for Rips filtrations in the plane, yielding improved runtimes over previously documented topology-aware methods. Our method also achieves a better balance between the topological accuracy, as measured by the Wasserstein distance, and the visual preservation of the cycles in low dimensions. Our C++ implementation is available at https://github.com/MClemot/TopologicalAutoencodersPlusPlus.
♻ ☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios NeurIPS 2025
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action segmentation methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF.
comment: Accepted to NeurIPS 2025. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF
Amelia: A Large Dataset and Benchmark for Airport Surface Movement Forecasting
Demand for air travel is rising, straining existing aviation infrastructure. In the US, more than 90% of airport control towers are understaffed, falling short of FAA and union standards. This, in part, has contributed to an uptick in near-misses and safety-critical events, highlighting the need for advancements in air traffic management technologies to ensure safe and efficient operations. Data-driven predictive models for terminal airspace show potential to address these challenges; however, the lack of large-scale surface movement datasets in the public domain has hindered the development of scalable and generalizable approaches. To address this, we introduce Amelia-42, a first-of-its-kind large collection of raw airport surface movement reports streamed through the FAA's System Wide Information Management (SWIM) Program, comprising over two years of trajectory data (~9.19 TB) across 42 US airports. We open-source tools to process this data into clean tabular position reports. We release Amelia42-Mini, a 15-day sample per airport, fully processed data on HuggingFace for ease of use. We also present a trajectory forecasting benchmark consisting of Amelia10-Bench, an accessible experiment family using 292 days from 10 airports, as well as Amelia-TF, a transformer-based baseline for multi-agent trajectory forecasting. All resources are available at our website: https://ameliacmu.github.io and https://huggingface.co/AmeliaCMU.
comment: 40 pages, 19 figures, 9 tables
♻ ☆ Improved Monte Carlo Planning via Causal Disentanglement for Structurally-Decomposed Markov Decision Processes
Markov Decision Processes (MDPs), as a general-purpose framework, often overlook the benefits of incorporating the causal structure of the transition and reward dynamics. For a subclass of resource allocation problems, we introduce the Structurally Decomposed MDP (SD-MDP), which leverages causal disentanglement to partition an MDP's temporal causal graph into independent components. By exploiting this disentanglement, SD-MDP enables dimensionality reduction and computational efficiency gains in optimal value function estimation. We reduce the sequential optimization problem to a fractional knapsack problem with log-linear complexity $O(T \log T)$, outperforming traditional stochastic programming methods that exhibit polynomial complexity with respect to the time horizon $T$. Additionally, SD-MDP's computational advantages are independent of state-action space size, making it viable for high-dimensional spaces. Furthermore, our approach integrates seamlessly with Monte Carlo Tree Search (MCTS), achieving higher expected rewards under constrained simulation budgets while providing a vanishing simple regret bound. Empirical results demonstrate superior policy performance over benchmarks across various logistics and finance domains.
comment: Conference Paper. 7th International Conference on Distributed Artificial Intelligence (DAI)
♻ ☆ Variance Reduction and Low Sample Complexity in Stochastic Optimization via Proximal Point Method
High-probability guarantees in stochastic optimization are often obtained only under strong noise assumptions such as sub-Gaussian tails. We show that such guarantees can also be achieved under the weaker assumption of bounded variance by developing a stochastic proximal point method. This method combines a proximal subproblem solver, which inherently reduces variance, with a probability booster that amplifies per-iteration reliability into high-confidence results. The analysis demonstrates convergence with low sample complexity, without restrictive noise assumptions or reliance on mini-batching.
comment: 23 pages
♻ ☆ Rethinking the Vulnerability of Concept Erasure and a New Method
The proliferation of text-to-image diffusion models has raised significant privacy and security concerns, particularly regarding the generation of copyrighted or harmful images. In response, concept erasure (defense) methods have been developed to "unlearn" specific concepts through post-hoc finetuning. However, recent concept restoration (attack) methods have demonstrated that these supposedly erased concepts can be recovered using adversarially crafted prompts, revealing a critical vulnerability in current defense mechanisms. In this work, we first investigate the fundamental sources of adversarial vulnerability and reveal that vulnerabilities are pervasive in the prompt embedding space of concept-erased models, a characteristic inherited from the original pre-unlearned model. Furthermore, we introduce **RECORD**, a novel coordinate-descent-based restoration algorithm that consistently outperforms existing restoration methods by up to 17.8 times. We conduct extensive experiments to assess its compute-performance tradeoff and propose acceleration strategies.
♻ ☆ Towards Provable Emergence of In-Context Reinforcement Learning NeurIPS 2025
Typically, a modern reinforcement learning (RL) agent solves a task by updating its neural network parameters to adapt its policy to the task. Recently, it has been observed that some RL agents can solve a wide range of new out-of-distribution tasks without parameter updates after pretraining on some task distribution. When evaluated in a new task, instead of making parameter updates, the pretrained agent conditions its policy on additional input called the context, e.g., the agent's interaction history in the new task. The agent's performance increases as the information in the context increases, with the agent's parameters fixed. This phenomenon is typically called in-context RL (ICRL). The pretrained parameters of the agent network enable the remarkable ICRL phenomenon. However, many ICRL works perform the pretraining with standard RL algorithms. This raises the central question this paper aims to address: Why can the RL pretraining algorithm generate network parameters that enable ICRL? We hypothesize that the parameters capable of ICRL are minimizers of the pretraining loss. This work provides initial support for this hypothesis through a case study. In particular, we prove that when a Transformer is pretrained for policy evaluation, one of the global minimizers of the pretraining loss can enable in-context temporal difference learning.
comment: NeurIPS 2025, 29 pages
♻ ☆ QiMeng-CodeV-R1: Reasoning-Enhanced Verilog Generation
Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while even exceeding the performance of 671B DeepSeek-R1 on RTLLM. We have released our model, training code, and dataset to facilitate research in EDA and LLM communities.
♻ ☆ On the $O(\frac{\sqrt{d}}{K^{1/4}})$ Convergence Rate of AdamW Measured by $\ell_1$ Norm NeurIPS
As the default optimizer for training large language models, AdamW has achieved remarkable success in deep learning. However, its convergence behavior is not theoretically well-understood. This paper establishes the convergence rate $\frac{1}{K}\sum_{k=1}^KE\left[||\nabla f(x^k)||_1\right]\leq O(\frac{\sqrt{d}C}{K^{1/4}})$ for AdamW measured by $\ell_1$ norm, where $K$ represents the iteration number, $d$ denotes the model dimension, and $C$ matches the constant in the optimal convergence rate of SGD. Theoretically, we have $||\nabla f(x)||_2\ll ||\nabla f(x)||_1\leq \sqrt{d}||\nabla f(x)||_2$ for any high-dimensional vector $x$ and $E\left[||\nabla f(x)||_1\right]\geq\sqrt{\frac{2d}{\pi}}E\left[||\nabla f(x)||_2\right]$ when each element of $\nabla f(x)$ is generated from Gaussian distribution $\mathcal N(0,1)$. Empirically, our experimental results on real-world deep learning tasks reveal $||\nabla f(x)||_1=\varTheta(\sqrt{d})||\nabla f(x)||_2$. Both support that our convergence rate can be considered to be analogous to the optimal $\frac{1}{K}\sum_{k=1}^KE\left[||\nabla f(x^k)||_2\right]\leq O(\frac{C}{K^{1/4}})$ convergence rate of SGD in the ideal case. We also extend our result to NAdamW, an AdamW variant that employs a double-momentum mechanism, and demonstrate that it maintains the same convergence rate.
comment: V2: NeurIPS Camera-Ready. V3: expand upon the conference version by incorporating the analysis of NAdamW
♻ ☆ On diffusion posterior sampling via sequential Monte Carlo for zero-shot scaffolding of protein motifs
With the advent of diffusion models, new proteins can be generated at an unprecedented rate. The motif scaffolding problem requires steering this generative process to yield proteins with a desirable functional substructure called a motif. While models have been trained to take the motif as conditional input, recent techniques in diffusion posterior sampling can be leveraged as zero-shot alternatives whose approximations can be corrected with sequential Monte Carlo (SMC) algorithms. In this work, we introduce a new set of guidance potentials for describing scaffolding tasks and solve them by adapting SMC-aided diffusion posterior samplers with an unconditional model, Genie, as a prior. In single motif problems, we find that (i) the proposed potentials perform comparably, if not better, than the conventional masking approach, (ii) samplers based on reconstruction guidance outperform their replacement method counterparts, and (iii) measurement tilted proposals and twisted targets improve performance substantially. Furthermore, as a demonstration, we provide solutions to two multi-motif problems by pairing reconstruction guidance with an SE(3)-invariant potential. We also produce designable internally symmetric monomers with a guidance potential for point symmetry constraints. Our code is available at: https://github.com/matsagad/mres-project.
comment: Published in Transactions on Machine Learning Research (09/2025). Reviewed on OpenReview: https://openreview.net/forum?id=KXRYY7iwqh
♻ ☆ GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
As large language models (LLMs) are increasingly trained on massive, uncurated corpora, understanding both model representations and the data they internalize has become a major challenge. In this work, we show that pairing LLMs with sparse autoencoders (SAEs) enables interpretation not only of model behavior but also of the deeper structures, themes, and biases embedded in the training data. We train a GPT-style transformer model exclusively on the novels of Jane Austen, a corpus rich in social constructs and narrative patterns. We then apply SAEs to hidden states across multiple layers, uncovering sparse, interpretable features that reflect the key narratives and concepts present in the corpus, including gender, class, and societal duty. Our findings demonstrate that LLMs combined with SAEs can act as scalable probes into complex datasets, offering a new path for corpus exploration, bias discovery, and model interpretability at scale.
comment: Preprint. Draft version, subject to revision
♻ ☆ Co-rewarding: Stable Self-supervised RL for Eliciting Reasoning in Large Language Models
While reinforcement learning with verifiable rewards (RLVR) is effective to improve the reasoning ability of large language models (LLMs), its reliance on human-annotated labels leads to the scaling up dilemma, especially for complex tasks. Recent self-rewarding methods investigate a label-free alternative to unlock the reasoning capabilities of LLMs, yet they frequently encounter the non-negligible training collapse issue, as the single-view supervision signal easily forms the self-consistent illusion, yielding the reward hacking. Inspired by the success of self-supervised learning, we propose \textit{Co-rewarding}, a novel self-supervised RL framework that improves training stability by seeking complementary supervision from another views. Specifically, we instantiate Co-rewarding in two ways: (1) \textit{Co-rewarding-I} is a data-side instantiation that derives reward signals from contrastive agreement across semantically analogous questions; and (2) \textit{Co-rewarding-II} is a model-side instantiation that maintains a slowly-updated reference teacher with pseudo labels to realize self-distillation. Intuitively, such instantiations introduce different levels of discrepancy to increase the difficulty of training collapse on trivial reasoning solutions. Empirically, Co-rewarding exhibits stable training across various setups, and outperforms other self-rewarding baselines by $+3.31\%$ improvements on average on multiple mathematical reasoning benchmarks, especially by $+7.49\%$ on Llama-3.2-3B-Instruct. Notably, Co-rewarding reaches or even surpasses RLVR with ground-truth (GT) label in several cases, such as a Pass@$1$ of $94.01\%$ on GSM8K with Qwen3-8B-Base remarkably higher than GT. Our code is publicly available at https://github.com/tmlr-group/Co-rewarding.
♻ ☆ Discrimination in machine learning algorithms
Machine learning algorithms are routinely used for business decisions that may directly affect individuals, for example, because a credit scoring algorithm refuses them a loan. It is then relevant from an ethical (and legal) point of view to ensure that these algorithms do not discriminate based on sensitive attributes (like sex or race), which may occur unwittingly and unknowingly by the operator and the management. Statistical tools and methods are then required to detect and eliminate such potential biases.
♻ ☆ A Malliavin-Gamma calculus approach to Score Based Diffusion Generative models for random fields
We adopt a Gamma and Malliavin Calculi point of view in order to generalize Score-based diffusion Generative Models (SGMs) to an infinite-dimensional abstract Hilbertian setting. Particularly, we define the forward noising process using Dirichlet forms associated to the Cameron-Martin space of Gaussian measures and Wiener chaoses; whereas by relying on an abstract time-reversal formula, we show that the score function is a Malliavin derivative and it corresponds to a conditional expectation. This allows us to generalize SGMs to the infinite-dimensional setting. Moreover, we extend existing finite-dimensional entropic convergence bounds to this Hilbertian setting by highlighting the role played by the Cameron-Martin norm in the Fisher information of the data distribution. Lastly, we specify our discussion for spherical random fields, considering as source of noise a Whittle-Mat\'ern random spherical field.
comment: 26 pages, amended typos and added a simulation of the forward noising process for the spherical fields example
♻ ☆ Efficient Preimage Approximation for Neural Network Certification
The growing reliance on artificial intelligence in safety- and security-critical applications demands effective neural network certification. A challenging real-world use case is "patch attacks", where adversarial patches or lighting conditions obscure parts of images, for example, traffic signs. A significant step towards certification against patch attacks was recently achieved using PREMAP, which uses under- and over-approximations of the preimage, the set of inputs that lead to a specified output, for the certification. While the PREMAP approach is versatile, it is currently limited to fully-connected neural networks of moderate dimensionality. In order to tackle broader real-world use cases, we present novel algorithmic extensions to PREMAP involving tighter bounds, adaptive Monte Carlo sampling, and improved branching heuristics. Firstly, we demonstrate that these efficiency improvements significantly outperform the original PREMAP and enable scaling to convolutional neural networks that were previously intractable. Secondly, we showcase the potential of preimage approximation methodology for analysing and certifying reliability and robustness on a range of use cases from computer vision and control.
comment: Code available at https://github.com/Anton-Bjorklund/Premap2
♻ ☆ Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed
The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks can transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.
♻ ☆ Enhancing LLM Steering through Sparse Autoencoder-Based Vector Refinement
Steering has emerged as a promising approach in controlling large language models (LLMs) without modifying model parameters. However, most existing steering methods rely on large-scale datasets to learn clear behavioral information, which limits their applicability in many real-world scenarios. The steering vectors extracted from small dataset often contain task-irrelevant noising features, which degrades their effectiveness. To refine the steering vectors learned from limited data, we introduce Refinement of Steering Vector via Sparse Autoencoder (SAE-RSV) that leverages SAEs to semantically denoise and augment the steering vectors. In our framework, we first remove task-irrelevant features according to their semantics provided by SAEs, and then enrich task-relevant features missing from the small dataset through their semantic similarity to the identified relevant features. Extensive experiments demonstrate that the proposed SAE-RSV substantially outperforms all the baseline methods including supervised fine-tuning. Our findings show that effective steering vector can be constructed from limited training data by refining the original steering vector through SAEs.
comment: 19 pages, 11 figures, 7 tables
♻ ☆ Diffusion-aided Task-oriented Semantic Communications with Model Inversion Attack
Semantic communication enhances transmission efficiency by conveying semantic information rather than raw input symbol sequences. Task-oriented semantic communication is a variant that tries to retains only task-specific information, thus achieving greater bandwidth savings. However, these neural-based communication systems are vulnerable to model inversion attacks, where adversaries try to infer sensitive input information from eavesdropped transmitted data. The key challenge, therefore, lies in preserving privacy while ensuring transmission correctness and robustness. While prior studies typically assume that adversaries aim to fully reconstruct the raw input in task-oriented settings, there exist scenarios where pixel-level metrics such as PSNR or SSIM are low, yet the adversary's outputs still suffice to accomplish the downstream task, indicating leakage of sensitive information. We therefore adopt the attacker's task accuracy as a more appropriate metric for evaluating attack effectiveness. To optimize the gap between the legitimate receiver's accuracy and the adversary's accuracy, we propose DiffSem, a diffusion-aided framework for task-oriented semantic communication. DiffSem integrates a transmitter-side self-noising mechanism that adaptively regulates semantic content while compensating for channel noise, and a receiver-side diffusion U-Net that enhances task performance and can be optionally strengthened by self-referential label embeddings. Our experiments demonstrate that DiffSem enables the legitimate receiver to achieve higher accuracy, thereby validating the superior performance of the proposed framework.
♻ ☆ Theoretical Investigation on Inductive Bias of Isolation Forest
Isolation Forest (iForest) stands out as a widely-used unsupervised anomaly detector, primarily owing to its remarkable runtime efficiency and superior performance in large-scale tasks. Despite its widespread adoption, a theoretical foundation explaining iForest's success remains unclear. This paper focuses on the inductive bias of iForest, which theoretically elucidates under what circumstances and to what extent iForest works well. The key is to formulate the growth process of iForest, where the split dimensions and split values are randomly selected. We model the growth process of iForest as a random walk, enabling us to derive the expected depth function, which is the outcome of iForest, using transition probabilities. The case studies reveal key inductive biases: iForest exhibits lower sensitivity to central anomalies while demonstrating greater parameter adaptability compared to $k$-Nearest Neighbor. Our study provides a theoretical understanding of the effectiveness of iForest and establishes a foundation for further theoretical exploration.
♻ ☆ Graph Neural Networks for Transmission Grid Topology Control: Busbar Information Asymmetry and Heterogeneous Representations
Factors such as the proliferation of renewable energy and electrification contribute to grid congestion as a pressing problem. Topology control is an appealing method for relieving congestion, but traditional approaches for topology discovery have proven too slow for practical application. Recent research has focused on machine learning (ML) as an efficient alternative. Graph neural networks (GNNs) are particularly well-suited for topology control applications due to their ability to model the graph structure of power grids. This study investigates the effect of the graph representation on GNN effectiveness for topology control. We identify the busbar information asymmetry problem inherent to the popular homogeneous graph representation. We propose a heterogeneous graph representation that resolves this problem. We apply GNNs with both representations and a fully connected neural network (FCNN) baseline on an imitation learning task. The models are evaluated by classification accuracy and grid operation ability. We find that heterogeneous GNNs perform best on in-distribution network configurations, followed by FCNNs, and lastly, homogeneous GNNs. We also find that both GNN types generalize better to out-of-distribution network configurations than FCNNs.
comment: 31 pages, 9 figures. Submitted to Applied Energy. Previous versions were uploaded to arXiv with the title "Generalizable Graph Neural Networks for Robust Power Grid Topology Control"
♻ ☆ A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning with General Function Approximation
The exploration-exploitation dilemma has been a central challenge in reinforcement learning (RL) with complex model classes. In this paper, we propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for RL with general function approximation. Our key algorithmic design includes (1) a general deterministic policy-switching strategy that achieves low switching cost, (2) a monotonic value function structure with carefully controlled function class complexity, and (3) a variance-weighted regression scheme that exploits historical trajectories with high data efficiency. MQL-UCB achieves minimax optimal regret of $\tilde{O}(d\sqrt{HK})$ when $K$ is sufficiently large and near-optimal policy switching cost of $\tilde{O}(dH)$, with $d$ being the eluder dimension of the function class, $H$ being the planning horizon, and $K$ being the number of episodes. Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
comment: 46 pages, 1 table
♻ ☆ PepCompass: Navigating peptide embedding spaces using Riemannian Geometry
Antimicrobial peptide discovery is challenged by the astronomical size of peptide space and the relative scarcity of active peptides. Generative models provide continuous latent "maps" of peptide space, but conventionally ignore decoder-induced geometry and rely on flat Euclidean metrics, rendering exploration and optimization distorted and inefficient. Prior manifold-based remedies assume fixed intrinsic dimensionality, which critically fails in practice for peptide data. Here, we introduce PepCompass, a geometry-aware framework for peptide exploration and optimization. At its core, we define a Union of $\kappa$-Stable Riemannian Manifolds $\mathbb{M}^{\kappa}$, a family of decoder-induced manifolds that captures local geometry while ensuring computational stability. We propose two local exploration methods: Second-Order Riemannian Brownian Efficient Sampling, which provides a convergent second-order approximation to Riemannian Brownian motion, and Mutation Enumeration in Tangent Space, which reinterprets tangent directions as discrete amino-acid substitutions. Combining these yields Local Enumeration Bayesian Optimization (LE-BO), an efficient algorithm for local activity optimization. Finally, we introduce Potential-minimizing Geodesic Search (PoGS), which interpolates between prototype embeddings along property-enriched geodesics, biasing discovery toward seeds, i.e. peptides with favorable activity. In-vitro validation confirms the effectiveness of PepCompass: PoGS yields four novel seeds, and subsequent optimization with LE-BO discovers 25 highly active peptides with broad-spectrum activity, including against resistant bacterial strains. These results demonstrate that geometry-informed exploration provides a powerful new paradigm for antimicrobial peptide design.
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: The original paper has issues and has been restructured in the work; it is no longer suitable, so I am applying for withdrawal
♻ ☆ Online Decision-Focused Learning
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks. Instead of merely optimizing for predictive accuracy, DFL trains models to directly minimize the loss associated with downstream decisions. However, existing studies focus solely on scenarios where a fixed batch of data is available and the objective function does not change over time. We instead investigate DFL in dynamic environments where the objective function and data distribution evolve over time. This setting is challenging for online learning because the objective function has zero or undefined gradients -- which prevents the use of standard first-order optimization methods -- and is generally non-convex. To address these difficulties, we (i) regularize the objective to make it differentiable and (ii) use perturbation techniques along with a near-optimal oracle to overcome non-convexity. Combining those techniques yields two original online algorithms tailored for DFL, for which we establish respectively static and dynamic regret bounds. These are the first provable guarantees for the online decision-focused problem. Finally, we showcase the effectiveness of our algorithms on a knapsack experiment, where they outperform two standard benchmarks.
♻ ☆ XBreaking: Explainable Artificial Intelligence for Jailbreaking LLMs
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. In response to this, LLM Jailbreaking is a significant threat to such protections, and many previous approaches have already demonstrated its effectiveness across diverse domains. Existing jailbreak proposals mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted jailbreak attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel jailbreak attack that exploits these unique patterns to break the security constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our attack.
♻ ☆ Manipulating 3D Molecules in a Fixed-Dimensional E(3)-Equivariant Latent Space NeurIPS 2025
Medicinal chemists often optimize drugs considering their 3D structures and designing structurally distinct molecules that retain key features, such as shapes, pharmacophores, or chemical properties. Previous deep learning approaches address this through supervised tasks like molecule inpainting or property-guided optimization. In this work, we propose a flexible zero-shot molecule manipulation method by navigating in a shared latent space of 3D molecules. We introduce a Variational AutoEncoder (VAE) for 3D molecules, named MolFLAE, which learns a fixed-dimensional, E(3)-equivariant latent space independent of atom counts. MolFLAE encodes 3D molecules using an E(3)-equivariant neural network into fixed number of latent nodes, distinguished by learned embeddings. The latent space is regularized, and molecular structures are reconstructed via a Bayesian Flow Network (BFN) conditioned on the encoder's latent output. MolFLAE achieves competitive performance on standard unconditional 3D molecule generation benchmarks. Moreover, the latent space of MolFLAE enables zero-shot molecule manipulation, including atom number editing, structure reconstruction, and coordinated latent interpolation for both structure and properties. We further demonstrate our approach on a drug optimization task for the human glucocorticoid receptor, generating molecules with improved hydrophilicity while preserving key interactions, under computational evaluations. These results highlight the flexibility, robustness, and real-world utility of our method, opening new avenues for molecule editing and optimization.
comment: This version (v2) includes minor edits. The paper has been accepted to NeurIPS 2025. Code is available at: https://github.com/MuZhao2333/MolFLAE
♻ ☆ ColNet: Collaborative Optimization in Decentralized Federated Multi-task Learning Systems
The integration of Federated Learning (FL) and Multi-Task Learning (MTL) has been explored to address client heterogeneity, with Federated Multi-Task Learning (FMTL) treating each client as a distinct task. However, most existing research focuses on data heterogeneity (e.g., addressing non-IID data) rather than task heterogeneity, where clients solve fundamentally different tasks. Additionally, much of the work relies on centralized settings with a server managing the federation, leaving the more challenging domain of decentralized FMTL largely unexplored. Thus, this work bridges this gap by proposing ColNet, a framework designed for heterogeneous tasks in decentralized federated environments. ColNet partitions models into a backbone and task-specific heads, and uses adaptive clustering based on model and data sensitivity to form task-coherent client groups. Backbones are averaged within groups, and group leaders perform hyper-conflict-averse cross-group aggregation. Across datasets and federations, ColNet outperforms competing schemes under label and task heterogeneity and shows robustness to poisoning attacks.
♻ ☆ Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city road networks. This dataset features graphs with over 100k nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs based on local node eccentricities, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement-particularly by focusing on over-smoothing and influence score dilution-which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
comment: work in progress
♻ ☆ Anchored Supervised Fine-Tuning
Post-training of large language models involves a fundamental trade-off between supervised fine-tuning (SFT), which efficiently mimics demonstrations but tends to memorize, and reinforcement learning (RL), which achieves better generalization at higher computational cost. Dynamic Fine-Tuning (DFT) recently emerged as a promising middle ground, reweighting SFT objectives with token probabilities and achieving improvements in certain reasoning domains, though it exhibits instability in other tasks. We provide a analysis of DFT through the reward-weighted regression (RWR) framework, revealing that it corresponds to a specific auxiliary distribution choice that yields provably tighter RL bounds than standard SFT. However, our analysis also uncovers a critical limitation: this construction lacks distributional anchoring, leading to progressive drift that undermines training stability. To address this, we propose Anchored Supervised Fine-Tuning (ASFT), which augments DFT's reweighting with lightweight KL regularization to preserve tightness while ensuring stability. Empirically, ASFT consistently outperforms both SFT and DFT across mathematical reasoning, medical knowledge grounding, and code generation, achieving substantial improvements with minimal computational overhead. Our RWR framework provides a systematic lens for understanding post-training methods and demonstrates that principled theoretical analysis leads to both stronger guarantees and practical gains.
♻ ☆ DualRAG: A Dual-Process Approach to Integrate Reasoning and Retrieval for Multi-Hop Question Answering
Multi-Hop Question Answering (MHQA) tasks permeate real-world applications, posing challenges in orchestrating multi-step reasoning across diverse knowledge domains. While existing approaches have been improved with iterative retrieval, they still struggle to identify and organize dynamic knowledge. To address this, we propose DualRAG, a synergistic dual-process framework that seamlessly integrates reasoning and retrieval. DualRAG operates through two tightly coupled processes: Reasoning-augmented Querying (RaQ) and progressive Knowledge Aggregation (pKA). They work in concert: as RaQ navigates the reasoning path and generates targeted queries, pKA ensures that newly acquired knowledge is systematically integrated to support coherent reasoning. This creates a virtuous cycle of knowledge enrichment and reasoning refinement. Through targeted fine-tuning, DualRAG preserves its sophisticated reasoning and retrieval capabilities even in smaller-scale models, demonstrating its versatility and core advantages across different scales. Extensive experiments demonstrate that this dual-process approach substantially improves answer accuracy and coherence, approaching, and in some cases surpassing, the performance achieved with oracle knowledge access. These results establish DualRAG as a robust and efficient solution for complex multi-hop reasoning tasks.
♻ ☆ DiffusionBlocks: Block-wise Neural Network Training via Diffusion Interpretation
End-to-end backpropagation requires storing activations throughout all layers, creating memory bottlenecks that limit model scalability. Existing block-wise training methods offer means to alleviate this problem, but they rely on ad-hoc local objectives and remain largely unexplored beyond classification tasks. We propose $\textit{DiffusionBlocks}$, a principled framework for transforming transformer-based networks into genuinely independent trainable blocks that maintain competitive performance with end-to-end training. Our key insight leverages the fact that residual connections naturally correspond to updates in a dynamical system. With minimal modifications to this system, we can convert the updates to those of a denoising process, where each block can be learned independently by leveraging the score matching objective. This independence enables training with gradients for only one block at a time, thereby reducing memory requirements in proportion to the number of blocks. Our experiments on a range of transformer architectures (vision, diffusion, autoregressive, recurrent-depth, and masked diffusion) demonstrate that DiffusionBlocks training matches the performance of end-to-end training while enabling scalable block-wise training on practical tasks beyond small-scale classification. DiffusionBlocks provides a theoretically grounded approach that successfully scales to modern generative tasks across diverse architectures.
comment: Under review
♻ ☆ Extending Mean-Field Variational Inference via Entropic Regularization: Theory and Computation
Variational inference (VI) has emerged as a popular method for approximate inference for high-dimensional Bayesian models. In this paper, we propose a novel VI method that extends the naive mean field via entropic regularization, referred to as $\Xi$-variational inference ($\Xi$-VI). $\Xi$-VI has a close connection to the entropic optimal transport problem and benefits from the computationally efficient Sinkhorn algorithm. We show that $\Xi$-variational posteriors effectively recover the true posterior dependency, where the dependence is downweighted by the regularization parameter. We analyze the role of dimensionality of the parameter space on the accuracy of $\Xi$-variational approximation and how it affects computational considerations, providing a rough characterization of the statistical-computational trade-off in $\Xi$-VI. We also investigate the frequentist properties of $\Xi$-VI and establish results on consistency, asymptotic normality, high-dimensional asymptotics, and algorithmic stability. We provide sufficient criteria for achieving polynomial-time approximate inference using the method. Finally, we demonstrate the practical advantage of $\Xi$-VI over mean-field variational inference on simulated and real data.
♻ ☆ Wasserstein Bounds for generative diffusion models with Gaussian tail targets
We present an estimate of the Wasserstein distance between the data distribution and the generation of score-based generative models. The sampling complexity with respect to dimension is $\mathcal{O}(\sqrt{d})$, with a logarithmic constant. In the analysis, we assume a Gaussian-type tail behavior of the data distribution and an $\epsilon$-accurate approximation of the score. Such a Gaussian tail assumption is general, as it accommodates a practical target - the distribution from early stopping techniques with bounded support. The crux of the analysis lies in the global Lipschitz bound of the score, which is shown from the Gaussian tail assumption by a dimension-independent estimate of the heat kernel. Consequently, our complexity bound scales linearly (up to a logarithmic constant) with the square root of the trace of the covariance operator, which relates to the invariant distribution of the forward process.
comment: We update the preprint due to a gap in the proof found by Eliot Beyler and Francis Bach in their prerint (arXiv:2508.03210). The assumptions and the main complexity bounds remain unchanged
♻ ☆ DeepGDel: Deep Learning-based Gene Deletion Prediction Framework for Growth-Coupled Production in Genome-Scale Metabolic Models
In genome-scale constraint-based metabolic models, gene deletion strategies are crucial for achieving growth-coupled production, where cell growth and target metabolite production are simultaneously achieved. While computational methods for calculating gene deletions have been widely explored and contribute to developing gene deletion strategy databases, current approaches are limited in leveraging new data-driven paradigms, such as machine learning, for more efficient strain design. Therefore, it is necessary to propose a fundamental framework for this objective. In this study, we first formulate the problem of gene deletion strategy prediction and then propose a framework for predicting gene deletion strategies for growth-coupled production in genome-scale metabolic models. The proposed framework leverages deep learning algorithms to learn and integrate sequential gene and metabolite data representation, enabling the automatic gene deletion strategy prediction. Computational experiment results demonstrate the feasibility of the proposed framework, showing substantial improvements over baseline methods. Specifically, the proposed framework achieves a 14.69%, 22.52%, and 13.03% increase in overall accuracy across three metabolic models of different scales under study, while maintaining balanced precision and recall in predicting gene deletion statuses. The source code and examples for the framework are publicly available at https://github.com/MetNetComp/DeepGDel.
♻ ☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
♻ ☆ Addressing Representation Collapse in Vector Quantized Models with One Linear Layer ICCV2025
Vector Quantization (VQ) is essential for discretizing continuous representations in unsupervised learning but suffers from representation collapse, causing low codebook utilization and limiting scalability. Existing solutions often rely on complex optimizations or reduce latent dimensionality, which compromises model capacity and fails to fully solve the problem. We identify the root cause as disjoint codebook optimization, where only a few code vectors are updated via gradient descent. To fix this, we propose \textbf{Sim}ple\textbf{VQ}, which reparameterizes code vectors through a learnable linear transformation layer over a latent basis, optimizing the \textit{entire linear space} rather than nearest \textit{individual code vectors}. Although the multiplication of two linear matrices is equivalent to applying a single linear layer, this simple approach effectively prevents collapse. Extensive experiments on image and audio tasks demonstrate that SimVQ improves codebook usage, is easy to implement, and generalizes well across modalities and architectures. The code is available at https://github.com/youngsheen/SimVQ.
comment: Accepted at ICCV2025
♻ ☆ STORI: A Benchmark and Taxonomy for Stochastic Environments
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.
comment: v2. New mathematical formulation and renamed notation; added additional experiments and a detailed analytical case study on error behaviors in world models under different stochasticity types; link to code repository for reproducibility: https://github.com/ARY2260/stori
♻ ☆ Octax: Accelerated CHIP-8 Arcade Environments for Reinforcement Learning in JAX
Reinforcement learning (RL) research requires diverse, challenging environments that are both tractable and scalable. While modern video games may offer rich dynamics, they are computationally expensive and poorly suited for large-scale experimentation due to their CPU-bound execution. We introduce Octax, a high-performance suite of classic arcade game environments implemented in JAX, based on CHIP-8 emulation, a predecessor to Atari, which is widely adopted as a benchmark in RL research. Octax provides the JAX community with a long-awaited end-to-end GPU alternative to the Atari benchmark, offering image-based environments, spanning puzzle, action, and strategy genres, all executable at massive scale on modern GPUs. Our JAX-based implementation achieves orders-of-magnitude speedups over traditional CPU emulators while maintaining perfect fidelity to the original game mechanics. We demonstrate Octax's capabilities by training RL agents across multiple games, showing significant improvements in training speed and scalability compared to existing solutions. The environment's modular design enables researchers to easily extend the suite with new games or generate novel environments using large language models, making it an ideal platform for large-scale RL experimentation.
♻ ☆ Iteratively reweighted kernel machines efficiently learn sparse functions
The impressive practical performance of neural networks is often attributed to their ability to learn low-dimensional data representations and hierarchical structure directly from data. In this work, we argue that these two phenomena are not unique to neural networks, and can be elicited from classical kernel methods. Namely, we show that the derivative of the kernel predictor can detect the influential coordinates with low sample complexity. Moreover, by iteratively using the derivatives to reweight the data and retrain kernel machines, one is able to efficiently learn hierarchical polynomials with finite leap complexity. Numerical experiments illustrate the developed theory.
♻ ☆ Graph-Reward-SQL: Execution-Free Reinforcement Learning for Text-to-SQL via Graph Matching and Stepwise Reward
Reinforcement learning (RL) has been widely adopted to enhance the performance of large language models (LLMs) on Text-to-SQL tasks. However, existing methods often rely on execution-based or LLM-based Bradley-Terry reward models. The former suffers from high execution latency caused by repeated database calls, whereas the latter imposes substantial GPU memory overhead, both of which significantly hinder the efficiency and scalability of RL pipelines. To this end, we propose a novel reward model framework for RL-based Text-to-SQL named Graph-Reward-SQL, which employs the GMNScore outcome reward model. We leverage SQL graph representations to provide accurate reward signals while significantly reducing time cost and GPU memory usage. Building on this foundation, we further introduce StepRTM, a stepwise reward model that provides intermediate supervision over Common Table Expression (CTE) subqueries. This encourages both functional correctness and readability of SQL. Extensive comparative and ablation experiments on standard benchmarks, including Spider and BIRD, demonstrate that our method consistently outperforms existing reward models.
♻ ☆ Observation-Free Attacks on Online Learning to Rank
Online learning to rank (OLTR) plays a critical role in information retrieval and machine learning systems, with a wide range of applications in search engines and content recommenders. However, despite their extensive adoption, the susceptibility of OLTR algorithms to coordinated adversarial attacks remains poorly understood. In this work, we present a novel framework for attacking some of the widely used OLTR algorithms. Our framework is designed to promote a set of target items so that they appear in the list of top-K recommendations for T - o(T) rounds, while simultaneously inducing linear regret in the learning algorithm. We propose two novel attack strategies: CascadeOFA for CascadeUCB1 and PBMOFA for PBM-UCB . We provide theoretical guarantees showing that both strategies require only O(log T) manipulations to succeed. Additionally, we supplement our theoretical analysis with empirical results on real-world data.
♻ ☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
♻ ☆ Dynamical local Fréchet curve regression in manifolds
The present paper solves the problem of local linear approximation of the Fr\'echet conditional mean in an extrinsic and intrinsic way from time correlated bivariate curve data evaluated in a manifold (see Torres et al, 2025, on global Fr\'echet functional regression in manifolds). The extrinsic local linear Fr\'echet functional regression predictor is obtained in the time-varying tangent space by projection into an orthornormal eigenfunction basis in the ambient Hilbert space. The conditions assumed ensure the existence and uniqueness of this predictor, and its computation via exponential and logarithmic maps. A weighted Fr\'echet mean approach is adopted in the computation of an intrinsic local linear Fr\'echet functional regression predictor. The asymptotic optimality of this intrinsic local approximation is also proved. The finite sample size performance of the empirical version of both, extrinsic and intrinsic local functional predictors, and of a Nadaraya-Watson type Fr\'echet curve predictor is illustrated in the simulation study undertaken. As motivating real data application, we consider the prediction problem of the Earth's magnetic field from the time-varying geocentric latitude and longitude of the satellite NASA's MAGSAT spacecraft.
♻ ☆ Continuous Thought Machines NeurIPS 2025
Biological brains demonstrate complex neural activity, where neural dynamics are critical to how brains process information. Most artificial neural networks ignore the complexity of individual neurons. We challenge that paradigm. By incorporating neuron-level processing and synchronization, we reintroduce neural timing as a foundational element. We present the Continuous Thought Machine (CTM), a model designed to leverage neural dynamics as its core representation. The CTM has two innovations: (1) neuron-level temporal processing, where each neuron uses unique weight parameters to process incoming histories; and (2) neural synchronization as a latent representation. The CTM aims to strike a balance between neuron abstractions and biological realism. It operates at a level of abstraction that effectively captures essential temporal dynamics while remaining computationally tractable. We demonstrate the CTM's performance and versatility across a range of tasks, including solving 2D mazes, ImageNet-1K classification, parity computation, and more. Beyond displaying rich internal representations and offering a natural avenue for interpretation owing to its internal process, the CTM is able to perform tasks that require complex sequential reasoning. The CTM can also leverage adaptive compute, where it can stop earlier for simpler tasks, or keep computing when faced with more challenging instances. The goal of this work is to share the CTM and its associated innovations, rather than pushing for new state-of-the-art results. To that end, we believe the CTM represents a significant step toward developing more biologically plausible and powerful artificial intelligence systems. We provide an accompanying interactive online demonstration at https://pub.sakana.ai/ctm/ and an extended technical report at https://pub.sakana.ai/ctm/paper .
comment: Technical report accompanied by online project page: https://pub.sakana.ai/ctm/ Accepted as a spotlight paper at NeurIPS 2025
♻ ☆ Programming with Pixels: Can Computer-Use Agents do Software Engineering?
Computer-use agents (CUAs) hold the promise of performing a wide variety of general tasks, but current evaluations have primarily focused on simple scenarios. It therefore remains unclear whether such generalist agents can automate more sophisticated and specialized work such as software engineering (SWE). To investigate this, we introduce $\texttt{Programming with Pixels}$ (PwP), the first comprehensive computer-use environment for software engineering, where agents visually control an IDE to perform diverse software engineering tasks. To enable holistic evaluation, we also introduce \texttt{PwP-Bench}, a benchmark of 15 existing and new software-engineering tasks spanning multiple modalities, programming languages, and skillsets. We perform an extensive evaluation of state-of-the-art open-weight and closed-weight CUAs and find that when interacting purely visually, they perform significantly worse than specialized coding agents. However, when the same CUAs are given direct access to just two APIs-file editing and bash operations-performance jumps, often reaching the levels of specialized agents despite having a task-agnostic design. Furthermore, when given access to additional IDE tools via text APIs, all models show further gains. Our analysis shows that current CUAs fall short mainly due to limited visual grounding and the inability to take full advantage of the rich environment, leaving clear room for future improvements.PwP establishes software engineering as a natural domain for benchmarking whether generalist computer-use agents can reach specialist-level performance on sophisticated tasks. Code and data released at https://programmingwithpixels.com
♻ ☆ YOLO-Based Defect Detection for Metal Sheets
In this paper, we propose a YOLO-based deep learning (DL) model for automatic defect detection to solve the time-consuming and labor-intensive tasks in industrial manufacturing. In our experiments, the images of metal sheets are used as the dataset for training the YOLO model to detect the defects on the surfaces and in the holes of metal sheets. However, the lack of metal sheet images significantly degrades the performance of detection accuracy. To address this issue, the ConSinGAN is used to generate a considerable amount of data. Four versions of the YOLO model (i.e., YOLOv3, v4, v7, and v9) are combined with the ConSinGAN for data augmentation. The proposed YOLOv9 model with ConSinGAN outperforms the other YOLO models with an accuracy of 91.3%, and a detection time of 146 ms. The proposed YOLOv9 model is integrated into manufacturing hardware and a supervisory control and data acquisition (SCADA) system to establish a practical automated optical inspection (AOI) system. Additionally, the proposed automated defect detection is easily applied to other components in industrial manufacturing.
comment: 5 pages, 8 figures, 2 tables, and published in IEEE IST 2024
♻ ☆ L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
Reasoning language models have shown an uncanny ability to improve performance at test-time by ``thinking longer''-that is, by generating longer chain-of-thought sequences and hence using more compute. However, the length of their chain-of-thought reasoning is not controllable, making it impossible to allocate test-time compute to achieve a desired level of performance. We introduce Length Controlled Policy Optimization (LCPO), a simple reinforcement learning method that optimizes for accuracy and adherence to user-specified length constraints. We use LCPO to train L1, a reasoning language model that produces outputs satisfying a length constraint given in its prompt. L1's length control allows for smoothly trading off computational cost and accuracy on a wide range of tasks, and outperforms the state-of-the-art S1 method for length control. Furthermore, we uncover an unexpected short chain-of-thought capability in models trained with LCPO. Specifically, using LCPO we derive Short Reasoning Models (SRMs), that exhibit similar reasoning patterns as full-length reasoning models, but can generate CoT lengths comparable to non-reasoning models. They demonstrate significant performance gains, for instance, our 1.5B L1 model surpasses GPT-4o at equal reasoning lengths. Overall, LCPO enables precise control over reasoning length, allowing for fine-grained allocation of test-time compute and accuracy. We release code and models at https://www.cmu-l3.github.io/l1
comment: Accepted at COLM 2025
♻ ☆ Rubrics as Rewards: Reinforcement Learning Beyond Verifiable Domains
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for complex reasoning tasks with clear correctness signals such as math and coding. However, extending it to real-world reasoning tasks is challenging, as evaluation depends on nuanced, multi-criteria judgments rather than binary correctness. Instance-specific rubrics have recently been used in evaluation benchmarks to capture such judgments, but their potential as reward signals for on-policy post-training remains underexplored. We introduce $\textbf{Rubrics as Rewards}$ (RaR), an on-policy reinforcement learning method that extends RLVR beyond verifiable domains by using rubric-based feedback. Across both medical and science domains, we evaluate multiple strategies for aggregating rubric feedback into rewards. The best RaR variant achieves relative improvements of up to $31\%$ on HealthBench and $7\%$ on GPQA-Diamond over popular LLM-as-judge baselines that rely on direct Likert-based rewards. These results demonstrate that RaR-trained policies adapt well to diverse evaluation formats, performing strongly on both rubric-based and multiple-choice tasks. Moreover, we find that using rubrics as structured reward signals yields better alignment for smaller judges and reduces performance variance across judge scales.
comment: preprint
♻ ☆ Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ Understanding the Performance Gap in Preference Learning: A Dichotomy of RLHF and DPO
We present a fine-grained theoretical analysis of the performance gap between reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) under a representation gap. Our study decomposes this gap into two sources: an explicit representation gap under exact optimization and an implicit representation gap under finite samples. In the exact optimization setting, we characterize how the relative capacities of the reward and policy model classes influence the final policy qualities. We show that RLHF, DPO, or online DPO can outperform one another depending on type of model mis-specifications. Notably, online DPO can outperform both RLHF and standard DPO when the reward and policy model classes are isomorphic and both mis-specified. In the approximate optimization setting, we provide a concrete construction where the ground-truth reward is implicitly sparse and show that RLHF requires significantly fewer samples than DPO to recover an effective reward model -- highlighting a statistical advantage of two-stage learning. Together, these results provide a comprehensive understanding of the performance gap between RLHF and DPO under various settings, and offer practical insights into when each method is preferred.
comment: 30 pages, 5 figures. Improved proofs, and typo fixes
♻ ☆ OT Score: An OT based Confidence Score for Source Free Unsupervised Domain Adaptation
We address the computational and theoretical limitations of current distributional alignment methods for source-free unsupervised domain adaptation (SFUDA). In particular, we focus on estimating classification performance and confidence in the absence of target labels. Current theoretical frameworks for these methods often yield computationally intractable quantities and fail to adequately reflect the properties of the alignment algorithms employed. To overcome these challenges, we introduce the Optimal Transport (OT) score, a confidence metric derived from a novel theoretical analysis that exploits the flexibility of decision boundaries induced by Semi-Discrete Optimal Transport alignment. The proposed OT score is intuitively interpretable and theoretically rigorous. It provides principled uncertainty estimates for any given set of target pseudo-labels. Experimental results demonstrate that OT score outperforms existing confidence scores. Moreover, it improves SFUDA performance through training-time reweighting and provides a reliable, label-free proxy for model performance.
♻ ☆ AReUReDi: Annealed Rectified Updates for Refining Discrete Flows with Multi-Objective Guidance
Designing sequences that satisfy multiple, often conflicting, objectives is a central challenge in therapeutic and biomolecular engineering. Existing generative frameworks largely operate in continuous spaces with single-objective guidance, while discrete approaches lack guarantees for multi-objective Pareto optimality. We introduce AReUReDi (Annealed Rectified Updates for Refining Discrete Flows), a discrete optimization algorithm with theoretical guarantees of convergence to the Pareto front. Building on Rectified Discrete Flows (ReDi), AReUReDi combines Tchebycheff scalarization, locally balanced proposals, and annealed Metropolis-Hastings updates to bias sampling toward Pareto-optimal states while preserving distributional invariance. Applied to peptide and SMILES sequence design, AReUReDi simultaneously optimizes up to five therapeutic properties (including affinity, solubility, hemolysis, half-life, and non-fouling) and outperforms both evolutionary and diffusion-based baselines. These results establish AReUReDi as a powerful, sequence-based framework for multi-property biomolecule generation.
♻ ☆ Gradient Descent with Large Step Sizes: Chaos and Fractal Convergence Region
We examine gradient descent in matrix factorization and show that under large step sizes the parameter space develops a fractal structure. We derive the exact critical step size for convergence in scalar-vector factorization and show that near criticality the selected minimizer depends sensitively on the initialization. Moreover, we show that adding regularization amplifies this sensitivity, generating a fractal boundary between initializations that converge and those that diverge. The analysis extends to general matrix factorization with orthogonal initialization. Our findings reveal that near-critical step sizes induce a chaotic regime of gradient descent where the long-term dynamics are unpredictable and there are no simple implicit biases, such as towards balancedness, minimum norm, or flatness.
♻ ☆ Fine-tuning LLMs with variational Bayesian last layer for high-dimensional Bayesian optimization
A plethora of applications entail solving black-box optimization problems with high evaluation costs, including drug discovery, material design, as well as hyperparameter tuning. Toward finding the global optimum of such black-box optimization problems with sample efficiency, Bayesian optimization (BO) is a theoretically elegant framework that relies on a probabilistic surrogate model so as to iteratively select the query point with well-balanced exploration-exploitation tradeoffs. The Gaussian process (GP), as the de-facto choice for surrogate modeling, has achieved compelling performances for vanilla BO with low-dimensional continuous variables. However, GPs fall short in coping with high-dimensional counterparts with {\it irregular} variables (e.g., categorical, ordinal, etc.). To alleviate this, neural network-based surrogates have been explored. Inspired by the powerful capabilities of LLMs, we adopt the LLM as the surrogate to model the mapping from the high-dimensional input variables to the objective function. To adapt to the current problem, we leverage the low-rank adaptation (LoRA) to fine-tune the LLM parameters together with the posterior of a linear regression head via the variational Bayesian last layer (VBLL) framework. The resulting LoRA-VBLL is not only computationally light compared to existing alternatives, but also admits recursive updates. To automate the critical selection of the LoRA rank as well as other hyperparameters, a weighted ensemble (ENS) of LoRA-VBLL surrogates has been devised, which further accommodates continual update of the per-model weight and individual LoRA-VBLL parameters via recursive Bayes. Extensive experimental results demonstrate the compelling performance of the proposed (ENS-)LoRA-VBLL approaches on various high-dimensional benchmarks and the real-world molecular optimization tasks.
♻ ☆ Learning Counterfactual Outcomes Under Rank Preservation
Counterfactual inference aims to estimate the counterfactual outcome at the individual level given knowledge of an observed treatment and the factual outcome, with broad applications in fields such as epidemiology, econometrics, and management science. Previous methods rely on a known structural causal model (SCM) or assume the homogeneity of the exogenous variable and strict monotonicity between the outcome and exogenous variable. In this paper, we propose a principled approach for identifying and estimating the counterfactual outcome. We first introduce a simple and intuitive rank preservation assumption to identify the counterfactual outcome without relying on a known structural causal model. Building on this, we propose a novel ideal loss for theoretically unbiased learning of the counterfactual outcome and further develop a kernel-based estimator for its empirical estimation. Our theoretical analysis shows that the rank preservation assumption is not stronger than the homogeneity and strict monotonicity assumptions, and shows that the proposed ideal loss is convex, and the proposed estimator is unbiased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed method.
Graphics 8
☆ ROGR: Relightable 3D Objects using Generative Relighting NeurIPS 2025
We introduce ROGR, a novel approach that reconstructs a relightable 3D model of an object captured from multiple views, driven by a generative relighting model that simulates the effects of placing the object under novel environment illuminations. Our method samples the appearance of the object under multiple lighting environments, creating a dataset that is used to train a lighting-conditioned Neural Radiance Field (NeRF) that outputs the object's appearance under any input environmental lighting. The lighting-conditioned NeRF uses a novel dual-branch architecture to encode the general lighting effects and specularities separately. The optimized lighting-conditioned NeRF enables efficient feed-forward relighting under arbitrary environment maps without requiring per-illumination optimization or light transport simulation. We evaluate our approach on the established TensoIR and Stanford-ORB datasets, where it improves upon the state-of-the-art on most metrics, and showcase our approach on real-world object captures.
comment: NeurIPS 2025 Spotlight. Project page: https://tangjiapeng.github.io/ROGR
☆ GS-Share: Enabling High-fidelity Map Sharing with Incremental Gaussian Splatting
Constructing and sharing 3D maps is essential for many applications, including autonomous driving and augmented reality. Recently, 3D Gaussian splatting has emerged as a promising approach for accurate 3D reconstruction. However, a practical map-sharing system that features high-fidelity, continuous updates, and network efficiency remains elusive. To address these challenges, we introduce GS-Share, a photorealistic map-sharing system with a compact representation. The core of GS-Share includes anchor-based global map construction, virtual-image-based map enhancement, and incremental map update. We evaluate GS-Share against state-of-the-art methods, demonstrating that our system achieves higher fidelity, particularly for extrapolated views, with improvements of 11%, 22%, and 74% in PSNR, LPIPS, and Depth L1, respectively. Furthermore, GS-Share is significantly more compact, reducing map transmission overhead by 36%.
comment: 11 pages, 11 figures
☆ FSFSplatter: Build Surface and Novel Views with Sparse-Views within 3min
Gaussian Splatting has become a leading reconstruction technique, known for its high-quality novel view synthesis and detailed reconstruction. However, most existing methods require dense, calibrated views. Reconstructing from free sparse images often leads to poor surface due to limited overlap and overfitting. We introduce FSFSplatter, a new approach for fast surface reconstruction from free sparse images. Our method integrates end-to-end dense Gaussian initialization, camera parameter estimation, and geometry-enhanced scene optimization. Specifically, FSFSplatter employs a large Transformer to encode multi-view images and generates a dense and geometrically consistent Gaussian scene initialization via a self-splitting Gaussian head. It eliminates local floaters through contribution-based pruning and mitigates overfitting to limited views by leveraging depth and multi-view feature supervision with differentiable camera parameters during rapid optimization. FSFSplatter outperforms current state-of-the-art methods on widely used DTU and Replica.
☆ Visualizing Spatial Point Clouds: A Task-Oriented Taxonomy
The visualization of 3D point cloud data is essential in fields such as autonomous navigation, environmental monitoring, and disaster response, where tasks like object recognition, structural analysis, and spatiotemporal exploration rely on clear and effective visual representation. Despite advancements in AI-driven processing, visualization remains a critical tool for interpreting complex spatial datasets. However, designing effective point cloud visualizations presents significant challenges due to the sparsity, density variations, and scale of the data. In this work, we analyze the design space of spatial point cloud visualization, highlighting a gap in systematically mapping visualization techniques to analytical objectives. We introduce a taxonomy that categorizes four decades of visualization design choices, linking them to fundamental challenges in modern applications. By structuring visualization strategies based on data types, user objectives, and visualization techniques, our framework provides a foundation for advancing more effective, interpretable, and user-centered visualization techniques.
comment: 12 pages, 3 figures, 1 table
☆ Paris: A Decentralized Trained Open-Weight Diffusion Model
We present Paris, the first publicly released diffusion model pre-trained entirely through decentralized computation. Paris demonstrates that high-quality text-to-image generation can be achieved without centrally coordinated infrastructure. Paris is open for research and commercial use. Paris required implementing our Distributed Diffusion Training framework from scratch. The model consists of 8 expert diffusion models (129M-605M parameters each) trained in complete isolation with no gradient, parameter, or intermediate activation synchronization. Rather than requiring synchronized gradient updates across thousands of GPUs, we partition data into semantically coherent clusters where each expert independently optimizes its subset while collectively approximating the full distribution. A lightweight transformer router dynamically selects appropriate experts at inference, achieving generation quality comparable to centrally coordinated baselines. Eliminating synchronization enables training on heterogeneous hardware without specialized interconnects. Empirical validation confirms that Paris's decentralized training maintains generation quality while removing the dedicated GPU cluster requirement for large-scale diffusion models. Paris achieves this using 14$\times$ less training data and 16$\times$ less compute than the prior decentralized baseline.
☆ Style Brush: Guided Style Transfer for 3D Objects
We introduce Style Brush, a novel style transfer method for textured meshes designed to empower artists with fine-grained control over the stylization process. Our approach extends traditional 3D style transfer methods by introducing a novel loss function that captures style directionality, supports multiple style images or portions thereof, and enables smooth transitions between styles in the synthesized texture. The use of easily generated guiding textures streamlines user interaction, making our approach accessible to a broad audience. Extensive evaluations with various meshes, style images, and contour shapes demonstrate the flexibility of our method and showcase the visual appeal of the generated textures.
♻ ☆ Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
This paper presents a novel topology-aware dimensionality reduction approach aiming at accurately visualizing the cyclic patterns present in high dimensional data. To that end, we build on the Topological Autoencoders (TopoAE) formulation. First, we provide a novel theoretical analysis of its associated loss and show that a zero loss indeed induces identical persistence pairs (in high and low dimensions) for the $0$-dimensional persistent homology (PH$^0$) of the Rips filtration. We also provide a counter example showing that this property no longer holds for a naive extension of TopoAE to PH$^d$ for $d\ge 1$. Based on this observation, we introduce a novel generalization of TopoAE to $1$-dimensional persistent homology (PH$^1$), called TopoAE++, for the accurate generation of cycle-aware planar embeddings, addressing the above failure case. This generalization is based on the notion of cascade distortion, a new penalty term favoring an isometric embedding of the $2$-chains filling persistent $1$-cycles, hence resulting in more faithful geometrical reconstructions of the $1$-cycles in the plane. We further introduce a novel, fast algorithm for the exact computation of PH for Rips filtrations in the plane, yielding improved runtimes over previously documented topology-aware methods. Our method also achieves a better balance between the topological accuracy, as measured by the Wasserstein distance, and the visual preservation of the cycles in low dimensions. Our C++ implementation is available at https://github.com/MClemot/TopologicalAutoencodersPlusPlus.
♻ ☆ ProcTex: Consistent and Interactive Text-to-texture Synthesis for Part-based Procedural Models
Recent advances in generative modeling have driven significant progress in text-guided texture synthesis. However, current methods focus on synthesizing texture for single static 3D object, and struggle to handle entire families of shapes, such as those produced by procedural programs. Applying existing methods naively to each procedural shape is too slow to support exploring different parameter configurations at interactive rates, and also results in inconsistent textures across the procedural shapes. To this end, we introduce ProcTex, the first text-to-texture system designed for part-based procedural models. ProcTex enables consistent and real-time text-guided texture synthesis for families of shapes, which integrates seamlessly with the interactive design flow of procedural modeling. To ensure consistency, our core approach is to synthesize texture for a template shape from the procedural model, followed by a texture transfer stage to apply the texture to other procedural shapes via solving dense correspondence. To ensure interactiveness, we propose a novel correspondence network and show that dense correspondence can be effectively learned by a neural network for procedural models. We also develop several techniques, including a retexturing pipeline to support structural variation from procedural parameters, and part-level UV texture map generation for local appearance editing. Extensive experiments on a diverse set of procedural models validate ProcTex's ability to produce high-quality, visually consistent textures while supporting interactive applications.
Robotics 66
☆ ARMADA: Autonomous Online Failure Detection and Human Shared Control Empower Scalable Real-world Deployment and Adaptation
Imitation learning has shown promise in learning from large-scale real-world datasets. However, pretrained policies usually perform poorly without sufficient in-domain data. Besides, human-collected demonstrations entail substantial labour and tend to encompass mixed-quality data and redundant information. As a workaround, human-in-the-loop systems gather domain-specific data for policy post-training, and exploit closed-loop policy feedback to offer informative guidance, but usually require full-time human surveillance during policy rollout. In this work, we devise ARMADA, a multi-robot deployment and adaptation system with human-in-the-loop shared control, featuring an autonomous online failure detection method named FLOAT. Thanks to FLOAT, ARMADA enables paralleled policy rollout and requests human intervention only when necessary, significantly reducing reliance on human supervision. Hence, ARMADA enables efficient acquisition of in-domain data, and leads to more scalable deployment and faster adaptation to new scenarios. We evaluate the performance of ARMADA on four real-world tasks. FLOAT achieves nearly 95% accuracy on average, surpassing prior state-of-the-art failure detection approaches by over 20%. Besides, ARMADA manifests more than 4$\times$ increase in success rate and greater than 2$\times$ reduction in human intervention rate over multiple rounds of policy rollout and post-training, compared to previous human-in-the-loop learning methods.
☆ Do You Know Where Your Camera Is? View-Invariant Policy Learning with Camera Conditioning
We study view-invariant imitation learning by explicitly conditioning policies on camera extrinsics. Using Plucker embeddings of per-pixel rays, we show that conditioning on extrinsics significantly improves generalization across viewpoints for standard behavior cloning policies, including ACT, Diffusion Policy, and SmolVLA. To evaluate policy robustness under realistic viewpoint shifts, we introduce six manipulation tasks in RoboSuite and ManiSkill that pair "fixed" and "randomized" scene variants, decoupling background cues from camera pose. Our analysis reveals that policies without extrinsics often infer camera pose using visual cues from static backgrounds in fixed scenes; this shortcut collapses when workspace geometry or camera placement shifts. Conditioning on extrinsics restores performance and yields robust RGB-only control without depth. We release the tasks, demonstrations, and code at https://ripl.github.io/know_your_camera/ .
comment: Code and project materials are available at ripl.github.io/know_your_camera
☆ Retargeting Matters: General Motion Retargeting for Humanoid Motion Tracking
Humanoid motion tracking policies are central to building teleoperation pipelines and hierarchical controllers, yet they face a fundamental challenge: the embodiment gap between humans and humanoid robots. Current approaches address this gap by retargeting human motion data to humanoid embodiments and then training reinforcement learning (RL) policies to imitate these reference trajectories. However, artifacts introduced during retargeting, such as foot sliding, self-penetration, and physically infeasible motion are often left in the reference trajectories for the RL policy to correct. While prior work has demonstrated motion tracking abilities, they often require extensive reward engineering and domain randomization to succeed. In this paper, we systematically evaluate how retargeting quality affects policy performance when excessive reward tuning is suppressed. To address issues that we identify with existing retargeting methods, we propose a new retargeting method, General Motion Retargeting (GMR). We evaluate GMR alongside two open-source retargeters, PHC and ProtoMotions, as well as with a high-quality closed-source dataset from Unitree. Using BeyondMimic for policy training, we isolate retargeting effects without reward tuning. Our experiments on a diverse subset of the LAFAN1 dataset reveal that while most motions can be tracked, artifacts in retargeted data significantly reduce policy robustness, particularly for dynamic or long sequences. GMR consistently outperforms existing open-source methods in both tracking performance and faithfulness to the source motion, achieving perceptual fidelity and policy success rates close to the closed-source baseline. Website: https://jaraujo98.github.io/retargeting_matters. Code: https://github.com/YanjieZe/GMR.
☆ Performance-Guided Refinement for Visual Aerial Navigation using Editable Gaussian Splatting in FalconGym 2.0
Visual policy design is crucial for aerial navigation. However, state-of-the-art visual policies often overfit to a single track and their performance degrades when track geometry changes. We develop FalconGym 2.0, a photorealistic simulation framework built on Gaussian Splatting (GSplat) with an Edit API that programmatically generates diverse static and dynamic tracks in milliseconds. Leveraging FalconGym 2.0's editability, we propose a Performance-Guided Refinement (PGR) algorithm, which concentrates visual policy's training on challenging tracks while iteratively improving its performance. Across two case studies (fixed-wing UAVs and quadrotors) with distinct dynamics and environments, we show that a single visual policy trained with PGR in FalconGym 2.0 outperforms state-of-the-art baselines in generalization and robustness: it generalizes to three unseen tracks with 100% success without per-track retraining and maintains higher success rates under gate-pose perturbations. Finally, we demonstrate that the visual policy trained with PGR in FalconGym 2.0 can be zero-shot sim-to-real transferred to a quadrotor hardware, achieving a 98.6% success rate (69 / 70 gates) over 30 trials spanning two three-gate tracks and a moving-gate track.
☆ DisCo-Layout: Disentangling and Coordinating Semantic and Physical Refinement in a Multi-Agent Framework for 3D Indoor Layout Synthesis
3D indoor layout synthesis is crucial for creating virtual environments. Traditional methods struggle with generalization due to fixed datasets. While recent LLM and VLM-based approaches offer improved semantic richness, they often lack robust and flexible refinement, resulting in suboptimal layouts. We develop DisCo-Layout, a novel framework that disentangles and coordinates physical and semantic refinement. For independent refinement, our Semantic Refinement Tool (SRT) corrects abstract object relationships, while the Physical Refinement Tool (PRT) resolves concrete spatial issues via a grid-matching algorithm. For collaborative refinement, a multi-agent framework intelligently orchestrates these tools, featuring a planner for placement rules, a designer for initial layouts, and an evaluator for assessment. Experiments demonstrate DisCo-Layout's state-of-the-art performance, generating realistic, coherent, and generalizable 3D indoor layouts. Our code will be publicly available.
☆ Product Digital Twin Supporting End-of-life Phase of Electric Vehicle Batteries Utilizing Product-Process-Resource Asset Network
In the context of the circular economy, products in their end-of-life phase should be either remanufactured or recycled. Both of these processes are crucial for sustainability and environmental conservation. However, manufacturers often do not support these processes enough by not sharing relevant data. This paper proposes use of a digital twin technology, which is capable to help optimizing the disassembly processes to reduce ecological impact and enhance sustainability. The proposed approach is demonstrated through a disassembly use-case of the product digital twin of an electric vehicle battery. By utilizing product digital twins, challenges associated with the disassembly of electric vehicle batteries can be solved flexibly and efficiently for various battery types. As a backbone for the product digital twin representation, the paper uses the paradigm of product-process-resource asset networks (PAN). Such networks enable to model relevant relationships across products, production resources, manufacturing processes, and specific production operations that have to be done in the manufacturing phase of a product. This paper introduces a Bi-Flow Product-Process-Resource Asset Network (Bi-PAN) representation, which extends the PAN paradigm to cover not only the manufacturing, but also the remanufacturing/recycling phase.
comment: This work has been submitted to the IEEE for possible publication. 6 pages, 4 figures
☆ SCANS: A Soft Gripper with Curvature and Spectroscopy Sensors for In-Hand Material Differentiation
We introduce the soft curvature and spectroscopy (SCANS) system: a versatile, electronics-free, fluidically actuated soft manipulator capable of assessing the spectral properties of objects either in hand or through pre-touch caging. This platform offers a wider spectral sensing capability than previous soft robotic counterparts. We perform a material analysis to explore optimal soft substrates for spectral sensing, and evaluate both pre-touch and in-hand performance. Experiments demonstrate explainable, statistical separation across diverse object classes and sizes (metal, wood, plastic, organic, paper, foam), with large spectral angle differences between items. Through linear discriminant analysis, we show that sensitivity in the near-infrared wavelengths is critical to distinguishing visually similar objects. These capabilities advance the potential of optics as a multi-functional sensory modality for soft robots. The complete parts list, assembly guidelines, and processing code for the SCANS gripper are accessible at: https://parses-lab.github.io/scans/.
comment: Accepted to IEEE Robotics & Automation Letters Special Issue on Interdisciplinarity and Widening Horizons in Soft Robotics
☆ Stand Up, NAO! Increasing the Reliability of Stand-Up Motions Through Error Compensation in Position Control
Stand-up motions are an indispensable part of humanoid robot soccer. A robot incapable of standing up by itself is removed from the game for some time. In this paper, we present our stand-up motions for the NAO robot. Our approach dates back to 2019 and has been evaluated and slightly expanded over the past six years. We claim that the main reason for failed stand-up attempts are large errors in the executed joint positions. By addressing such problems by either executing special motions to free up stuck limbs such as the arms, or by compensating large errors with other joints, we significantly increased the overall success rate of our stand-up routine. The motions presented in this paper are also used by several other teams in the Standard Platform League, which thereby achieve similar success rates, as shown in an analysis of videos from multiple tournaments.
☆ LangGrasp: Leveraging Fine-Tuned LLMs for Language Interactive Robot Grasping with Ambiguous Instructions
The existing language-driven grasping methods struggle to fully handle ambiguous instructions containing implicit intents. To tackle this challenge, we propose LangGrasp, a novel language-interactive robotic grasping framework. The framework integrates fine-tuned large language models (LLMs) to leverage their robust commonsense understanding and environmental perception capabilities, thereby deducing implicit intents from linguistic instructions and clarifying task requirements along with target manipulation objects. Furthermore, our designed point cloud localization module, guided by 2D part segmentation, enables partial point cloud localization in scenes, thereby extending grasping operations from coarse-grained object-level to fine-grained part-level manipulation. Experimental results show that the LangGrasp framework accurately resolves implicit intents in ambiguous instructions, identifying critical operations and target information that are unstated yet essential for task completion. Additionally, it dynamically selects optimal grasping poses by integrating environmental information. This enables high-precision grasping from object-level to part-level manipulation, significantly enhancing the adaptability and task execution efficiency of robots in unstructured environments. More information and code are available here: https://github.com/wu467/LangGrasp.
comment: 8 pages, 6 figures
☆ Cooperative Guidance for Aerial Defense in Multiagent Systems
This paper addresses a critical aerial defense challenge in contested airspace, involving three autonomous aerial vehicles -- a hostile drone (the pursuer), a high-value drone (the evader), and a protective drone (the defender). We present a cooperative guidance framework for the evader-defender team that guarantees interception of the pursuer before it can capture the evader, even under highly dynamic and uncertain engagement conditions. Unlike traditional heuristic, optimal control, or differential game-based methods, we approach the problem within a time-constrained guidance framework, leveraging true proportional navigation based approach that ensures robust and guaranteed solutions to the aerial defense problem. The proposed strategy is computationally lightweight, scalable to a large number of agent configurations, and does not require knowledge of the pursuer's strategy or control laws. From arbitrary initial geometries, our method guarantees that key engagement errors are driven to zero within a fixed time, leading to a successful mission. Extensive simulations across diverse and adversarial scenarios confirm the effectiveness of the proposed strategy and its relevance for real-time autonomous defense in contested airspace environments.
☆ EC3R-SLAM: Efficient and Consistent Monocular Dense SLAM with Feed-Forward 3D Reconstruction
The application of monocular dense Simultaneous Localization and Mapping (SLAM) is often hindered by high latency, large GPU memory consumption, and reliance on camera calibration. To relax this constraint, we propose EC3R-SLAM, a novel calibration-free monocular dense SLAM framework that jointly achieves high localization and mapping accuracy, low latency, and low GPU memory consumption. This enables the framework to achieve efficiency through the coupling of a tracking module, which maintains a sparse map of feature points, and a mapping module based on a feed-forward 3D reconstruction model that simultaneously estimates camera intrinsics. In addition, both local and global loop closures are incorporated to ensure mid-term and long-term data association, enforcing multi-view consistency and thereby enhancing the overall accuracy and robustness of the system. Experiments across multiple benchmarks show that EC3R-SLAM achieves competitive performance compared to state-of-the-art methods, while being faster and more memory-efficient. Moreover, it runs effectively even on resource-constrained platforms such as laptops and Jetson Orin NX, highlighting its potential for real-world robotics applications.
☆ Reducing Discomfort in Driving Simulators: Motion Cueing for Motion Sickness Mitigation
Driving simulators are increasingly used in research and development. However, simulators often cause motion sickness due to downscaled motion and unscaled veridical visuals. In this paper, a motion cueing algorithm is proposed that reduces motion sickness as predicted by the subjective vertical conflict (SVC) model using model predictive control (MPC). Both sensory conflict and specific force errors are penalised in the cost function, allowing the algorithm to jointly optimise fidelity and comfort. Human-in-the-loop experiments were conducted to compare four simulator motion settings: two variations of our MPC-based algorithm, one focused on pure specific force tracking and the second compromising specific force tracking and motion sickness minimisation, as well as reference adaptive washout and no motion cases. The experiments were performed on a hexapod driving simulator with participants exposed to passive driving. Experimental motion sickness results closely matched the sickness model predictions. As predicted by the model, the no motion condition yielded the lowest sickness levels. However, it was rated lowest in terms of fidelity. The compromise solution reduced sickness by over 50% (average MISC level 3 to 1.5) compared to adaptive washout and the algorithm focusing on specific force tracking, without any significant reduction in fidelity rating. The proposed approach for developing MCA that takes into account both the simulator dynamics and time evolution of motion sickness offers a significant advancement in achieving an optimal control of motion sickness and specific force recreation in driving simulators, supporting broader simulator use.
SPARC: Spine with Prismatic and Revolute Compliance for Quadruped Robot
We present SPARC, a compact, open-source 3-DoF sagittal-plane spine module that combines revolute (pitch) and prismatic (axial) motion with programmable task-space impedance for quadruped robots. The system integrates three torque-controlled actuators, a custom 1 kHz control board, and a protected power unit in a 1.26 kg package, enabling closed-loop stiffness and damping shaping along x, z, and theta. We develop an RNEA-based computed-acceleration controller with smooth Stribeck friction compensation to render spring-damper behavior without explicit inertia shaping. Bench experiments validate the approach. Quasi-static push-pull tests show linear force-displacement characteristics with commanded horizontal stiffness spanning 300-700 N/m and <= 1.5% relative error (R^2 >= 0.992, narrow 95% CIs). Dynamic displace-and-release trials confirm mass-spring-damper responses over multiple damping settings, with small, interpretable phase deviations due to configuration-dependent inertia and low-speed friction effects. A task-space PD controller produces roughly linear stiffness but with greater variability and coupling sensitivity. SPARC provides a portable platform for systematic studies of spine compliance in legged locomotion and will be released with complete hardware and firmware resources.
☆ TACOS: Task Agnostic COordinator of a multi-drone System
When a single pilot is responsible for managing a multi-drone system, the task demands varying levels of autonomy, from direct control of individual UAVs, to group-level coordination, to fully autonomous swarm behaviors for accomplishing high-level tasks. Enabling such flexible interaction requires a framework that supports multiple modes of shared autonomy. As language models continue to improve in reasoning and planning, they provide a natural foundation for such systems, reducing pilot workload by enabling high-level task delegation through intuitive, language-based interfaces. In this paper we present TACOS (Task-Agnostic COordinator of a multi-drone System), a unified framework that enables high-level natural language control of multi-UAV systems through Large Language Models (LLMs). TACOS integrates three key capabilities into a single architecture: a one-to-many natural language interface for intuitive user interaction, an intelligent coordinator for translating user intent into structured task plans, and an autonomous agent that executes plans interacting with the real-world. TACOS allows a LLM to interact with a library of executable APIs, bridging semantic reasoning with real-time multi-robot coordination. We demonstrate the system in real-world multi-drone system and conduct an ablation study to assess the contribution of each module.
comment: 6 pages, 6 figures, accepted as poster at 2025 IEEE International Symposium on Multi-Robot & Multi-Agent Systems
☆ GreenhouseSplat: A Dataset of Photorealistic Greenhouse Simulations for Mobile Robotics
Simulating greenhouse environments is critical for developing and evaluating robotic systems for agriculture, yet existing approaches rely on simplistic or synthetic assets that limit simulation-to-real transfer. Recent advances in radiance field methods, such as Gaussian splatting, enable photorealistic reconstruction but have so far been restricted to individual plants or controlled laboratory conditions. In this work, we introduce GreenhouseSplat, a framework and dataset for generating photorealistic greenhouse assets directly from inexpensive RGB images. The resulting assets are integrated into a ROS-based simulation with support for camera and LiDAR rendering, enabling tasks such as localization with fiducial markers. We provide a dataset of 82 cucumber plants across multiple row configurations and demonstrate its utility for robotics evaluation. GreenhouseSplat represents the first step toward greenhouse-scale radiance-field simulation and offers a foundation for future research in agricultural robotics.
☆ Like Playing a Video Game: Spatial-Temporal Optimization of Foot Trajectories for Controlled Football Kicking in Bipedal Robots
Humanoid robot soccer presents several challenges, particularly in maintaining system stability during aggressive kicking motions while achieving precise ball trajectory control. Current solutions, whether traditional position-based control methods or reinforcement learning (RL) approaches, exhibit significant limitations. Model predictive control (MPC) is a prevalent approach for ordinary quadruped and biped robots. While MPC has demonstrated advantages in legged robots, existing studies often oversimplify the leg swing progress, relying merely on simple trajectory interpolation methods. This severely constrains the foot's environmental interaction capability, hindering tasks such as ball kicking. This study innovatively adapts the spatial-temporal trajectory planning method, which has been successful in drone applications, to bipedal robotic systems. The proposed approach autonomously generates foot trajectories that satisfy constraints on target kicking position, velocity, and acceleration while simultaneously optimizing swing phase duration. Experimental results demonstrate that the optimized trajectories closely mimic human kicking behavior, featuring a backswing motion. Simulation and hardware experiments confirm the algorithm's efficiency, with trajectory planning times under 1 ms, and its reliability, achieving nearly 100 % task completion accuracy when the soccer goal is within the range of -90{\deg} to 90{\deg}.
comment: 8 pages, 8 figures, conference paper
What Matters in RL-Based Methods for Object-Goal Navigation? An Empirical Study and A Unified Framework
Object-Goal Navigation (ObjectNav) is a critical component toward deploying mobile robots in everyday, uncontrolled environments such as homes, schools, and workplaces. In this context, a robot must locate target objects in previously unseen environments using only its onboard perception. Success requires the integration of semantic understanding, spatial reasoning, and long-horizon planning, which is a combination that remains extremely challenging. While reinforcement learning (RL) has become the dominant paradigm, progress has spanned a wide range of design choices, yet the field still lacks a unifying analysis to determine which components truly drive performance. In this work, we conduct a large-scale empirical study of modular RL-based ObjectNav systems, decomposing them into three key components: perception, policy, and test-time enhancement. Through extensive controlled experiments, we isolate the contribution of each and uncover clear trends: perception quality and test-time strategies are decisive drivers of performance, whereas policy improvements with current methods yield only marginal gains. Building on these insights, we propose practical design guidelines and demonstrate an enhanced modular system that surpasses State-of-the-Art (SotA) methods by 6.6% on SPL and by a 2.7% success rate. We also introduce a human baseline under identical conditions, where experts achieve an average 98% success, underscoring the gap between RL agents and human-level navigation. Our study not only sets the SotA performance but also provides principled guidance for future ObjectNav development and evaluation.
Nav-EE: Navigation-Guided Early Exiting for Efficient Vision-Language Models in Autonomous Driving
Vision-Language Models (VLMs) are increasingly applied in autonomous driving for unified perception and reasoning, but high inference latency hinders real-time deployment. Early-exit reduces latency by terminating inference at intermediate layers, yet its task-dependent nature limits generalization across diverse scenarios. We observe that this limitation aligns with autonomous driving: navigation systems can anticipate upcoming contexts (e.g., intersections, traffic lights), indicating which tasks will be required. We propose Nav-EE, a navigation-guided early-exit framework that precomputes task-specific exit layers offline and dynamically applies them online based on navigation priors. Experiments on CODA, Waymo, and BOSCH show that Nav-EE achieves accuracy comparable to full inference while reducing latency by up to 63.9%. Real-vehicle integration with Autoware Universe further demonstrates reduced inference latency (600ms to 300ms), supporting faster decision-making in complex scenarios. These results suggest that coupling navigation foresight with early-exit offers a viable path toward efficient deployment of large models in autonomous systems. Code and data are available at our anonymous repository: https://anonymous.4open.science/r/Nav-EE-BBC4
An Anytime, Scalable and Complete Algorithm for Embedding a Manufacturing Procedure in a Smart Factory
Modern automated factories increasingly run manufacturing procedures using a matrix of programmable machines, such as 3D printers, interconnected by a programmable transport system, such as a fleet of tabletop robots. To embed a manufacturing procedure into a smart factory, an operator must: (a) assign each of its processes to a machine and (b) specify how agents should transport parts between machines. The problem of embedding a manufacturing process into a smart factory is termed the Smart Factory Embedding (SFE) problem. State-of-the-art SFE solvers can only scale to factories containing a couple dozen machines. Modern smart factories, however, may contain hundreds of machines. We fill this hole by introducing the first highly scalable solution to the SFE, TS-ACES, the Traffic System based Anytime Cyclic Embedding Solver. We show that TS-ACES is complete and can scale to SFE instances based on real industrial scenarios with more than a hundred machines.
☆ Dual-Mode Magnetic Continuum Robot for Targeted Drug Delivery ICRA 2026
Magnetic continuum robots (MCRs) enable minimally invasive navigation through tortuous anatomical channels, yet axially magnetized designs have largely been limited to bending-only motion. To expand deformation capabilities, this paper presents a simple assembly that embeds permanent magnets radially within the catheter wall, allowing a single externally steered permanent magnet to independently induce either bending or torsion. A physics-based formulation together with finite-element analysis establishes the actuation principles, and benchtop experiments validate decoupled mode control under practical fields. Building on this, a dual-layer blockage mechanism consisting of outer grooves and inner plates leverages torsional shear to achieve on-demand drug release. Finally, an in-phantom intervention experiment demonstrates end-to-end operation: lumen following by bending for target approach, followed by twist-activated release at the site. The resulting compact, cable-free platform combines versatile deformation with precise payload delivery, indicating strong potential for next-generation, site-specific therapies.
comment: 7 pages, 3 figures, under review of ICRA 2026
☆ Contrastive Representation Regularization for Vision-Language-Action Models
Vision-Language-Action (VLA) models have shown its capabilities in robot manipulation by leveraging rich representations from pre-trained Vision-Language Models (VLMs). However, their representations arguably remain suboptimal, lacking sensitivity to robotic signals such as control actions and proprioceptive states. To address the issue, we introduce Robot State-aware Contrastive Loss (RS-CL), a simple and effective representation regularization for VLA models, designed to bridge the gap between VLM representations and robotic signals. In particular, RS-CL aligns the representations more closely with the robot's proprioceptive states, by using relative distances between the states as soft supervision. Complementing the original action prediction objective, RS-CL effectively enhances control-relevant representation learning, while being lightweight and fully compatible with standard VLA training pipeline. Our empirical results demonstrate that RS-CL substantially improves the manipulation performance of state-of-the-art VLA models; it pushes the prior art from 30.8% to 41.5% on pick-and-place tasks in RoboCasa-Kitchen, through more accurate positioning during grasping and placing, and boosts success rates from 45.0% to 58.3% on challenging real-robot manipulation tasks.
comment: 20 pages, 12 figures
☆ PolySim: Bridging the Sim-to-Real Gap for Humanoid Control via Multi-Simulator Dynamics Randomization
Humanoid whole-body control (WBC) policies trained in simulation often suffer from the sim-to-real gap, which fundamentally arises from simulator inductive bias, the inherent assumptions and limitations of any single simulator. These biases lead to nontrivial discrepancies both across simulators and between simulation and the real world. To mitigate the effect of simulator inductive bias, the key idea is to train policies jointly across multiple simulators, encouraging the learned controller to capture dynamics that generalize beyond any single simulator's assumptions. We thus introduce PolySim, a WBC training platform that integrates multiple heterogeneous simulators. PolySim can launch parallel environments from different engines simultaneously within a single training run, thereby realizing dynamics-level domain randomization. Theoretically, we show that PolySim yields a tighter upper bound on simulator inductive bias than single-simulator training. In experiments, PolySim substantially reduces motion-tracking error in sim-to-sim evaluations; for example, on MuJoCo, it improves execution success by 52.8 over an IsaacSim baseline. PolySim further enables zero-shot deployment on a real Unitree G1 without additional fine-tuning, showing effective transfer from simulation to the real world. We will release the PolySim code upon acceptance of this work.
comment: 8 pages, 5 figures
Geometric Backstepping Control of Omnidirectional Tiltrotors Incorporating Servo-Rotor Dynamics for Robustness against Sudden Disturbances
This work presents a geometric backstepping controller for a variable-tilt omnidirectional multirotor that explicitly accounts for both servo and rotor dynamics. Considering actuator dynamics is essential for more effective and reliable operation, particularly during aggressive flight maneuvers or recovery from sudden disturbances. While prior studies have investigated actuator-aware control for conventional and fixed-tilt multirotors, these approaches rely on linear relationships between actuator input and wrench, which cannot capture the nonlinearities induced by variable tilt angles. In this work, we exploit the cascade structure between the rigid-body dynamics of the multirotor and its nonlinear actuator dynamics to design the proposed backstepping controller and establish exponential stability of the overall system. Furthermore, we reveal parametric uncertainty in the actuator model through experiments, and we demonstrate that the proposed controller remains robust against such uncertainty. The controller was compared against a baseline that does not account for actuator dynamics across three experimental scenarios: fast translational tracking, rapid rotational tracking, and recovery from sudden disturbance. The proposed method consistently achieved better tracking performance, and notably, while the baseline diverged and crashed during the fastest translational trajectory tracking and the recovery experiment, the proposed controller maintained stability and successfully completed the tasks, thereby demonstrating its effectiveness.
Non-Rigid Structure-from-Motion via Differential Geometry with Recoverable Conformal Scale
Non-rigid structure-from-motion (NRSfM), a promising technique for addressing the mapping challenges in monocular visual deformable simultaneous localization and mapping (SLAM), has attracted growing attention. We introduce a novel method, called Con-NRSfM, for NRSfM under conformal deformations, encompassing isometric deformations as a subset. Our approach performs point-wise reconstruction using 2D selected image warps optimized through a graph-based framework. Unlike existing methods that rely on strict assumptions, such as locally planar surfaces or locally linear deformations, and fail to recover the conformal scale, our method eliminates these constraints and accurately computes the local conformal scale. Additionally, our framework decouples constraints on depth and conformal scale, which are inseparable in other approaches, enabling more precise depth estimation. To address the sensitivity of the formulated problem, we employ a parallel separable iterative optimization strategy. Furthermore, a self-supervised learning framework, utilizing an encoder-decoder network, is incorporated to generate dense 3D point clouds with texture. Simulation and experimental results using both synthetic and real datasets demonstrate that our method surpasses existing approaches in terms of reconstruction accuracy and robustness. The code for the proposed method will be made publicly available on the project website: https://sites.google.com/view/con-nrsfm.
Symskill: Symbol and Skill Co-Invention for Data-Efficient and Real-Time Long-Horizon Manipulation
Multi-step manipulation in dynamic environments remains challenging. Two major families of methods fail in distinct ways: (i) imitation learning (IL) is reactive but lacks compositional generalization, as monolithic policies do not decide which skill to reuse when scenes change; (ii) classical task-and-motion planning (TAMP) offers compositionality but has prohibitive planning latency, preventing real-time failure recovery. We introduce SymSkill, a unified learning framework that combines the benefits of IL and TAMP, allowing compositional generalization and failure recovery in real-time. Offline, SymSkill jointly learns predicates, operators, and skills directly from unlabeled and unsegmented demonstrations. At execution time, upon specifying a conjunction of one or more learned predicates, SymSkill uses a symbolic planner to compose and reorder learned skills to achieve the symbolic goals, while performing recovery at both the motion and symbolic levels in real time. Coupled with a compliant controller, SymSkill enables safe and uninterrupted execution under human and environmental disturbances. In RoboCasa simulation, SymSkill can execute 12 single-step tasks with 85% success rate. Without additional data, it composes these skills into multi-step plans requiring up to 6 skill recompositions, recovering robustly from execution failures. On a real Franka robot, we demonstrate SymSkill, learning from 5 minutes of unsegmented and unlabeled play data, is capable of performing multiple tasks simply by goal specifications. The source code and additional analysis can be found on https://sites.google.com/view/symskill.
comment: CoRL 2025 Learning Effective Abstractions for Planning (LEAP) Workshop Best Paper Award (https://sites.google.com/view/symskill)
☆ Statistical Uncertainty Learning for Robust Visual-Inertial State Estimation
A fundamental challenge in robust visual-inertial odometry (VIO) is to dynamically assess the reliability of sensor measurements. This assessment is crucial for properly weighting the contribution of each measurement to the state estimate. Conventional methods often simplify this by assuming a static, uniform uncertainty for all measurements. This heuristic, however, may be limited in its ability to capture the dynamic error characteristics inherent in real-world data. To improve this limitation, we present a statistical framework that learns measurement reliability assessment online, directly from sensor data and optimization results. Our approach leverages multi-view geometric consistency as a form of self-supervision. This enables the system to infer landmark uncertainty and adaptively weight visual measurements during optimization. We evaluated our method on the public EuRoC dataset, demonstrating improvements in tracking accuracy with average reductions of approximately 24\% in translation error and 42\% in rotation error compared to baseline methods with fixed uncertainty parameters. The resulting framework operates in real time while showing enhanced accuracy and robustness. To facilitate reproducibility and encourage further research, the source code will be made publicly available.
FailSafe: Reasoning and Recovery from Failures in Vision-Language-Action Models
Recent advances in robotic manipulation have integrated low-level robotic control into Vision-Language Models (VLMs), extending them into Vision-Language-Action (VLA) models. Although state-of-the-art VLAs achieve strong performance in downstream robotic applications, supported by large-scale crowd-sourced robot training data, they still inevitably encounter failures during execution. Enabling robots to reason about and recover from unpredictable and abrupt failures remains a critical challenge. Existing robotic manipulation datasets, collected in either simulation or the real world, primarily provide only ground-truth trajectories, leaving robots unable to recover once failures occur. Moreover, the few datasets that address failure detection typically offer only textual explanations, which are difficult to utilize directly in VLA models. To address this gap, we introduce FailSafe, a novel failure generation and recovery system that automatically produces diverse failure cases paired with executable recovery actions. FailSafe can be seamlessly applied to any manipulation task in any simulator, enabling scalable creation of failure-action data. To demonstrate its effectiveness, we fine-tune LLaVa-OneVision-7B (LLaVa-OV-7B) to build FailSafe-VLM. Experimental results show that FailSafe-VLM successfully helps robotic arm detect and recover from potential failures, improving the performance of three state-of-the-art VLA models pi0-FAST, OpenVLA, OpenVLA-OFT) by up to 22.6% on average across several tasks in Maniskill. Furthermore, FailSafe-VLM could generalize across different spatial configurations, camera viewpoints, and robotic embodiments. We plan to release the FailSafe code to the community.
comment: Project Page: https://jimntu.github.io/FailSafe/
☆ VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.
☆ ActiveUMI: Robotic Manipulation with Active Perception from Robot-Free Human Demonstrations
We present ActiveUMI, a framework for a data collection system that transfers in-the-wild human demonstrations to robots capable of complex bimanual manipulation. ActiveUMI couples a portable VR teleoperation kit with sensorized controllers that mirror the robot's end-effectors, bridging human-robot kinematics via precise pose alignment. To ensure mobility and data quality, we introduce several key techniques, including immersive 3D model rendering, a self-contained wearable computer, and efficient calibration methods. ActiveUMI's defining feature is its capture of active, egocentric perception. By recording an operator's deliberate head movements via a head-mounted display, our system learns the crucial link between visual attention and manipulation. We evaluate ActiveUMI on six challenging bimanual tasks. Policies trained exclusively on ActiveUMI data achieve an average success rate of 70\% on in-distribution tasks and demonstrate strong generalization, retaining a 56\% success rate when tested on novel objects and in new environments. Our results demonstrate that portable data collection systems, when coupled with learned active perception, provide an effective and scalable pathway toward creating generalizable and highly capable real-world robot policies.
comment: technique report. The website is available at https://activeumi.github.io
☆ MiniBEE: A New Form Factor for Compact Bimanual Dexterity
Bimanual robot manipulators can achieve impressive dexterity, but typically rely on two full six- or seven- degree-of-freedom arms so that paired grippers can coordinate effectively. This traditional framework increases system complexity while only exploiting a fraction of the overall workspace for dexterous interaction. We introduce the MiniBEE (Miniature Bimanual End-effector), a compact system in which two reduced-mobility arms (3+ DOF each) are coupled into a kinematic chain that preserves full relative positioning between grippers. To guide our design, we formulate a kinematic dexterity metric that enlarges the dexterous workspace while keeping the mechanism lightweight and wearable. The resulting system supports two complementary modes: (i) wearable kinesthetic data collection with self-tracked gripper poses, and (ii) deployment on a standard robot arm, extending dexterity across its entire workspace. We present kinematic analysis and design optimization methods for maximizing dexterous range, and demonstrate an end-to-end pipeline in which wearable demonstrations train imitation learning policies that perform robust, real-world bimanual manipulation.
☆ Real-time Multi-Plane Segmentation Based on GPU Accelerated High-Resolution 3D Voxel Mapping for Legged Robot Locomotion
This paper proposes a real-time multi-plane segmentation method based on GPU-accelerated high-resolution 3D voxel mapping for legged robot locomotion. Existing online planar mapping approaches struggle to balance accuracy and computational efficiency: direct depth image segmentation from specific sensors suffers from poor temporal integration, height map-based methods cannot represent complex 3D structures like overhangs, and voxel-based plane segmentation remains unexplored for real-time applications. To address these limitations, we develop a novel framework that integrates vertex-based connected component labeling with random sample consensus based plane detection and convex hull, leveraging GPU parallel computing to rapidly extract planar regions from point clouds accumulated in high-resolution 3D voxel maps. Experimental results demonstrate that the proposed method achieves fast and accurate 3D multi-plane segmentation at over 30 Hz update rate even at a resolution of 0.01 m, enabling the detected planes to be utilized in real time for locomotion tasks. Furthermore, we validate the effectiveness of our approach through experiments in both simulated environments and physical legged robot platforms, confirming robust locomotion performance when considering 3D planar structures.
comment: 8 pages, 12 figures, This work has been submitted to the IEEE for possible publication. Copyright may be transfered without notice, after which this version may no longer be accessible
☆ Predictive Preference Learning from Human Interventions NeurIPS 2025
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl
comment: NeurIPS 2025 Spotlight. Project page: https://metadriverse.github.io/ppl
☆ Information Seeking for Robust Decision Making under Partial Observability
Explicit information seeking is essential to human problem-solving in practical environments characterized by incomplete information and noisy dynamics. When the true environmental state is not directly observable, humans seek information to update their internal dynamics and inform future decision-making. Although existing Large Language Model (LLM) planning agents have addressed observational uncertainty, they often overlook discrepancies between their internal dynamics and the actual environment. We introduce Information Seeking Decision Planner (InfoSeeker), an LLM decision-making framework that integrates task-oriented planning with information seeking to align internal dynamics and make optimal decisions under uncertainty in both agent observations and environmental dynamics. InfoSeeker prompts an LLM to actively gather information by planning actions to validate its understanding, detect environmental changes, or test hypotheses before generating or revising task-oriented plans. To evaluate InfoSeeker, we introduce a novel benchmark suite featuring partially observable environments with incomplete observations and uncertain dynamics. Experiments demonstrate that InfoSeeker achieves a 74% absolute performance gain over prior methods without sacrificing sample efficiency. Moreover, InfoSeeker generalizes across LLMs and outperforms baselines on established benchmarks such as robotic manipulation and web navigation. These findings underscore the importance of tightly integrating planning and information seeking for robust behavior in partially observable environments. The project page is available at https://infoseekerllm.github.io
comment: The project page is available at https://infoseekerllm.github.io
☆ RSV-SLAM: Toward Real-Time Semantic Visual SLAM in Indoor Dynamic Environments
Simultaneous Localization and Mapping (SLAM) plays an important role in many robotics fields, including social robots. Many of the available visual SLAM methods are based on the assumption of a static world and struggle in dynamic environments. In the current study, we introduce a real-time semantic RGBD SLAM approach designed specifically for dynamic environments. Our proposed system can effectively detect moving objects and maintain a static map to ensure robust camera tracking. The key innovation of our approach is the incorporation of deep learning-based semantic information into SLAM systems to mitigate the impact of dynamic objects. Additionally, we enhance the semantic segmentation process by integrating an Extended Kalman filter to identify dynamic objects that may be temporarily idle. We have also implemented a generative network to fill in the missing regions of input images belonging to dynamic objects. This highly modular framework has been implemented on the ROS platform and can achieve around 22 fps on a GTX1080. Benchmarking the developed pipeline on dynamic sequences from the TUM dataset suggests that the proposed approach delivers competitive localization error in comparison with the state-of-the-art methods, all while operating in near real-time. The source code is publicly available.
comment: Proceedings of SAI Intelligent Systems Conference 2023
☆ UMI-on-Air: Embodiment-Aware Guidance for Embodiment-Agnostic Visuomotor Policies
We introduce UMI-on-Air, a framework for embodiment-aware deployment of embodiment-agnostic manipulation policies. Our approach leverages diverse, unconstrained human demonstrations collected with a handheld gripper (UMI) to train generalizable visuomotor policies. A central challenge in transferring these policies to constrained robotic embodiments-such as aerial manipulators-is the mismatch in control and robot dynamics, which often leads to out-of-distribution behaviors and poor execution. To address this, we propose Embodiment-Aware Diffusion Policy (EADP), which couples a high-level UMI policy with a low-level embodiment-specific controller at inference time. By integrating gradient feedback from the controller's tracking cost into the diffusion sampling process, our method steers trajectory generation towards dynamically feasible modes tailored to the deployment embodiment. This enables plug-and-play, embodiment-aware trajectory adaptation at test time. We validate our approach on multiple long-horizon and high-precision aerial manipulation tasks, showing improved success rates, efficiency, and robustness under disturbances compared to unguided diffusion baselines. Finally, we demonstrate deployment in previously unseen environments, using UMI demonstrations collected in the wild, highlighting a practical pathway for scaling generalizable manipulation skills across diverse-and even highly constrained-embodiments. All code, data, and checkpoints will be publicly released after acceptance. Result videos can be found at umi-on-air.github.io.
comment: Result videos can be found at umi-on-air.github.io
☆ SubSense: VR-Haptic and Motor Feedback for Immersive Control in Subsea Telerobotics
This paper investigates the integration of haptic feedback and virtual reality (VR) control interfaces to enhance teleoperation and telemanipulation of underwater ROVs (remotely operated vehicles). Traditional ROV teleoperation relies on low-resolution 2D camera feeds and lacks immersive and sensory feedback, which diminishes situational awareness in complex subsea environments. We propose SubSense -- a novel VR-Haptic framework incorporating a non-invasive feedback interface to an otherwise 1-DOF (degree of freedom) manipulator, which is paired with the teleoperator's glove to provide haptic feedback and grasp status. Additionally, our framework integrates end-to-end software for managing control inputs and displaying immersive camera views through a VR platform. We validate the system through comprehensive experiments and user studies, demonstrating its effectiveness over conventional teleoperation interfaces, particularly for delicate manipulation tasks. Our results highlight the potential of multisensory feedback in immersive virtual environments to significantly improve remote situational awareness and mission performance, offering more intuitive and accessible ROV operations in the field.
comment: Presented at the OCEANS 2025 Great Lakes Conference
☆ Efficient Optimal Path Planning in Dynamic Environments Using Koopman MPC
This paper presents a data-driven model predictive control framework for mobile robots navigating in dynamic environments, leveraging Koopman operator theory. Unlike the conventional Koopman-based approaches that focus on the linearization of system dynamics only, our work focuses on finding a global linear representation for the optimal path planning problem that includes both the nonlinear robot dynamics and collision-avoidance constraints. We deploy extended dynamic mode decomposition to identify linear and bilinear Koopman realizations from input-state data. Our open-loop analysis demonstrates that only the bilinear Koopman model can accurately capture nonlinear state-input couplings and quadratic terms essential for collision avoidance, whereas linear realizations fail to do so. We formulate a quadratic program for the robot path planning in the presence of moving obstacles in the lifted space and determine the optimal robot action in an MPC framework. Our approach is capable of finding the safe optimal action 320 times faster than a nonlinear MPC counterpart that solves the path planning problem in the original state space. Our work highlights the potential of bilinear Koopman realizations for linearization of highly nonlinear optimal control problems subject to nonlinear state and input constraints to achieve computational efficiency similar to linear problems.
comment: This work has been submitted to the ACC2026 conference
☆ A Recipe for Efficient Sim-to-Real Transfer in Manipulation with Online Imitation-Pretrained World Models
We are interested in solving the problem of imitation learning with a limited amount of real-world expert data. Existing offline imitation methods often struggle with poor data coverage and severe performance degradation. We propose a solution that leverages robot simulators to achieve online imitation learning. Our sim-to-real framework is based on world models and combines online imitation pretraining with offline finetuning. By leveraging online interactions, our approach alleviates the data coverage limitations of offline methods, leading to improved robustness and reduced performance degradation during finetuning. It also enhances generalization during domain transfer. Our empirical results demonstrate its effectiveness, improving success rates by at least 31.7% in sim-to-sim transfer and 23.3% in sim-to-real transfer over existing offline imitation learning baselines.
☆ U-LAG: Uncertainty-Aware, Lag-Adaptive Goal Retargeting for Robotic Manipulation IROS 2025
Robots manipulating in changing environments must act on percepts that are late, noisy, or stale. We present U-LAG, a mid-execution goal-retargeting layer that leaves the low-level controller unchanged while re-aiming task goals (pre-contact, contact, post) as new observations arrive. Unlike motion retargeting or generic visual servoing, U-LAG treats in-flight goal re-aiming as a first-class, pluggable module between perception and control. Our main technical contribution is UAR-PF, an uncertainty-aware retargeter that maintains a distribution over object pose under sensing lag and selects goals that maximize expected progress. We instantiate a reproducible Shift x Lag stress test in PyBullet/PandaGym for pick, push, stacking, and peg insertion, where the object undergoes abrupt in-plane shifts while synthetic perception lag is injected during approach. Across 0-10 cm shifts and 0-400 ms lags, UAR-PF and ICP degrade gracefully relative to a no-retarget baseline, achieving higher success with modest end-effector travel and fewer aborts; simple operational safeguards further improve stability. Contributions: (1) UAR-PF for lag-adaptive, uncertainty-aware goal retargeting; (2) a pluggable retargeting interface; and (3) a reproducible Shift x Lag benchmark with evaluation on pick, push, stacking, and peg insertion.
comment: 8 pages, 5 figures. Accepted to the IROS 2025 Workshop on Perception and Planning for Mobile Manipulation in Changing Environments
☆ SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/
☆ ERUPT: An Open Toolkit for Interfacing with Robot Motion Planners in Extended Reality
We propose the Extended Reality Universal Planning Toolkit (ERUPT), an extended reality (XR) system for interactive motion planning. Our system allows users to create and dynamically reconfigure environments while they plan robot paths. In immersive three-dimensional XR environments, users gain a greater spatial understanding. XR also unlocks a broader range of natural interaction capabilities, allowing users to grab and adjust objects in the environment similarly to the real world, rather than using a mouse and keyboard with the scene projected onto a two-dimensional computer screen. Our system integrates with MoveIt, a manipulation planning framework, allowing users to send motion planning requests and visualize the resulting robot paths in virtual or augmented reality. We provide a broad range of interaction modalities, allowing users to modify objects in the environment and interact with a virtual robot. Our system allows operators to visualize robot motions, ensuring desired behavior as it moves throughout the environment, without risk of collisions within a virtual space, and to then deploy planned paths on physical robots in the real world.
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning mechanisms to incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free policy learning framework that directly maps visual representations to latent actions using flow matching. VITA treats latent visual representations as the source of the flow, thus eliminating the need of conditioning. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps. We evaluate VITA on 8 simulation and 2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches state-of-the-art generative policies, while achieving 1.5-2.3x faster inference compared to conventional methods with conditioning. Project page: https://ucd-dare.github.io/VITA/
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ FalconWing: An Ultra-Light Indoor Fixed-Wing UAV Platform for Vision-Based Autonomy
We introduce FalconWing, an ultra-light (150 g) indoor fixed-wing UAV platform for vision-based autonomy. Controlled indoor environment enables year-round repeatable UAV experiment but imposes strict weight and maneuverability limits on the UAV, motivating our ultra-light FalconWing design. FalconWing couples a lightweight hardware stack (137g airframe with a 9g camera) and offboard computation with a software stack featuring a photorealistic 3D Gaussian Splat (GSplat) simulator for developing and evaluating vision-based controllers. We validate FalconWing on two challenging vision-based aerial case studies. In the leader-follower case study, our best vision-based controller, trained via imitation learning on GSplat-rendered data augmented with domain randomization, achieves 100% tracking success across 3 types of leader maneuvers over 30 trials and shows robustness to leader's appearance shifts in simulation. In the autonomous landing case study, our vision-based controller trained purely in simulation transfers zero-shot to real hardware, achieving an 80% success rate over ten landing trials. We will release hardware designs, GSplat scenes, and dynamics models upon publication to make FalconWing an open-source flight kit for engineering students and research labs.
LPAC: Learnable Perception-Action-Communication Loops with Applications to Coverage Control
Coverage control is the problem of navigating a robot swarm to collaboratively monitor features or a phenomenon of interest not known a priori. The problem is challenging in decentralized settings with robots that have limited communication and sensing capabilities. We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem, wherein a convolutional neural network (CNN) processes localized perception; a graph neural network (GNN) facilitates robot communications; finally, a shallow multi-layer perceptron (MLP) computes robot actions. The GNN enables collaboration in the robot swarm by computing what information to communicate with nearby robots and how to incorporate received information. Evaluations show that the LPAC models -- trained using imitation learning -- outperform standard decentralized and centralized coverage control algorithms. The learned policy generalizes to environments different from the training dataset, transfers to larger environments with more robots, and is robust to noisy position estimates. The results indicate the suitability of LPAC architectures for decentralized navigation in robot swarms to achieve collaborative behavior.
comment: 20 Pages, 20 figures, Accepted for publication in the IEEE Transactions on Robotics
SARM: Stage-Aware Reward Modeling for Long Horizon Robot Manipulation
Large-scale robot learning has recently shown promise for enabling robots to perform complex tasks by integrating perception, control, and language understanding. Yet, it struggles with long-horizon, contact-rich manipulation such as deformable object handling, where demonstration quality is inconsistent. Reward modeling offers a natural solution: by providing grounded progress signals, it transforms noisy demonstrations into stable supervision that generalizes across diverse trajectories. We introduce a stage-aware, video-based reward modeling framework that jointly predicts high-level task stages and fine-grained progress. Reward labels are automatically derived from natural language subtask annotations, ensuring consistent progress estimation across variable-length demonstrations. This design overcomes frame-index labeling, which fails in variable-duration tasks like folding a T-shirt. Our reward model demonstrates robustness to variability, generalization to out-of-distribution settings, and strong utility for policy training. Building on it, we propose Reward-Aligned Behavior Cloning (RA-BC), which filters high-quality data and reweights samples by reward. Experiments show the reward model alone outperforms baselines on validation and real robot rollouts. Integrated into RA-BC, our approach achieves 83\% success on folding T-shirts from the flattened state and 67\% from the crumpled state -- far surpassing vanilla behavior cloning, which attains only 8\% and 0\% success. Overall, our results highlight reward modeling as a key enabler for scalable, annotation-efficient, and robust imitation learning in long-horizon manipulation.
♻ ☆ A Tactile Feedback Approach to Path Recovery after High-Speed Impacts for Collision-Resilient Drones
Aerial robots are a well-established solution for exploration, monitoring, and inspection, thanks to their superior maneuverability and agility. However, in many environments, they risk crashing and sustaining damage after collisions. Traditional methods focus on avoiding obstacles entirely, but these approaches can be limiting, particularly in cluttered spaces or on weight-and compute-constrained platforms such as drones. This paper presents a novel approach to enhance drone robustness and autonomy by developing a path recovery and adjustment method for a high-speed collision-resilient aerial robot equipped with lightweight, distributed tactile sensors. The proposed system explicitly models collisions using pre-collision velocities, rates and tactile feedback to predict post-collision dynamics, improving state estimation accuracy. Additionally, we introduce a computationally efficient vector-field-based path representation that guarantees convergence to a user-specified path, while naturally avoiding known obstacles. Post-collision, contact point locations are incorporated into the vector field as a repulsive potential, enabling the drone to avoid obstacles while naturally returning to its path. The effectiveness of this method is validated through Monte Carlo simulations and demonstrated on a physical prototype, showing successful path following, collision recovery, and adjustment at speeds up to 3.7 m/s.
♻ ☆ NeoARCADE: Robust Calibration for Distance Estimation to Support Assistive Drones for the Visually Impaired
Autonomous navigation by drones using onboard sensors, combined with deep learning and computer vision algorithms, is impacting a number of domains. We examine the use of drones to autonomously follow and assist Visually Impaired People (VIPs) in navigating urban environments. Estimating the absolute distance between the drone and the VIP, and to nearby objects, is essential to design obstacle avoidance algorithms. Here, we present NeoARCADE (Neo), which uses depth maps over monocular video feeds, common in consumer drones, to estimate absolute distances to the VIP and obstacles. Neo proposes robust calibration technique based on depth score normalization and coefficient estimations to translate relative distances from depth map to absolute ones. It further develops a dynamic recalibration method that can adapt to changing scenarios. We also develop two baseline models, Regression and Geometric, and compare Neo with SOTA depth map approaches and the baselines. We provide detailed evaluations to validate their robustness and generalizability for distance estimation to VIPs and other obstacles in diverse and dynamic conditions, using datasets collected in a campus environment. Neo predicts distances to VIP with an error <30cm, and to different obstacles like cars and bicycles within a maximum error of 60cm, which are better than the baselines. Neo also clearly out-performs SOTA depth map methods, reporting errors up to 5.3-14.6x lower.
comment: 34 pages, 20 figures, 3 tables
♻ ☆ Physics-Constrained Robot Grasp Planning for Dynamic Tool Use
Tool use requires not only selecting appropriate tools but also generating grasps and motions that remain stable under dynamic interactions. Existing approaches largely focus on high-level tool grounding or quasi-static manipulation, overlooking stability in dynamic and cluttered regimes. We introduce iTuP (inverse Tool-use Planning), a framework that outputs robot grasps explicitly tailored for tool use. iTuP integrates a physics-constrained grasp generator with a task-conditional scoring function to produce grasps that remain stable during dynamic tool interactions. These grasps account for manipulation trajectories, torque requirements, and slip prevention, enabling reliable execution of real-world tasks. Experiments across hammering, sweeping, knocking, and reaching tasks demonstrate that iTuP outperforms geometry-based and vision-language model (VLM)-based baselines in grasp stability and task success. Our results underscore that physics-constrained grasping is essential for robust robot tool use in quasi-static, dynamic, and cluttered environments.
comment: In submission and under review
♻ ☆ VFP: Variational Flow-Matching Policy for Multi-Modal Robot Manipulation
Flow-matching-based policies have recently emerged as a promising approach for learning-based robot manipulation, offering significant acceleration in action sampling compared to diffusion-based policies. However, conventional flow-matching methods struggle with multi-modality, often collapsing to averaged or ambiguous behaviors in complex manipulation tasks. To address this, we propose the Variational Flow-Matching Policy (VFP), which introduces a variational latent prior for mode-aware action generation and effectively captures both task-level and trajectory-level multi-modality. VFP further incorporates Kantorovich Optimal Transport (K-OT) for distribution-level alignment and utilizes a Mixture-of-Experts (MoE) decoder for mode specialization and efficient inference. We comprehensively evaluate VFP on 41 simulated tasks and 3 real-robot tasks, demonstrating its effectiveness and sampling efficiency in both simulated and real-world settings. Results show that VFP achieves a 49% relative improvement in task success rate over standard flow-based baselines in simulation, and further outperforms them on real-robot tasks, while still maintaining fast inference and a compact model size. More details are available on our project page: https://sites.google.com/view/varfp/
♻ ☆ Interactive Expressive Motion Generation Using Dynamic Movement Primitives IROS
Our goal is to enable social robots to interact autonomously with humans in a realistic, engaging, and expressive manner. The 12 Principles of Animation are a well-established framework animators use to create movements that make characters appear convincing, dynamic, and emotionally expressive. This paper proposes a novel approach that leverages Dynamic Movement Primitives (DMPs) to implement key animation principles, providing a learnable, explainable, modulable, online adaptable and composable model for automatic expressive motion generation. DMPs, originally developed for general imitation learning in robotics and grounded in a spring-damper system design, offer mathematical properties that make them particularly suitable for this task. Specifically, they enable modulation of the intensities of individual principles and facilitate the decomposition of complex, expressive motion sequences into learnable and parametrizable primitives. We present the mathematical formulation of the parameterized animation principles and demonstrate the effectiveness of our framework through experiments and application on three robotic platforms with different kinematic configurations, in simulation, on actual robots and in a user study. Our results show that the approach allows for creating diverse and nuanced expressions using a single base model.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ Model Evaluation of a Transformable CubeSat for Nonholonomic Attitude Reorientation Using a Drop Tower
This paper presents a design for a drop tower test to evaluate a numerical model for a structurally reconfigurable spacecraft with actuatable joints, referred to as a transformable spacecraft. A mock-up robot for a 3U-sized transformable spacecraft is designed to fit in a limited time and space of the microgravity environment available in the drop tower. The robot performs agile reorientation, referred to as nonholonomic attitude control, by actuating joints in a particular manner. To adapt to the very short duration of microgravity in the drop tower test, a successive joint actuation maneuver is optimized to maximize the amount of attitude reorientation within the time constraint. The robot records the angular velocity history of all four bodies, and the data is analyzed to evaluate the accuracy of the numerical model. We confirm that the constructed numerical model sufficiently replicates the robot's motion and show that the post-experiment model corrections further improve the accuracy of the numerical simulations. Finally, the difference between this drop tower test and the actual orbit demonstration is discussed to show the prospect.
comment: 22 pages, 22 figures
Temporal Overlapping Prediction: A Self-supervised Pre-training Method for LiDAR Moving Object Segmentation
Moving object segmentation (MOS) on LiDAR point clouds is crucial for autonomous systems like self-driving vehicles. Previous supervised approaches rely heavily on costly manual annotations, while LiDAR sequences naturally capture temporal motion cues that can be leveraged for self-supervised learning. In this paper, we propose Temporal Overlapping Prediction (TOP), a self-supervised pre-training method that alleviate the labeling burden for MOS. TOP explores the temporal overlapping points that commonly observed by current and adjacent scans, and learns spatiotemporal representations by predicting the occupancy states of temporal overlapping points. Moreover, we utilize current occupancy reconstruction as an auxiliary pre-training objective, which enhances the current structural awareness of the model. We conduct extensive experiments and observe that the conventional metric Intersection-over-Union (IoU) shows strong bias to objects with more scanned points, which might neglect small or distant objects. To compensate for this bias, we introduce an additional metric called mIoU_obj to evaluate object-level performance. Experiments on nuScenes and SemanticKITTI show that TOPoutperforms both supervised training-from-scratch baseline and other self-supervised pre-training baselines by up to 28.77% relative improvement, demonstrating strong transferability across LiDAR setups and generalization to other tasks. Code and pre-trained models will be publicly available upon publication.
♻ ☆ Software Engineering for Self-Adaptive Robotics: A Research Agenda
Self-adaptive robotic systems operate autonomously in dynamic and uncertain environments, requiring robust real-time monitoring and adaptive behaviour. Unlike traditional robotic software with predefined logic, self-adaptive robots exploit artificial intelligence (AI), machine learning, and model-driven engineering to adapt continuously to changing conditions, thereby ensuring reliability, safety, and optimal performance. This paper presents a research agenda for software engineering in self-adaptive robotics, structured along two dimensions. The first concerns the software engineering lifecycle, requirements, design, development, testing, and operations, tailored to the challenges of self-adaptive robotics. The second focuses on enabling technologies such as digital twins, AI-driven adaptation, and quantum computing, which support runtime monitoring, fault detection, and automated decision-making. We identify open challenges, including verifying adaptive behaviours under uncertainty, balancing trade-offs between adaptability, performance, and safety, and integrating self-adaptation frameworks like MAPE-K/MAPLE-K. By consolidating these challenges into a roadmap toward 2030, this work contributes to the foundations of trustworthy and efficient self-adaptive robotic systems capable of meeting the complexities of real-world deployment.
♻ ☆ LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition RAL
In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.
comment: Accepted by IEEE Robotics and Automation Letters (RAL) 2025
♻ ☆ An effective control of large systems of active particles: An application to evacuation problem
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.
♻ ☆ PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes ICCV 2025
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
comment: ICCV 2025. Project page: https://nianticlabs.github.io/placeit3d/
♻ ☆ DexUMI: Using Human Hand as the Universal Manipulation Interface for Dexterous Manipulation
We present DexUMI - a data collection and policy learning framework that uses the human hand as the natural interface to transfer dexterous manipulation skills to various robot hands. DexUMI includes hardware and software adaptations to minimize the embodiment gap between the human hand and various robot hands. The hardware adaptation bridges the kinematics gap using a wearable hand exoskeleton. It allows direct haptic feedback in manipulation data collection and adapts human motion to feasible robot hand motion. The software adaptation bridges the visual gap by replacing the human hand in video data with high-fidelity robot hand inpainting. We demonstrate DexUMI's capabilities through comprehensive real-world experiments on two different dexterous robot hand hardware platforms, achieving an average task success rate of 86%.
♻ ☆ HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy
Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.
comment: Project page: https://myungkyukoo.github.io/hamlet/
♻ ☆ World Model for AI Autonomous Navigation in Mechanical Thrombectomy MICCAI 2025
Autonomous navigation for mechanical thrombectomy (MT) remains a critical challenge due to the complexity of vascular anatomy and the need for precise, real-time decision-making. Reinforcement learning (RL)-based approaches have demonstrated potential in automating endovascular navigation, but current methods often struggle with generalization across multiple patient vasculatures and long-horizon tasks. We propose a world model for autonomous endovascular navigation using TD-MPC2, a model-based RL algorithm. We trained a single RL agent across multiple endovascular navigation tasks in ten real patient vasculatures, comparing performance against the state-of-the-art Soft Actor-Critic (SAC) method. Results indicate that TD-MPC2 significantly outperforms SAC in multi-task learning, achieving a 65% mean success rate compared to SAC's 37%, with notable improvements in path ratio. TD-MPC2 exhibited increased procedure times, suggesting a trade-off between success rate and execution speed. These findings highlight the potential of world models for improving autonomous endovascular navigation and lay the foundation for future research in generalizable AI-driven robotic interventions.
comment: Published in Medical Image Computing and Computer Assisted Intervention - MICCAI 2025, Lecture Notes in Computer Science, vol 15968
♻ ☆ Safe Navigation of Bipedal Robots via Koopman Operator-Based Model Predictive Control
Nonlinearity in dynamics has long been a major challenge in robotics, often causing significant performance degradation in existing control algorithms. For example, the navigation of bipedal robots can exhibit nonlinear behaviors even under simple velocity commands, as their actual dynamics are governed by complex whole-body movements and discrete contacts. In this work, we propose a novel safe navigation framework inspired by Koopman operator theory. We first train a low-level locomotion policy using deep reinforcement learning, and then capture its low-frequency, base-level dynamics by learning linearized dynamics in a high-dimensional lifted space using Dynamic Mode Decomposition. Then, our model-predictive controller (MPC) efficiently optimizes control signals via standard quadratic objective and the linear dynamics constraint in the lifted space. We demonstrate that the Koopman-based model more accurately predicts bipedal robot trajectories than baseline approaches. Furthermore, we show that the proposed navigation framework achieves improved safety with better success rates in dense environments with narrow passages.
comment: 8 pages
♻ ☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
Maintaining good driving behavior in out-of-distribution scenarios remains a critical challenge in autonomous driving. A promising direction is to leverage the generalist knowledge and reasoning capabilities of large-language models by treating unusual driving scenarios as a logical reasoning task. In this work, we present Poutine, a method that uses an off-the-shelf 3B-parameter vision-language model (VLM) - without any additional components - to achieve robust end-to-end autonomous driving via a simple and scalable training recipe. To learn strong base driving capabilities, we first train Poutine-Base using self-supervised next-token prediction over vision, language, and trajectory (VLT) tokens, leveraging both nominal and long-tail driving data. In the second stage, we fine-tune Poutine-Base using Group Relative Policy Optimization (GRPO) with a small set of human preference-labeled examples. We evaluated our approach on the Waymo end-to-end driving benchmark curated for long-tail scenarios. The final Poutine model achieves an RFS of 7.99 on the test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. Our results suggest that handcrafted tokenizers or custom architectural components added to base VLMs in prior work are not necessary to achieve strong driving performance. Instead, this work highlights the potential of scalable VLT pretraining combined with lightweight RL fine-tuning to enable robust and generalizable autonomous driving.
♻ ☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
♻ ☆ A Benchmarking Study of Vision-based Robotic Grasping Algorithms
We present a benchmarking study of vision-based robotic grasping algorithms with distinct approaches, and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithm's strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation, and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: This work was intended as a replacement of arXiv:2307.11622. I will upload it as a replacement to arXiv:2307.11622 simultaneously
♻ ☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
♻ ☆ Active Alignments of Lens Systems with Reinforcement Learning
Aligning a lens system relative to an imager is a critical challenge in camera manufacturing. While optimal alignment can be mathematically computed under ideal conditions, real-world deviations caused by manufacturing tolerances often render this approach impractical. Measuring these tolerances can be costly or even infeasible, and neglecting them may result in suboptimal alignments. We propose a reinforcement learning (RL) approach that learns exclusively in the pixel space of the sensor output, eliminating the need to develop expert-designed alignment concepts. We conduct an extensive benchmark study and show that our approach surpasses other methods in speed, precision, and robustness. We further introduce relign, a realistic, freely explorable, open-source simulation utilizing physically based rendering that models optical systems with non-deterministic manufacturing tolerances and noise in robotic alignment movement. It provides an interface to popular machine learning frameworks, enabling seamless experimentation and development. Our work highlights the potential of RL in a manufacturing environment to enhance efficiency of optical alignments while minimizing the need for manual intervention.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ A Multi-Fidelity Control Variate Approach for Policy Gradient Estimation
Many reinforcement learning (RL) algorithms are impractical for deployment in operational systems or for training with computationally expensive high-fidelity simulations, as they require large amounts of data. Meanwhile, low-fidelity simulators -- such as reduced-order models, heuristic rewards, or generative world models -- can cheaply provide useful data for RL training, even if they are too coarse for zero-shot transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a control variate formed from a large volume of low-fidelity simulation data to construct an unbiased, variance-reduced estimator for on-policy policy gradients. We instantiate the framework with a multi-fidelity variant of the classical REINFORCE algorithm. We show that under standard assumptions, the MFPG estimator guarantees asymptotic convergence of REINFORCE to locally optimal policies in the target environment, and achieves faster finite-sample convergence rates compared to training with high-fidelity data alone. Empirically, we evaluate the MFPG algorithm across a suite of simulated robotics benchmark tasks with limited high-fidelity data but abundant off-dynamics, low-fidelity data. With mild-moderate dynamics gaps, MFPG reliably improves the median performance over a high-fidelity-only baseline, matching the performance of leading multi-fidelity baselines despite its simplicity and minimal tuning overhead. Under large dynamics gaps, MFPG demonstrates the strongest robustness among the evaluated multi-fidelity approaches. An additional experiment shows that MFPG can remain effective even under low-fidelity reward misspecification. Thus, MFPG not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
Systems and Control 43
☆ Game-theoretic Social Distancing in Competitive Bi-Virus SIS Epidemics
Numerous elements drive the spread of infectious diseases in complex real-world networks. Of particular interest is social behaviors that evolve in tandem with the spread of disease. Moreover, recent studies highlight the importance of understanding how multiple strains spread simultaneously through a population (e.g. Delta and Omicron variants of SARS-CoV-2). In this paper, we propose a bi-virus SIS epidemic model coupled with a game-theoretic social distancing behavior model. The behaviors are governed by replicator equations from evolutionary game theory. The prevalence of each strain impacts the choice of an individual to social distance, and, in turn, their behavior affects the spread of each virus in the SIS model. Our analysis identifies equilibria of the system and their local stability properties, which reveal several isolated fixed points with varying levels of social distancing. We find that endemic co-existence is possible only when the reproduction numbers of both strains are equal. Assuming the reproduction number for each virus is the same, we identify suitable parameter regimes that give rise to lines of coexistence equilibria. Moreover, we also identify conditions for local exponential stability of said lines of equilibria. We illustrate our findings with several numerical simulations.
☆ Computing Control Lyapunov-Barrier Functions: Softmax Relaxation and Smooth Patching with Formal Guarantees
We present a computational framework for synthesizing a single smooth Lyapunov function that certifies both asymptotic stability and safety. We show that the existence of a strictly compatible pair of control barrier and control Lyapunov functions (CBF-CLF) guarantees the existence of such a function on the exact safe set certified by the barrier. To maximize the certifiable safe domain while retaining differentiability, we employ a log-sum-exp (softmax) relaxation of the nonsmooth maximum barrier, together with a counterexample-guided refinement that inserts half-space cuts until a strict barrier condition is verifiable. We then patch the softmax barrier with a CLF via an explicit smooth bump construction, which is always feasible under the strict compatibility condition. All conditions are formally verified using a satisfiability modulo theories (SMT) solver, enabled by a reformulation of Farkas' lemma for encoding strict compatibility. On benchmark systems, including a power converter, we show that the certified safe stabilization regions obtained with the proposed approach are often less conservative than those achieved by state-of-the-art sum-of-squares (SOS) compatible CBF-CLF designs.
Detection and Identification of Sensor Attacks Using Data
In this paper, we investigate data-driven attack detection and identification in a model-free setting. Unlike existing studies, we consider the case where the available output data include malicious false-data injections. We aim to detect and identify such attacks solely from the compromised data. We address this problem in two scenarios: (1) when the system operator is aware of the system's sparse observability condition, and (2) when the data are partially clean (i.e., attack-free). In both scenarios, we derive conditions and algorithms for detecting and identifying attacks using only the compromised data. Finally, we demonstrate the effectiveness of the proposed framework via numerical simulations on a three-inertia system.
☆ Product Digital Twin Supporting End-of-life Phase of Electric Vehicle Batteries Utilizing Product-Process-Resource Asset Network
In the context of the circular economy, products in their end-of-life phase should be either remanufactured or recycled. Both of these processes are crucial for sustainability and environmental conservation. However, manufacturers often do not support these processes enough by not sharing relevant data. This paper proposes use of a digital twin technology, which is capable to help optimizing the disassembly processes to reduce ecological impact and enhance sustainability. The proposed approach is demonstrated through a disassembly use-case of the product digital twin of an electric vehicle battery. By utilizing product digital twins, challenges associated with the disassembly of electric vehicle batteries can be solved flexibly and efficiently for various battery types. As a backbone for the product digital twin representation, the paper uses the paradigm of product-process-resource asset networks (PAN). Such networks enable to model relevant relationships across products, production resources, manufacturing processes, and specific production operations that have to be done in the manufacturing phase of a product. This paper introduces a Bi-Flow Product-Process-Resource Asset Network (Bi-PAN) representation, which extends the PAN paradigm to cover not only the manufacturing, but also the remanufacturing/recycling phase.
comment: This work has been submitted to the IEEE for possible publication. 6 pages, 4 figures
☆ On the (almost) Global Exponential Convergence of the Overparameterized Policy Optimization for the LQR Problem
In this work we study the convergence of gradient methods for nonconvex optimization problems -- specifically the effect of the problem formulation to the convergence behavior of the solution of a gradient flow. We show through a simple example that, surprisingly, the gradient flow solution can be exponentially or asymptotically convergent, depending on how the problem is formulated. We then deepen the analysis and show that a policy optimization strategy for the continuous-time linear quadratic regulator (LQR) (which is known to present only asymptotic convergence globally) presents almost global exponential convergence if the problem is overparameterized through a linear feed-forward neural network (LFFNN). We prove this qualitative improvement always happens for a simplified version of the LQR problem and derive explicit convergence rates for the gradient flow. Finally, we show that both the qualitative improvement and the quantitative rate gains persist in the general LQR through numerical simulations.
comment: This version is currently under review for the 2026 IEEE American Control Conference (ACC)
☆ Recurrent Control Barrier Functions: A Path Towards Nonparametric Safety Verification
Ensuring the safety of complex dynamical systems often relies on Hamilton-Jacobi (HJ) Reachability Analysis or Control Barrier Functions (CBFs). Both methods require computing a function that characterizes a safe set that can be made (control) invariant. However, the computational burden of solving high-dimensional partial differential equations (for HJ Reachability) or large-scale semidefinite programs (for CBFs) makes finding such functions challenging. In this paper, we introduce the notion of Recurrent Control Barrier Functions (RCBFs), a novel class of CBFs that leverages a recurrent property of the trajectories, i.e., coming back to a safe set, for safety verification. Under mild assumptions, we show that the RCBF condition holds for the signed-distance function, turning function design into set identification. Notably, the resulting set need not be invariant to certify safety. We further propose a data-driven nonparametric method to compute safe sets that is massively parallelizable and trades off conservativeness against computational cost.
comment: 8 Pages, 3 Figures
☆ Cooperative Guidance for Aerial Defense in Multiagent Systems
This paper addresses a critical aerial defense challenge in contested airspace, involving three autonomous aerial vehicles -- a hostile drone (the pursuer), a high-value drone (the evader), and a protective drone (the defender). We present a cooperative guidance framework for the evader-defender team that guarantees interception of the pursuer before it can capture the evader, even under highly dynamic and uncertain engagement conditions. Unlike traditional heuristic, optimal control, or differential game-based methods, we approach the problem within a time-constrained guidance framework, leveraging true proportional navigation based approach that ensures robust and guaranteed solutions to the aerial defense problem. The proposed strategy is computationally lightweight, scalable to a large number of agent configurations, and does not require knowledge of the pursuer's strategy or control laws. From arbitrary initial geometries, our method guarantees that key engagement errors are driven to zero within a fixed time, leading to a successful mission. Extensive simulations across diverse and adversarial scenarios confirm the effectiveness of the proposed strategy and its relevance for real-time autonomous defense in contested airspace environments.
☆ Event-triggered control and communication for single-master multi-slave teleoperation systems with Try-Once-Discard protocol
Single-master multi-slave (SMMS) teleoperation systems can perform multiple tasks remotely in a shorter time, cover large-scale areas, and adapt more easily to single-point failures, thereby effectively encompassing a broader range of applications. As the number of slave manipulators sharing a communication network increases, the limitation of communication bandwidth becomes critical. To alleviate bandwidth usage, the Try-Once-Discard (TOD) scheduling protocol and event-triggered mechanisms are often employed separately. In this paper, we combine both strategies to optimize network bandwidth and energy consumption for SMMS teleoperation systems. Specifically, we propose event-triggered control and communication schemes for a class of SMMS teleoperation systems using the TOD scheduling protocol. Considering dynamic uncertainties, the unavailability of relative velocities, and time-varying delays, we develop adaptive controllers with virtual observers based on event-triggered schemes to achieve master-slave synchronization. Stability criteria for the SMMS teleoperation systems under these event-triggered control and communication schemes are established, demonstrating that Zeno behavior is excluded. Finally, experiments are conducted to validate the effectiveness of the proposed algorithms.
☆ LLM-Enhanced, Data-Driven Personalized and Equitable Clinician Scheduling: A Predict-then-Optimize Approach ICDM 2025
Clinician scheduling remains a persistent challenge due to limited clinical resources and fluctuating demands. This complexity is especially acute in large academic anesthesiology departments as physicians balance responsibilities across multiple clinical sites with conflicting priorities. Further, scheduling must account for individual clinical and lifestyle preferences to ensure job satisfaction and well-being. Traditional approaches, often based on statistical or rule-based optimization models, rely on structured data and explicit domain knowledge. However, these methods often overlook unstructured information, e.g., free-text notes from routinely administered clinician well-being surveys and scheduling platforms. These notes may reveal implicit and underutilized clinical resources. Neglecting such information can lead to misaligned schedules, increased burnout, overlooked staffing flexibility, and suboptimal utilization of available resources. To address this gap, we propose a predict-then-optimize framework that integrates classification-based clinician availability predictions with a mixed-integer programming schedule optimization model. Large language models (LLMs) are employed to extract actionable preferences and implicit constraints from unstructured schedule notes, enhancing the reliability of availability predictions. These predictions then inform the schedule optimization considering four objectives: first, ensuring clinical full-time equivalent compliance, second, reducing workload imbalances by enforcing equitable proportions of shift types, third, maximizing clinician availability for assigned shifts, and fourth, schedule consistency. By combining the interpretive power of LLMs with the rigor of mathematical optimization, our framework provides a robust, data-driven solution that enhances operational efficiency while supporting equity and clinician well-being.
comment: 10 pages, 5 figures, Accepted to IEEE ICDM 2025 Workshops Proceedings; IEEE Computer Society Press
☆ Coordinated Car-following Using Distributed MPC
Within the modeling framework of Markov games, we propose a series of algorithms for coordinated car-following using distributed model predictive control (DMPC). Instead of tracking prescribed feasible trajectories, driving policies are solved directly as outcomes of the DMPC optimization given the driver's perceivable states. The coordinated solutions are derived using the best response dynamics via iterated self-play, and are facilitated by direct negotiation using inter-agent or agent-infrastructure communication. These solutions closely approximate either Nash equilibrium or centralized optimization. By re-parameterizing the action sequence in DMPC as a curve along the planning horizon, we are able to systematically reduce the original DMPC to very efficient grid searches such that the optimal solution to the original DMPC can be well executed in real-time. Within our modeling framework, it is natural to cast traffic control problems as mechanism design problems, in which all agents are endogenized on an equal footing with full incentive compatibility. We show how traffic efficiency can be dramatically improved while keeping stop-and-go phantom waves tamed at high vehicle densities. Our approach can be viewed as an alternative way to formulate coordinated adaptive cruise control (CACC) without an explicit platooning (or with all vehicles in the traffic system treated as a single extended platoon). We also address the issue of linear stability of the associated discrete-time traffic dynamics and demonstrate why it does not always tell the full story about the traffic stability.
☆ Wearable and Ultra-Low-Power Fusion of EMG and A-Mode US for Hand-Wrist Kinematic Tracking
Hand gesture recognition based on biosignals has shown strong potential for developing intuitive human-machine interaction strategies that closely mimic natural human behavior. In particular, sensor fusion approaches have gained attention for combining complementary information and overcoming the limitations of individual sensing modalities, thereby enabling more robust and reliable systems. Among them, the fusion of surface electromyography (EMG) and A-mode ultrasound (US) is very promising. However, prior solutions rely on power-hungry platforms unsuitable for multi-day use and are limited to discrete gesture classification. In this work, we present an ultra-low-power (sub-50 mW) system for concurrent acquisition of 8-channel EMG and 4-channel A-mode US signals, integrating two state-of-the-art platforms into fully wearable, dry-contact armbands. We propose a framework for continuous tracking of 23 degrees of freedom (DoFs), 20 for the hand and 3 for the wrist, using a kinematic glove for ground-truth labeling. Our method employs lightweight encoder-decoder architectures with multi-task learning to simultaneously estimate hand and wrist joint angles. Experimental results under realistic sensor repositioning conditions demonstrate that EMG-US fusion achieves a root mean squared error of $10.6^\circ\pm2.0^\circ$, compared to $12.0^\circ\pm1^\circ$ for EMG and $13.1^\circ\pm2.6^\circ$ for US, and a R$^2$ score of $0.61\pm0.1$, with $0.54\pm0.03$ for EMG and $0.38\pm0.20$ for US.
☆ Reducing Discomfort in Driving Simulators: Motion Cueing for Motion Sickness Mitigation
Driving simulators are increasingly used in research and development. However, simulators often cause motion sickness due to downscaled motion and unscaled veridical visuals. In this paper, a motion cueing algorithm is proposed that reduces motion sickness as predicted by the subjective vertical conflict (SVC) model using model predictive control (MPC). Both sensory conflict and specific force errors are penalised in the cost function, allowing the algorithm to jointly optimise fidelity and comfort. Human-in-the-loop experiments were conducted to compare four simulator motion settings: two variations of our MPC-based algorithm, one focused on pure specific force tracking and the second compromising specific force tracking and motion sickness minimisation, as well as reference adaptive washout and no motion cases. The experiments were performed on a hexapod driving simulator with participants exposed to passive driving. Experimental motion sickness results closely matched the sickness model predictions. As predicted by the model, the no motion condition yielded the lowest sickness levels. However, it was rated lowest in terms of fidelity. The compromise solution reduced sickness by over 50% (average MISC level 3 to 1.5) compared to adaptive washout and the algorithm focusing on specific force tracking, without any significant reduction in fidelity rating. The proposed approach for developing MCA that takes into account both the simulator dynamics and time evolution of motion sickness offers a significant advancement in achieving an optimal control of motion sickness and specific force recreation in driving simulators, supporting broader simulator use.
SPARC: Spine with Prismatic and Revolute Compliance for Quadruped Robot
We present SPARC, a compact, open-source 3-DoF sagittal-plane spine module that combines revolute (pitch) and prismatic (axial) motion with programmable task-space impedance for quadruped robots. The system integrates three torque-controlled actuators, a custom 1 kHz control board, and a protected power unit in a 1.26 kg package, enabling closed-loop stiffness and damping shaping along x, z, and theta. We develop an RNEA-based computed-acceleration controller with smooth Stribeck friction compensation to render spring-damper behavior without explicit inertia shaping. Bench experiments validate the approach. Quasi-static push-pull tests show linear force-displacement characteristics with commanded horizontal stiffness spanning 300-700 N/m and <= 1.5% relative error (R^2 >= 0.992, narrow 95% CIs). Dynamic displace-and-release trials confirm mass-spring-damper responses over multiple damping settings, with small, interpretable phase deviations due to configuration-dependent inertia and low-speed friction effects. A task-space PD controller produces roughly linear stiffness but with greater variability and coupling sensitivity. SPARC provides a portable platform for systematic studies of spine compliance in legged locomotion and will be released with complete hardware and firmware resources.
☆ A TSO-DSO Coordination Framework via Analytical Representation and Monetization of PQV-Based Distribution System Flexibility
As the role of distribution system (DS) flexibility in transmission system operator (TSO) network management becomes increasingly vital, data privacy concerns hinder seamless interoperability. The notion of the feasible operating region (FOR), defined in the PQ domain, has emerged as a promising privacy-preserving approach. However, effectively leveraging FOR in TSO operations remains challenging due to three key factors: its accurate determination in large-scale, meshed DS networks; its tractable analytical representation; and its economic valuation. In the present paper, we propose a novel AC optimal power flow (OPF)-based method to construct a three-dimensional PQV-FOR, explicitly accounting for voltage variability and diverse flexibility-providing unit (FPU) characteristics. The construction process employs a two-stage sampling strategy that combines bounding box projection and Fibonacci direction techniques to efficiently capture the FOR. We then introduce an implicit polynomial fitting approach to analytically represent the FOR. Furthermore, we derive a quadratic cost function over the PQV domain to monetize the FOR. Thus, the proposed framework enables single-round TSO-DSO coordination: the DSO provides an analytical FOR and cost model; the TSO determines operating point at the point of common coupling (PCC) within the FOR-based AC-OPF; and the DSO computes FPU dispatch by solving its local OPF, without computationally intensive disaggregation or iterative coordination. Case studies on meshed DS with up to 533 buses, integrated into TS, demonstrates the method's efficiency compared to standard AC-OPF. On average, the proposed approach yields negligible cost deviations of at most 0.058% across test cases, while reducing computation times by up to 58.11%.
Robust MPC for Large-scale Linear Systems
State-of-the-art approaches of Robust Model Predictive Control (MPC) are restricted to linear systems of relatively small scale, i.e., with no more than about 5 states. The main reason is the computational burden of determining a robust positively invariant (RPI) set, whose complexity suffers from the curse of dimensionality. The recently proposed approach of Deadbeat Robust Model Predictive Control (DRMPC) is the first that does not rely on an RPI set. Yet it comes with the full set of essential system theoretic guarantees. DRMPC is hence a viable option, in particular, for large-scale systems. This paper introduces a detailed design procedure for DRMPC. It is shown that the optimal control problem generated for DRMPC has exactly the same computational complexity as Nominal MPC. A numerical study validates its applicability to randomly generated large-scale linear systems of various dimensions.
☆ Dual-Mode Magnetic Continuum Robot for Targeted Drug Delivery ICRA 2026
Magnetic continuum robots (MCRs) enable minimally invasive navigation through tortuous anatomical channels, yet axially magnetized designs have largely been limited to bending-only motion. To expand deformation capabilities, this paper presents a simple assembly that embeds permanent magnets radially within the catheter wall, allowing a single externally steered permanent magnet to independently induce either bending or torsion. A physics-based formulation together with finite-element analysis establishes the actuation principles, and benchtop experiments validate decoupled mode control under practical fields. Building on this, a dual-layer blockage mechanism consisting of outer grooves and inner plates leverages torsional shear to achieve on-demand drug release. Finally, an in-phantom intervention experiment demonstrates end-to-end operation: lumen following by bending for target approach, followed by twist-activated release at the site. The resulting compact, cable-free platform combines versatile deformation with precise payload delivery, indicating strong potential for next-generation, site-specific therapies.
comment: 7 pages, 3 figures, under review of ICRA 2026
Geometric Backstepping Control of Omnidirectional Tiltrotors Incorporating Servo-Rotor Dynamics for Robustness against Sudden Disturbances
This work presents a geometric backstepping controller for a variable-tilt omnidirectional multirotor that explicitly accounts for both servo and rotor dynamics. Considering actuator dynamics is essential for more effective and reliable operation, particularly during aggressive flight maneuvers or recovery from sudden disturbances. While prior studies have investigated actuator-aware control for conventional and fixed-tilt multirotors, these approaches rely on linear relationships between actuator input and wrench, which cannot capture the nonlinearities induced by variable tilt angles. In this work, we exploit the cascade structure between the rigid-body dynamics of the multirotor and its nonlinear actuator dynamics to design the proposed backstepping controller and establish exponential stability of the overall system. Furthermore, we reveal parametric uncertainty in the actuator model through experiments, and we demonstrate that the proposed controller remains robust against such uncertainty. The controller was compared against a baseline that does not account for actuator dynamics across three experimental scenarios: fast translational tracking, rapid rotational tracking, and recovery from sudden disturbance. The proposed method consistently achieved better tracking performance, and notably, while the baseline diverged and crashed during the fastest translational trajectory tracking and the recovery experiment, the proposed controller maintained stability and successfully completed the tasks, thereby demonstrating its effectiveness.
☆ Stability and Robustness of Time-Varying Opinion Dynamics: A Graph-Theoretic Approach
We study the stability of opinion dynamics in the time-varying Friedkin-Johnsen (TVFJ) model, which captures both persistent individual biases and adaptive social influence. We introduce two temporal structures, defected temporal graphs (DTGs) and weakly defected temporal graphs (WDTGs), that serve as graph-theoretic certificates linking stubborn influence and temporal connectivity to contraction of the state-transition matrix. Using these tools, we prove asymptotic stability of TVFJ dynamics under infinitely recurring DTGs, exponential stability in semi-periodic defected networks, and asymptotic stability of a trust-based extension under the weaker condition of recurring WDTGs. We also establish boundedness of the omega-limit set, showing that long-run opinions remain within the convex hull of innate beliefs, and characterize the limit set for periodically switching systems via a p-LTI decomposition with the tight bound that the size of the omega-limit set is at most p. Finally, we show that exponential stability persists under bounded perturbations, ensuring robustness in noisy or imperfect networks. These results unify algebraic contraction tests with interpretable graph-based reasoning, providing scalable and resilient tools for analyzing opinion formation in evolving social and human-AI networks.
☆ Bi-Virus SIS Epidemic Propagation under Mutation and Game-theoretic Protection Adoption
We study a bi-virus susceptible-infected-susceptible (SIS) epidemic model in which individuals are either susceptible or infected with one of two virus strains, and consider mutation-driven transitions between strains. The general case of bi-directional mutation is first analyzed, where we characterize the disease-free equilibrium and establish its global asymptotic stability, as well as the existence, uniqueness, and stability of an endemic equilibrium. We then present a game-theoretic framework where susceptible individuals strategically choose whether to adopt protection or remain unprotected, to maximize their instantaneous payoffs. We derive Nash strategies under bi-directional mutation, and subsequently consider the special case of unidirectional mutation. In the latter case, we show that coexistence of both strains is impossible when mutation occurs from the strain with lower reproduction number and transmission rate to the other strain. Furthermore, we fully characterize the stationary Nash equilibrium (SNE) in the setting permitting coexistence, and examine how mutation rates influence protection adoption and infection prevalence at the SNE. Numerical simulations corroborate the analytical results, demonstrating that infection levels decrease monotonically with higher protection adoption, and highlight the impact of mutation rates and protection cost on infection state trajectories.
☆ A Scalable Design Approach to Resilient Architectures for Interconnected Cyber-Physical Systems: Safety Guarantees under Multiple Attacks
Complex, interconnected cyber-physical systems (CPS) are increasingly prevalent in domains such as power systems. Cyber-resilient architectures have been proposed to recover compromised cyber components of CPS. Recent works have studied tuning the recovery times of such architectures to guarantee safety in single-system settings. Extending these designs to interconnected CPS is more challenging, since solutions must account for attacks on multiple subsystems that can occur in any order and potentially infinite possible temporal overlap. This paper aims to address the aforementioned challenge by developing a scalable framework to assign resilient architectures and to inform the tuning of their recovery times. Our approach introduces a scalar index that quantifies the impact of each subsystem on safety under compromised input. These indices aggregate linearly across subsystems, enabling scalable analysis under arbitrary attack orderings and temporal overlaps. We establish a linear inequality relating each subsystem's index and recovery time that guarantees safety and guides resilient architecture assignment. We also propose a segmentation-based approach to strengthen the previously derived conditions. We then present algorithms to compute the proposed indices and to find a cost-optimal architecture assignment with a safety guarantee. We validate the framework through a case study on temperature regulation in interconnected rooms under different attack scenarios.
☆ Efficient Optimal Path Planning in Dynamic Environments Using Koopman MPC
This paper presents a data-driven model predictive control framework for mobile robots navigating in dynamic environments, leveraging Koopman operator theory. Unlike the conventional Koopman-based approaches that focus on the linearization of system dynamics only, our work focuses on finding a global linear representation for the optimal path planning problem that includes both the nonlinear robot dynamics and collision-avoidance constraints. We deploy extended dynamic mode decomposition to identify linear and bilinear Koopman realizations from input-state data. Our open-loop analysis demonstrates that only the bilinear Koopman model can accurately capture nonlinear state-input couplings and quadratic terms essential for collision avoidance, whereas linear realizations fail to do so. We formulate a quadratic program for the robot path planning in the presence of moving obstacles in the lifted space and determine the optimal robot action in an MPC framework. Our approach is capable of finding the safe optimal action 320 times faster than a nonlinear MPC counterpart that solves the path planning problem in the original state space. Our work highlights the potential of bilinear Koopman realizations for linearization of highly nonlinear optimal control problems subject to nonlinear state and input constraints to achieve computational efficiency similar to linear problems.
comment: This work has been submitted to the ACC2026 conference
☆ Bridging the Prediction Error Method and Subspace Identification: A Weighted Null Space Fitting Method
Subspace identification methods (SIMs) have proven to be very useful and numerically robust for building state-space models. While most SIMs are consistent, few if any can achieve the efficiency of the maximum likelihood estimate (MLE). Conversely, the prediction error method (PEM) with a quadratic criteria is equivalent to MLE, but it comes with non-convex optimization problems and requires good initialization points. This contribution proposes a weighted null space fitting (WNSF) approach for estimating state-space models, combining some key advantages of the two aforementioned mainstream approaches. It starts with a least-squares estimate of a high-order ARX model, and then a multi-step least-squares procedure reduces the model to a state-space model on canoncial form. It is demonstrated through statistical analysis that when a canonical parameterization is admissible, the proposed method is consistent and asymptotically efficient, thereby making progress on the long-standing open problem about the existence of an asymptotically efficient SIM. Numerical and practical examples are provided to illustrate that the proposed method performs favorable in comparison with SIMs.
Self-supervised diffusion model fine-tuning for costate initialization using Markov chain Monte Carlo
Global search and optimization of long-duration, low-thrust spacecraft trajectories with the indirect method is challenging due to a complex solution space and the difficulty of generating good initial guesses for the costate variables. This is particularly true in multibody environments. Given data that reveals a partial Pareto optimal front, it is desirable to find a flexible manner in which the Pareto front can be completed and fronts for related trajectory problems can be found. In this work we use conditional diffusion models to represent the distribution of candidate optimal trajectory solutions. We then introduce into this framework the novel approach of using Markov Chain Monte Carlo algorithms with self-supervised fine-tuning to achieve the aforementioned goals. Specifically, a random walk Metropolis algorithm is employed to propose new data that can be used to fine-tune the diffusion model using a reward-weighted training based on efficient evaluations of constraint violations and missions objective functions. The framework removes the need for separate focused and often tedious data generation phases. Numerical experiments are presented for two problems demonstrating the ability to improve sample quality and explicitly target Pareto optimality based on the theory of Markov chains. The first problem does so for a transfer in the Jupiter-Europa circular restricted three-body problem, where the MCMC approach completes a partial Pareto front. The second problem demonstrates how a dense and superior Pareto front can be generated by the MCMC self-supervised fine-tuning method for a Saturn-Titan transfer starting from the Jupiter-Europa case versus a separate dedicated global search.
☆ A Bilevel Optimization Framework for Adversarial Control of Gas Pipeline Operations
Cyberattacks on pipeline operational technology systems pose growing risks to energy infrastructure. This study develops a physics-informed simulation and optimization framework for analyzing cyber-physical threats in petroleum pipeline networks. The model integrates networked hydraulic dynamics, SCADA-based state estimation, model predictive control (MPC), and a bi-level formulation for stealthy false-data injection (FDI) attacks. Pipeline flow and pressure dynamics are modeled on a directed graph using nodal pressure evolution and edge-based Weymouth-type relations, including control-aware equipment such as valves and compressors. An extended Kalman filter estimates the full network state from partial SCADA telemetry. The controller computes pressure-safe control inputs via MPC under actuator constraints and forecasted demands. Adversarial manipulation is formalized as a bi-level optimization problem where an attacker perturbs sensor data to degrade throughput while remaining undetected by bad-data detectors. This attack-control interaction is solved via Karush-Kuhn-Tucker (KKT) reformulation, which results in a tractable mixed-integer quadratic program. Test gas pipeline case studies demonstrate the covert reduction of service delivery under attack. Results show that undetectable attacks can cause sustained throughput loss with minimal instantaneous deviation. This reveals the need for integrated detection and control strategies in cyber-physical infrastructure.
Situationally Aware Rolling Horizon Multi-Tier Load Restoration Considering Behind-The-Meter DER
Restoration in power distribution systems (PDSs) is well studied, however, most existing research focuses on network partition and microgrid formation, where load transfer is limited to adjacent feeders. This focus is not practical, as when adjacent feeders lack sufficient capacity, utilities may request support from more distant feeders in practice. Such a hirarchical restoration is complex, especially when involving changing system conditions due to cold load pickup and delayed reconnection of behind-the-meter DERs. To fill this research gap, a situationally aware multi-tier load restoration framework is proposed. Specifically, models are proposed to describe the multi-tier load restoration, including the multi-tier load transfer and substation transformer and feeder protection models. By introducing binary actional switching variables and load block transfer variables, the models effectively captures the dynamics of switches and multi-tier transfer process. To integrate situational awareness of evolving system conditions, the problem is formulated as a mixed-integer linear program (MILP) and then embedded within a rolling horizon optimization. Particularly, a set of safeguarded constraints are developed based on segment-level restoration reward bounds to mitigate the myopia of traditional rolling horizon optimization. The proposed safeguarded rolling strategy guarantees that each time step is lower bounded by a $(1-\varepsilon)$-fraction of its optimal restoration potential, thereby balancing short-term switching decisions with long-term restoration goals. Finally, cases studies on the modified IEEE 123-node test feeder validate the proposed multi-tier restoration framework.
Power Distribution System Blackstart Restoration Using Renewable Energy
Integrating renewable energy sources into the grid not only reduces global carbon emissions, but also facilitates distribution system (DS) blackstart restoration. This process leverages renewable energy, inverters, situational awareness and distribution automation to initiate blackstart at the DS level, obtaining a fast response and bottom-up restoration. In this Review, we survey the latest technological advances for DS blackstart restoration using renewable energy. We first present mathematical models for distributed energy resources (DERs), network topology, and load dynamics. We then discuss how the situational awareness can help improve restoration performance through real-time monitoring and forecasting. Next, the DS blackstart restoration problem, including objectives, constraints, and existing methodologies for decision-making are provided. Lastly, we outline remaining challenges, and highlight the opportunities and future research directions.
☆ Improved Robustness of Deep Reinforcement Learning for Control of Time-Varying Systems by Bounded Extremum Seeking
In this paper, we study the use of robust model independent bounded extremum seeking (ES) feedback control to improve the robustness of deep reinforcement learning (DRL) controllers for a class of nonlinear time-varying systems. DRL has the potential to learn from large datasets to quickly control or optimize the outputs of many-parameter systems, but its performance degrades catastrophically when the system model changes rapidly over time. Bounded ES can handle time-varying systems with unknown control directions, but its convergence speed slows down as the number of tuned parameters increases and, like all local adaptive methods, it can get stuck in local minima. We demonstrate that together, DRL and bounded ES result in a hybrid controller whose performance exceeds the sum of its parts with DRL taking advantage of historical data to learn how to quickly control a many-parameter system to a desired setpoint while bounded ES ensures its robustness to time variations. We present a numerical study of a general time-varying system and a combined ES-DRL controller for automatic tuning of the Low Energy Beam Transport section at the Los Alamos Neutron Science Center linear particle accelerator.
Data-Driven Stochastic Distribution System Hardening Based on Bayesian Online Learning
Extreme weather frequently cause widespread outages in distribution systems (DSs), demonstrating the importance of hardening strategies for resilience enhancement. However, the well-utilization of real-world outage data with associated weather conditions to make informed hardening decisions in DSs is still an open issue. To bridge this research gap, this paper proposes a data-driven stochastic distribution line (DL) hardening strategy. First, a deep neural network (DNN) regression model is developed to predict the probabilistic evolution of outage scenarios under various hardening decisions. Based on the DNN predictions, the problem is formulated as a decision-dependent distributionally robust optimization (DRO) model, accounting for uncertainties in outage scenario distributions using a data-driven ambiguity set. To address decision-dependent uncertainty, a Bayesian online learning algorithm is proposed. This algorithm decomposes the original problem into inner and outer problems. Then, it iteratively refines hardening decisions by sequentially incorporating outage data and dynamically updating decision-specific ambiguity sets by using Bayes' theorem and Bayesian Inference. Also, the convergence of the algorithm is proven through dynamic regret analysis. Finally, case studies are implemented on a real-world DS in Redfield, Iowa, USA. A dataset spanning 24 years (2001-2024) is constructed based on the utility outage records. The simulation results validates the effectiveness of the proposed strategy.
♻ ☆ Cyber-physical WebAssembly: Secure Hardware Interfaces and Pluggable Drivers
The rapid expansion of Internet of Things (IoT), edge, and embedded devices in the past decade has introduced numerous challenges in terms of security and configuration management. Simultaneously, advances in cloud-native development practices have greatly enhanced the development experience and facilitated quicker updates, thereby enhancing application security. However, applying these advances to IoT, edge, and embedded devices remains a complex task, primarily due to the heterogeneous environments and the need to support devices with extended lifespans. WebAssembly and the WebAssembly System Interface (WASI) has emerged as a promising technology to bridge this gap. As WebAssembly becomes more popular on IoT, edge, and embedded devices, there is a growing demand for hardware interface support in WebAssembly programs. This work presents WASI proposals and proof-of-concept implementations to enable hardware interaction with I2C and USB, which are two commonly used protocols in IoT, directly from WebAssembly applications. This is achieved by running the device drivers within WebAssembly as well. A thorough evaluation of the proof of concepts shows that WASI-USB introduces a minimal overhead of at most 8% compared to native operating system USB APIs. However, the results show that runtime initialization overhead can be significant in low-latency applications.
comment: Accepted article of the IEEE/IFIP Network Operations and Management Symposium 2025 (NOMS 2025)
♻ ☆ Time-o1: Time-Series Forecasting Needs Transformed Label Alignment NeurIPS 2025
Training time-series forecast models presents unique challenges in designing effective learning objectives. Existing methods predominantly utilize the temporal mean squared error, which faces two critical challenges: (1) label autocorrelation, which leads to bias from the label sequence likelihood; (2) excessive amount of tasks, which increases with the forecast horizon and complicates optimization. To address these challenges, we propose Time-o1, a transformation-augmented learning objective tailored for time-series forecasting. The central idea is to transform the label sequence into decorrelated components with discriminated significance. Models are then trained to align the most significant components, thereby effectively mitigating label autocorrelation and reducing task amount. Extensive experiments demonstrate that Time-o1 achieves state-of-the-art performance and is compatible with various forecast models. Code is available at https://github.com/Master-PLC/Time-o1.
comment: Accepted as poster in NeurIPS 2025
♻ ☆ AdGT: Decentralized Gradient Tracking with Tuning-free Per-Agent Stepsize
In decentralized optimization, the choice of stepsize plays a critical role in algorithm performance. A common approach is to use a shared stepsize across all agents to ensure convergence. However, selecting an optimal stepsize often requires careful tuning, which can be time-consuming and may lead to slow convergence, especially when there is significant variation in the smoothness (L-smoothness) of local objective functions across agents. Individually tuning stepsizes per agent is also impractical, particularly in large-scale networks. To address these limitations, we propose AdGT, an adaptive gradient tracking method that enables each agent to adjust its stepsize based on the smoothness of its local objective. We prove that AdGT achieves linear convergence to the global optimal solution. Through numerical experiments, we compare AdGT with fixed-stepsize gradient tracking methods and demonstrate its superior performance. Additionally, we compare AdGT with adaptive gradient descent (AdGD) in a centralized setting and observe that fully adaptive stepsizes offer greater benefits in decentralized networks than in centralized ones.
♻ ☆ Robust Capacity Expansion Modelling for Renewable Energy Systems
Future greenhouse gas neutral energy systems will be dominated by renewable energy technologies whose energy output and utilisation is subject to uncertain weather conditions. This work proposes an algorithm for capacity expansion planning if only uncertain data is available for a year's operative parameters. When faced with multiple possible operating years, the quality of a solution derived on a single operating year's data is evaluated for all years, and the optimisation problem is iteratively modified whenever supply gaps are detected. These modifications lead to solutions with sufficient back-up capacity to overcome periods of cold dark lulls, and sufficient total annual energy supply across all years. A computational study on an energy system model of Germany for 40 different operating years shows that the iterative algorithm finds solutions that guarantee security of supply for all considered years increasing the total annual cost by 1.6-2.9% compared to a lower bound. Results also underline the importance of assessing the feasibility of energy system models using atypical time-series, combining dark lull and cold period effects.
♻ ☆ Learning Low-Dimensional Embeddings for Black-Box Optimization
When gradient-based methods are impractical, black-box optimization (BBO) provides a valuable alternative. However, BBO often struggles with high-dimensional problems and limited trial budgets. In this work, we propose a novel approach based on meta-learning to pre-compute a reduced-dimensional manifold where optimal points lie for a specific class of optimization problems. When optimizing a new problem instance sampled from the class, black-box optimization is carried out in the reduced-dimensional space, effectively reducing the effort required for finding near-optimal solutions.
♻ ☆ A Fractional-Order Nonlinear Backstepping Controller Design for Current-Controlled Maglev System
The magnetic levitation system (Maglev) is a nonlinear system by which an object is suspended with no support other than magnetic fields. The main control perspective of the Maglev system is to levitate a steel ball in air by the electromagnetic force. However, the Maglev system has highly nonlinear dynamics which is inconvenient in the sense of sensitive control/regulation of its nonlinear dynamics. In this paper, the nonlinear backstepping controller based on the fractional-order derivative is proposed for the control of the nonlinear current-controlled Maglev system. After, the system dynamics and fractional-order backstepping controller design are given, the asymptotic stability of the closed-loop system is proved by employing the Lyapunov theory. Some computer-based numerical experiments are carried out to show the effectiveness of the proposed controller for the control of Maglev system.
comment: Accepted at Proceedings of the 28th International Scientific Conference Mechanika 2024
♻ ☆ A Novel State-Centric Necessary Condition for Time-Optimal Control of Controllable Linear Systems Based on Augmented Switching Laws (Extended Version)
Most existing necessary conditions for optimal control based on adjoining methods require both state and costate information, yet the unobservability of costates for a given feasible trajectory impedes the determination of optimality in practice. This paper establishes a novel theoretical framework for time-optimal control of controllable linear systems with a single input, proposing the augmented switching law (ASL) that represents the input control and the feasibility in a compact form. Given a feasible trajectory, the perturbed trajectory under the constraints of ASL is guaranteed to be feasible, resulting in a novel state-centric necessary condition without dependence on costate information. A first-order necessary condition is proposed that the Jacobian matrix of the ASL is not of full row rank, which also results in a potential approach to optimizing a given feasible trajectory with the preservation of arc structures. The proposed necessary condition is applied to high-order chain-of-integrator systems with full box constraints, contributing to some theoretical results challenging to reason by costate-based conditions.
comment: This paper has been accepted by IEEE TAC
♻ ☆ Verifiable Mission Planning For Space Operations
Spacecraft must operate under environmental and actuator uncertainties while meeting strict safety requirements. Traditional approaches rely on scenario-based heuristics that fail to account for stochastic influences, leading to suboptimal or unsafe plans. We propose a finite-horizon, chance-constrained Markov decision process for mission planning, where states represent mission and vehicle parameters, actions correspond to operational adjustments, and temporal logic specifications encode operational constraints. We synthesize policies that optimize mission objectives while ensuring constraints are met with high probability. Applied to the GRACE-FO mission, the approach accounts for stochastic solar activity and uncertain thrust performance, yielding maneuver schedules that maximize scientific return and provably satisfy safety requirements. This work demonstrates how Markov decision processes can be applied to space missions, enabling autonomous operation with formal guarantees.
comment: Submitted to the 2025 AAS/AIAA Astrodynamics Specialist Conference
♻ ☆ Future pathways for eVTOLs: A design optimization perspective
The rapid development of advanced urban air mobility, particularly electric vertical take-off and landing (eVTOL) aircraft, requires interdisciplinary approaches involving the future urban air mobility ecosystem. Operational cost efficiency, regulatory aspects, sustainability, and environmental compatibility should be incorporated directly into the conceptual design of aircraft and across operational and regulatory strategies. In this work, we apply a novel multidisciplinary design optimization framework for the conceptual design of eVTOL aircraft. The framework optimizes conventional design elements of eVTOL aircraft over a generic mission and integrates a comprehensive operational cost model to directly capture economic incentives of the designed system through profit modeling for operators. We introduce a novel metric, the cross-transportation Figure of Merit (FoM), to compare the optimized eVTOL system with various competing road, rail, and air transportation modes in terms of sustainability, cost, and travel time. We investigate four objective-specific eVTOL optimization designs in a broad scenario space, mapping regulatory, technical, and operational constraints to generate a representation of potential urban air mobility stakeholder-centric design objectives. The analysis of an optimized profit-maximizing eVTOL, cost-minimizing eVTOL, sustainability-maximizing eVTOL, and a combined FoM-maximizing eVTOL design highlights significant trade-offs in the area of profitability, operational flexibility, and sustainability strategies. This underlines the importance of incorporating multiple operationally tangential disciplines into the design process, while also reflecting the diverse priorities of stakeholders such as operators, regulators, and society.
comment: 26 pages, 8 figures
♻ ☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
♻ ☆ Koopman-Nemytskii Operator: A Linear Representation of Nonlinear Controlled Systems
While Koopman operator lifts a nonlinear system into an infinite-dimensional function space and represents it as a linear dynamics, its definition is restricted to autonomous systems, i.e., does not incorporate inputs or disturbances. To the end of designing state-feedback controllers, the existing extensions of Koopman operator, which only account for the effect of open-loop values of inputs, does not involve feedback laws on closed-loop systems. Hence, in order to generically represent any nonlinear controlled dynamics linearly, this paper proposes a Koopman-Nemytskii operator, defined as a linear mapping from a product reproducing kernel Hilbert space (RKHS) of states and feedback laws to an RKHS of states. Using the equivalence between RKHS and Sobolev-Hilbert spaces under certain regularity conditions on the dynamics and kernel selection, this operator is well-defined. Its data-based approximation, which follows a kernel extended dynamic mode decomposition (kernel EDMD) approach, have established errors in single-step and multi-step state predictions as well as accumulated cost under control.
comment: 19 pages, 9 figures, submitted to IEEE Transactions on Automatic Control after revision on 10/2/2025
♻ ☆ Planning Stealthy Backdoor Attacks in MDPs with Observation-Based Triggers
This paper investigates backdoor attack planning in stochastic control systems modeled as Markov Decision Processes (MDPs). In a backdoor attack, the adversary provides a control policy that behaves well in the original MDP to pass the testing phase. However, when such a policy is deployed with a trigger policy, which perturbs the system dynamics at runtime, it optimizes the attacker's objective instead. To solve jointly the control policy and its trigger, we formulate the attack planning problem as a constrained optimal planning problem in an MDP with augmented state space, with the objective to maximize the attacker's total rewards in the system with an activated trigger, subject to the constraint that the control policy is near optimal in the original MDP. We then introduce a gradient-based optimization method to solve the optimal backdoor attack policy as a pair of coordinated control and trigger policies. Experimental results from a case study validate the effectiveness of our approach in achieving stealthy backdoor attacks.
♻ ☆ Active Alignments of Lens Systems with Reinforcement Learning
Aligning a lens system relative to an imager is a critical challenge in camera manufacturing. While optimal alignment can be mathematically computed under ideal conditions, real-world deviations caused by manufacturing tolerances often render this approach impractical. Measuring these tolerances can be costly or even infeasible, and neglecting them may result in suboptimal alignments. We propose a reinforcement learning (RL) approach that learns exclusively in the pixel space of the sensor output, eliminating the need to develop expert-designed alignment concepts. We conduct an extensive benchmark study and show that our approach surpasses other methods in speed, precision, and robustness. We further introduce relign, a realistic, freely explorable, open-source simulation utilizing physically based rendering that models optical systems with non-deterministic manufacturing tolerances and noise in robotic alignment movement. It provides an interface to popular machine learning frameworks, enabling seamless experimentation and development. Our work highlights the potential of RL in a manufacturing environment to enhance efficiency of optical alignments while minimizing the need for manual intervention.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Neural Parameter-varying Data-enabled Predictive Control of Cold Atmospheric Pressure Plasma Jets
Cold Atmospheric Pressure Plasma Jets (APPJs) show significant potential for biomedical applications, but their inherent complexity, characterized by nonlinear dynamics and strong sensitivity to operating conditions like tip-to-surface distance, presents challenges for real-time control. This paper introduces the Neural Parameter-varying Data-enabled Predictive Control (NPV-DeePC) framework to address these issues. By integrating hypernetworks into the neural DeePC paradigm, NPV-DeePC adaptively captures system nonlinearities and parameter variations, dynamically adjusts the neural network's learned representation of the system, enabling accurate multi-step trajectory prediction and control. Simulation studies on surface temperature tracking and thermal dose delivery demonstrate that NPV-DeePC achieves higher accuracy and adaptability than existing controllers. Moreover, its computational efficiency supports real-time implementation, making it a practical approach for precise APPJ control and a generalizable solution for other nonlinear, parameter-varying systems.
♻ ☆ Neural Network-based Co-design of Output-Feedback Control Barrier Function and Observer
Control Barrier Functions (CBFs) provide a powerful framework for ensuring safety in dynamical systems. However, their application typically relies on full state information, which is often violated in real-world scenarios due to the availability of partial state information. In this work, we propose a neural network-based framework for the co-design of a safety controller, observer, and CBF for partially observed continuous-time systems. By formulating barrier conditions over an augmented state space, our approach ensures safety without requiring bounded estimation errors or handcrafted barrier functions. All components are jointly trained by formulating appropriate loss functions, and we introduce a validity condition to provide formal safety guarantees beyond the training data. Finally, we demonstrate the effectiveness of the proposed approach through several case studies.
comment: There were errors in paper (introduction section and notations)
Computational Geometry 3
☆ Bifurcation: How to Explore a Tree
Avraham et al. [AFK+15] presented an alternative approach to parametric search, called \emph{bifurcation}, that performs faster under certain circumstances. Intuitively, when the underlying decider execution can be rolled back cheaply and the decider has a near-linear running time. For some problems, this leads to fast algorithms that beat the seemingly natural lower bound arising from distance selection. Bifurcation boils down to a tree exploration problem. You are given a binary (unfortunately implicit) tree of height $n$ and $k$ internal nodes with two children (all other internal nodes have a single child), and assume each node has an associated parameter value. These values are sorted in the inorder traversal of the tree. Assume there is (say) a node (not necessarily a leaf) that is the target node that the exploration needs to discover. The player starts from the root. At each step, the player can move to adjacent nodes to the current location (i.e., one of the children or the parent). Alternatively, the player can call an oracle on the current node, which returns either that it is the target (thus, mission accomplished!) or whether the target value is strictly smaller or larger than the current one. A naive algorithm explores the whole tree, in $O(n k)$ time, then performs $O(\log k n)$ calls to the oracle to find the desired leaf. Avraham \etal showed that this can be improved to $O(n \sqrt{k} )$ time, and $O( \sqrt{k} \log n)$ oracle calls. Here, we improve this to $O(n \sqrt{k} )$ time, with only $ O( \sqrt{k} + \log n)$ oracle calls. We also show matching lower bounds, under certain assumptions. We believe our interpretation of bifurcation as a tree exploration problem, and the associated algorithm, are of independent interest.
☆ Minimum Selective Subset on Unit Disk Graphs and Circle Graphs
In a connected simple graph G = (V(G),E(G)), each vertex is assigned one of c colors, where V(G) can be written as a union of a total of c subsets V_{1},...,V_{c} and V_{i} denotes the set of vertices of color i. A subset S of V(G) is called a selective subset if, for every i, every vertex v in V_{i} has at least one nearest neighbor in $S \cup (V(G) \setminus V_{i})$ that also lies in V_{i}. The Minimum Selective Subset (MSS) problem asks for a selective subset of minimum size. We show that the MSS problem is log-APX-hard on general graphs, even when c=2. As a consequence, the problem does not admit a polynomial-time approximation scheme (PTAS) unless P = NP. On the positive side, we present a PTAS for unit disk graphs, which works without requiring a geometric representation and applies for arbitrary c. We further prove that MSS remains NP-complete in unit disk graphs for arbitrary c. In addition, we show that the MSS problem is log-APX-hard on circle graphs, even when c=2.
♻ ☆ Higher-order, generically complete, continuous, and polynomial-time isometry invariants of periodic sets
Periodic point sets model all solid crystalline materials (crystals) whose atoms can be considered zero-sized points with or without atomic types. This paper addresses the fundamental problem of checking whether claimed crystals are novel, not noisy perturbations of known materials obtained by unrealistic atomic replacements. Such near-duplicates have skewed ground-truth because past comparisons relied on unstable cells and symmetries. The proposed Lipschitz continuity under noise is a new essential requirement for machine learning on any data objects that have ambiguous representations and live in continuous spaces. For periodic point sets under isometry (any distance-preserving transformation), we designed invariants that distinguish all known counter-examples to the completeness of past descriptors and detect thousands of (near-)duplicates in large high-profile databases of crystals within two days on a modest desktop computer.
comment: 44 pages, 11 figures, 18 tables. The 2nd version includes more examples in Figures 10-11 and 4 new tables. The latest version is maintained at http://kurlin.org/projects/periodic-geometry/higher-order-PDD.pdf
Optimization and Control 47
☆ Drop-Muon: Update Less, Converge Faster
Conventional wisdom in deep learning optimization dictates updating all layers at every step-a principle followed by all recent state-of-the-art optimizers such as Muon. In this work, we challenge this assumption, showing that full-network updates can be fundamentally suboptimal, both in theory and in practice. We introduce a non-Euclidean Randomized Progressive Training method-Drop-Muon-a simple yet powerful framework that updates only a subset of layers per step according to a randomized schedule, combining the efficiency of progressive training with layer-specific non-Euclidean updates for top-tier performance. We provide rigorous convergence guarantees under both layer-wise smoothness and layer-wise $(L^0, L^1)$-smoothness, covering deterministic and stochastic gradient settings, marking the first such results for progressive training in the stochastic and non-smooth regime. Our cost analysis further reveals that full-network updates are not optimal unless a very specific relationship between layer smoothness constants holds. Through controlled CNN experiments, we empirically demonstrate that Drop-Muon consistently outperforms full-network Muon, achieving the same accuracy up to $1.4\times$ faster in wall-clock time. Together, our results suggest a shift in how large-scale models can be efficiently trained, challenging the status quo and offering a highly efficient, theoretically grounded alternative to full-network updates.
☆ Computing Control Lyapunov-Barrier Functions: Softmax Relaxation and Smooth Patching with Formal Guarantees
We present a computational framework for synthesizing a single smooth Lyapunov function that certifies both asymptotic stability and safety. We show that the existence of a strictly compatible pair of control barrier and control Lyapunov functions (CBF-CLF) guarantees the existence of such a function on the exact safe set certified by the barrier. To maximize the certifiable safe domain while retaining differentiability, we employ a log-sum-exp (softmax) relaxation of the nonsmooth maximum barrier, together with a counterexample-guided refinement that inserts half-space cuts until a strict barrier condition is verifiable. We then patch the softmax barrier with a CLF via an explicit smooth bump construction, which is always feasible under the strict compatibility condition. All conditions are formally verified using a satisfiability modulo theories (SMT) solver, enabled by a reformulation of Farkas' lemma for encoding strict compatibility. On benchmark systems, including a power converter, we show that the certified safe stabilization regions obtained with the proposed approach are often less conservative than those achieved by state-of-the-art sum-of-squares (SOS) compatible CBF-CLF designs.
☆ Flatness-Aware Stochastic Gradient Langevin Dynamics
Generalization in deep learning is closely tied to the pursuit of flat minima in the loss landscape, yet classical Stochastic Gradient Langevin Dynamics (SGLD) offers no mechanism to bias its dynamics toward such low-curvature solutions. This work introduces Flatness-Aware Stochastic Gradient Langevin Dynamics (fSGLD), designed to efficiently and provably seek flat minima in high-dimensional nonconvex optimization problems. At each iteration, fSGLD uses the stochastic gradient evaluated at parameters perturbed by isotropic Gaussian noise, commonly referred to as Random Weight Perturbation (RWP), thereby optimizing a randomized-smoothing objective that implicitly captures curvature information. Leveraging these properties, we prove that the invariant measure of fSGLD stays close to a stationary measure concentrated on the global minimizers of a loss function regularized by the Hessian trace whenever the inverse temperature and the scale of random weight perturbation are properly coupled. This result provides a rigorous theoretical explanation for the benefits of random weight perturbation. In particular, we establish non-asymptotic convergence guarantees in Wasserstein distance with the best known rate and derive an excess-risk bound for the Hessian-trace regularized objective. Extensive experiments on noisy-label and large-scale vision tasks, in both training-from-scratch and fine-tuning settings, demonstrate that fSGLD achieves superior or comparable generalization and robustness to baseline algorithms while maintaining the computational cost of SGD, about half that of SAM. Hessian-spectrum analysis further confirms that fSGLD converges to significantly flatter minima.
Reinforcement Learning with Action-Triggered Observations
We study reinforcement learning problems where state observations are stochastically triggered by actions, a constraint common in many real-world applications. This framework is formulated as Action-Triggered Sporadically Traceable Markov Decision Processes (ATST-MDPs), where each action has a specified probability of triggering a state observation. We derive tailored Bellman optimality equations for this framework and introduce the action-sequence learning paradigm in which agents commit to executing a sequence of actions until the next observation arrives. Under the linear MDP assumption, value-functions are shown to admit linear representations in an induced action-sequence feature map. Leveraging this structure, we propose off-policy estimators with statistical error guarantees for such feature maps and introduce ST-LSVI-UCB, a variant of LSVI-UCB adapted for action-triggered settings. ST-LSVI-UCB achieves regret $\widetilde O(\sqrt{Kd^3(1-\gamma)^{-3}})$, where $K$ is the number of episodes, $d$ the feature dimension, and $\gamma$ the discount factor (per-step episode non-termination probability). Crucially, this work establishes the theoretical foundation for learning with sporadic, action-triggered observations while demonstrating that efficient learning remains feasible under such observation constraints.
☆ On the (almost) Global Exponential Convergence of the Overparameterized Policy Optimization for the LQR Problem
In this work we study the convergence of gradient methods for nonconvex optimization problems -- specifically the effect of the problem formulation to the convergence behavior of the solution of a gradient flow. We show through a simple example that, surprisingly, the gradient flow solution can be exponentially or asymptotically convergent, depending on how the problem is formulated. We then deepen the analysis and show that a policy optimization strategy for the continuous-time linear quadratic regulator (LQR) (which is known to present only asymptotic convergence globally) presents almost global exponential convergence if the problem is overparameterized through a linear feed-forward neural network (LFFNN). We prove this qualitative improvement always happens for a simplified version of the LQR problem and derive explicit convergence rates for the gradient flow. Finally, we show that both the qualitative improvement and the quantitative rate gains persist in the general LQR through numerical simulations.
comment: This version is currently under review for the 2026 IEEE American Control Conference (ACC)
Dynamic Random Bipartite Matching under Spatiotemporal Heterogeneity: General Models and Application to Mobility Services
This paper explores a variant of bipartite matching problem, referred to as the Spatiotemporal Random Bipartite Matching Problem (ST-RBMP), that accommodates randomness and heterogeneity in the spatial distributions and temporal arrivals of bipartite vertices. This type of problem can be applied to many location-based services, such as shared mobility systems, where randomly arriving customers and vehicles must be matched dynamically. This paper proposes a new modeling framework to address ST-RBMP's challenges associated with the spatiotemporal heterogeneity, dynamics, and stochastic decision-making. The objective is to dynamically determine the optimal vehicle/customer pooling intervals and maximum matching radii that minimize the system-wide matching costs, including customer and vehicle waiting times and matching distances. Closed-form formulas for estimating the expected matching distances under a maximum matching radius are developed for static and homogeneous RBMPs, and then extended to accommodate spatial heterogeneity via continuum approximation. The ST-RBMP is then formulated as an optimal control problem where optimal values of pooling intervals and matching radii are solved over time and space. A series of experiments with simulated data are conducted to demonstrate that the proposed formulas for static RBMPs under matching radius and spatial heterogeneity yield very accurate results on estimating matching probabilities and distances. Additional numerical results are presented to demonstrate the effectiveness of the proposed ST-RBMP modeling framework in designing dynamic matching strategies for mobility services under various demand and supply patterns, which offers key managerial insights for mobility service operators.
☆ LLM-Enhanced, Data-Driven Personalized and Equitable Clinician Scheduling: A Predict-then-Optimize Approach ICDM 2025
Clinician scheduling remains a persistent challenge due to limited clinical resources and fluctuating demands. This complexity is especially acute in large academic anesthesiology departments as physicians balance responsibilities across multiple clinical sites with conflicting priorities. Further, scheduling must account for individual clinical and lifestyle preferences to ensure job satisfaction and well-being. Traditional approaches, often based on statistical or rule-based optimization models, rely on structured data and explicit domain knowledge. However, these methods often overlook unstructured information, e.g., free-text notes from routinely administered clinician well-being surveys and scheduling platforms. These notes may reveal implicit and underutilized clinical resources. Neglecting such information can lead to misaligned schedules, increased burnout, overlooked staffing flexibility, and suboptimal utilization of available resources. To address this gap, we propose a predict-then-optimize framework that integrates classification-based clinician availability predictions with a mixed-integer programming schedule optimization model. Large language models (LLMs) are employed to extract actionable preferences and implicit constraints from unstructured schedule notes, enhancing the reliability of availability predictions. These predictions then inform the schedule optimization considering four objectives: first, ensuring clinical full-time equivalent compliance, second, reducing workload imbalances by enforcing equitable proportions of shift types, third, maximizing clinician availability for assigned shifts, and fourth, schedule consistency. By combining the interpretive power of LLMs with the rigor of mathematical optimization, our framework provides a robust, data-driven solution that enhances operational efficiency while supporting equity and clinician well-being.
comment: 10 pages, 5 figures, Accepted to IEEE ICDM 2025 Workshops Proceedings; IEEE Computer Society Press
☆ Universal vector and matrix optimal transport
In this paper we propose a gauge-theoretic approach to the problems of optimal mass transport for vector and matrix densities. This resolves both the issues of positivity and action transitivity constraints. Bures-type metrics on the corresponding semi-direct product groups of diffeomorphisms and gauge transformations are related to Wasserstein-type metrics on vector half-densities and matrix densities via Riemannian submersions. We also describe their relation to Poisson geometry and demonstrate how the momentum map allows one to prove the Riemannian submersion properties. The obtained geodesic equations turn out to be vector versions of the Burgers equations.
comment: 29 pages, 2 figures
☆ Reducing Discomfort in Driving Simulators: Motion Cueing for Motion Sickness Mitigation
Driving simulators are increasingly used in research and development. However, simulators often cause motion sickness due to downscaled motion and unscaled veridical visuals. In this paper, a motion cueing algorithm is proposed that reduces motion sickness as predicted by the subjective vertical conflict (SVC) model using model predictive control (MPC). Both sensory conflict and specific force errors are penalised in the cost function, allowing the algorithm to jointly optimise fidelity and comfort. Human-in-the-loop experiments were conducted to compare four simulator motion settings: two variations of our MPC-based algorithm, one focused on pure specific force tracking and the second compromising specific force tracking and motion sickness minimisation, as well as reference adaptive washout and no motion cases. The experiments were performed on a hexapod driving simulator with participants exposed to passive driving. Experimental motion sickness results closely matched the sickness model predictions. As predicted by the model, the no motion condition yielded the lowest sickness levels. However, it was rated lowest in terms of fidelity. The compromise solution reduced sickness by over 50% (average MISC level 3 to 1.5) compared to adaptive washout and the algorithm focusing on specific force tracking, without any significant reduction in fidelity rating. The proposed approach for developing MCA that takes into account both the simulator dynamics and time evolution of motion sickness offers a significant advancement in achieving an optimal control of motion sickness and specific force recreation in driving simulators, supporting broader simulator use.
☆ Lower Bounds on Adversarial Robustness for Multiclass Classification with General Loss Functions
We consider adversarially robust classification in a multiclass setting under arbitrary loss functions and derive dual and barycentric reformulations of the corresponding learner-agnostic robust risk minimization problem. We provide explicit characterizations for important cases such as the cross-entropy loss, loss functions with a power form, and the quadratic loss, extending in this way available results for the 0-1 loss. These reformulations enable efficient computation of sharp lower bounds for adversarial risks and facilitate the design of robust classifiers beyond the 0-1 loss setting. Our paper uncovers interesting connections between adversarial robustness, $\alpha$-fair packing problems, and generalized barycenter problems for arbitrary positive measures where Kullback-Leibler and Tsallis entropies are used as penalties. Our theoretical results are accompanied with illustrative numerical experiments where we obtain tighter lower bounds for adversarial risks with the cross-entropy loss function.
☆ Smooth Quasar-Convex Optimization with Constraints
Quasar-convex functions form a broad nonconvex class with applications to linear dynamical systems, generalized linear models, and Riemannian optimization, among others. Current nearly optimal algorithms work only in affine spaces due to the loss of one degree of freedom when working with general convex constraints. Obtaining an accelerated algorithm that makes nearly optimal $\widetilde{O}(1/(\gamma\sqrt{\epsilon}))$ first-order queries to a $\gamma$-quasar convex smooth function \emph{with constraints} was independently asked as an open problem in Mart\'inez-Rubio (2022); Lezane, Langer, and Koolen (2024). In this work, we solve this question by designing an inexact accelerated proximal point algorithm that we implement using a first-order method achieving the aforementioned rate and, as a consequence, we improve the complexity of the accelerated geodesically Riemannian optimization solution in Mart\'inez-Rubio (2022). We also analyze projected gradient descent and Frank-Wolfe algorithms in this constrained quasar-convex setting. To the best of our knowledge, our work provides the first analyses of first-order methods for quasar-convex smooth functions with general convex constraints.
☆ Central Path Art
The central path revolutionized the study of optimization in the 1980s and 1990s due to its favorable convergence properties, and as such, it has been investigated analytically, algorithmically, and computationally. Past pursuits have primarily focused on linking iterative approximation algorithms to the central path in the design of efficient algorithms to solve large, and sometimes novel, optimization problems. This algorithmic intent has meant that the central path has rarely been celebrated as an aesthetic entity in low dimensions, with the only meager exceptions being illustrative examples in textbooks. We undertake this low dimensional investigation and illustrate the artistic use of the central path to create aesthetic tilings and flower-like constructs in two and three dimensions, an endeavor that combines mathematical rigor and artistic sensibilities. The result is a fanciful and enticing collection of patterns that, beyond computer generated images, supports math-aesthetic designs for novelties and museum-quality pieces of art.
comment: 35 pages
Robust MPC for Large-scale Linear Systems
State-of-the-art approaches of Robust Model Predictive Control (MPC) are restricted to linear systems of relatively small scale, i.e., with no more than about 5 states. The main reason is the computational burden of determining a robust positively invariant (RPI) set, whose complexity suffers from the curse of dimensionality. The recently proposed approach of Deadbeat Robust Model Predictive Control (DRMPC) is the first that does not rely on an RPI set. Yet it comes with the full set of essential system theoretic guarantees. DRMPC is hence a viable option, in particular, for large-scale systems. This paper introduces a detailed design procedure for DRMPC. It is shown that the optimal control problem generated for DRMPC has exactly the same computational complexity as Nominal MPC. A numerical study validates its applicability to randomly generated large-scale linear systems of various dimensions.
☆ A Linear Programming Approach to Estimate the Core in Cooperative Games
This paper proposes a novel algorithm to approximate the core of transferable utility (TU) cooperative games via linear programming. Given the computational hardness of determining the full core, our approach provides a tractable approximation by sampling extreme points through randomized linear problems (LPs). We analyze its convergence and computational complexity, and validate its effectiveness through extensive simulations on various game models. Our results show that the method is scalable and achieves high accuracy in terms of core reconstruction.
☆ Exactly or Approximately Wasserstein Distributionally Robust Estimation According to Wasserstein Radii Being Small or Large
This paper primarily considers the robust estimation problem under Wasserstein distance constraints on the parameter and noise distributions in the linear measurement model with additive noise, which can be formulated as an infinite-dimensional nonconvex minimax problem. We prove that the existence of a saddle point for this problem is equivalent to that for a finite-dimensional minimax problem, and give a counterexample demonstrating that the saddle point may not exist. Motivated by this observation, we present a verifiable necessary and sufficient condition whose parameters can be derived from a convex problem and its dual. Additionally, we also introduce a simplified sufficient condition, which intuitively indicates that when the Wasserstein radii are small enough, the saddle point always exists. In the absence of the saddle point, we solve an finite-dimensional nonconvex minimax problem, obtained by restricting the estimator to be linear. Its optimal value establishes an upper bound on the robust estimation problem, while its optimal solution yields a robust linear estimator. Numerical experiments are also provided to validate our theoretical results.
☆ Irrationality as a mean of regularization in Bayesian Persuasion
We study a regularized variant of the Bayesian Persuasion problem, where the receiver's decision process includes a divergence-based penalty that accounts for deviations from perfect rationality. This modification smooths the underlying optimization landscape and mitigates key theoretical issues, such as measurability and ill-posedness, commonly encountered in the classical formulation. It also enables the use of scalable second-order optimization methods to compute numerically the optimal signaling scheme in a setting known to be NP-hard. We present theoretical results comparing the regularized and original models, including convergence guarantees and structural properties of optimal signaling schemes. Analytical examples and numerical simulations illustrate how this framework accommodates complex environments while remaining tractable and robust. A companion Python library, BASIL, makes use of all the practical insights from this article.
☆ Learning Regularization Functionals for Inverse Problems: A Comparative Study
In recent years, a variety of learned regularization frameworks for solving inverse problems in imaging have emerged. These offer flexible modeling together with mathematical insights. The proposed methods differ in their architectural design and training strategies, making direct comparison challenging due to non-modular implementations. We address this gap by collecting and unifying the available code into a common framework. This unified view allows us to systematically compare the approaches and highlight their strengths and limitations, providing valuable insights into their future potential. We also provide concise descriptions of each method, complemented by practical guidelines.
☆ Improved $\ell_{p}$ Regression via Iteratively Reweighted Least Squares
We introduce fast algorithms for solving $\ell_{p}$ regression problems using the iteratively reweighted least squares (IRLS) method. Our approach achieves state-of-the-art iteration complexity, outperforming the IRLS algorithm by Adil-Peng-Sachdeva (NeurIPS 2019) and matching the theoretical bounds established by the complex algorithm of Adil-Kyng-Peng-Sachdeva (SODA 2019, J. ACM 2024) via a simpler lightweight iterative scheme. This bridges the existing gap between theoretical and practical algorithms for $\ell_{p}$ regression. Our algorithms depart from prior approaches, using a primal-dual framework, in which the update rule can be naturally derived from an invariant maintained for the dual objective. Empirically, we show that our algorithms significantly outperform both the IRLS algorithm by Adil-Peng-Sachdeva and MATLAB/CVX implementations.
☆ An extension of the mean value theorem
Let ($\Omega$, $\mu$) be a measure space with $\Omega$ $\subset$ R d and $\mu$ a finite measure on $\Omega$. We provide an extension of the Mean Value Theorem (MVT) in the form It is valid for non compact sets $\Omega$ and f is only required to be integrable with respect to $\mu$. It also contains as a special case the MVT in the form f d$\mu$ = $\mu$($\Omega$)f (x 0 ) for some x 0 $\in$ $\Omega$, valid for compact connected set $\Omega$ and continuous f . It is a direct consequence of Richter's theorem which in turn is a non trivial (overlooked) generalization of Tchakaloff's theorem, and even published earlier.
comment: To appear in ''The Mathematical Intelligencer''
☆ On Error Bounds for Rank-Constrained Affine Matrix Sets
Rank-constrained matrix problems appear frequently across science and engineering. The convergence analysis of iterative algorithms developed for these problems often hinges on local error bounds, which correlate the distance to the feasible set with a measure of how much the constraints are violated. Foundational results in semi-algebraic geometry guarantee that such bounds exist, yet the associated exponents are generally not explicitly determined. This paper establishes a local H\"olderian error bound with an explicit exponent for the canonical rank-constrained affine feasibility set. This paper proves that, on any compact set, the distance to the feasible set is bounded by a power of a natural residual function capturing violations in both the rank and affine constraints. The exponent in this bound is given explicitly in terms of the problem's dimensions. This provides a fundamental quantitative result on the geometry of the solution set, paving the way for the convergence analysis of a broad class of numerical methods.
☆ NPN: Non-Linear Projections of the Null-Space for Imaging Inverse Problems NeurIPS 2025
Imaging inverse problems aims to recover high-dimensional signals from undersampled, noisy measurements, a fundamentally ill-posed task with infinite solutions in the null-space of the sensing operator. To resolve this ambiguity, prior information is typically incorporated through handcrafted regularizers or learned models that constrain the solution space. However, these priors typically ignore the task-specific structure of that null-space. In this work, we propose \textit{Non-Linear Projections of the Null-Space} (NPN), a novel class of regularization that, instead of enforcing structural constraints in the image domain, promotes solutions that lie in a low-dimensional projection of the sensing matrix's null-space with a neural network. Our approach has two key advantages: (1) Interpretability: by focusing on the structure of the null-space, we design sensing-matrix-specific priors that capture information orthogonal to the signal components that are fundamentally blind to the sensing process. (2) Flexibility: NPN is adaptable to various inverse problems, compatible with existing reconstruction frameworks, and complementary to conventional image-domain priors. We provide theoretical guarantees on convergence and reconstruction accuracy when used within plug-and-play methods. Empirical results across diverse sensing matrices demonstrate that NPN priors consistently enhance reconstruction fidelity in various imaging inverse problems, such as compressive sensing, deblurring, super-resolution, computed tomography, and magnetic resonance imaging, with plug-and-play methods, unrolling networks, deep image prior, and diffusion models.
comment: 25 pages, 12 tables, 10 figures. Accepted to NeurIPS 2025
☆ Data selection: at the interface of PDE-based inverse problem and randomized linear algebra
All inverse problems rely on data to recover unknown parameters, yet not all data are equally informative. This raises the central question of data selection. A distinctive challenge in PDE-based inverse problems is their inherently infinite-dimensional nature: both the parameter space and the design space are infinite, which greatly complicates the selection process. Somewhat unexpectedly, randomized numerical linear algebra (RNLA), originally developed in very different contexts, has provided powerful tools for addressing this challenge. These methods are inherently probabilistic, with guarantees typically stating that information is preserved with probability at least 1-p when using N randomly selected, weighted samples. Here, the notion of information can take different mathematical forms depending on the setting. In this review, we survey the problem of data selection in PDE-based inverse problems, emphasize its unique infinite-dimensional aspects, and highlight how RNLA strategies have been adapted and applied in this context.
☆ Efficient Optimal Path Planning in Dynamic Environments Using Koopman MPC
This paper presents a data-driven model predictive control framework for mobile robots navigating in dynamic environments, leveraging Koopman operator theory. Unlike the conventional Koopman-based approaches that focus on the linearization of system dynamics only, our work focuses on finding a global linear representation for the optimal path planning problem that includes both the nonlinear robot dynamics and collision-avoidance constraints. We deploy extended dynamic mode decomposition to identify linear and bilinear Koopman realizations from input-state data. Our open-loop analysis demonstrates that only the bilinear Koopman model can accurately capture nonlinear state-input couplings and quadratic terms essential for collision avoidance, whereas linear realizations fail to do so. We formulate a quadratic program for the robot path planning in the presence of moving obstacles in the lifted space and determine the optimal robot action in an MPC framework. Our approach is capable of finding the safe optimal action 320 times faster than a nonlinear MPC counterpart that solves the path planning problem in the original state space. Our work highlights the potential of bilinear Koopman realizations for linearization of highly nonlinear optimal control problems subject to nonlinear state and input constraints to achieve computational efficiency similar to linear problems.
comment: This work has been submitted to the ACC2026 conference
Self-supervised diffusion model fine-tuning for costate initialization using Markov chain Monte Carlo
Global search and optimization of long-duration, low-thrust spacecraft trajectories with the indirect method is challenging due to a complex solution space and the difficulty of generating good initial guesses for the costate variables. This is particularly true in multibody environments. Given data that reveals a partial Pareto optimal front, it is desirable to find a flexible manner in which the Pareto front can be completed and fronts for related trajectory problems can be found. In this work we use conditional diffusion models to represent the distribution of candidate optimal trajectory solutions. We then introduce into this framework the novel approach of using Markov Chain Monte Carlo algorithms with self-supervised fine-tuning to achieve the aforementioned goals. Specifically, a random walk Metropolis algorithm is employed to propose new data that can be used to fine-tune the diffusion model using a reward-weighted training based on efficient evaluations of constraint violations and missions objective functions. The framework removes the need for separate focused and often tedious data generation phases. Numerical experiments are presented for two problems demonstrating the ability to improve sample quality and explicitly target Pareto optimality based on the theory of Markov chains. The first problem does so for a transfer in the Jupiter-Europa circular restricted three-body problem, where the MCMC approach completes a partial Pareto front. The second problem demonstrates how a dense and superior Pareto front can be generated by the MCMC self-supervised fine-tuning method for a Saturn-Titan transfer starting from the Jupiter-Europa case versus a separate dedicated global search.
☆ In-memory Training on Analog Devices with Limited Conductance States via Multi-tile Residual Learning
Analog in-memory computing (AIMC) accelerators enable efficient deep neural network computation directly within memory using resistive crossbar arrays, where model parameters are represented by the conductance states of memristive devices. However, effective in-memory training typically requires at least 8-bit conductance states to match digital baselines. Realizing such fine-grained states is costly and often requires complex noise mitigation techniques that increase circuit complexity and energy consumption. In practice, many promising memristive devices such as ReRAM offer only about 4-bit resolution due to fabrication constraints, and this limited update precision substantially degrades training accuracy. To enable on-chip training with these limited-state devices, this paper proposes a \emph{residual learning} framework that sequentially learns on multiple crossbar tiles to compensate the residual errors from low-precision weight updates. Our theoretical analysis shows that the optimality gap shrinks with the number of tiles and achieves a linear convergence rate. Experiments on standard image classification benchmarks demonstrate that our method consistently outperforms state-of-the-art in-memory analog training strategies under limited-state settings, while incurring only moderate hardware overhead as confirmed by our cost analysis.
Situationally Aware Rolling Horizon Multi-Tier Load Restoration Considering Behind-The-Meter DER
Restoration in power distribution systems (PDSs) is well studied, however, most existing research focuses on network partition and microgrid formation, where load transfer is limited to adjacent feeders. This focus is not practical, as when adjacent feeders lack sufficient capacity, utilities may request support from more distant feeders in practice. Such a hirarchical restoration is complex, especially when involving changing system conditions due to cold load pickup and delayed reconnection of behind-the-meter DERs. To fill this research gap, a situationally aware multi-tier load restoration framework is proposed. Specifically, models are proposed to describe the multi-tier load restoration, including the multi-tier load transfer and substation transformer and feeder protection models. By introducing binary actional switching variables and load block transfer variables, the models effectively captures the dynamics of switches and multi-tier transfer process. To integrate situational awareness of evolving system conditions, the problem is formulated as a mixed-integer linear program (MILP) and then embedded within a rolling horizon optimization. Particularly, a set of safeguarded constraints are developed based on segment-level restoration reward bounds to mitigate the myopia of traditional rolling horizon optimization. The proposed safeguarded rolling strategy guarantees that each time step is lower bounded by a $(1-\varepsilon)$-fraction of its optimal restoration potential, thereby balancing short-term switching decisions with long-term restoration goals. Finally, cases studies on the modified IEEE 123-node test feeder validate the proposed multi-tier restoration framework.
Data-Driven Stochastic Distribution System Hardening Based on Bayesian Online Learning
Extreme weather frequently cause widespread outages in distribution systems (DSs), demonstrating the importance of hardening strategies for resilience enhancement. However, the well-utilization of real-world outage data with associated weather conditions to make informed hardening decisions in DSs is still an open issue. To bridge this research gap, this paper proposes a data-driven stochastic distribution line (DL) hardening strategy. First, a deep neural network (DNN) regression model is developed to predict the probabilistic evolution of outage scenarios under various hardening decisions. Based on the DNN predictions, the problem is formulated as a decision-dependent distributionally robust optimization (DRO) model, accounting for uncertainties in outage scenario distributions using a data-driven ambiguity set. To address decision-dependent uncertainty, a Bayesian online learning algorithm is proposed. This algorithm decomposes the original problem into inner and outer problems. Then, it iteratively refines hardening decisions by sequentially incorporating outage data and dynamically updating decision-specific ambiguity sets by using Bayes' theorem and Bayesian Inference. Also, the convergence of the algorithm is proven through dynamic regret analysis. Finally, case studies are implemented on a real-world DS in Redfield, Iowa, USA. A dataset spanning 24 years (2001-2024) is constructed based on the utility outage records. The simulation results validates the effectiveness of the proposed strategy.
☆ Best Proximity Points for Geraghty-Type Non-Self Mappings with a Registration-Inspired Alignment Model
We study Geraghty-type non-self mappings within the framework of best proximity point theory. By introducing auxiliary functions with subsequential convergence, we establish general conditions ensuring the existence and uniqueness of best proximity points. Our results extend and unify earlier work on proximal and Kannan-type contractions under a Geraghty setting, and we provide counterexamples showing that the auxiliary assumptions are essential. To demonstrate applicability, we construct a registration-inspired alignment model in which all hypotheses can be explicitly verified. This example illustrates how the theoretical framework guarantees a unique and well-defined alignment anchor, thereby highlighting the relevance of best proximity theory in registration problems.
♻ ☆ A Markovian Approach for Cross-Category Complementarity in Choice Modeling
While single-purchase choice models have been widely studied in assortment optimization, customers in modern retail and e-commerce environments often purchase multiple items across distinct product categories, exhibiting both substitution and complementarity. We consider the cross-category assortment optimization problem where retailers jointly determine assortments across categories to maximize expected revenue. Most prior work on the topic either overlooks complementarity or proposes models that lead to intractable optimization problems, despite being based on the multinomial logit (MNL) choice model. We propose a sequential multi-purchase choice model for cross-category choice that incorporates complementarity through a Markovian transition structure across categories, while allowing general Random Utility Maximization (RUM)-based choice models to capture the within-category substitution. We develop an Expectation-Maximization algorithm for estimation, and a polynomial-time algorithm for unconstrained assortment optimization that yields the optimal solution when the within-category substitution follows a Markov chain choice model. Furthermore, we introduce an empirical metric to quantify complementarity strength across product categories and conduct extensive numerical experiments on both synthetic data and a large-scale transaction-level dataset from a major US grocery store. Our model yields improvements in predictive accuracy, model fit, and expected revenue in setting with complementarity, and it reveals intuitive market structures such as brand-loyal cross-category purchasing. Overall, we believe that our model provides a theoretically-grounded and practical framework for modeling complementarity and making better cross-category assortment decisions.
♻ ☆ On Speedups for Convex Optimization via Quantum Dynamics
We explore the potential for quantum speedups in convex optimization using discrete simulations of the Quantum Hamiltonian Descent (QHD) framework, as proposed by Leng et al., and establish the first rigorous query complexity bounds. We develop enhanced analyses for quantum simulation of Schr\"odinger operators with black-box potential via the pseudo-spectral method, providing explicit resource estimates independent of wavefunction assumptions. These bounds are applied to assess the complexity of optimization through QHD. Our findings pertain to unconstrained convex optimization in $d$ dimensions. In continuous time, we demonstrate that QHD, with suitable parameters, can achieve arbitrarily fast convergence rates. The optimization speed limit arises solely from the discretization of the dynamics, mirroring a property of the classical dynamics underlying QHD. Considering this cost, we show that a $G$-Lipschitz convex function can be optimized to an error of $\epsilon$ with $\widetilde{\mathcal{O}}(d^{1.5}G^2 R^2/\epsilon^2)$ queries. Moreover, under reasonable assumptions on the complexity of Hamiltonian simulation, $\widetilde{\Omega}(d/\epsilon^2)$ queries are necessary. Thus, QHD does not offer a speedup over classical zeroth order methods with exact oracles. However, we demonstrate that the QHD algorithm tolerates $\widetilde{\mathcal{O}}(\epsilon^3/d^{1.5}G^2 R^2)$ noise in function evaluation. We show that QHD offers a super-quadratic query advantage over all known classical algorithms tolerating this level of evaluation noise in the high-dimension regime. Additionally, we design a quantum algorithm for stochastic convex optimization that provides a super-quadratic speedup over all known classical algorithms in the high-dimension regime. To our knowledge, these results represent the first rigorous quantum speedups for convex optimization achieved through a dynamical algorithm.
♻ ☆ Accuracy of Discretely Sampled Stochastic Policies in Continuous-time Reinforcement Learning
Stochastic policies (also known as relaxed controls) are widely used in continuous-time reinforcement learning algorithms. However, executing a stochastic policy and evaluating its performance in a continuous-time environment remain open challenges. This work introduces and rigorously analyzes a policy execution framework that samples actions from a stochastic policy at discrete time points and implements them as piecewise constant controls. We prove that as the sampling mesh size tends to zero, the controlled state process converges weakly to the dynamics with coefficients aggregated according to the stochastic policy. We explicitly quantify the convergence rate based on the regularity of the coefficients and establish an optimal first-order convergence rate for sufficiently regular coefficients. Additionally, we prove a $1/2$-order weak convergence rate that holds uniformly over the sampling noise with high probability, and establish a $1/2$-order pathwise convergence for each realization of the system noise in the absence of volatility control. Building on these results, we analyze the bias and variance of various policy evaluation and policy gradient estimators based on discrete-time observations. Our results provide theoretical justification for the exploratory stochastic control framework in [H. Wang, T. Zariphopoulou, and X.Y. Zhou, J. Mach. Learn. Res., 21 (2020), pp. 1-34].
♻ ☆ How to optimise tournament draws: The case of the FIFA World Cup
The organisers of major sports competitions use different policies with respect to constraints in the group draw. Our paper aims to rationalise these choices by analysing the trade-off between attractiveness (the number of games played by teams from the same geographic zone) and fairness (the departure of the draw mechanism from a uniform distribution). A parametric optimisation model is formulated and applied to the 2018 and 2022 FIFA World Cup draws. A flaw of the draw procedure is identified: the pre-assignment of the host to a group unnecessarily increases the distortions. All Pareto efficient sets of draw constraints are determined via simulations. The proposed framework can be used to find the optimal draw rules and justify the non-uniformity of the draw procedure for the stakeholders.
comment: 29 pages, 6 figures, 6 tables
♻ ☆ Stabilizability and lower spectral radius for linear switched systems with singular matrices
We investigate the stabilizability of linear discrete-time switched systems with singular matrices, focusing on the spectral radius in this context. A new lower bound of the stabilizability radius is proposed, which is applicable to any matrix set. Based on this lower bound, more relationships between the stabilizability radius and joint spectral subradius are established. Detailed analysis of the stabilizability radius of a special kind of two-dimensional switched system, consisting of a singular matrix and a rotation matrix, is presented. The Hausdorff dimensions of the parameter sets such that the stabilizability radius of these systems equals a constant are also presented. Other properties of switched systems with singular matrices are also discussed along with examples.
comment: Version 2: Theorem 2 more general
♻ ☆ AdGT: Decentralized Gradient Tracking with Tuning-free Per-Agent Stepsize
In decentralized optimization, the choice of stepsize plays a critical role in algorithm performance. A common approach is to use a shared stepsize across all agents to ensure convergence. However, selecting an optimal stepsize often requires careful tuning, which can be time-consuming and may lead to slow convergence, especially when there is significant variation in the smoothness (L-smoothness) of local objective functions across agents. Individually tuning stepsizes per agent is also impractical, particularly in large-scale networks. To address these limitations, we propose AdGT, an adaptive gradient tracking method that enables each agent to adjust its stepsize based on the smoothness of its local objective. We prove that AdGT achieves linear convergence to the global optimal solution. Through numerical experiments, we compare AdGT with fixed-stepsize gradient tracking methods and demonstrate its superior performance. Additionally, we compare AdGT with adaptive gradient descent (AdGD) in a centralized setting and observe that fully adaptive stepsizes offer greater benefits in decentralized networks than in centralized ones.
♻ ☆ Robust Capacity Expansion Modelling for Renewable Energy Systems
Future greenhouse gas neutral energy systems will be dominated by renewable energy technologies whose energy output and utilisation is subject to uncertain weather conditions. This work proposes an algorithm for capacity expansion planning if only uncertain data is available for a year's operative parameters. When faced with multiple possible operating years, the quality of a solution derived on a single operating year's data is evaluated for all years, and the optimisation problem is iteratively modified whenever supply gaps are detected. These modifications lead to solutions with sufficient back-up capacity to overcome periods of cold dark lulls, and sufficient total annual energy supply across all years. A computational study on an energy system model of Germany for 40 different operating years shows that the iterative algorithm finds solutions that guarantee security of supply for all considered years increasing the total annual cost by 1.6-2.9% compared to a lower bound. Results also underline the importance of assessing the feasibility of energy system models using atypical time-series, combining dark lull and cold period effects.
♻ ☆ R2 v2: The Pareto-compliant R2 Indicator for Better Benchmarking in Bi-objective Optimization PPSN 2024
In multi-objective optimization, set-based quality indicators are a cornerstone of benchmarking and performance assessment. They capture the quality of a set of trade-off solutions by reducing it to a scalar number. One of the most commonly used set-based metrics is the R2 indicator, which describes the expected utility of a solution set to a decision-maker under a distribution of utility functions. Typically, this indicator is applied by discretizing the latter distribution, yielding a weakly Pareto-compliant indicator. In consequence, adding a nondominated or dominating solution to a solution set may -- but does not have to -- improve the indicator's value. In this paper, we reinvestigate the R2 indicator under the premise that we have a continuous, uniform distribution of (Tchebycheff) utility functions. We analyze its properties in detail, demonstrating that this continuous variant is indeed Pareto-compliant -- that is, any beneficial solution will improve the metric's value. Additionally, we provide efficient computational procedures that (a) compute this metric for bi-objective problems in $\mathcal O (N \log N)$, and (b) can perform incremental updates to the indicator whenever solutions are added to (or removed from) the current set of solutions, without needing to recompute the indicator for the entire set. As a result, this work contributes to the state-of-the-art Pareto-compliant unary performance metrics, such as the hypervolume indicator, offering an efficient and promising alternative.
comment: This version is a journal extension of the original PPSN 2024 paper and has been accepted for publication in the PPSN 2024 Special Issue of Evolutionary Computation Journal
♻ ☆ Robust dividend policy: Equivalence of Epstein-Zin and Maenhout preferences
In a continuous-time economy, this paper formulates the Epstein-Zin preference for discounted dividends received by an investor as an Epstein-Zin singular control utility. We introduce a backward stochastic differential equation with an aggregator integrated with respect to a singular control, prove its well-posedness, and show that it coincides with the Epstein-Zin singular control utility. We then establish that this formulation is equivalent to a robust dividend policy chosen by the firm's executive under the Maenhout's ambiguity-averse preference. In particular, the robust dividend policy takes the form of a threshold strategy on the firm's surplus process, where the threshold level is characterized as the free boundary of a Hamilton-Jacobi-Bellman variational inequality. Therefore, dividend-caring investors can choose firms that match their preferences by examining stock's dividend policies and financial statements, whereas executives can make use of dividend to signal their confidence, in the form of ambiguity aversion, on realizing the earnings implied by their financial statements.
♻ ☆ Tree-based formulation for the multi-commodity flow problem
We introduce a tree-based formulation for the minimum-cost multi-commodity flow problem that addresses large-scale instances. The method decomposes the source-based model by representing flows as convex combinations of trees rooted at source nodes, and solves the resulting formulation with column generation. The number of demand constraints now depends on the number of sources $|S|$, not commodities $|K|$, yielding a compact master problem when $|S| \ll |K|$. We conduct a computational study comparing tree-based decomposition against path-based column generation and direct LP solving. The results show speed-ups of up to one order of magnitude over direct LP solving, and improved scalability compared to path-based formulations. Tree-based decomposition enables solving instances with millions of commodities and hundreds of thousands of nodes. This makes it well-suited for applications in transportation and logistics networks where multiple demands often share common origins.
♻ ☆ A Novel State-Centric Necessary Condition for Time-Optimal Control of Controllable Linear Systems Based on Augmented Switching Laws (Extended Version)
Most existing necessary conditions for optimal control based on adjoining methods require both state and costate information, yet the unobservability of costates for a given feasible trajectory impedes the determination of optimality in practice. This paper establishes a novel theoretical framework for time-optimal control of controllable linear systems with a single input, proposing the augmented switching law (ASL) that represents the input control and the feasibility in a compact form. Given a feasible trajectory, the perturbed trajectory under the constraints of ASL is guaranteed to be feasible, resulting in a novel state-centric necessary condition without dependence on costate information. A first-order necessary condition is proposed that the Jacobian matrix of the ASL is not of full row rank, which also results in a potential approach to optimizing a given feasible trajectory with the preservation of arc structures. The proposed necessary condition is applied to high-order chain-of-integrator systems with full box constraints, contributing to some theoretical results challenging to reason by costate-based conditions.
comment: This paper has been accepted by IEEE TAC
♻ ☆ A Three-Operator Splitting Scheme Derived from Three-Block ADMM
This work presents a new three-operator splitting method to handle monotone inclusion and convex optimization problems. The proposed splitting serves as another natural extension of the Douglas-Rachford splitting technique to problems involving three operators. For solving a composite convex minimization of a sum of three functions, its formula resembles but is different from Davis-Yin splitting and the dual formulation of the classical three-block ADMM. Numerical tests suggest that such a splitting scheme is robust in the sense of allowing larger step sizes. When two functions have orthogonal domains, the splitting operator can be proven 1/2-averaged, which implies convergence of the iteration scheme using any positive step size.
♻ ☆ Preconditioned subgradient method for composite optimization: overparameterization and fast convergence
Composite optimization problems involve minimizing the composition of a smooth map with a convex function. Such objectives arise in numerous data science and signal processing applications, including phase retrieval, blind deconvolution, and collaborative filtering. The subgradient method achieves local linear convergence when the composite loss is well-conditioned. However, if the smooth map is, in a certain sense, ill-conditioned or overparameterized, the subgradient method exhibits much slower sublinear convergence even when the convex function is well-conditioned. To overcome this limitation, we introduce a Levenberg-Morrison-Marquardt subgradient method that converges linearly under mild regularity conditions at a rate determined solely by the convex function. Further, we demonstrate that these regularity conditions hold for several problems of practical interest, including square-variable formulations, matrix sensing, and tensor factorization. Numerical experiments illustrate the benefits of our method.
comment: 84 pages, 8 figures
♻ ☆ When Location Shapes Choice: Placement Optimization of Substitutable Products
Strategic product placement can have a strong influence on customer purchase behavior in physical stores as well as online platforms. Motivated by this, we consider the problem of optimizing the placement of substitutable products in designated display locations to maximize the expected revenue of the seller. We model the customer behavior as a two-stage process: first, the customer visits a subset of display locations according to a browsing distribution; second, the customer chooses at most one product from the displayed products at those locations according to a choice model. Our goal is to design a general algorithm that can select and place the products optimally for any browsing distribution and choice model, and we call this the Placement problem. We give a randomized algorithm that utilizes an $\alpha$-approximate algorithm for cardinality constrained assortment optimization and outputs a $\frac{\Theta(\alpha)}{\log m}$-approximate solution (in expectation) for Placement with $m$ display locations, i.e., our algorithm outputs a solution with value at least $\frac{\Omega(\alpha)}{\log m}$ factor of the optimal and this is tight in the worst case. We also give algorithms with stronger guarantees in some special cases. In particular, we give a deterministic $\frac{\Omega(1)}{\log m}$-approximation algorithm for the Markov choice model, and a tight $(1-1/e)$-approximation algorithm for the problem when products have identical prices.
♻ ☆ Assortment Optimization under the Multinomial Logit Model with Covering Constraints
We consider an assortment optimization problem under the multinomial logit choice model with general covering constraints. In this problem, the seller offers an assortment that should contain a minimum number of products from multiple categories. We refer to these constraints as covering constraints. Such constraints are common in practice due to service level agreements with suppliers or diversity considerations within the assortment. We consider both the deterministic version, where the seller decides on a single assortment, and the randomized version, where they choose a distribution over assortments. In the deterministic case, we provide a $1/(\log K+2)$-approximation algorithm, where $K$ is the number of product categories, matching the problem's hardness up to a constant factor. For the randomized setting, we show that the problem is solvable in polynomial time via an equivalent linear program. We also extend our analysis to multi-segment assortment optimization with covering constraints, where there are $m$ customer segments, and an assortment is offered to each. In the randomized setting, the problem remains polynomially solvable. In the deterministic setting, we design a $(1 - \epsilon) / (\log K + 2)$-approximation algorithm for constant $m$ and a $1 / (m (\log K + 2))$-approximation for general $m$, which matches the hardness up to a logarithmic factor. Finally, we conduct a numerical experiment using real data from an online electronics store, categorizing products by price range and brand. Our findings demonstrate that, in practice, it is feasible to enforce a minimum number of representatives from each category while incurring a relatively small revenue loss. Moreover, we observe that the optimal expected revenue in both deterministic and randomized settings is often comparable, and the optimal solution in the randomized setting typically involves only a few assortments.
♻ ☆ Chance-Constrained Covariance Steering for Discrete-Time Markov Jump Linear Systems
In this paper, we solve the chance-constrained covariance steering problem for discrete-time Markov Jump Linear Systems (MJLS) using a convex optimization framework. We derive the analytical expressions for the mean and covariance trajectories of time-varying discrete-time MJLS and show that they cannot be separated even without chance constraints, unlike the single-mode dynamics case. To solve the covariance steering problem, we propose a two-step convex optimization framework, which optimizes the mean and covariance subproblems sequentially. Further, we incorporate chance constraints and propose an iterative optimization framework to solve the chance-constrained covariance steering problem. Both problems are originally nonconvex, and we derive convex relaxations which are proved to be lossless at optimality using the Karush-Kuhn-Tucker (KKT) conditions. Numerical simulations demonstrate the proposed method by achieving target covariances while respecting chance constraints under additive noise, bias, and Markovian jump dynamics.
♻ ☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
♻ ☆ Sharpness of Minima in Deep Matrix Factorization: Exact Expressions
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss, which measures the sharpness of the landscape. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in general overparameterized deep matrix factorization (i.e., deep linear neural network training) problems, resolving an open question posed by Mulayoff & Michaeli (2020). To complement our theory, we empirically investigate an escape phenomenon observed during gradient-based training near a minimum that crucially relies on our exact expression of the sharpness.
comment: 18 pages, 7 figures
♻ ☆ Exponential Utility Maximization with Delay in a Continuous Time Gaussian Framework
In this work we study the continuous time exponential utility maximization problem in the framework of an investor who is informed about the price changes with a delay. This leads to a non-Markovian stochastic control problem. In the case where the risky asset is given by a Gaussian process (with some additional properties) we establish a solution for the optimal control and the corresponding value. Our approach is purely probabilistic and is based on the theory for Radon-Nikodym derivatives of Gaussian measures developed by Shepp [6] and Hitsuda [5].
Computer Vision and Pattern Recognition 174
☆ Optimal Control Meets Flow Matching: A Principled Route to Multi-Subject Fidelity
Text-to-image (T2I) models excel on single-entity prompts but struggle with multi-subject descriptions, often showing attribute leakage, identity entanglement, and subject omissions. We introduce the first theoretical framework with a principled, optimizable objective for steering sampling dynamics toward multi-subject fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC), we formulate subject disentanglement as control over a trained FM sampler. This yields two architecture-agnostic algorithms: (i) a training-free test-time controller that perturbs the base velocity with a single-pass update, and (ii) Adjoint Matching, a lightweight fine-tuning rule that regresses a control network to a backward adjoint signal while preserving base-model capabilities. The same formulation unifies prior attention heuristics, extends to diffusion models via a flow-diffusion correspondence, and provides the first fine-tuning route explicitly designed for multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Diffusion XL, both algorithms consistently improve multi-subject alignment while maintaining base-model style. Test-time control runs efficiently on commodity GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Subjects), which achieves state-of-the-art multi-subject fidelity across models.
comment: Code: https://github.com/ericbill21/FOCUS/
☆ StealthAttack: Robust 3D Gaussian Splatting Poisoning via Density-Guided Illusions ICCV 2025
3D scene representation methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have significantly advanced novel view synthesis. As these methods become prevalent, addressing their vulnerabilities becomes critical. We analyze 3DGS robustness against image-level poisoning attacks and propose a novel density-guided poisoning method. Our method strategically injects Gaussian points into low-density regions identified via Kernel Density Estimation (KDE), embedding viewpoint-dependent illusory objects clearly visible from poisoned views while minimally affecting innocent views. Additionally, we introduce an adaptive noise strategy to disrupt multi-view consistency, further enhancing attack effectiveness. We propose a KDE-based evaluation protocol to assess attack difficulty systematically, enabling objective benchmarking for future research. Extensive experiments demonstrate our method's superior performance compared to state-of-the-art techniques. Project page: https://hentci.github.io/stealthattack/
comment: ICCV 2025. Project page: https://hentci.github.io/stealthattack/
☆ Clink! Chop! Thud! -- Learning Object Sounds from Real-World Interactions ICCV 2025
Can a model distinguish between the sound of a spoon hitting a hardwood floor versus a carpeted one? Everyday object interactions produce sounds unique to the objects involved. We introduce the sounding object detection task to evaluate a model's ability to link these sounds to the objects directly involved. Inspired by human perception, our multimodal object-aware framework learns from in-the-wild egocentric videos. To encourage an object-centric approach, we first develop an automatic pipeline to compute segmentation masks of the objects involved to guide the model's focus during training towards the most informative regions of the interaction. A slot attention visual encoder is used to further enforce an object prior. We demonstrate state of the art performance on our new task along with existing multimodal action understanding tasks.
comment: ICCV 2025. Project page: https://clink-chop-thud.github.io/
Inferring Dynamic Physical Properties from Video Foundation Models
We study the task of predicting dynamic physical properties from videos. More specifically, we consider physical properties that require temporal information to be inferred: elasticity of a bouncing object, viscosity of a flowing liquid, and dynamic friction of an object sliding on a surface. To this end, we make the following contributions: (i) We collect a new video dataset for each physical property, consisting of synthetic training and testing splits, as well as a real split for real world evaluation. (ii) We explore three ways to infer the physical property from videos: (a) an oracle method where we supply the visual cues that intrinsically reflect the property using classical computer vision techniques; (b) a simple read out mechanism using a visual prompt and trainable prompt vector for cross-attention on pre-trained video generative and self-supervised models; and (c) prompt strategies for Multi-modal Large Language Models (MLLMs). (iii) We show that video foundation models trained in a generative or self-supervised manner achieve a similar performance, though behind that of the oracle, and MLLMs are currently inferior to the other models, though their performance can be improved through suitable prompting.
☆ NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation
Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.
☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
☆ Continual Personalization for Diffusion Models
Updating diffusion models in an incremental setting would be practical in real-world applications yet computationally challenging. We present a novel learning strategy of Concept Neuron Selection (CNS), a simple yet effective approach to perform personalization in a continual learning scheme. CNS uniquely identifies neurons in diffusion models that are closely related to the target concepts. In order to mitigate catastrophic forgetting problems while preserving zero-shot text-to-image generation ability, CNS finetunes concept neurons in an incremental manner and jointly preserves knowledge learned of previous concepts. Evaluation of real-world datasets demonstrates that CNS achieves state-of-the-art performance with minimal parameter adjustments, outperforming previous methods in both single and multi-concept personalization works. CNS also achieves fusion-free operation, reducing memory storage and processing time for continual personalization.
VideoNSA: Native Sparse Attention Scales Video Understanding
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.
comment: Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
☆ From Behavioral Performance to Internal Competence: Interpreting Vision-Language Models with VLM-Lens EMNLP 2025
We introduce VLM-Lens, a toolkit designed to enable systematic benchmarking, analysis, and interpretation of vision-language models (VLMs) by supporting the extraction of intermediate outputs from any layer during the forward pass of open-source VLMs. VLM-Lens provides a unified, YAML-configurable interface that abstracts away model-specific complexities and supports user-friendly operation across diverse VLMs. It currently supports 16 state-of-the-art base VLMs and their over 30 variants, and is extensible to accommodate new models without changing the core logic. The toolkit integrates easily with various interpretability and analysis methods. We demonstrate its usage with two simple analytical experiments, revealing systematic differences in the hidden representations of VLMs across layers and target concepts. VLM-Lens is released as an open-sourced project to accelerate community efforts in understanding and improving VLMs.
comment: EMNLP 2025 System Demonstration | Code: https://github.com/compling-wat/vlm-lens
☆ Test-Time Anchoring for Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling using pretrained discrete diffusion foundation models, aiming to recover images from noisy measurements without retraining task-specific models. While diffusion models have achieved remarkable success in generative modeling, most advances rely on continuous Gaussian diffusion. In contrast, discrete diffusion offers a unified framework for jointly modeling categorical data such as text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free Bayesian inference, making it particularly well-suited for posterior sampling. However, existing approaches to discrete diffusion posterior sampling face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS) for masked diffusion foundation models, built on two key innovations -- quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. Our approach achieves state-of-the-art performance among discrete diffusion samplers across linear and nonlinear inverse problems on the standard benchmarks. We further demonstrate the benefits of our approach in training-free stylization and text-guided editing.
comment: Preprint
MultiModal Action Conditioned Video Generation
Current video models fail as world model as they lack fine-graiend control. General-purpose household robots require real-time fine motor control to handle delicate tasks and urgent situations. In this work, we introduce fine-grained multimodal actions to capture such precise control. We consider senses of proprioception, kinesthesia, force haptics, and muscle activation. Such multimodal senses naturally enables fine-grained interactions that are difficult to simulate with text-conditioned generative models. To effectively simulate fine-grained multisensory actions, we develop a feature learning paradigm that aligns these modalities while preserving the unique information each modality provides. We further propose a regularization scheme to enhance causality of the action trajectory features in representing intricate interaction dynamics. Experiments show that incorporating multimodal senses improves simulation accuracy and reduces temporal drift. Extensive ablation studies and downstream applications demonstrate the effectiveness and practicality of our work.
☆ Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
☆ Self-Forcing++: Towards Minute-Scale High-Quality Video Generation
Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/
comment: preprint
☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
☆ microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.
☆ Do You Know Where Your Camera Is? View-Invariant Policy Learning with Camera Conditioning
We study view-invariant imitation learning by explicitly conditioning policies on camera extrinsics. Using Plucker embeddings of per-pixel rays, we show that conditioning on extrinsics significantly improves generalization across viewpoints for standard behavior cloning policies, including ACT, Diffusion Policy, and SmolVLA. To evaluate policy robustness under realistic viewpoint shifts, we introduce six manipulation tasks in RoboSuite and ManiSkill that pair "fixed" and "randomized" scene variants, decoupling background cues from camera pose. Our analysis reveals that policies without extrinsics often infer camera pose using visual cues from static backgrounds in fixed scenes; this shortcut collapses when workspace geometry or camera placement shifts. Conditioning on extrinsics restores performance and yields robust RGB-only control without depth. We release the tasks, demonstrations, and code at https://ripl.github.io/know_your_camera/ .
comment: Code and project materials are available at ripl.github.io/know_your_camera
☆ NeuroSwift: A Lightweight Cross-Subject Framework for fMRI Visual Reconstruction of Complex Scenes
Reconstructing visual information from brain activity via computer vision technology provides an intuitive understanding of visual neural mechanisms. Despite progress in decoding fMRI data with generative models, achieving accurate cross-subject reconstruction of visual stimuli remains challenging and computationally demanding. This difficulty arises from inter-subject variability in neural representations and the brain's abstract encoding of core semantic features in complex visual inputs. To address these challenges, we propose NeuroSwift, which integrates complementary adapters via diffusion: AutoKL for low-level features and CLIP for semantics. NeuroSwift's CLIP Adapter is trained on Stable Diffusion generated images paired with COCO captions to emulate higher visual cortex encoding. For cross-subject generalization, we pretrain on one subject and then fine-tune only 17 percent of parameters (fully connected layers) for new subjects, while freezing other components. This enables state-of-the-art performance with only one hour of training per subject on lightweight GPUs (three RTX 4090), and it outperforms existing methods.
☆ Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.
comment: All tables, graphs and figures generated can be obtained in the Zenodo repository complementary to this work: https://doi.org/10.5281/zenodo.15088423
☆ From Frames to Clips: Efficient Key Clip Selection for Long-Form Video Understanding
Video Large Language Models (VLMs) have achieved remarkable results on a variety of vision language tasks, yet their practical use is limited by the "needle in a haystack" problem: the massive number of visual tokens produced from raw video frames exhausts the model's context window. Existing solutions alleviate this issue by selecting a sparse set of frames, thereby reducing token count, but such frame-wise selection discards essential temporal dynamics, leading to suboptimal reasoning about motion and event continuity. In this work we systematically explore the impact of temporal information and demonstrate that extending selection from isolated key frames to key clips, which are short, temporally coherent segments, improves video understanding. To maintain a fixed computational budget while accommodating the larger token footprint of clips, we propose an adaptive resolution strategy that dynamically balances spatial resolution and clip length, ensuring a constant token count per video. Experiments on three long-form video benchmarks demonstrate that our training-free approach, F2C, outperforms uniform sampling up to 8.1%, 5.6%, and 10.3% on Video-MME, LongVideoBench and MLVU benchmarks, respectively. These results highlight the importance of preserving temporal coherence in frame selection and provide a practical pathway for scaling Video LLMs to real world video understanding applications. Project webpage is available at https://guangyusun.com/f2c .
☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
☆ The Unreasonable Effectiveness of Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their unreliability and high variance hinder their application to long-horizon, complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales over agents by generating multiple rollouts and selecting among them using behavior narratives that describe the agents' rollouts. It enables both wide exploration and principled trajectory selection, substantially improving robustness and success rates. On OSWorld, our bBoN scaling method establishes a new state of the art (SoTA) at 69.9%, significantly outperforming prior methods and approaching human-level performance at 72%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the unreasonable effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and bBoN provides a practical framework to achieve this.
comment: 23 pages, 7 figures, 10 tables
☆ RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning
Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.
☆ The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.
comment: 23 pages, 15 figures
☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal shape with a control signal (via correlation), amplifying it where visibility is needed (via energy), and maintaining spatial focus (via entropy). TempoControl allows precise control over timing while ensuring high video quality and diversity. We demonstrate its effectiveness across various video generation applications, including temporal reordering for single and multiple objects, as well as action and audio-aligned generation.
comment: Under Review
☆ MMDEW: Multipurpose Multiclass Density Estimation in the Wild
Density map estimation can be used to estimate object counts in dense and occluded scenes where discrete counting-by-detection methods fail. We propose a multicategory counting framework that leverages a Twins pyramid vision-transformer backbone and a specialised multi-class counting head built on a state-of-the-art multiscale decoding approach. A two-task design adds a segmentation-based Category Focus Module, suppressing inter-category cross-talk at training time. Training and evaluation on the VisDrone and iSAID benchmarks demonstrates superior performance versus prior multicategory crowd-counting approaches (33%, 43% and 64% reduction to MAE), and the comparison with YOLOv11 underscores the necessity of crowd counting methods in dense scenes. The method's regional loss opens up multi-class crowd counting to new domains, demonstrated through the application to a biodiversity monitoring dataset, highlighting its capacity to inform conservation efforts and enable scalable ecological insights.
comment: 8+1 pages, 4 figures, 5 tables
☆ Measurement-Guided Consistency Model Sampling for Inverse Problems
Diffusion models have become powerful generative priors for solving inverse imaging problems, but their reliance on slow multi-step sampling limits practical deployment. Consistency models address this bottleneck by enabling high-quality generation in a single or only a few steps, yet their direct adaptation to inverse problems is underexplored. In this paper, we present a modified consistency sampling approach tailored for inverse problem reconstruction: the sampler's stochasticity is guided by a measurement-consistency mechanism tied to the measurement operator, which enforces fidelity to the acquired measurements while retaining the efficiency of consistency-based generation. Experiments on Fashion-MNIST and LSUN Bedroom datasets demonstrate consistent improvements in perceptual and pixel-level metrics, including Fr\'echet Inception Distance, Kernel Inception Distance, peak signal-to-noise ratio, and structural similarity index measure, compared to baseline consistency sampling, yielding competitive or superior reconstructions with only a handful of steps.
comment: 5 pages, 3 figures, submitted to IEEE Signal Processing Letters
☆ Cross-Breed Pig Identification Using Auricular Vein Pattern Recognition: A Machine Learning Approach for Small-Scale Farming Applications
Accurate livestock identification is a cornerstone of modern farming: it supports health monitoring, breeding programs, and productivity tracking. However, common pig identification methods, such as ear tags and microchips, are often unreliable, costly, target pure breeds, and thus impractical for small-scale farmers. To address this gap, we propose a noninvasive biometric identification approach that leverages uniqueness of the auricular vein patterns. To this end, we have collected 800 ear images from 20 mixed-breed pigs (Landrace cross Pietrain and Duroc cross Pietrain), captured using a standard smartphone and simple back lighting. A multistage computer vision pipeline was developed to enhance vein visibility, extract structural and spatial features, and generate biometric signatures. These features were then classified using machine learning models. Support Vector Machines (SVM) achieved the highest accuracy: correctly identifying pigs with 98.12% precision across mixed-breed populations. The entire process from image processing to classification was completed in an average of 8.3 seconds, demonstrating feasibility for real-time farm deployment. We believe that by replacing fragile physical identifiers with permanent biological markers, this system provides farmers with a cost-effective and stress-free method of animal identification. More broadly, the findings confirm the practicality of auricular vein biometrics for digitizing livestock management, reinforcing its potential to extend the benefits of precision farming to resource-constrained agricultural communities.
comment: 20 pages
☆ GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data. Our codes and checkpoints are available at [https://github.com/tj12323/GeoPurify](https://github.com/tj12323/GeoPurify).
☆ Uncovering Semantic Selectivity of Latent Groups in Higher Visual Cortex with Mutual Information-Guided Diffusion
Understanding how neural populations in higher visual areas encode object-centered visual information remains a central challenge in computational neuroscience. Prior works have investigated representational alignment between artificial neural networks and the visual cortex. Nevertheless, these findings are indirect and offer limited insights to the structure of neural populations themselves. Similarly, decoding-based methods have quantified semantic features from neural populations but have not uncovered their underlying organizations. This leaves open a scientific question: "how feature-specific visual information is distributed across neural populations in higher visual areas, and whether it is organized into structured, semantically meaningful subspaces." To tackle this problem, we present MIG-Vis, a method that leverages the generative power of diffusion models to visualize and validate the visual-semantic attributes encoded in neural latent subspaces. Our method first uses a variational autoencoder to infer a group-wise disentangled neural latent subspace from neural populations. Subsequently, we propose a mutual information (MI)-guided diffusion synthesis procedure to visualize the specific visual-semantic features encoded by each latent group. We validate MIG-Vis on multi-session neural spiking datasets from the inferior temporal (IT) cortex of two macaques. The synthesized results demonstrate that our method identifies neural latent groups with clear semantic selectivity to diverse visual features, including object pose, inter-category transformations, and intra-class content. These findings provide direct, interpretable evidence of structured semantic representation in the higher visual cortex and advance our understanding of its encoding principles.
☆ DisCo-Layout: Disentangling and Coordinating Semantic and Physical Refinement in a Multi-Agent Framework for 3D Indoor Layout Synthesis
3D indoor layout synthesis is crucial for creating virtual environments. Traditional methods struggle with generalization due to fixed datasets. While recent LLM and VLM-based approaches offer improved semantic richness, they often lack robust and flexible refinement, resulting in suboptimal layouts. We develop DisCo-Layout, a novel framework that disentangles and coordinates physical and semantic refinement. For independent refinement, our Semantic Refinement Tool (SRT) corrects abstract object relationships, while the Physical Refinement Tool (PRT) resolves concrete spatial issues via a grid-matching algorithm. For collaborative refinement, a multi-agent framework intelligently orchestrates these tools, featuring a planner for placement rules, a designer for initial layouts, and an evaluator for assessment. Experiments demonstrate DisCo-Layout's state-of-the-art performance, generating realistic, coherent, and generalizable 3D indoor layouts. Our code will be publicly available.
☆ Unlocking Vision-Language Models for Video Anomaly Detection via Fine-Grained Prompting
Prompting has emerged as a practical way to adapt frozen vision-language models (VLMs) for video anomaly detection (VAD). Yet, existing prompts are often overly abstract, overlooking the fine-grained human-object interactions or action semantics that define complex anomalies in surveillance videos. We propose ASK-Hint, a structured prompting framework that leverages action-centric knowledge to elicit more accurate and interpretable reasoning from frozen VLMs. Our approach organizes prompts into semantically coherent groups (e.g. violence, property crimes, public safety) and formulates fine-grained guiding questions that align model predictions with discriminative visual cues. Extensive experiments on UCF-Crime and XD-Violence show that ASK-Hint consistently improves AUC over prior baselines, achieving state-of-the-art performance compared to both fine-tuned and training-free methods. Beyond accuracy, our framework provides interpretable reasoning traces towards anomaly and demonstrates strong generalization across datasets and VLM backbones. These results highlight the critical role of prompt granularity and establish ASK-Hint as a new training-free and generalizable solution for explainable video anomaly detection.
comment: 14 pages, video anomaly detection
☆ FRIEREN: Federated Learning with Vision-Language Regularization for Segmentation
Federeated Learning (FL) offers a privacy-preserving solution for Semantic Segmentation (SS) tasks to adapt to new domains, but faces significant challenges from these domain shifts, particularly when client data is unlabeled. However, most existing FL methods unrealistically assume access to labeled data on remote clients or fail to leverage the power of modern Vision Foundation Models (VFMs). Here, we propose a novel and challenging task, FFREEDG, in which a model is pretrained on a server's labeled source dataset and subsequently trained across clients using only their unlabeled data, without ever re-accessing the source. To solve FFREEDG, we propose FRIEREN, a framework that leverages the knowledge of a VFM by integrating vision and language modalities. Our approach employs a Vision-Language decoder guided by CLIP-based text embeddings to improve semantic disambiguation and uses a weak-to-strong consistency learning strategy for robust local training on pseudo-labels. Our experiments on synthetic-to-real and clear-to-adverse-weather benchmarks demonstrate that our framework effectively tackles this new task, achieving competitive performance against established domain generalization and adaptation methods and setting a strong baseline for future research.
comment: Master Thesis
☆ SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification MICCAI
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2025
☆ When Tracking Fails: Analyzing Failure Modes of SAM2 for Point-Based Tracking in Surgical Videos MICCAI
Video object segmentation (VOS) models such as SAM2 offer promising zero-shot tracking capabilities for surgical videos using minimal user input. Among the available input types, point-based tracking offers an efficient and low-cost alternative, yet its reliability and failure cases in complex surgical environments are not well understood. In this work, we systematically analyze the failure modes of point-based tracking in laparoscopic cholecystectomy videos. Focusing on three surgical targets, the gallbladder, grasper, and L-hook electrocautery, we compare the performance of point-based tracking with segmentation mask initialization. Our results show that point-based tracking is competitive for surgical tools but consistently underperforms for anatomical targets, where tissue similarity and ambiguous boundaries lead to failure. Through qualitative analysis, we reveal key factors influencing tracking outcomes and provide several actionable recommendations for selecting and placing tracking points to improve performance in surgical video analysis.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Collaborative Intelligence and Autonomy in Image-guided Surgery (COLAS), 2025
Mapping Historic Urban Footprints in France: Balancing Quality, Scalability and AI Techniques
Quantitative analysis of historical urban sprawl in France before the 1970s is hindered by the lack of nationwide digital urban footprint data. This study bridges this gap by developing a scalable deep learning pipeline to extract urban areas from the Scan Histo historical map series (1925-1950), which produces the first open-access, national-scale urban footprint dataset for this pivotal period. Our key innovation is a dual-pass U-Net approach designed to handle the high radiometric and stylistic complexity of historical maps. The first pass, trained on an initial dataset, generates a preliminary map that identifies areas of confusion, such as text and roads, to guide targeted data augmentation. The second pass uses a refined dataset and the binarized output of the first model to minimize radiometric noise, which significantly reduces false positives. Deployed on a high-performance computing cluster, our method processes 941 high-resolution tiles covering the entirety of metropolitan France. The final mosaic achieves an overall accuracy of 73%, effectively capturing diverse urban patterns while overcoming common artifacts like labels and contour lines. We openly release the code, training datasets, and the resulting nationwide urban raster to support future research in long-term urbanization dynamics.
☆ VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation
Accurate detection and segmentation of brain tumors from magnetic resonance imaging (MRI) are essential for diagnosis, treatment planning, and clinical monitoring. While convolutional architectures such as U-Net have long been the backbone of medical image segmentation, their limited capacity to capture long-range dependencies constrains performance on complex tumor structures. Recent advances in diffusion models have demonstrated strong potential for generating high-fidelity medical images and refining segmentation boundaries. In this work, we propose VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation framework, a transformer-driven diffusion framework for brain tumor detection and segmentation. By embedding a vision transformer at the core of the diffusion process, the model leverages global contextual reasoning together with iterative denoising to enhance both volumetric accuracy and boundary precision. The transformer backbone enables more effective modeling of spatial relationships across entire MRI volumes, while diffusion refinement mitigates voxel-level errors and recovers fine-grained tumor details. This hybrid design provides a pathway toward improved robustness and scalability in neuro-oncology, moving beyond conventional U-Net baselines. Experimental validation on MRI brain tumor datasets demonstrates consistent gains in Dice similarity and Hausdorff distance, underscoring the potential of transformer-guided diffusion models to advance the state of the art in tumor segmentation.
☆ Spec-Gloss Surfels and Normal-Diffuse Priors for Relightable Glossy Objects
Accurate reconstruction and relighting of glossy objects remain a longstanding challenge, as object shape, material properties, and illumination are inherently difficult to disentangle. Existing neural rendering approaches often rely on simplified BRDF models or parameterizations that couple diffuse and specular components, which restricts faithful material recovery and limits relighting fidelity. We propose a relightable framework that integrates a microfacet BRDF with the specular-glossiness parameterization into 2D Gaussian Splatting with deferred shading. This formulation enables more physically consistent material decomposition, while diffusion-based priors for surface normals and diffuse color guide early-stage optimization and mitigate ambiguity. A coarse-to-fine optimization of the environment map accelerates convergence and preserves high-dynamic-range specular reflections. Extensive experiments on complex, glossy scenes demonstrate that our method achieves high-quality geometry and material reconstruction, delivering substantially more realistic and consistent relighting under novel illumination compared to existing Gaussian splatting methods.
☆ Zero-shot Human Pose Estimation using Diffusion-based Inverse solvers
Pose estimation refers to tracking a human's full body posture, including their head, torso, arms, and legs. The problem is challenging in practical settings where the number of body sensors are limited. Past work has shown promising results using conditional diffusion models, where the pose prediction is conditioned on both measurements from the sensors. Unfortunately, nearly all these approaches generalize poorly across users, primarly because location measurements are highly influenced by the body size of the user. In this paper, we formulate pose estimation as an inverse problem and design an algorithm capable of zero-shot generalization. Our idea utilizes a pre-trained diffusion model and conditions it on rotational measurements alone; the priors from this model are then guided by a likelihood term, derived from the measured locations. Thus, given any user, our proposed InPose method generatively estimates the highly likely sequence of poses that best explains the sparse on-body measurements.
☆ A Multicentric Dataset for Training and Benchmarking Breast Cancer Segmentation in H&E Slides
Automated semantic segmentation of whole-slide images (WSIs) stained with hematoxylin and eosin (H&E) is essential for large-scale artificial intelligence-based biomarker analysis in breast cancer. However, existing public datasets for breast cancer segmentation lack the morphological diversity needed to support model generalizability and robust biomarker validation across heterogeneous patient cohorts. We introduce BrEast cancEr hisTopathoLogy sEgmentation (BEETLE), a dataset for multiclass semantic segmentation of H&E-stained breast cancer WSIs. It consists of 587 biopsies and resections from three collaborating clinical centers and two public datasets, digitized using seven scanners, and covers all molecular subtypes and histological grades. Using diverse annotation strategies, we collected annotations across four classes - invasive epithelium, non-invasive epithelium, necrosis, and other - with particular focus on morphologies underrepresented in existing datasets, such as ductal carcinoma in situ and dispersed lobular tumor cells. The dataset's diversity and relevance to the rapidly growing field of automated biomarker quantification in breast cancer ensure its high potential for reuse. Finally, we provide a well-curated, multicentric external evaluation set to enable standardized benchmarking of breast cancer segmentation models.
comment: Our dataset is available at https://zenodo.org/records/16812932 , our code is available at https://github.com/DIAGNijmegen/beetle , and our benchmark is available at https://beetle.grand-challenge.org/
☆ GaussianMorphing: Mesh-Guided 3D Gaussians for Semantic-Aware Object Morphing
We introduce GaussianMorphing, a novel framework for semantic-aware 3D shape and texture morphing from multi-view images. Previous approaches usually rely on point clouds or require pre-defined homeomorphic mappings for untextured data. Our method overcomes these limitations by leveraging mesh-guided 3D Gaussian Splatting (3DGS) for high-fidelity geometry and appearance modeling. The core of our framework is a unified deformation strategy that anchors 3DGaussians to reconstructed mesh patches, ensuring geometrically consistent transformations while preserving texture fidelity through topology-aware constraints. In parallel, our framework establishes unsupervised semantic correspondence by using the mesh topology as a geometric prior and maintains structural integrity via physically plausible point trajectories. This integrated approach preserves both local detail and global semantic coherence throughout the morphing process with out requiring labeled data. On our proposed TexMorph benchmark, GaussianMorphing substantially outperforms prior 2D/3D methods, reducing color consistency error ($\Delta E$) by 22.2% and EI by 26.2%. Project page: https://baiyunshu.github.io/GAUSSIANMORPHING.github.io/
comment: Project page: https://baiyunshu.github.io/GAUSSIANMORPHING.github.io/
☆ kabr-tools: Automated Framework for Multi-Species Behavioral Monitoring
A comprehensive understanding of animal behavior ecology depends on scalable approaches to quantify and interpret complex, multidimensional behavioral patterns. Traditional field observations are often limited in scope, time-consuming, and labor-intensive, hindering the assessment of behavioral responses across landscapes. To address this, we present kabr-tools (Kenyan Animal Behavior Recognition Tools), an open-source package for automated multi-species behavioral monitoring. This framework integrates drone-based video with machine learning systems to extract behavioral, social, and spatial metrics from wildlife footage. Our pipeline leverages object detection, tracking, and behavioral classification systems to generate key metrics, including time budgets, behavioral transitions, social interactions, habitat associations, and group composition dynamics. Compared to ground-based methods, drone-based observations significantly improved behavioral granularity, reducing visibility loss by 15% and capturing more transitions with higher accuracy and continuity. We validate kabr-tools through three case studies, analyzing 969 behavioral sequences, surpassing the capacity of traditional methods for data capture and annotation. We found that, like Plains zebras, vigilance in Grevy's zebras decreases with herd size, but, unlike Plains zebras, habitat has a negligible impact. Plains and Grevy's zebras exhibit strong behavioral inertia, with rare transitions to alert behaviors and observed spatial segregation between Grevy's zebras, Plains zebras, and giraffes in mixed-species herds. By enabling automated behavioral monitoring at scale, kabr-tools offers a powerful tool for ecosystem-wide studies, advancing conservation, biodiversity research, and ecological monitoring.
comment: 31 pages
☆ LiLa-Net: Lightweight Latent LiDAR Autoencoder for 3D Point Cloud Reconstruction ICRA
This work proposed a 3D autoencoder architecture, named LiLa-Net, which encodes efficient features from real traffic environments, employing only the LiDAR's point clouds. For this purpose, we have real semi-autonomous vehicle, equipped with Velodyne LiDAR. The system leverage skip connections concept to improve the performance without using extensive resources as the state-of-the-art architectures. Key changes include reducing the number of encoder layers and simplifying the skip connections, while still producing an efficient and representative latent space which allows to accurately reconstruct the original point cloud. Furthermore, an effective balance has been achieved between the information carried by the skip connections and the latent encoding, leading to improved reconstruction quality without compromising performance. Finally, the model demonstrates strong generalization capabilities, successfully reconstructing objects unrelated to the original traffic environment.
comment: 7 pages, 3 figures, 7 tables, Submitted to ICRA
☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Intended for submission to Scientific Reports
☆ Pure-Pass: Fine-Grained, Adaptive Masking for Dynamic Token-Mixing Routing in Lightweight Image Super-Resolution
Image Super-Resolution (SR) aims to reconstruct high-resolution images from low-resolution counterparts, but the computational complexity of deep learning-based methods often hinders practical deployment. CAMixer is the pioneering work to integrate the advantages of existing lightweight SR methods and proposes a content-aware mixer to route token mixers of varied complexities according to the difficulty of content recovery. However, several limitations remain, such as poor adaptability, coarse-grained masking and spatial inflexibility, among others. We propose Pure-Pass (PP), a pixel-level masking mechanism that identifies pure pixels and exempts them from expensive computations. PP utilizes fixed color center points to classify pixels into distinct categories, enabling fine-grained, spatially flexible masking while maintaining adaptive flexibility. Integrated into the state-of-the-art ATD-light model, PP-ATD-light achieves superior SR performance with minimal overhead, outperforming CAMixer-ATD-light in reconstruction quality and parameter efficiency when saving a similar amount of computation.
☆ 4DGS-Craft: Consistent and Interactive 4D Gaussian Splatting Editing
Recent advances in 4D Gaussian Splatting (4DGS) editing still face challenges with view, temporal, and non-editing region consistency, as well as with handling complex text instructions. To address these issues, we propose 4DGS-Craft, a consistent and interactive 4DGS editing framework. We first introduce a 4D-aware InstructPix2Pix model to ensure both view and temporal consistency. This model incorporates 4D VGGT geometry features extracted from the initial scene, enabling it to capture underlying 4D geometric structures during editing. We further enhance this model with a multi-view grid module that enforces consistency by iteratively refining multi-view input images while jointly optimizing the underlying 4D scene. Furthermore, we preserve the consistency of non-edited regions through a novel Gaussian selection mechanism, which identifies and optimizes only the Gaussians within the edited regions. Beyond consistency, facilitating user interaction is also crucial for effective 4DGS editing. Therefore, we design an LLM-based module for user intent understanding. This module employs a user instruction template to define atomic editing operations and leverages an LLM for reasoning. As a result, our framework can interpret user intent and decompose complex instructions into a logical sequence of atomic operations, enabling it to handle intricate user commands and further enhance editing performance. Compared to related works, our approach enables more consistent and controllable 4D scene editing. Our code will be made available upon acceptance.
☆ TriAlignXA: An Explainable Trilemma Alignment Framework for Trustworthy Agri-product Grading
The 'trust deficit' in online fruit and vegetable e-commerce stems from the inability of digital transactions to provide direct sensory perception of product quality. This paper constructs a 'Trust Pyramid' model through 'dual-source verification' of consumer trust. Experiments confirm that quality is the cornerstone of trust. The study reveals an 'impossible triangle' in agricultural product grading, comprising biological characteristics, timeliness, and economic viability, highlighting the limitations of traditional absolute grading standards. To quantitatively assess this trade-off, we propose the 'Triangular Trust Index' (TTI). We redefine the role of algorithms from 'decision-makers' to 'providers of transparent decision-making bases', designing the explainable AI framework--TriAlignXA. This framework supports trustworthy online transactions within agricultural constraints through multi-objective optimization. Its core relies on three engines: the Bio-Adaptive Engine for granular quality description; the Timeliness Optimization Engine for processing efficiency; and the Economic Optimization Engine for cost control. Additionally, the "Pre-Mapping Mechanism" encodes process data into QR codes, transparently conveying quality information. Experiments on grading tasks demonstrate significantly higher accuracy than baseline models. Empirical evidence and theoretical analysis verify the framework's balancing capability in addressing the "impossible triangle". This research provides comprehensive support--from theory to practice--for building a trustworthy online produce ecosystem, establishing a critical pathway from algorithmic decision-making to consumer trust.
☆ $\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO ($\text{G}^2$RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our $\text{G}^2$RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.
comment: Github Page: https://github.com/bcmi/Granular-GRPO
☆ ROI-GS: Interest-based Local Quality 3D Gaussian Splatting
We tackle the challenge of efficiently reconstructing 3D scenes with high detail on objects of interest. Existing 3D Gaussian Splatting (3DGS) methods allocate resources uniformly across the scene, limiting fine detail to Regions Of Interest (ROIs) and leading to inflated model size. We propose ROI-GS, an object-aware framework that enhances local details through object-guided camera selection, targeted Object training, and seamless integration of high-fidelity object of interest reconstructions into the global scene. Our method prioritizes higher resolution details on chosen objects while maintaining real-time performance. Experiments show that ROI-GS significantly improves local quality (up to 2.96 dB PSNR), while reducing overall model size by $\approx 17\%$ of baseline and achieving faster training for a scene with a single object of interest, outperforming existing methods.
comment: 4 pages, 3 figures, 2 tables
☆ ZK-WAGON: Imperceptible Watermark for Image Generation Models using ZK-SNARKs
As image generation models grow increasingly powerful and accessible, concerns around authenticity, ownership, and misuse of synthetic media have become critical. The ability to generate lifelike images indistinguishable from real ones introduces risks such as misinformation, deepfakes, and intellectual property violations. Traditional watermarking methods either degrade image quality, are easily removed, or require access to confidential model internals - making them unsuitable for secure and scalable deployment. We are the first to introduce ZK-WAGON, a novel system for watermarking image generation models using the Zero-Knowledge Succinct Non Interactive Argument of Knowledge (ZK-SNARKs). Our approach enables verifiable proof of origin without exposing model weights, generation prompts, or any sensitive internal information. We propose Selective Layer ZK-Circuit Creation (SL-ZKCC), a method to selectively convert key layers of an image generation model into a circuit, reducing proof generation time significantly. Generated ZK-SNARK proofs are imperceptibly embedded into a generated image via Least Significant Bit (LSB) steganography. We demonstrate this system on both GAN and Diffusion models, providing a secure, model-agnostic pipeline for trustworthy AI image generation.
comment: Accepted at AI-ML Systems 2025, Bangalore, India, https://www.aimlsystems.org/2025/
Patch-as-Decodable-Token: Towards Unified Multi-Modal Vision Tasks in MLLMs
Multimodal large language models (MLLMs) have advanced rapidly in recent years. However, existing approaches for vision tasks often rely on indirect representations, such as generating coordinates as text for detection, which limits performance and prevents dense prediction tasks like segmentation. To overcome these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified paradigm that enables MLLMs to directly generate both textual and diverse visual outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from visual patch embeddings of query images and interleaved seamlessly with LLM's output textual tokens. A lightweight decoder then transforms LLM's outputs into detection, segmentation, and grounding predictions. Unlike prior methods, PaDT processes VRTs independently at each forward pass and dynamically expands the embedding table, thus improving localization and differentiation among similar objects. We further tailor a training strategy for PaDT by randomly selecting VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy loss. Our empirical studies across four visual perception and understanding tasks suggest PaDT consistently achieving state-of-the-art performance, even compared with significantly larger MLLM models. The code is available at https://github.com/Gorilla-Lab-SCUT/PaDT.
comment: 24 pages, 12 figures and 9 tables
☆ ClustViT: Clustering-based Token Merging for Semantic Segmentation
Vision Transformers can achieve high accuracy and strong generalization across various contexts, but their practical applicability on real-world robotic systems is limited due to their quadratic attention complexity. Recent works have focused on dynamically merging tokens according to the image complexity. Token merging works well for classification but is less suited to dense prediction. We propose ClustViT, where we expand upon the Vision Transformer (ViT) backbone and address semantic segmentation. Within our architecture, a trainable Cluster module merges similar tokens along the network guided by pseudo-clusters from segmentation masks. Subsequently, a Regenerator module restores fine details for downstream heads. Our approach achieves up to 2.18x fewer GFLOPs and 1.64x faster inference on three different datasets, with comparable segmentation accuracy. Our code and models will be made publicly available.
comment: Submitted to IEEE
☆ Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
comment: 23 pages, 13 figures. Code is available at \url{https://github.com/ymxlzgy/FoundAD}
☆ GFSR-Net: Guided Focus via Segment-Wise Relevance Network for Interpretable Deep Learning in Medical Imaging
Deep learning has achieved remarkable success in medical image analysis, however its adoption in clinical practice is limited by a lack of interpretability. These models often make correct predictions without explaining their reasoning. They may also rely on image regions unrelated to the disease or visual cues, such as annotations, that are not present in real-world conditions. This can reduce trust and increase the risk of misleading diagnoses. We introduce the Guided Focus via Segment-Wise Relevance Network (GFSR-Net), an approach designed to improve interpretability and reliability in medical imaging. GFSR-Net uses a small number of human annotations to approximate where a person would focus within an image intuitively, without requiring precise boundaries or exhaustive markings, making the process fast and practical. During training, the model learns to align its focus with these areas, progressively emphasizing features that carry diagnostic meaning. This guidance works across different types of natural and medical images, including chest X-rays, retinal scans, and dermatological images. Our experiments demonstrate that GFSR achieves comparable or superior accuracy while producing saliency maps that better reflect human expectations. This reduces the reliance on irrelevant patterns and increases confidence in automated diagnostic tools.
☆ Automated Defect Detection for Mass-Produced Electronic Components Based on YOLO Object Detection Models
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
comment: 12 pages, 16 figures, 7 tables, and published in IEEE Sensors Journal
☆ Flow-Matching Guided Deep Unfolding for Hyperspectral Image Reconstruction
Hyperspectral imaging (HSI) provides rich spatial-spectral information but remains costly to acquire due to hardware limitations and the difficulty of reconstructing three-dimensional data from compressed measurements. Although compressive sensing systems such as CASSI improve efficiency, accurate reconstruction is still challenged by severe degradation and loss of fine spectral details. We propose the Flow-Matching-guided Unfolding network (FMU), which, to our knowledge, is the first to integrate flow matching into HSI reconstruction by embedding its generative prior within a deep unfolding framework. To further strengthen the learned dynamics, we introduce a mean velocity loss that enforces global consistency of the flow, leading to a more robust and accurate reconstruction. This hybrid design leverages the interpretability of optimization-based methods and the generative capacity of flow matching. Extensive experiments on both simulated and real datasets show that FMU significantly outperforms existing approaches in reconstruction quality. Code and models will be available at https://github.com/YiAi03/FMU.
☆ Model Merging to Maintain Language-Only Performance in Developmentally Plausible Multimodal Models EMNLP 2025
State-of-the-art vision-and-language models consist of many parameters and learn from enormous datasets, surpassing the amounts of linguistic data that children are exposed to as they acquire a language. This paper presents our approach to the multimodal track of the BabyLM challenge addressing this discrepancy. We develop language-only and multimodal models in low-resource settings using developmentally plausible datasets, with our multimodal models outperforming previous BabyLM baselines. One finding in the multimodal language model literature is that these models tend to underperform in \textit{language-only} tasks. Therefore, we focus on maintaining language-only abilities in multimodal models. To this end, we experiment with \textit{model merging}, where we fuse the parameters of multimodal models with those of language-only models using weighted linear interpolation. Our results corroborate the findings that multimodal models underperform in language-only benchmarks that focus on grammar, and model merging with text-only models can help alleviate this problem to some extent, while maintaining multimodal performance.
comment: Accepted to the EMNLP 2025 workshop BabyLM: Accelerating language modeling research with cognitively plausible datasets
☆ Leveraging Prior Knowledge of Diffusion Model for Person Search
Person search aims to jointly perform person detection and re-identification by localizing and identifying a query person within a gallery of uncropped scene images. Existing methods predominantly utilize ImageNet pre-trained backbones, which may be suboptimal for capturing the complex spatial context and fine-grained identity cues necessary for person search. Moreover, they rely on a shared backbone feature for both person detection and re-identification, leading to suboptimal features due to conflicting optimization objectives. In this paper, we propose DiffPS (Diffusion Prior Knowledge for Person Search), a novel framework that leverages a pre-trained diffusion model while eliminating the optimization conflict between two sub-tasks. We analyze key properties of diffusion priors and propose three specialized modules: (i) Diffusion-Guided Region Proposal Network (DGRPN) for enhanced person localization, (ii) Multi-Scale Frequency Refinement Network (MSFRN) to mitigate shape bias, and (iii) Semantic-Adaptive Feature Aggregation Network (SFAN) to leverage text-aligned diffusion features. DiffPS sets a new state-of-the-art on CUHK-SYSU and PRW.
☆ Calibrating the Full Predictive Class Distribution of 3D Object Detectors for Autonomous Driving
In autonomous systems, precise object detection and uncertainty estimation are critical for self-aware and safe operation. This work addresses confidence calibration for the classification task of 3D object detectors. We argue that it is necessary to regard the calibration of the full predictive confidence distribution over all classes and deduce a metric which captures the calibration of dominant and secondary class predictions. We propose two auxiliary regularizing loss terms which introduce either calibration of the dominant prediction or the full prediction vector as a training goal. We evaluate a range of post-hoc and train-time methods for CenterPoint, PillarNet and DSVT-Pillar and find that combining our loss term, which regularizes for calibration of the full class prediction, and isotonic regression lead to the best calibration of CenterPoint and PillarNet with respect to both dominant and secondary class predictions. We further find that DSVT-Pillar can not be jointly calibrated for dominant and secondary predictions using the same method.
☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
☆ LOBE-GS: Load-Balanced and Efficient 3D Gaussian Splatting for Large-Scale Scene Reconstruction
3D Gaussian Splatting (3DGS) has established itself as an efficient representation for real-time, high-fidelity 3D scene reconstruction. However, scaling 3DGS to large and unbounded scenes such as city blocks remains difficult. Existing divide-and-conquer methods alleviate memory pressure by partitioning the scene into blocks, but introduce new bottlenecks: (i) partitions suffer from severe load imbalance since uniform or heuristic splits do not reflect actual computational demands, and (ii) coarse-to-fine pipelines fail to exploit the coarse stage efficiently, often reloading the entire model and incurring high overhead. In this work, we introduce LoBE-GS, a novel Load-Balanced and Efficient 3D Gaussian Splatting framework, that re-engineers the large-scale 3DGS pipeline. LoBE-GS introduces a depth-aware partitioning method that reduces preprocessing from hours to minutes, an optimization-based strategy that balances visible Gaussians -- a strong proxy for computational load -- across blocks, and two lightweight techniques, visibility cropping and selective densification, to further reduce training cost. Evaluations on large-scale urban and outdoor datasets show that LoBE-GS consistently achieves up to $2\times$ faster end-to-end training time than state-of-the-art baselines, while maintaining reconstruction quality and enabling scalability to scenes infeasible with vanilla 3DGS.
Unsupervised Dynamic Feature Selection for Robust Latent Spaces in Vision Tasks
Latent representations are critical for the performance and robustness of machine learning models, as they encode the essential features of data in a compact and informative manner. However, in vision tasks, these representations are often affected by noisy or irrelevant features, which can degrade the model's performance and generalization capabilities. This paper presents a novel approach for enhancing latent representations using unsupervised Dynamic Feature Selection (DFS). For each instance, the proposed method identifies and removes misleading or redundant information in images, ensuring that only the most relevant features contribute to the latent space. By leveraging an unsupervised framework, our approach avoids reliance on labeled data, making it broadly applicable across various domains and datasets. Experiments conducted on image datasets demonstrate that models equipped with unsupervised DFS achieve significant improvements in generalization performance across various tasks, including clustering and image generation, while incurring a minimal increase in the computational cost.
☆ Towards Photonic Band Diagram Generation with Transformer-Latent Diffusion Models
Photonic crystals enable fine control over light propagation at the nanoscale, and thus play a central role in the development of photonic and quantum technologies. Photonic band diagrams (BDs) are a key tool to investigate light propagation into such inhomogeneous structured materials. However, computing BDs requires solving Maxwell's equations across many configurations, making it numerically expensive, especially when embedded in optimization loops for inverse design techniques, for example. To address this challenge, we introduce the first approach for BD generation based on diffusion models, with the capacity to later generalize and scale to arbitrary three dimensional structures. Our method couples a transformer encoder, which extracts contextual embeddings from the input structure, with a latent diffusion model to generate the corresponding BD. In addition, we provide insights into why transformers and diffusion models are well suited to capture the complex interference and scattering phenomena inherent to photonics, paving the way for new surrogate modeling strategies in this domain.
☆ PyramidStyler: Transformer-Based Neural Style Transfer with Pyramidal Positional Encoding and Reinforcement Learning
Neural Style Transfer (NST) has evolved from Gatys et al.'s (2015) CNN-based algorithm, enabling AI-driven artistic image synthesis. However, existing CNN and transformer-based models struggle to scale efficiently to complex styles and high-resolution inputs. We introduce PyramidStyler, a transformer framework with Pyramidal Positional Encoding (PPE): a hierarchical, multi-scale encoding that captures both local details and global context while reducing computational load. We further incorporate reinforcement learning to dynamically optimize stylization, accelerating convergence. Trained on Microsoft COCO and WikiArt, PyramidStyler reduces content loss by 62.6% (to 2.07) and style loss by 57.4% (to 0.86) after 4000 epochs--achieving 1.39 s inference--and yields further improvements (content 2.03; style 0.75) with minimal speed penalty (1.40 s) when using RL. These results demonstrate real-time, high-quality artistic rendering, with broad applications in media and design.
☆ Holistic Order Prediction in Natural Scenes
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.
comment: 25 pages, 11 figures, 6 tables
☆ VaPR -- Vision-language Preference alignment for Reasoning
Preference finetuning methods like Direct Preference Optimization (DPO) with AI-generated feedback have shown promise in aligning Large Vision-Language Models (LVLMs) with human preferences. However, existing techniques overlook the prevalence of noise in synthetic preference annotations in the form of stylistic and length biases. To this end, we introduce a hard-negative response generation framework based on LLM-guided response editing, that produces rejected responses with targeted errors, maintaining stylistic and length similarity to the accepted ones. Using this framework, we develop the VaPR dataset, comprising 30K high-quality samples, to finetune three LVLM families: LLaVA-V1.5, Qwen2VL & Qwen2.5VL (2B-13B sizes). Our VaPR models deliver significant performance improvements across ten benchmarks, achieving average gains of 6.5% (LLaVA), 4.0% (Qwen2VL), and 1.5% (Qwen2.5VL), with notable improvements on reasoning tasks. A scaling analysis shows that performance consistently improves with data size, with LLaVA models benefiting even at smaller scales. Moreover, VaPR reduces the tendency to answer "Yes" in binary questions - addressing a common failure mode in LVLMs like LLaVA. Lastly, we show that the framework generalizes to open-source LLMs as editors, with models trained on VaPR-OS achieving ~99% of the performance of models trained on \name, which is synthesized using GPT-4o. Our data, models, and code can be found on the project page https://vap-r.github.io
☆ MedQ-Bench: Evaluating and Exploring Medical Image Quality Assessment Abilities in MLLMs
Medical Image Quality Assessment (IQA) serves as the first-mile safety gate for clinical AI, yet existing approaches remain constrained by scalar, score-based metrics and fail to reflect the descriptive, human-like reasoning process central to expert evaluation. To address this gap, we introduce MedQ-Bench, a comprehensive benchmark that establishes a perception-reasoning paradigm for language-based evaluation of medical image quality with Multi-modal Large Language Models (MLLMs). MedQ-Bench defines two complementary tasks: (1) MedQ-Perception, which probes low-level perceptual capability via human-curated questions on fundamental visual attributes; and (2) MedQ-Reasoning, encompassing both no-reference and comparison reasoning tasks, aligning model evaluation with human-like reasoning on image quality. The benchmark spans five imaging modalities and over forty quality attributes, totaling 2,600 perceptual queries and 708 reasoning assessments, covering diverse image sources including authentic clinical acquisitions, images with simulated degradations via physics-based reconstructions, and AI-generated images. To evaluate reasoning ability, we propose a multi-dimensional judging protocol that assesses model outputs along four complementary axes. We further conduct rigorous human-AI alignment validation by comparing LLM-based judgement with radiologists. Our evaluation of 14 state-of-the-art MLLMs demonstrates that models exhibit preliminary but unstable perceptual and reasoning skills, with insufficient accuracy for reliable clinical use. These findings highlight the need for targeted optimization of MLLMs in medical IQA. We hope that MedQ-Bench will catalyze further exploration and unlock the untapped potential of MLLMs for medical image quality evaluation.
comment: 26 pages, 13 figures
☆ FreeViS: Training-free Video Stylization with Inconsistent References
Video stylization plays a key role in content creation, but it remains a challenging problem. Na\"ively applying image stylization frame-by-frame hurts temporal consistency and reduces style richness. Alternatively, training a dedicated video stylization model typically requires paired video data and is computationally expensive. In this paper, we propose FreeViS, a training-free video stylization framework that generates stylized videos with rich style details and strong temporal coherence. Our method integrates multiple stylized references to a pretrained image-to-video (I2V) model, effectively mitigating the propagation errors observed in prior works, without introducing flickers and stutters. In addition, it leverages high-frequency compensation to constrain the content layout and motion, together with flow-based motion cues to preserve style textures in low-saliency regions. Through extensive evaluations, FreeViS delivers higher stylization fidelity and superior temporal consistency, outperforming recent baselines and achieving strong human preference. Our training-free pipeline offers a practical and economic solution for high-quality, temporally coherent video stylization. The code and videos can be accessed via https://xujiacong.github.io/FreeViS/
comment: Project Page: \url{https://xujiacong.github.io/FreeViS/}
☆ Uncovering Overconfident Failures in CXR Models via Augmentation-Sensitivity Risk Scoring
Deep learning models achieve strong performance in chest radiograph (CXR) interpretation, yet fairness and reliability concerns persist. Models often show uneven accuracy across patient subgroups, leading to hidden failures not reflected in aggregate metrics. Existing error detection approaches -- based on confidence calibration or out-of-distribution (OOD) detection -- struggle with subtle within-distribution errors, while image- and representation-level consistency-based methods remain underexplored in medical imaging. We propose an augmentation-sensitivity risk scoring (ASRS) framework to identify error-prone CXR cases. ASRS applies clinically plausible rotations ($\pm 15^\circ$/$\pm 30^\circ$) and measures embedding shifts with the RAD-DINO encoder. Sensitivity scores stratify samples into stability quartiles, where highly sensitive cases show substantially lower recall ($-0.2$ to $-0.3$) despite high AUROC and confidence. ASRS provides a label-free means for selective prediction and clinician review, improving fairness and safety in medical AI.
comment: 5 pages, 1 figures
☆ Look Less, Reason More: Rollout-Guided Adaptive Pixel-Space Reasoning
Vision-Language Models (VLMs) excel at many multimodal tasks, yet they frequently struggle with tasks requiring precise understanding and handling of fine-grained visual elements. This is mainly due to information loss during image encoding or insufficient attention to critical regions. Recent work has shown promise by incorporating pixel-level visual information into the reasoning process, enabling VLMs to access high-resolution visual details during their thought process. However, this pixel-level information is often overused, leading to inefficiency and distraction from irrelevant visual details. To address these challenges, we propose the first framework for adaptive pixel reasoning that dynamically determines necessary pixel-level operations based on the input query. Specifically, we first apply operation-aware supervised fine-tuning to establish baseline competence in textual reasoning and visual operations, then design a novel rollout-guided reinforcement learning framework relying on feedback of the model's own responses, which enables the VLM to determine when pixel operations should be invoked based on query difficulty. Experiments on extensive multimodal reasoning benchmarks show that our model achieves superior performance while significantly reducing unnecessary visual operations. Impressively, our model achieves 73.4\% accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1\%, improving accuracy and simultaneously reducing tool usage by 66.5\% compared to the previous methods.
comment: Preprint, Under review
☆ An Efficient Deep Template Matching and In-Plane Pose Estimation Method via Template-Aware Dynamic Convolution
In industrial inspection and component alignment tasks, template matching requires efficient estimation of a target's position and geometric state (rotation and scaling) under complex backgrounds to support precise downstream operations. Traditional methods rely on exhaustive enumeration of angles and scales, leading to low efficiency under compound transformations. Meanwhile, most deep learning-based approaches only estimate similarity scores without explicitly modeling geometric pose, making them inadequate for real-world deployment. To overcome these limitations, we propose a lightweight end-to-end framework that reformulates template matching as joint localization and geometric regression, outputting the center coordinates, rotation angle, and independent horizontal and vertical scales. A Template-Aware Dynamic Convolution Module (TDCM) dynamically injects template features at inference to guide generalizable matching. The compact network integrates depthwise separable convolutions and pixel shuffle for efficient matching. To enable geometric-annotation-free training, we introduce a rotation-shear-based augmentation strategy with structure-aware pseudo labels. A lightweight refinement module further improves angle and scale precision via local optimization. Experiments show our 3.07M model achieves high precision and 14ms inference under compound transformations. It also demonstrates strong robustness in small-template and multi-object scenarios, making it highly suitable for deployment in real-time industrial applications. The code is available at:https://github.com/ZhouJ6610/PoseMatch-TDCM.
comment: Published in Expert Systems with Applications
☆ Beyond Simple Fusion: Adaptive Gated Fusion for Robust Multimodal Sentiment Analysis
Multimodal sentiment analysis (MSA) leverages information fusion from diverse modalities (e.g., text, audio, visual) to enhance sentiment prediction. However, simple fusion techniques often fail to account for variations in modality quality, such as those that are noisy, missing, or semantically conflicting. This oversight leads to suboptimal performance, especially in discerning subtle emotional nuances. To mitigate this limitation, we introduce a simple yet efficient \textbf{A}daptive \textbf{G}ated \textbf{F}usion \textbf{N}etwork that adaptively adjusts feature weights via a dual gate fusion mechanism based on information entropy and modality importance. This mechanism mitigates the influence of noisy modalities and prioritizes informative cues following unimodal encoding and cross-modal interaction. Experiments on CMU-MOSI and CMU-MOSEI show that AGFN significantly outperforms strong baselines in accuracy, effectively discerning subtle emotions with robust performance. Visualization analysis of feature representations demonstrates that AGFN enhances generalization by learning from a broader feature distribution, achieved by reducing the correlation between feature location and prediction error, thereby decreasing reliance on specific locations and creating more robust multimodal feature representations.
☆ UniVerse: Unleashing the Scene Prior of Video Diffusion Models for Robust Radiance Field Reconstruction
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations.However, these methods rely heavily on dense observations for robustly optimizing model parameters.To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process.To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images.Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies.Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/
comment: page: https://jin-cao-tma.github.io/UniVerse.github.io/ code: https://github.com/zju3dv/UniVerse
☆ Median2Median: Zero-shot Suppression of Structured Noise in Images
Image denoising is a fundamental problem in computer vision and medical imaging. However, real-world images are often degraded by structured noise with strong anisotropic correlations that existing methods struggle to remove. Most data-driven approaches rely on large datasets with high-quality labels and still suffer from limited generalizability, whereas existing zero-shot methods avoid this limitation but remain effective only for independent and identically distributed (i.i.d.) noise. To address this gap, we propose Median2Median (M2M), a zero-shot denoising framework designed for structured noise. M2M introduces a novel sampling strategy that generates pseudo-independent sub-image pairs from a single noisy input. This strategy leverages directional interpolation and generalized median filtering to adaptively exclude values distorted by structured artifacts. To further enlarge the effective sampling space and eliminate systematic bias, a randomized assignment strategy is employed, ensuring that the sampled sub-image pairs are suitable for Noise2Noise training. In our realistic simulation studies, M2M performs on par with state-of-the-art zero-shot methods under i.i.d. noise, while consistently outperforming them under correlated noise. These findings establish M2M as an efficient, data-free solution for structured noise suppression and mark the first step toward effective zero-shot denoising beyond the strict i.i.d. assumption.
comment: 13 pages, 6 figures, not published yet
Non-Rigid Structure-from-Motion via Differential Geometry with Recoverable Conformal Scale
Non-rigid structure-from-motion (NRSfM), a promising technique for addressing the mapping challenges in monocular visual deformable simultaneous localization and mapping (SLAM), has attracted growing attention. We introduce a novel method, called Con-NRSfM, for NRSfM under conformal deformations, encompassing isometric deformations as a subset. Our approach performs point-wise reconstruction using 2D selected image warps optimized through a graph-based framework. Unlike existing methods that rely on strict assumptions, such as locally planar surfaces or locally linear deformations, and fail to recover the conformal scale, our method eliminates these constraints and accurately computes the local conformal scale. Additionally, our framework decouples constraints on depth and conformal scale, which are inseparable in other approaches, enabling more precise depth estimation. To address the sensitivity of the formulated problem, we employ a parallel separable iterative optimization strategy. Furthermore, a self-supervised learning framework, utilizing an encoder-decoder network, is incorporated to generate dense 3D point clouds with texture. Simulation and experimental results using both synthetic and real datasets demonstrate that our method surpasses existing approaches in terms of reconstruction accuracy and robustness. The code for the proposed method will be made publicly available on the project website: https://sites.google.com/view/con-nrsfm.
☆ Discrete Facial Encoding: : A Framework for Data-driven Facial Display Discovery
Facial expression analysis is central to understanding human behavior, yet existing coding systems such as the Facial Action Coding System (FACS) are constrained by limited coverage and costly manual annotation. In this work, we introduce Discrete Facial Encoding (DFE), an unsupervised, data-driven alternative of compact and interpretable dictionary of facial expressions from 3D mesh sequences learned through a Residual Vector Quantized Variational Autoencoder (RVQ-VAE). Our approach first extracts identity-invariant expression features from images using a 3D Morphable Model (3DMM), effectively disentangling factors such as head pose and facial geometry. We then encode these features using an RVQ-VAE, producing a sequence of discrete tokens from a shared codebook, where each token captures a specific, reusable facial deformation pattern that contributes to the overall expression. Through extensive experiments, we demonstrate that Discrete Facial Encoding captures more precise facial behaviors than FACS and other facial encoding alternatives. We evaluate the utility of our representation across three high-level psychological tasks: stress detection, personality prediction, and depression detection. Using a simple Bag-of-Words model built on top of the learned tokens, our system consistently outperforms both FACS-based pipelines and strong image and video representation learning models such as Masked Autoencoders. Further analysis reveals that our representation covers a wider variety of facial displays, highlighting its potential as a scalable and effective alternative to FACS for psychological and affective computing applications.
☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA.Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its ``style'' to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
☆ LadderMoE: Ladder-Side Mixture of Experts Adapters for Bronze Inscription Recognition
Bronze inscriptions (BI), engraved on ritual vessels, constitute a crucial stage of early Chinese writing and provide indispensable evidence for archaeological and historical studies. However, automatic BI recognition remains difficult due to severe visual degradation, multi-domain variability across photographs, rubbings, and tracings, and an extremely long-tailed character distribution. To address these challenges, we curate a large-scale BI dataset comprising 22454 full-page images and 198598 annotated characters spanning 6658 unique categories, enabling robust cross-domain evaluation. Building on this resource, we develop a two-stage detection-recognition pipeline that first localizes inscriptions and then transcribes individual characters. To handle heterogeneous domains and rare classes, we equip the pipeline with LadderMoE, which augments a pretrained CLIP encoder with ladder-style MoE adapters, enabling dynamic expert specialization and stronger robustness. Comprehensive experiments on single-character and full-page recognition tasks demonstrate that our method substantially outperforms state-of-the-art scene text recognition baselines, achieving superior accuracy across head, mid, and tail categories as well as all acquisition modalities. These results establish a strong foundation for bronze inscription recognition and downstream archaeological analysis.
comment: 18 pages, 7 figures, 2 Tables
☆ FideDiff: Efficient Diffusion Model for High-Fidelity Image Motion Deblurring
Recent advancements in image motion deblurring, driven by CNNs and transformers, have made significant progress. Large-scale pre-trained diffusion models, which are rich in true-world modeling, have shown great promise for high-quality image restoration tasks such as deblurring, demonstrating stronger generative capabilities than CNN and transformer-based methods. However, challenges such as unbearable inference time and compromised fidelity still limit the full potential of the diffusion models. To address this, we introduce FideDiff, a novel single-step diffusion model designed for high-fidelity deblurring. We reformulate motion deblurring as a diffusion-like process where each timestep represents a progressively blurred image, and we train a consistency model that aligns all timesteps to the same clean image. By reconstructing training data with matched blur trajectories, the model learns temporal consistency, enabling accurate one-step deblurring. We further enhance model performance by integrating Kernel ControlNet for blur kernel estimation and introducing adaptive timestep prediction. Our model achieves superior performance on full-reference metrics, surpassing previous diffusion-based methods and matching the performance of other state-of-the-art models. FideDiff offers a new direction for applying pre-trained diffusion models to high-fidelity image restoration tasks, establishing a robust baseline for further advancing diffusion models in real-world industrial applications. Our dataset and code will be available at https://github.com/xyLiu339/FideDiff.
☆ Joint Deblurring and 3D Reconstruction for Macrophotography
Macro lens has the advantages of high resolution and large magnification, and 3D modeling of small and detailed objects can provide richer information. However, defocus blur in macrophotography is a long-standing problem that heavily hinders the clear imaging of the captured objects and high-quality 3D reconstruction of them. Traditional image deblurring methods require a large number of images and annotations, and there is currently no multi-view 3D reconstruction method for macrophotography. In this work, we propose a joint deblurring and 3D reconstruction method for macrophotography. Starting from multi-view blurry images captured, we jointly optimize the clear 3D model of the object and the defocus blur kernel of each pixel. The entire framework adopts a differentiable rendering method to self-supervise the optimization of the 3D model and the defocus blur kernel. Extensive experiments show that from a small number of multi-view images, our proposed method can not only achieve high-quality image deblurring but also recover high-fidelity 3D appearance.
comment: Accepted to Pacific Graphics 2025. To be published in Computer Graphics Forum
☆ VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.
☆ MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics NeurIPS 2025
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/
comment: Accepted to NeurIPS 2025
☆ Automated Genomic Interpretation via Concept Bottleneck Models for Medical Robotics
We propose an automated genomic interpretation module that transforms raw DNA sequences into actionable, interpretable decisions suitable for integration into medical automation and robotic systems. Our framework combines Chaos Game Representation (CGR) with a Concept Bottleneck Model (CBM), enforcing predictions to flow through biologically meaningful concepts such as GC content, CpG density, and k mer motifs. To enhance reliability, we incorporate concept fidelity supervision, prior consistency alignment, KL distribution matching, and uncertainty calibration. Beyond accurate classification of HIV subtypes across both in-house and LANL datasets, our module delivers interpretable evidence that can be directly validated against biological priors. A cost aware recommendation layer further translates predictive outputs into decision policies that balance accuracy, calibration, and clinical utility, reducing unnecessary retests and improving efficiency. Extensive experiments demonstrate that the proposed system achieves state of the art classification performance, superior concept prediction fidelity, and more favorable cost benefit trade-offs compared to existing baselines. By bridging the gap between interpretable genomic modeling and automated decision-making, this work establishes a reliable foundation for robotic and clinical automation in genomic medicine.
☆ NPN: Non-Linear Projections of the Null-Space for Imaging Inverse Problems NeurIPS 2025
Imaging inverse problems aims to recover high-dimensional signals from undersampled, noisy measurements, a fundamentally ill-posed task with infinite solutions in the null-space of the sensing operator. To resolve this ambiguity, prior information is typically incorporated through handcrafted regularizers or learned models that constrain the solution space. However, these priors typically ignore the task-specific structure of that null-space. In this work, we propose \textit{Non-Linear Projections of the Null-Space} (NPN), a novel class of regularization that, instead of enforcing structural constraints in the image domain, promotes solutions that lie in a low-dimensional projection of the sensing matrix's null-space with a neural network. Our approach has two key advantages: (1) Interpretability: by focusing on the structure of the null-space, we design sensing-matrix-specific priors that capture information orthogonal to the signal components that are fundamentally blind to the sensing process. (2) Flexibility: NPN is adaptable to various inverse problems, compatible with existing reconstruction frameworks, and complementary to conventional image-domain priors. We provide theoretical guarantees on convergence and reconstruction accuracy when used within plug-and-play methods. Empirical results across diverse sensing matrices demonstrate that NPN priors consistently enhance reconstruction fidelity in various imaging inverse problems, such as compressive sensing, deblurring, super-resolution, computed tomography, and magnetic resonance imaging, with plug-and-play methods, unrolling networks, deep image prior, and diffusion models.
comment: 25 pages, 12 tables, 10 figures. Accepted to NeurIPS 2025
☆ ActiveUMI: Robotic Manipulation with Active Perception from Robot-Free Human Demonstrations
We present ActiveUMI, a framework for a data collection system that transfers in-the-wild human demonstrations to robots capable of complex bimanual manipulation. ActiveUMI couples a portable VR teleoperation kit with sensorized controllers that mirror the robot's end-effectors, bridging human-robot kinematics via precise pose alignment. To ensure mobility and data quality, we introduce several key techniques, including immersive 3D model rendering, a self-contained wearable computer, and efficient calibration methods. ActiveUMI's defining feature is its capture of active, egocentric perception. By recording an operator's deliberate head movements via a head-mounted display, our system learns the crucial link between visual attention and manipulation. We evaluate ActiveUMI on six challenging bimanual tasks. Policies trained exclusively on ActiveUMI data achieve an average success rate of 70\% on in-distribution tasks and demonstrate strong generalization, retaining a 56\% success rate when tested on novel objects and in new environments. Our results demonstrate that portable data collection systems, when coupled with learned active perception, provide an effective and scalable pathway toward creating generalizable and highly capable real-world robot policies.
comment: technique report. The website is available at https://activeumi.github.io
☆ ImageNet-Think-250K: A Large-Scale Synthetic Dataset for Multimodal Reasoning for Vision Language Models
We develop ImageNet-Think, a multimodal reasoning dataset designed to aid the development of Vision Language Models (VLMs) with explicit reasoning capabilities. Our dataset is built on 250,000 images from ImageNet21k dataset, providing structured thinking tokens and corresponding answers. Our synthetic dataset is generated by two state-of-the-art VLMs: GLM-4.1V-9B-Thinking and Kimi-VL-A3B-Thinking-2506. Each image is accompanied by two pairs of thinking-answer sequences, creating a resource for training and evaluating multimodal reasoning models. We capture the step-by-step reasoning process of VLMs and the final descriptive answers. Our goal with this dataset is to enable the development of more robust VLMs while contributing to the broader understanding of multimodal reasoning mechanisms. The dataset and evaluation benchmarks will be publicly available to aid research in reasoning/thinking multimodal VLMs.
comment: Preprint
☆ Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations ICCV 2025
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .
comment: 7 pages, 2 figure, 2 tables, CV4A11y Workshop at ICCV 2025
☆ Consistent Assistant Domains Transformer for Source-free Domain Adaptation
Source-free domain adaptation (SFDA) aims to address the challenge of adapting to a target domain without accessing the source domain directly. However, due to the inaccessibility of source domain data, deterministic invariable features cannot be obtained. Current mainstream methods primarily focus on evaluating invariant features in the target domain that closely resemble those in the source domain, subsequently aligning the target domain with the source domain. However, these methods are susceptible to hard samples and influenced by domain bias. In this paper, we propose a Consistent Assistant Domains Transformer for SFDA, abbreviated as CADTrans, which solves the issue by constructing invariable feature representations of domain consistency. Concretely, we develop an assistant domain module for CADTrans to obtain diversified representations from the intermediate aggregated global attentions, which addresses the limitation of existing methods in adequately representing diversity. Based on assistant and target domains, invariable feature representations are obtained by multiple consistent strategies, which can be used to distinguish easy and hard samples. Finally, to align the hard samples to the corresponding easy samples, we construct a conditional multi-kernel max mean discrepancy (CMK-MMD) strategy to distinguish between samples of the same category and those of different categories. Extensive experiments are conducted on various benchmarks such as Office-31, Office-Home, VISDA-C, and DomainNet-126, proving the significant performance improvements achieved by our proposed approaches. Code is available at https://github.com/RoryShao/CADTrans.git.
Robust Classification of Oral Cancer with Limited Training Data
Oral cancer ranks among the most prevalent cancers globally, with a particularly high mortality rate in regions lacking adequate healthcare access. Early diagnosis is crucial for reducing mortality; however, challenges persist due to limited oral health programs, inadequate infrastructure, and a shortage of healthcare practitioners. Conventional deep learning models, while promising, often rely on point estimates, leading to overconfidence and reduced reliability. Critically, these models require large datasets to mitigate overfitting and ensure generalizability, an unrealistic demand in settings with limited training data. To address these issues, we propose a hybrid model that combines a convolutional neural network (CNN) with Bayesian deep learning for oral cancer classification using small training sets. This approach employs variational inference to enhance reliability through uncertainty quantification. The model was trained on photographic color images captured by smartphones and evaluated on three distinct test datasets. The proposed method achieved 94% accuracy on a test dataset with a distribution similar to that of the training data, comparable to traditional CNN performance. Notably, for real-world photographic image data, despite limitations and variations differing from the training dataset, the proposed model demonstrated superior generalizability, achieving 88% accuracy on diverse datasets compared to 72.94% for traditional CNNs, even with a smaller dataset. Confidence analysis revealed that the model exhibits low uncertainty (high confidence) for correctly classified samples and high uncertainty (low confidence) for misclassified samples. These results underscore the effectiveness of Bayesian inference in data-scarce environments in enhancing early oral cancer diagnosis by improving model reliability and generalizability.
Growing Visual Generative Capacity for Pre-Trained MLLMs
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.
comment: Project page: https://hywang66.github.io/bridge/
Towards Better Optimization For Listwise Preference in Diffusion Models
Reinforcement learning from human feedback (RLHF) has proven effectiveness for aligning text-to-image (T2I) diffusion models with human preferences. Although Direct Preference Optimization (DPO) is widely adopted for its computational efficiency and avoidance of explicit reward modeling, its applications to diffusion models have primarily relied on pairwise preferences. The precise optimization of listwise preferences remains largely unaddressed. In practice, human feedback on image preferences often contains implicit ranked information, which conveys more precise human preferences than pairwise comparisons. In this work, we propose Diffusion-LPO, a simple and effective framework for Listwise Preference Optimization in diffusion models with listwise data. Given a caption, we aggregate user feedback into a ranked list of images and derive a listwise extension of the DPO objective under the Plackett-Luce model. Diffusion-LPO enforces consistency across the entire ranking by encouraging each sample to be preferred over all of its lower-ranked alternatives. We empirically demonstrate the effectiveness of Diffusion-LPO across various tasks, including text-to-image generation, image editing, and personalized preference alignment. Diffusion-LPO consistently outperforms pairwise DPO baselines on visual quality and preference alignment.
☆ MATCH: Multi-faceted Adaptive Topo-Consistency for Semi-Supervised Histopathology Segmentation NeurIPS 2025
In semi-supervised segmentation, capturing meaningful semantic structures from unlabeled data is essential. This is particularly challenging in histopathology image analysis, where objects are densely distributed. To address this issue, we propose a semi-supervised segmentation framework designed to robustly identify and preserve relevant topological features. Our method leverages multiple perturbed predictions obtained through stochastic dropouts and temporal training snapshots, enforcing topological consistency across these varied outputs. This consistency mechanism helps distinguish biologically meaningful structures from transient and noisy artifacts. A key challenge in this process is to accurately match the corresponding topological features across the predictions in the absence of ground truth. To overcome this, we introduce a novel matching strategy that integrates spatial overlap with global structural alignment, minimizing discrepancies among predictions. Extensive experiments demonstrate that our approach effectively reduces topological errors, resulting in more robust and accurate segmentations essential for reliable downstream analysis. Code is available at \href{https://github.com/Melon-Xu/MATCH}{https://github.com/Melon-Xu/MATCH}.
comment: 20 pages, 6 figures. Accepted by NeurIPS 2025
☆ Input-Aware Sparse Attention for Real-Time Co-Speech Video Generation
Diffusion models can synthesize realistic co-speech video from audio for various applications, such as video creation and virtual agents. However, existing diffusion-based methods are slow due to numerous denoising steps and costly attention mechanisms, preventing real-time deployment. In this work, we distill a many-step diffusion video model into a few-step student model. Unfortunately, directly applying recent diffusion distillation methods degrades video quality and falls short of real-time performance. To address these issues, our new video distillation method leverages input human pose conditioning for both attention and loss functions. We first propose using accurate correspondence between input human pose keypoints to guide attention to relevant regions, such as the speaker's face, hands, and upper body. This input-aware sparse attention reduces redundant computations and strengthens temporal correspondences of body parts, improving inference efficiency and motion coherence. To further enhance visual quality, we introduce an input-aware distillation loss that improves lip synchronization and hand motion realism. By integrating our input-aware sparse attention and distillation loss, our method achieves real-time performance with improved visual quality compared to recent audio-driven and input-driven methods. We also conduct extensive experiments showing the effectiveness of our algorithmic design choices.
comment: Project Page: https://beijia11.github.io/IASA
☆ Ego-Exo 3D Hand Tracking in the Wild with a Mobile Multi-Camera Rig
Accurate 3D tracking of hands and their interactions with the world in unconstrained settings remains a significant challenge for egocentric computer vision. With few exceptions, existing datasets are predominantly captured in controlled lab setups, limiting environmental diversity and model generalization. To address this, we introduce a novel marker-less multi-camera system designed to capture precise 3D hands and objects, which allows for nearly unconstrained mobility in genuinely in-the-wild conditions. We combine a lightweight, back-mounted capture rig with eight exocentric cameras, and a user-worn Meta Quest 3 headset, which contributes two egocentric views. We design an ego-exo tracking pipeline to generate accurate 3D hand pose ground truth from this system, and rigorously evaluate its quality. By collecting an annotated dataset featuring synchronized multi-view images and precise 3D hand poses, we demonstrate the capability of our approach to significantly reduce the trade-off between environmental realism and 3D annotation accuracy.
☆ PEO: Training-Free Aesthetic Quality Enhancement in Pre-Trained Text-to-Image Diffusion Models with Prompt Embedding Optimization
This paper introduces a novel approach to aesthetic quality improvement in pre-trained text-to-image diffusion models when given a simple prompt. Our method, dubbed Prompt Embedding Optimization (PEO), leverages a pre-trained text-to-image diffusion model as a backbone and optimizes the text embedding of a given simple and uncurated prompt to enhance the visual quality of the generated image. We achieve this by a tripartite objective function that improves the aesthetic fidelity of the generated image, ensures adherence to the optimized text embedding, and minimal divergence from the initial prompt. The latter is accomplished through a prompt preservation term. Additionally, PEO is training-free and backbone-independent. Quantitative and qualitative evaluations confirm the effectiveness of the proposed method, exceeding or equating the performance of state-of-the-art text-to-image and prompt adaptation methods.
☆ How Confident are Video Models? Empowering Video Models to Express their Uncertainty
Generative video models demonstrate impressive text-to-video capabilities, spurring widespread adoption in many real-world applications. However, like large language models (LLMs), video generation models tend to hallucinate, producing plausible videos even when they are factually wrong. Although uncertainty quantification (UQ) of LLMs has been extensively studied in prior work, no UQ method for video models exists, raising critical safety concerns. To our knowledge, this paper represents the first work towards quantifying the uncertainty of video models. We present a framework for uncertainty quantification of generative video models, consisting of: (i) a metric for evaluating the calibration of video models based on robust rank correlation estimation with no stringent modeling assumptions; (ii) a black-box UQ method for video models (termed S-QUBED), which leverages latent modeling to rigorously decompose predictive uncertainty into its aleatoric and epistemic components; and (iii) a UQ dataset to facilitate benchmarking calibration in video models. By conditioning the generation task in the latent space, we disentangle uncertainty arising due to vague task specifications from that arising from lack of knowledge. Through extensive experiments on benchmark video datasets, we demonstrate that S-QUBED computes calibrated total uncertainty estimates that are negatively correlated with the task accuracy and effectively computes the aleatoric and epistemic constituents.
☆ Unlocking the power of partnership: How humans and machines can work together to improve face recognition
Human review of consequential decisions by face recognition algorithms creates a "collaborative" human-machine system. Individual differences between people and machines, however, affect whether collaboration improves or degrades accuracy in any given case. We establish the circumstances under which combining human and machine face identification decisions improves accuracy. Using data from expert and non-expert face identifiers, we examined the benefits of human-human and human-machine collaborations. The benefits of collaboration increased as the difference in baseline accuracy between collaborators decreased-following the Proximal Accuracy Rule (PAR). This rule predicted collaborative (fusion) benefit across a wide range of baseline abilities, from people with no training to those with extensive training. Using the PAR, we established a critical fusion zone, where humans are less accurate than the machine, but fusing the two improves system accuracy. This zone was surprisingly large. We implemented "intelligent human-machine fusion" by selecting people with the potential to increase the accuracy of a high-performing machine. Intelligent fusion was more accurate than the machine operating alone and more accurate than combining all human and machine judgments. The highest system-wide accuracy achievable with human-only partnerships was found by graph theory. This fully human system approximated the average performance achieved by intelligent human-machine collaboration. However, intelligent human-machine collaboration more effectively minimized the impact of low-performing humans on system-wide accuracy. The results demonstrate a meaningful role for both humans and machines in assuring accurate face identification. This study offers an evidence-based road map for the intelligent use of AI in face identification.
☆ PhysHMR: Learning Humanoid Control Policies from Vision for Physically Plausible Human Motion Reconstruction
Reconstructing physically plausible human motion from monocular videos remains a challenging problem in computer vision and graphics. Existing methods primarily focus on kinematics-based pose estimation, often leading to unrealistic results due to the lack of physical constraints. To address such artifacts, prior methods have typically relied on physics-based post-processing following the initial kinematics-based motion estimation. However, this two-stage design introduces error accumulation, ultimately limiting the overall reconstruction quality. In this paper, we present PhysHMR, a unified framework that directly learns a visual-to-action policy for humanoid control in a physics-based simulator, enabling motion reconstruction that is both physically grounded and visually aligned with the input video. A key component of our approach is the pixel-as-ray strategy, which lifts 2D keypoints into 3D spatial rays and transforms them into global space. These rays are incorporated as policy inputs, providing robust global pose guidance without depending on noisy 3D root predictions. This soft global grounding, combined with local visual features from a pretrained encoder, allows the policy to reason over both detailed pose and global positioning. To overcome the sample inefficiency of reinforcement learning, we further introduce a distillation scheme that transfers motion knowledge from a mocap-trained expert to the vision-conditioned policy, which is then refined using physically motivated reinforcement learning rewards. Extensive experiments demonstrate that PhysHMR produces high-fidelity, physically plausible motion across diverse scenarios, outperforming prior approaches in both visual accuracy and physical realism.
☆ Oracle-RLAIF: An Improved Fine-Tuning Framework for Multi-modal Video Models through Reinforcement Learning from Ranking Feedback
Recent advances in large video-language models (VLMs) rely on extensive fine-tuning techniques that strengthen alignment between textual and visual comprehension. Leading pipelines typically pair supervised fine-tuning (SFT) with reinforcement learning from preference data to enhance video comprehension. However, as VLMs scale in parameter size, so does the cost of gathering enough human feedback. To make fine-tuning more cost-effective, recent frameworks explore reinforcement learning with AI feedback (RLAIF), which replace human preference with AI as a judge. Current RLAIF frameworks rely on a specialized reward model trained with video narratives to create calibrated scalar rewards -- an expensive and restrictive pipeline. We propose Oracle-RLAIF, a novel framework that replaces the trained reward model with a more general Oracle ranker which acts as a drop-in model ranking candidate model responses rather than scoring them. Alongside Oracle-RLAIF, we introduce $GRPO_{rank}$, a novel rank-based loss function based on Group Relative Policy Optimization (GRPO) that directly optimizes ordinal feedback with rank-aware advantages. Empirically, we demonstrate that Oracle-RLAIF consistently outperforms leading VLMs using existing fine-tuning methods when evaluated across various video comprehension benchmarks. Oracle-RLAIF paves the path to creating flexible and data-efficient frameworks for aligning large multi-modal video models with reinforcement learning from rank rather than score.
comment: Proceedings of the 39th Annual Conference on Neural Information Processing Systems, ARLET Workshop (Aligning Reinforcement Learning Experimentalists and Theorists)
☆ Exploring OCR-augmented Generation for Bilingual VQA
We investigate OCR-augmented generation with Vision Language Models (VLMs), exploring tasks in Korean and English toward multilingualism. To support research in this domain, we train and release KLOCR, a strong bilingual OCR baseline trained on 100M instances to augment VLMs with OCR ability. To complement existing VQA benchmarks, we curate KOCRBench for Korean VQA, and analyze different prompting methods. Extensive experiments show that OCR-extracted text significantly boosts performance across open source and commercial models. Our work offers new insights into OCR-augmented generation for bilingual VQA. Model, code, and data are available at https://github.com/JHLee0513/KLOCR.
☆ Learning a distance measure from the information-estimation geometry of data
We introduce the Information-Estimation Metric (IEM), a novel form of distance function derived from an underlying continuous probability density over a domain of signals. The IEM is rooted in a fundamental relationship between information theory and estimation theory, which links the log-probability of a signal with the errors of an optimal denoiser, applied to noisy observations of the signal. In particular, the IEM between a pair of signals is obtained by comparing their denoising error vectors over a range of noise amplitudes. Geometrically, this amounts to comparing the score vector fields of the blurred density around the signals over a range of blur levels. We prove that the IEM is a valid global metric and derive a closed-form expression for its local second-order approximation, which yields a Riemannian metric. For Gaussian-distributed signals, the IEM coincides with the Mahalanobis distance. But for more complex distributions, it adapts, both locally and globally, to the geometry of the distribution. In practice, the IEM can be computed using a learned denoiser (analogous to generative diffusion models) and solving a one-dimensional integral. To demonstrate the value of our framework, we learn an IEM on the ImageNet database. Experiments show that this IEM is competitive with or outperforms state-of-the-art supervised image quality metrics in predicting human perceptual judgments.
comment: Code available at https://github.com/ohayonguy/information-estimation-metric
☆ SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/
☆ Words That Make Language Models Perceive
Large language models (LLMs) trained purely on text ostensibly lack any direct perceptual experience, yet their internal representations are implicitly shaped by multimodal regularities encoded in language. We test the hypothesis that explicit sensory prompting can surface this latent structure, bringing a text-only LLM into closer representational alignment with specialist vision and audio encoders. When a sensory prompt tells the model to 'see' or 'hear', it cues the model to resolve its next-token predictions as if they were conditioned on latent visual or auditory evidence that is never actually supplied. Our findings reveal that lightweight prompt engineering can reliably activate modality-appropriate representations in purely text-trained LLMs.
♻ ☆ What Makes a Good Dataset for Knowledge Distillation?
Knowledge distillation (KD) has been a popular and effective method for model compression. One important assumption of KD is that the teacher's original dataset will also be available when training the student. However, in situations such as continual learning and distilling large models trained on company-withheld datasets, having access to the original data may not always be possible. This leads practitioners towards utilizing other sources of supplemental data, which could yield mixed results. One must then ask: "what makes a good dataset for transferring knowledge from teacher to student?" Many would assume that only real in-domain imagery is viable, but is that the only option? In this work, we explore multiple possible surrogate distillation datasets and demonstrate that many different datasets, even unnatural synthetic imagery, can serve as a suitable alternative in KD. From examining these alternative datasets, we identify and present various criteria describing what makes a good dataset for distillation. Source code is available at https://github.com/osu-cvl/good-kd-dataset.
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning mechanisms to incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free policy learning framework that directly maps visual representations to latent actions using flow matching. VITA treats latent visual representations as the source of the flow, thus eliminating the need of conditioning. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps. We evaluate VITA on 8 simulation and 2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches state-of-the-art generative policies, while achieving 1.5-2.3x faster inference compared to conventional methods with conditioning. Project page: https://ucd-dare.github.io/VITA/
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ NeRAF: 3D Scene Infused Neural Radiance and Acoustic Fields ICLR 2025
Sound plays a major role in human perception. Along with vision, it provides essential information for understanding our surroundings. Despite advances in neural implicit representations, learning acoustics that align with visual scenes remains a challenge. We propose NeRAF, a method that jointly learns acoustic and radiance fields. NeRAF synthesizes both novel views and spatialized room impulse responses (RIR) at new positions by conditioning the acoustic field on 3D scene geometric and appearance priors from the radiance field. The generated RIR can be applied to auralize any audio signal. Each modality can be rendered independently and at spatially distinct positions, offering greater versatility. We demonstrate that NeRAF generates high-quality audio on SoundSpaces and RAF datasets, achieving significant performance improvements over prior methods while being more data-efficient. Additionally, NeRAF enhances novel view synthesis of complex scenes trained with sparse data through cross-modal learning. NeRAF is designed as a Nerfstudio module, providing convenient access to realistic audio-visual generation.
comment: ICLR 2025 (Poster). Camera ready version. Project Page: https://amandinebtto.github.io/NeRAF; 24 pages, 13 figures
♻ ☆ Learning to Weight Parameters for Training Data Attribution
We study gradient-based data attribution, aiming to identify which training examples most influence a given output. Existing methods for this task either treat network parameters uniformly or rely on implicit weighting derived from Hessian approximations, which do not fully model functional heterogeneity of network parameters. To address this, we propose a method to explicitly learn parameter importance weights directly from data, without requiring annotated labels. Our approach improves attribution accuracy across diverse tasks, including image classification, language modeling, and diffusion, and enables fine-grained attribution for concepts like subject and style.
♻ ☆ GEM: 3D Gaussian Splatting for Efficient and Accurate Cryo-EM Reconstruction
Cryo-electron microscopy (cryo-EM) has become a central tool for high-resolution structural biology, yet the massive scale of datasets (often exceeding 100k particle images) renders 3D reconstruction both computationally expensive and memory intensive. Traditional Fourier-space methods are efficient but lose fidelity due to repeated transforms, while recent real-space approaches based on neural radiance fields (NeRFs) improve accuracy but incur cubic memory and computation overhead. Therefore, we introduce GEM, a novel cryo-EM reconstruction framework built on 3D Gaussian Splatting (3DGS) that operates directly in real-space while maintaining high efficiency. Instead of modeling the entire density volume, GEM represents proteins with compact 3D Gaussians, each parameterized by only 11 values. To further improve the training efficiency, we designed a novel gradient computation to 3D Gaussians that contribute to each voxel. This design substantially reduced both memory footprint and training cost. On standard cryo-EM benchmarks, GEM achieves up to 48% faster training and 12% lower memory usage compared to state-of-the-art methods, while improving local resolution by as much as 38.8%. These results establish GEM as a practical and scalable paradigm for cryo-EM reconstruction, unifying speed, efficiency, and high-resolution accuracy. Our code is available at https://github.com/UNITES-Lab/GEM.
♻ ☆ Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis MICCAI 2025
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.
comment: Accepted at MICCAI 2025
♻ ☆ Multiple Queries with Multiple Keys: A Precise Prompt Matching Paradigm for Prompt-based Continual Learning ACM MM2025
Continual learning requires machine learning models to continuously acquire new knowledge in dynamic environments while avoiding the forgetting of previous knowledge. Prompt-based continual learning methods effectively address the issue of catastrophic forgetting through prompt expansion and selection. However, existing approaches often suffer from low accuracy in prompt selection, which can result in the model receiving biased knowledge and making biased predictions. To address this issue, we propose the Multiple Queries with Multiple Keys (MQMK) prompt matching paradigm for precise prompt selection. The goal of MQMK is to select the prompts whose training data distribution most closely matches that of the test sample. Specifically, Multiple Queries enable precise breadth search by introducing task-specific knowledge, while Multiple Keys perform deep search by representing the feature distribution of training samples at a fine-grained level. Each query is designed to perform local matching with a designated task to reduce interference across queries. Experiments show that MQMK enhances the prompt matching rate by over 30\% in challenging scenarios and achieves state-of-the-art performance on three widely adopted continual learning benchmarks. The code is available at https://github.com/DunweiTu/MQMK.
comment: accepted by ACM MM2025
♻ ☆ GenExam: A Multidisciplinary Text-to-Image Exam
Exams are a fundamental test of expert-level intelligence and require integrated understanding, reasoning, and generation. Existing exam-style benchmarks mainly focus on understanding and reasoning tasks, and current generation benchmarks emphasize the illustration of world knowledge and visual concepts, neglecting the evaluation of rigorous drawing exams. We introduce GenExam, the first benchmark for multidisciplinary text-to-image exams, featuring 1,000 samples across 10 subjects with exam-style prompts organized under a four-level taxonomy. Each problem is equipped with ground-truth images and fine-grained scoring points to enable a precise evaluation of semantic correctness and visual plausibility. Experiments show that even state-of-the-art models such as GPT-Image-1 and Gemini-2.5-Flash-Image achieve less than 15% strict scores, and most models yield almost 0%, suggesting the great challenge of our benchmark. By framing image generation as an exam, GenExam offers a rigorous assessment of models' ability to integrate understanding, reasoning, and generation, providing insights on the path to general AGI. Our benchmark and evaluation code are released at https://github.com/OpenGVLab/GenExam.
♻ ☆ Enhancing Corpus Callosum Segmentation in Fetal MRI via Pathology-Informed Domain Randomization MICCAI 2025
Accurate fetal brain segmentation is crucial for extracting biomarkers and assessing neurodevelopment, especially in conditions such as corpus callosum dysgenesis (CCD), which can induce drastic anatomical changes. However, the rarity of CCD severely limits annotated data, hindering the generalization of deep learning models. To address this, we propose a pathology-informed domain randomization strategy that embeds prior knowledge of CCD manifestations into a synthetic data generation pipeline. By simulating diverse brain alterations from healthy data alone, our approach enables robust segmentation without requiring pathological annotations. We validate our method on a cohort comprising 248 healthy fetuses, 26 with CCD, and 47 with other brain pathologies, achieving substantial improvements on CCD cases while maintaining performance on both healthy fetuses and those with other pathologies. From the predicted segmentations, we derive clinically relevant biomarkers, such as corpus callosum length (LCC) and volume, and show their utility in distinguishing CCD subtypes. Our pathology-informed augmentation reduces the LCC estimation error from 1.89 mm to 0.80 mm in healthy cases and from 10.9 mm to 0.7 mm in CCD cases. Beyond these quantitative gains, our approach yields segmentations with improved topological consistency relative to available ground truth, enabling more reliable shape-based analyses. Overall, this work demonstrates that incorporating domain-specific anatomical priors into synthetic data pipelines can effectively mitigate data scarcity and enhance analysis of rare but clinically significant malformations.
comment: Presented at the PIPPI Workshop of MICCAI 2025
♻ ☆ One-Step Residual Shifting Diffusion for Image Super-Resolution via Distillation
Diffusion models for super-resolution (SR) produce high-quality visual results but require expensive computational costs. Despite the development of several methods to accelerate diffusion-based SR models, some (e.g., SinSR) fail to produce realistic perceptual details, while others (e.g., OSEDiff) may hallucinate non-existent structures. To overcome these issues, we present RSD, a new distillation method for ResShift, one of the top diffusion-based SR models. Our method is based on training the student network to produce such images that a new fake ResShift model trained on them will coincide with the teacher model. RSD achieves single-step restoration and outperforms the teacher by a large margin. We show that our distillation method can surpass the other distillation-based method for ResShift - SinSR - making it on par with state-of-the-art diffusion-based SR distillation methods. Compared to SR methods based on pre-trained text-to-image models, RSD produces competitive perceptual quality, provides images with better alignment to degraded input images, and requires fewer parameters and GPU memory. We provide experimental results on various real-world and synthetic datasets, including RealSR, RealSet65, DRealSR, ImageNet, and DIV2K.
♻ ☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral; v2: fixed a typo in the title and updated experimental results
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ LoFT: Parameter-Efficient Fine-Tuning for Long-tailed Semi-Supervised Learning in Open-World Scenarios
Long-tailed learning has garnered increasing attention due to its wide applicability in real-world scenarios. Among existing approaches, Long-Tailed Semi-Supervised Learning (LTSSL) has emerged as an effective solution by incorporating a large amount of unlabeled data into the imbalanced labeled dataset. However, most prior LTSSL methods are designed to train models from scratch, which often leads to issues such as overconfidence and low-quality pseudo-labels. To address these challenges, we extend LTSSL into the foundation model fine-tuning paradigm and propose a novel framework: LoFT (Long-tailed semi-supervised learning via parameter-efficient Fine-Tuning). We demonstrate that fine-tuned foundation models can generate more reliable pseudolabels, thereby benefiting imbalanced learning. Furthermore, we explore a more practical setting by investigating semi-supervised learning under open-world conditions, where the unlabeled data may include out-of-distribution (OOD) samples. To handle this problem, we propose LoFT-OW (LoFT under Open-World scenarios) to improve the discriminative ability. Experimental results on multiple benchmarks demonstrate that our method achieves superior performance compared to previous approaches, even when utilizing only 1\% of the unlabeled data compared with previous works.
♻ ☆ Equivariant Splitting: Self-supervised learning from incomplete data
Self-supervised learning for inverse problems allows to train a reconstruction network from noise and/or incomplete data alone. These methods have the potential of enabling learning-based solutions when obtaining ground-truth references for training is expensive or even impossible. In this paper, we propose a new self-supervised learning strategy devised for the challenging setting where measurements are observed via a single incomplete observation model. We introduce a new definition of equivariance in the context of reconstruction networks, and show that the combination of self-supervised splitting losses and equivariant reconstruction networks results in the same minimizer in expectation as the one of a supervised loss. Through a series of experiments on image inpainting, accelerated magnetic resonance imaging, and compressive sensing, we demonstrate that the proposed loss achieves state-of-the-art performance in settings with highly rank-deficient forward models.
Interior Object Geometry via Fitted Frames
We propose a means of computing fitted frames on the boundary and in the interior of objects and using them to provide the basis for producing geometric features from them that are not only alignment-free but most importantly can be made to correspond locally across a population of objects. We describe a representation targeted for anatomic objects which is designed to enable this strong locational correspondence within object populations and thus to provide powerful object statistics. It accomplishes this by understanding an object as the diffeomorphic deformation of the closure of the interior of an ellipsoid and by using a skeletal representation fitted throughout the deformation to produce a model of the target object, where the object is provided initially in the form of a boundary mesh. Via classification performance on hippocampi shape between individuals with a disorder vs. others, we compare our method to two state-of-theart methods for producing object representations that are intended to capture geometric correspondence across a population of objects and to yield geometric features useful for statistics, and we show notably improved classification performance by this new representation, which we call the evolutionary s-rep. The geometric features that are derived from each of the representations, especially via fitted frames, are discussed.
♻ ☆ L4P: Towards Unified Low-Level 4D Vision Perception
The spatio-temporal relationship between the pixels of a video carries critical information for low-level 4D perception tasks. A single model that reasons about it should be able to solve several such tasks well. Yet, most state-of-the-art methods rely on architectures specialized for the task at hand. We present L4P, a feedforward, general-purpose architecture that solves low-level 4D perception tasks in a unified framework. L4P leverages a pre-trained ViT-based video encoder and combines it with per-task heads that are lightweight and therefore do not require extensive training. Despite its general and feedforward formulation, our method is competitive with existing specialized methods on both dense tasks, such as depth or optical flow estimation, and sparse tasks, such as 2D/3D tracking. Moreover, it solves all tasks at once in a time comparable to that of single-task methods.
♻ ☆ Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ Momentum-SAM: Sharpness Aware Minimization without Computational Overhead
The recently proposed optimization algorithm for deep neural networks Sharpness Aware Minimization (SAM) suggests perturbing parameters before gradient calculation by a gradient ascent step to guide the optimization into parameter space regions of flat loss. While significant generalization improvements and thus reduction of overfitting could be demonstrated, the computational costs are doubled due to the additionally needed gradient calculation, making SAM unfeasible in case of limited computationally capacities. Motivated by Nesterov Accelerated Gradient (NAG) we propose Momentum-SAM (MSAM), which perturbs parameters in the direction of the accumulated momentum vector to achieve low sharpness without significant computational overhead or memory demands over SGD or Adam. We evaluate MSAM in detail and reveal insights on separable mechanisms of NAG, SAM and MSAM regarding training optimization and generalization. Code is available at https://github.com/MarlonBecker/MSAM.
♻ ☆ TrimTokenator: Towards Adaptive Visual Token Pruning for Large Multimodal Models
Large Multimodal Models (LMMs) have achieved significant success across various tasks. These models usually encode visual inputs into dense token sequences, which are then concatenated with textual tokens and jointly processed by a language model. However, the increased token count substantially raises computational and memory costs during inference. Token pruning has emerged as a promising approach to address this issue. Existing token pruning methods often rely on costly calibration or suboptimal importance metrics, leading to redundant retained tokens. In this paper, we analyze the redundancy differences between visual and textual tokens and propose pruning exclusively on visual tokens. Based on this, we propose a visual token pruning strategy that explicitly preserves both cross-modal alignment and intra-modal informational diversity. We introduce a mutual information-based token pruning strategy that removes visual tokens semantically misaligned with textual tokens, effectively preserving the alignment between the visual and textual modalities. To further improve the representational quality of the retained tokens, we additionally prune redundant visual tokens by maximizing the expected pairwise distances in the embedding space, which is solved efficiently with a greedy algorithm. Extensive experiments demonstrate that our method maintains strong performance while reducing tokens by 88.9% on models such as LLaVA-1.5-7B and LLaVA-NEXT-7B, resulting in a 56.7% improvement in inference speed.
comment: 15 pages
♻ ☆ DiCache: Let Diffusion Model Determine Its Own Cache
Recent years have witnessed the rapid development of acceleration techniques for diffusion models, especially caching-based acceleration methods. These studies seek to answer two fundamental questions: "When to cache" and "How to use cache", typically relying on predefined empirical laws or dataset-level priors to determine caching timings and adopting handcrafted rules for multi-step cache utilization. However, given the highly dynamic nature of the diffusion process, they often exhibit limited generalizability and fail to cope with diverse samples. In this paper, a strong sample-specific correlation is revealed between the variation patterns of the shallow-layer feature differences in the diffusion model and those of deep-layer features. Moreover, we have observed that the features from different model layers form similar trajectories. Based on these observations, we present DiCache, a novel training-free adaptive caching strategy for accelerating diffusion models at runtime, answering both when and how to cache within a unified framework. Specifically, DiCache is composed of two principal components: (1) Online Probe Profiling Scheme leverages a shallow-layer online probe to obtain an on-the-fly indicator for the caching error in real time, enabling the model to dynamically customize the caching schedule for each sample. (2) Dynamic Cache Trajectory Alignment adaptively approximates the deep-layer feature output from multi-step historical caches based on the shallow-layer feature trajectory, facilitating higher visual quality. Extensive experiments validate DiCache's capability in achieving higher efficiency and improved fidelity over state-of-the-art approaches on various leading diffusion models including WAN 2.1, HunyuanVideo and Flux.
comment: Project Page: https://bujiazi.github.io/dicache.github.io/ Code: https://github.com/Bujiazi/DiCache
♻ ☆ UltraUPConvNet: A UPerNet- and ConvNeXt-Based Multi-Task Network for Ultrasound Tissue Segmentation and Disease Prediction
Ultrasound imaging is widely used in clinical practice due to its cost-effectiveness, mobility, and safety. However, current AI research often treats disease prediction and tissue segmentation as two separate tasks and their model requires substantial computational overhead. In such a situation, we introduce UltraUPConvNet, a computationally efficient universal framework designed for both ultrasound image classification and segmentation. Trained on a large-scale dataset containing more than 9,700 annotations across seven different anatomical regions, our model achieves state-of-the-art performance on certain datasets with lower computational overhead. Our model weights and codes are available at https://github.com/yyxl123/UltraUPConvNet
comment: 8 pages
♻ ☆ Robust Prompt Tuning for Vision-Language Models with Mild Semantic Noise
Prompt tuning has shown promising results, but its robustness and generalization to unseen categories remain limited. Through our experiments, we demonstrate that the complete removal of semantic noise is a key factor restricting robustness. Existing methods typically suppress or filter out semantic noise in the prompt space, inadvertently hindering the model's robustness and its ability to generalize to unseen categories. To address this, we propose ANPrompt, a robust prompt tuning framework that actively incorporates weak semantic noise. By clustering weakly perturbed features into noise prompts and integrating them with learnable tokens in both the text and vision encoders, ANPrompt ensures controlled exposure to semantic variations. To enhance the visual pathway, we introduce the Noise-Resistant Visual Prompt Prototype (NRVPP), which stabilizes visual semantics under weak perturbations. Additionally, we propose a Weak Alignment Loss (WALoss) at the logits level to enforce consistency between clean and perturbed predictions, providing stable supervision. By combining weak semantic noise exposure with logits-based consistency, ANPrompt prevents overfitting to specific phrasings while preserving semantic integrity. Extensive experiments across 11 benchmarks, including base-to-new splits, show that ANPrompt consistently outperforms existing prompt tuning methods, offering superior robustness to semantic noise and improved generalization across tasks.
♻ ☆ NeoARCADE: Robust Calibration for Distance Estimation to Support Assistive Drones for the Visually Impaired
Autonomous navigation by drones using onboard sensors, combined with deep learning and computer vision algorithms, is impacting a number of domains. We examine the use of drones to autonomously follow and assist Visually Impaired People (VIPs) in navigating urban environments. Estimating the absolute distance between the drone and the VIP, and to nearby objects, is essential to design obstacle avoidance algorithms. Here, we present NeoARCADE (Neo), which uses depth maps over monocular video feeds, common in consumer drones, to estimate absolute distances to the VIP and obstacles. Neo proposes robust calibration technique based on depth score normalization and coefficient estimations to translate relative distances from depth map to absolute ones. It further develops a dynamic recalibration method that can adapt to changing scenarios. We also develop two baseline models, Regression and Geometric, and compare Neo with SOTA depth map approaches and the baselines. We provide detailed evaluations to validate their robustness and generalizability for distance estimation to VIPs and other obstacles in diverse and dynamic conditions, using datasets collected in a campus environment. Neo predicts distances to VIP with an error <30cm, and to different obstacles like cars and bicycles within a maximum error of 60cm, which are better than the baselines. Neo also clearly out-performs SOTA depth map methods, reporting errors up to 5.3-14.6x lower.
comment: 34 pages, 20 figures, 3 tables
♻ ☆ Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.
comment: This paper contains 10 pages, 8 figures and 8 tables. For associated supplementary code, see https://github.com/mdppml/TEA
♻ ☆ How far can we go with ImageNet for Text-to-Image generation?
Recent text-to-image (T2I) generation models have achieved remarkable sucess by training on billion-scale datasets, following a `bigger is better' paradigm that prioritizes data quantity over availability (closed vs open source) and reproducibility (data decay vs established collections). We challenge this established paradigm by demonstrating that one can achieve capabilities of models trained on massive web-scraped collections, using only ImageNet enhanced with well-designed text and image augmentations. With this much simpler setup, we achieve a +6% overall score over SD-XL on GenEval and +5% on DPGBench while using just 1/10th the parameters and 1/1000th the training images. We also show that ImageNet pretrained models can be finetuned on task specific datasets (like for high resolution aesthetic applications) with good results, indicating that ImageNet is sufficient for acquiring general capabilities. This opens the way for more reproducible research as ImageNet is widely available and the proposed standardized training setup only requires 500 hours of H100 to train a text-to-image model.
♻ ☆ EyePCR: A Comprehensive Benchmark for Fine-Grained Perception, Knowledge Comprehension and Clinical Reasoning in Ophthalmic Surgery NeurIPS2025
MLLMs (Multimodal Large Language Models) have showcased remarkable capabilities, but their performance in high-stakes, domain-specific scenarios like surgical settings, remains largely under-explored. To address this gap, we develop \textbf{EyePCR}, a large-scale benchmark for ophthalmic surgery analysis, grounded in structured clinical knowledge to evaluate cognition across \textit{Perception}, \textit{Comprehension} and \textit{Reasoning}. EyePCR offers a richly annotated corpus with more than 210k VQAs, which cover 1048 fine-grained attributes for multi-view perception, medical knowledge graph of more than 25k triplets for comprehension, and four clinically grounded reasoning tasks. The rich annotations facilitate in-depth cognitive analysis, simulating how surgeons perceive visual cues and combine them with domain knowledge to make decisions, thus greatly improving models' cognitive ability. In particular, \textbf{EyePCR-MLLM}, a domain-adapted variant of Qwen2.5-VL-7B, achieves the highest accuracy on MCQs for \textit{Perception} among compared models and outperforms open-source models in \textit{Comprehension} and \textit{Reasoning}, rivalling commercial models like GPT-4.1. EyePCR reveals the limitations of existing MLLMs in surgical cognition and lays the foundation for benchmarking and enhancing clinical reliability of surgical video understanding models.
comment: Strong accept by NeurIPS2025 Reviewers and AC
♻ ☆ RGS-DR: Deferred Reflections and Residual Shading in 2D Gaussian Splatting
In this work, we address specular appearance in inverse rendering using 2D Gaussian splatting with deferred shading and argue for a refinement stage to improve specular detail, thereby bridging the gap with reconstruction-only methods. Our pipeline estimates editable material properties and environment illumination while employing a directional residual pass that captures leftover view-dependent effects for further refining novel view synthesis. In contrast to per-Gaussian shading with shortest-axis normals and normal residuals, which tends to result in more noisy geometry and specular appearance, a pixel-deferred surfel formulation with specular residuals yields sharper highlights, cleaner materials, and improved editability. We evaluate our approach on rendering and reconstruction quality on three popular datasets featuring glossy objects, and also demonstrate high-quality relighting and material editing.
♻ ☆ Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design
Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this paper we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. Further, this allows us to formulate and solve the choice of "where to look next" as a Bayesian experimental design problem using the Expected Information Gain criterion. Experiments on the Frey faces and MNIST datasets demonstrate the effectiveness of our models.
comment: 19 pages, 3 figures
♻ ☆ More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/
♻ ☆ Feature Representation Transferring to Lightweight Models via Perception Coherence
In this paper, we propose a method for transferring feature representation to lightweight student models from larger teacher models. We mathematically define a new notion called \textit{perception coherence}. Based on this notion, we propose a loss function, which takes into account the dissimilarities between data points in feature space through their ranking. At a high level, by minimizing this loss function, the student model learns to mimic how the teacher model \textit{perceives} inputs. More precisely, our method is motivated by the fact that the representational capacity of the student model is weaker than the teacher model. Hence, we aim to develop a new method allowing for a better relaxation. This means that, the student model does not need to preserve the absolute geometry of the teacher one, while preserving global coherence through dissimilarity ranking. Importantly, while rankings are defined only on finite sets, our notion of \textit{perception coherence} extends them into a probabilistic form. This formulation depends on the input distribution and applies to general dissimilarity metrics. Our theoretical insights provide a probabilistic perspective on the process of feature representation transfer. Our experiments results show that our method outperforms or achieves on-par performance compared to strong baseline methods for representation transferring.
Temporal Overlapping Prediction: A Self-supervised Pre-training Method for LiDAR Moving Object Segmentation
Moving object segmentation (MOS) on LiDAR point clouds is crucial for autonomous systems like self-driving vehicles. Previous supervised approaches rely heavily on costly manual annotations, while LiDAR sequences naturally capture temporal motion cues that can be leveraged for self-supervised learning. In this paper, we propose Temporal Overlapping Prediction (TOP), a self-supervised pre-training method that alleviate the labeling burden for MOS. TOP explores the temporal overlapping points that commonly observed by current and adjacent scans, and learns spatiotemporal representations by predicting the occupancy states of temporal overlapping points. Moreover, we utilize current occupancy reconstruction as an auxiliary pre-training objective, which enhances the current structural awareness of the model. We conduct extensive experiments and observe that the conventional metric Intersection-over-Union (IoU) shows strong bias to objects with more scanned points, which might neglect small or distant objects. To compensate for this bias, we introduce an additional metric called mIoU_obj to evaluate object-level performance. Experiments on nuScenes and SemanticKITTI show that TOPoutperforms both supervised training-from-scratch baseline and other self-supervised pre-training baselines by up to 28.77% relative improvement, demonstrating strong transferability across LiDAR setups and generalization to other tasks. Code and pre-trained models will be publicly available upon publication.
♻ ☆ VRWKV-Editor: Reducing quadratic complexity in transformer-based video editing
In light of recent progress in video editing, deep learning models focusing on both spatial and temporal dependencies have emerged as the primary method. However, these models suffer from the quadratic computational complexity of traditional attention mechanisms, making them difficult to adapt to long-duration and high-resolution videos. This limitation restricts their applicability in practical contexts such as real-time video processing. To tackle this challenge, we introduce a method to reduce both time and space complexity of these systems by proposing VRWKV-Editor, a novel video editing model that integrates a linear spatio-temporal aggregation module into video-based diffusion models. VRWKV-Editor leverages bidirectional weighted key-value recurrence mechanism of the RWKV transformer to capture global dependencies while preserving temporal coherence, achieving linear complexity without sacrificing quality. Extensive experiments demonstrate that the proposed method achieves up to 3.7x speedup and 60% lower memory usage compared to state-of-the-art diffusion-based video editing methods, while maintaining competitive performance in frame consistency and text alignment. Furthermore, a comparative analysis we conducted on videos with different sequence lengths confirms that the gap in editing speed between our approach and architectures with self-attention becomes more significant with long videos.
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ Concept Unlearning by Modeling Key Steps of Diffusion Process
Text-to-image diffusion models (T2I DMs), represented by Stable Diffusion, which generate highly realistic images based on textual input, have been widely used, but their flexibility also makes them prone to misuse for producing harmful or unsafe content. Concept unlearning has been used to prevent text-to-image diffusion models from being misused to generate undesirable visual content. However, existing methods struggle to trade off unlearning effectiveness with the preservation of generation quality. To address this limitation, we propose Key Step Concept Unlearning (KSCU), which selectively fine-tunes the model at key steps to the target concept. KSCU is inspired by the fact that different diffusion denoising steps contribute unequally to the final generation. Compared to previous approaches, which treat all denoising steps uniformly, KSCU avoids over-optimization of unnecessary steps for higher effectiveness and reduces the number of parameter updates for higher efficiency. For example, on the I2P dataset, KSCU outperforms ESD by 8.3% in nudity unlearning accuracy while improving FID by 8.4%, and achieves a high overall score of 0.92, substantially surpassing all other SOTA methods.
♻ ☆ GARLIC: GAussian Representation LearnIng for spaCe partitioning
We present \textbf{GARLIC}, a representation learning approach for Euclidean approximate nearest neighbor (ANN) search in high dimensions. Existing partitions tend to rely on isotropic cells, fixed global resolution, or balanced constraints, which fragment dense regions and merge unrelated points in sparse ones, thereby increasing the candidate count when probing only a few cells. Our method instead partitions \(\mathbb{R}^d\) into anisotropic Gaussian cells whose shapes align with local geometry and sizes adapt to data density. Information-theoretic objectives balance coverage, overlap, and geometric alignment, while split/clone refinement introduces Gaussians only where needed. At query time, Mahalanobis distance selects relevant cells and localized quantization prunes candidates. This yields partitions that reduce cross-cell neighbor splits and candidate counts under small probe budgets, while remaining robust even when trained on only a small fraction of the dataset. Overall, GARLIC introduces a geometry-aware space-partitioning paradigm that combines information-theoretic objectives with adaptive density refinement, offering competitive recall--efficiency trade-offs for Euclidean ANN search.
♻ ☆ A Survey on Dynamic Neural Networks: from Computer Vision to Multi-modal Sensor Fusion
Model compression is essential in the deployment of large Computer Vision models on embedded devices. However, static optimization techniques (e.g. pruning, quantization, etc.) neglect the fact that different inputs have different complexities, thus requiring different amount of computations. Dynamic Neural Networks allow to condition the number of computations to the specific input. The current literature on the topic is very extensive and fragmented. We present a comprehensive survey that synthesizes and unifies existing Dynamic Neural Networks research in the context of Computer Vision. Additionally, we provide a logical taxonomy based on which component of the network is adaptive: the output, the computation graph or the input. Furthermore, we argue that Dynamic Neural Networks are particularly beneficial in the context of Sensor Fusion for better adaptivity, noise reduction and information prioritization. We present preliminary works in this direction. We complement this survey with a curated repository listing all the surveyed papers, each with a brief summary of the solution and the code base when available: https://github.com/DTU-PAS/awesome-dynn-for-cv .
comment: Under review at Image and Vision Computing
♻ ☆ SCoT: Unifying Consistency Models and Rectified Flows via Straight-Consistent Trajectories
Pre-trained diffusion models are commonly used to generate clean data (e.g., images) from random noises, effectively forming pairs of noises and corresponding clean images. Distillation on these pre-trained models can be viewed as the process of constructing advanced trajectories within the pair to accelerate sampling. For instance, consistency model distillation develops consistent projection functions to regulate trajectories, although sampling efficiency remains a concern. Rectified flow method enforces straight trajectories to enable faster sampling, yet relies on numerical ODE solvers, which may introduce approximation errors. In this work, we bridge the gap between the consistency model and the rectified flow method by proposing a Straight Consistent Trajectory~(SCoT) model. SCoT enjoys the benefits of both approaches for fast sampling, producing trajectories with consistent and straight properties simultaneously. These dual properties are strategically balanced by targeting two critical objectives: (1) regulating the gradient of SCoT's mapping to a constant, (2) ensuring trajectory consistency. Extensive experimental results demonstrate the effectiveness and efficiency of SCoT.
♻ ☆ Landcover classification and change detection using remote sensing and machine learning: a case study of Western Fiji
As a developing country, Fiji is facing rapid urbanisation, which is visible in the massive development projects that include housing, roads, and civil works. In this study, we present machine learning and remote sensing frameworks to compare land use and land cover change from 2013 to 2024 in Nadi, Fiji. The ultimate goal of this study is to provide technical support in land cover/land use modelling and change detection. We used Landsat-8 satellite image for the study region and created our training dataset with labels for supervised machine learning. We used Google Earth Engine and unsupervised machine learning via k-means clustering to generate the land cover map. We used convolutional neural networks to classify the selected regions' land cover types. We present a visualisation of change detection, highlighting urban area changes over time to monitor changes in the map.
♻ ☆ DreamOmni: Unified Image Generation and Editing
Currently, the success of large language models (LLMs) illustrates that a unified multitasking approach can significantly enhance model usability, streamline deployment, and foster synergistic benefits across different tasks. However, in computer vision, while text-to-image (T2I) models have significantly improved generation quality through scaling up, their framework design did not initially consider how to unify with downstream tasks, such as various types of editing. To address this, we introduce DreamOmni, a unified model for image generation and editing. We begin by analyzing existing frameworks and the requirements of downstream tasks, proposing a unified framework that integrates both T2I models and various editing tasks. Furthermore, another key challenge is the efficient creation of high-quality editing data, particularly for instruction-based and drag-based editing. To this end, we develop a synthetic data pipeline using sticker-like elements to synthesize accurate, high-quality datasets efficiently, which enables editing data scaling up for unified model training. For training, DreamOmni jointly trains T2I generation and downstream tasks. T2I training enhances the model's understanding of specific concepts and improves generation quality, while editing training helps the model grasp the nuances of the editing task. This collaboration significantly boosts editing performance. Extensive experiments confirm the effectiveness of DreamOmni. The code and model will be released.
♻ ☆ LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition RAL
In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.
comment: Accepted by IEEE Robotics and Automation Letters (RAL) 2025
♻ ☆ Subspace Node Pruning
Improving the efficiency of neural network inference is undeniably important in a time where commercial use of AI models increases daily. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers to significantly reduce inference time while retaining network performance. In this work, we propose the projection of unit activations to an orthogonal subspace in which there is no redundant activity and within which we may prune nodes while simultaneously recovering the impact of lost units via linear least squares. We furthermore show that the order in which units are orthogonalized can be optimized to maximally rank units by their redundancy. Finally, we leverage these orthogonal subspaces to automatically determine layer-wise pruning ratios based upon the relative scale of node activations in our subspace, equivalent to cumulative variance. Our method matches or exceeds state-of-the-art pruning results on ImageNet-trained VGG-16, ResNet-50 and DeiT models while simultaneously having up to 24x lower computational cost than alternative methods. We also demonstrate that this method can be applied in a one-shot manner to OPT LLM models, again outperforming competing methods.
comment: 18 pages, 10 figures, 5 tables
♻ ☆ SoftCFG: Uncertainty-guided Stable Guidance for Visual Autoregressive Model
Autoregressive (AR) models have emerged as powerful tools for image generation by modeling images as sequences of discrete tokens. While Classifier-Free Guidance (CFG) has been adopted to improve conditional generation, its application in AR models faces two key issues: guidance diminishing, where the conditional-unconditional gap quickly vanishes as decoding progresses, and over-guidance, where strong conditions distort visual coherence. To address these challenges, we propose SoftCFG, an uncertainty-guided inference method that distributes adaptive perturbations across all tokens in the sequence. The key idea behind SoftCFG is to let each generated token contribute certainty-weighted guidance, ensuring that the signal persists across steps while resolving conflicts between text guidance and visual context. To further stabilize long-sequence generation, we introduce Step Normalization, which bounds cumulative perturbations of SoftCFG. Our method is training-free, model-agnostic, and seamlessly integrates with existing AR pipelines. Experiments show that SoftCFG significantly improves image quality over standard CFG and achieves state-of-the-art FID on ImageNet 256*256 among autoregressive models.
comment: preprint
♻ ☆ DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut NeurIPS 2024
Foundation models have emerged as powerful tools across various domains including language, vision, and multimodal tasks. While prior works have addressed unsupervised image segmentation, they significantly lag behind supervised models. In this paper, we use a diffusion UNet encoder as a foundation vision encoder and introduce DiffCut, an unsupervised zero-shot segmentation method that solely harnesses the output features from the final self-attention block. Through extensive experimentation, we demonstrate that the utilization of these diffusion features in a graph based segmentation algorithm, significantly outperforms previous state-of-the-art methods on zero-shot segmentation. Specifically, we leverage a recursive Normalized Cut algorithm that softly regulates the granularity of detected objects and produces well-defined segmentation maps that precisely capture intricate image details. Our work highlights the remarkably accurate semantic knowledge embedded within diffusion UNet encoders that could then serve as foundation vision encoders for downstream tasks. Project page at https://diffcut-segmentation.github.io
comment: NeurIPS 2024. Project page at https://diffcut-segmentation.github.io. Code at https://github.com/PaulCouairon/DiffCut
♻ ☆ Patch-Level Kernel Alignment for Dense Self-Supervised Learning
Dense self-supervised learning (SSL) methods showed its effectiveness in enhancing the fine-grained semantic understandings of vision models. However, existing approaches often rely on parametric assumptions or complex post-processing (e.g., clustering, sorting), limiting their flexibility and stability. To overcome these limitations, we introduce Patch-level Kernel Alignment (PaKA), a non-parametric, kernel-based approach that improves the dense representations of pretrained vision encoders with a post-(pre)training. Our method propose a robust and effective alignment objective that captures statistical dependencies which matches the intrinsic structure of high-dimensional dense feature distributions. In addition, we revisit the augmentation strategies inherited from image-level SSL and propose a refined augmentation strategy for dense SSL. Our framework improves dense representations by conducting a lightweight post-training stage on top of a pretrained model. With only 14 hours of additional training on a single GPU, our method achieves state-of-the-art performance across a range of dense vision benchmarks, demonstrating both efficiency and effectiveness.
♻ ☆ What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning
Purpose High dimensional, multimodal data can nowadays be analyzed by huge deep neural networks with little effort. Several fusion methods for bringing together different modalities have been developed. Given the prevalence of high-dimensional, multimodal patient data in medicine, the development of multimodal models marks a significant advancement. However, how these models process information from individual sources in detail is still underexplored. Methods To this end, we implemented an occlusion-based modality contribution method that is both model- and performance-agnostic. This method quantitatively measures the importance of each modality in the dataset for the model to fulfill its task. We applied our method to three different multimodal medical problems for experimental purposes. Results Herein we found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up. Moreover, we provide fine-grained quantitative and visual attribute importance for each modality. Conclusion Our metric offers valuable insights that can support the advancement of multimodal model development and dataset creation. By introducing this method, we contribute to the growing field of interpretability in deep learning for multimodal research. This approach helps to facilitate the integration of multimodal AI into clinical practice. Our code is publicly available at https://github.com/ChristianGappGit/MC_MMD.
comment: Contribution to Conference for Computer Assisted Radiology and Surgery (CARS 2025)
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which turns the user prompt into concise shot drafts and then expands them into detailed specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, and HDR lighting) with self-validation to ensure logical progress. (2) Visual inconsistency: previous approaches struggle to maintain consistent appearance across shots. Our identity-aware cross-shot propagation builds identity-preserving portrait (IPP) tokens that keep character identity while allowing controlled trait changes (expressions, aging) required by the story. (3) Transition artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. Combined in a training-free pipeline, VGoT surpasses strong baselines by 20.4\% in within-shot face consistency and 17.4\% in style consistency, while requiring 10x fewer manual adjustments. VGoT bridges the gap between raw visual synthesis and director-level storytelling for automated multi-shot video generation.
comment: Code: https://github.com/DuNGEOnmassster/VideoGen-of-Thought.git; Webpage: https://cheliosoops.github.io/VGoT/
♻ ☆ PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes ICCV 2025
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
comment: ICCV 2025. Project page: https://nianticlabs.github.io/placeit3d/
♻ ☆ Multi-Domain Brain Vessel Segmentation Through Feature Disentanglement
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific model design and data harmonization between the source and the target domain. This is accomplished by employing disentanglement techniques to independently manipulate different image properties, allowing them to move from one domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation. Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types. Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices. The results highlight our framework's robustness and versatility, demonstrating the potential of domain adaptation methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available at https://github.com/i-vesseg/MultiVesSeg.
comment: 19 pages, 7 figures, 3 tables. Joint first authors: Francesco Galati and Daniele Falcetta. Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:021. Code available at https://github.com/i-vesseg/MultiVesSeg
♻ ☆ Towards Methane Detection Onboard Satellites
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.
♻ ☆ RIFLE: Removal of Image Flicker-Banding via Latent Diffusion Enhancement
Capturing screens is now routine in our everyday lives. But the photographs of emissive displays are often influenced by the flicker-banding (FB), which is alternating bright%u2013dark stripes that arise from temporal aliasing between a camera's rolling-shutter readout and the display's brightness modulation. Unlike moire degradation, which has been extensively studied, the FB remains underexplored despite its frequent and severe impact on readability and perceived quality. We formulate FB removal as a dedicated restoration task and introduce Removal of Image Flicker-Banding via Latent Diffusion Enhancement, RIFLE, a diffusion-based framework designed to remove FB while preserving fine details. We propose the flicker-banding prior estimator (FPE) that predicts key banding attributes and injects it into the restoration network. Additionally, Masked Loss (ML) is proposed to concentrate supervision on banded regions without sacrificing global fidelity. To overcome data scarcity, we provide a simulation pipeline that synthesizes FB in the luminance domain with stochastic jitter in banding angle, banding spacing, and banding width. Feathered boundaries and sensor noise are also applied for a more realistic simulation. For evaluation, we collect a paired real-world FB dataset with pixel-aligned banding-free references captured via long exposure. Across quantitative metrics and visual comparisons on our real-world dataset, RIFLE consistently outperforms recent image reconstruction baselines from mild to severe flicker-banding. To the best of our knowledge, it is the first work to research the simulation and removal of FB. Our work establishes a great foundation for subsequent research in both the dataset construction and the removal model design. Our dataset and code will be released soon.
Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
In the Fourier domain, luminance information is primarily encoded in the amplitude spectrum, while spatial structures are captured in the phase components. The traditional Fourier Frequency information fitting employs pixel-wise loss functions, which tend to focus excessively on local information and may lead to global information loss. In this paper, we present LLFDisc, a U-shaped deep enhancement network that integrates cross-attention and gating mechanisms tailored for frequency-aware enhancement. We propose a novel distribution-aware loss that directly fits the Fourier-domain information and minimizes their divergence using a closed-form KL-Divergence objective. This enables the model to align Fourier-domain information more robustly than with conventional MSE-based losses. Furthermore, we enhance the perceptual loss based on VGG by embedding KL-Divergence on extracted deep features, enabling better structural fidelity. Extensive experiments across multiple benchmarks demonstrate that LLFDisc achieves state-of-the-art performance in both qualitative and quantitative evaluations. Our code will be released at: https://github.com/YanXY000/LLFDisc
AniMaker: Multi-Agent Animated Storytelling with MCTS-Driven Clip Generation
Despite rapid advancements in video generation models, generating coherent storytelling videos that span multiple scenes and characters remains challenging. Current methods often rigidly convert pre-generated keyframes into fixed-length clips, resulting in disjointed narratives and pacing issues. Furthermore, the inherent instability of video generation models means that even a single low-quality clip can significantly degrade the entire output animation's logical coherence and visual continuity. To overcome these obstacles, we introduce AniMaker, a multi-agent framework enabling efficient multi-candidate clip generation and storytelling-aware clip selection, thus creating globally consistent and story-coherent animation solely from text input. The framework is structured around specialized agents, including the Director Agent for storyboard generation, the Photography Agent for video clip generation, the Reviewer Agent for evaluation, and the Post-Production Agent for editing and voiceover. Central to AniMaker's approach are two key technical components: MCTS-Gen in Photography Agent, an efficient Monte Carlo Tree Search (MCTS)-inspired strategy that intelligently navigates the candidate space to generate high-potential clips while optimizing resource usage; and AniEval in Reviewer Agent, the first framework specifically designed for multi-shot animation evaluation, which assesses critical aspects such as story-level consistency, action completion, and animation-specific features by considering each clip in the context of its preceding and succeeding clips. Experiments demonstrate that AniMaker achieves superior quality as measured by popular metrics including VBench and our proposed AniEval framework, while significantly improving the efficiency of multi-candidate generation, pushing AI-generated storytelling animation closer to production standards.
♻ ☆ HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy
Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.
comment: Project page: https://myungkyukoo.github.io/hamlet/
♻ ☆ Audio-Enhanced Vision-Language Modeling with Latent Space Broadening for High Quality Data Expansion
Transformer-based multimodal models are widely used in industrial-scale recommendation, search, and advertising systems for content understanding and relevance ranking. Enhancing labeled training data quality and cross-modal fusion significantly improves model performance, influencing key metrics such as quality view rates and ad revenue. High-quality annotations are crucial for advancing content modeling, yet traditional statistical-based active learning (AL) methods face limitations: they struggle to detect overconfident misclassifications and are less effective in distinguishing semantically similar items in deep neural networks. Additionally, audio information plays an increasing role, especially in short-video platforms, yet most pre-trained multimodal architectures primarily focus on text and images. While training from scratch across all three modalities is possible, it sacrifices the benefits of leveraging existing pre-trained visual-language (VL) and audio models. To address these challenges, we propose kNN-based Latent Space Broadening (LSB) to enhance AL efficiency and Vision-Language Modeling with Audio Enhancement (VLMAE), a mid-fusion approach integrating audio into VL models. This system deployed in production systems, leading to significant business gains.
♻ ☆ Normal-Abnormal Guided Generalist Anomaly Detection NeurIPS 2025
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.
comment: Accepted by NeurIPS 2025
♻ ☆ Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.
♻ ☆ Efficient Whole Slide Pathology VQA via Token Compression
Whole-slide images (WSIs) in pathology can reach up to 10,000 x 10,000 pixels, posing significant challenges for multimodal large language model (MLLM) due to long context length and high computational demands. Previous methods typically focus on patch-level analysis or slide-level classification using CLIP-based models with multi-instance learning, but they lack the generative capabilities needed for visual question answering (VQA). More recent MLLM-based approaches address VQA by feeding thousands of patch tokens directly into the language model, which leads to excessive resource consumption. To address these limitations, we propose Token Compression Pathology LLaVA (TCP-LLaVA), the first MLLM architecture to perform WSI VQA via token compression. TCP-LLaVA introduces a set of trainable compression tokens that aggregate visual and textual information through a modality compression module, inspired by the [CLS] token mechanism in BERT. Only the compressed tokens are forwarded to the LLM for answer generation, significantly reducing input length and computational cost. Experiments on ten TCGA tumor subtypes show that TCP-LLaVA outperforms existing MLLM baselines in VQA accuracy while reducing training resource consumption by a substantial margin.
♻ ☆ Does Bigger Mean Better? Comparitive Analysis of CNNs and Biomedical Vision Language Modles in Medical Diagnosis
The accurate interpretation of chest radiographs using automated methods is a critical task in medical imaging. This paper presents a comparative analysis between a supervised lightweight Convolutional Neural Network (CNN) and a state-of-the-art, zero-shot medical Vision-Language Model (VLM), BiomedCLIP, across two distinct diagnostic tasks: pneumonia detection on the PneumoniaMNIST benchmark and tuberculosis detection on the Shenzhen TB dataset. Our experiments show that supervised CNNs serve as highly competitive baselines in both cases. While the default zero-shot performance of the VLM is lower, we demonstrate that its potential can be unlocked via a simple yet crucial remedy: decision threshold calibration. By optimizing the classification threshold on a validation set, the performance of BiomedCLIP is significantly boosted across both datasets. For pneumonia detection, calibration enables the zero-shot VLM to achieve a superior F1-score of 0.8841, surpassing the supervised CNN's 0.8803. For tuberculosis detection, calibration dramatically improves the F1-score from 0.4812 to 0.7684, bringing it close to the supervised baseline's 0.7834. This work highlights a key insight: proper calibration is essential for leveraging the full diagnostic power of zero-shot VLMs, enabling them to match or even outperform efficient, task-specific supervised models.
comment: 6pages,3 figures.Uunder review of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
♻ ☆ Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization NeurIPS 2025
Preference optimization for diffusion models aims to align them with human preferences for images. Previous methods typically use Vision-Language Models (VLMs) as pixel-level reward models to approximate human preferences. However, when used for step-level preference optimization, these models face challenges in handling noisy images of different timesteps and require complex transformations into pixel space. In this work, we show that pre-trained diffusion models are naturally suited for step-level reward modeling in the noisy latent space, as they are explicitly designed to process latent images at various noise levels. Accordingly, we propose the Latent Reward Model (LRM), which repurposes components of the diffusion model to predict preferences of latent images at arbitrary timesteps. Building on LRM, we introduce Latent Preference Optimization (LPO), a step-level preference optimization method conducted directly in the noisy latent space. Experimental results indicate that LPO significantly improves the model's alignment with general, aesthetic, and text-image alignment preferences, while achieving a 2.5-28x training speedup over existing preference optimization methods. Our code and models are available at https://github.com/Kwai-Kolors/LPO.
comment: NeurIPS 2025
♻ ☆ LiDAR-HMR: 3D Human Mesh Recovery from LiDAR
In recent years, point cloud perception tasks have been garnering increasing attention. This paper presents the first attempt to estimate 3D human body mesh from sparse LiDAR point clouds. We found that the major challenge in estimating human pose and mesh from point clouds lies in the sparsity, noise, and incompletion of LiDAR point clouds. Facing these challenges, we propose an effective sparse-to-dense reconstruction scheme to reconstruct 3D human mesh. This involves estimating a sparse representation of a human (3D human pose) and gradually reconstructing the body mesh. To better leverage the 3D structural information of point clouds, we employ a cascaded graph transformer (graphormer) to introduce point cloud features during sparse-to-dense reconstruction. Experimental results on three publicly available databases demonstrate the effectiveness of the proposed approach. Code: https://github.com/soullessrobot/LiDAR-HMR/
comment: Code is available at: https://github.com/soullessrobot/LiDAR-HMR/
♻ ☆ An Improved Pure Fully Connected Neural Network for Rice Grain Classification
Rice is a staple food for a significant portion of the world's population, providing essential nutrients and serving as a versatile in-gredient in a wide range of culinary traditions. Recently, the use of deep learning has enabled automated classification of rice, im-proving accuracy and efficiency. However, classical models based on first-stage training may face difficulties in distinguishing between rice varieties with similar external characteristics, thus leading to misclassifications. Considering the transparency and feasibility of model, we selected and gradually improved pure fully connected neural network to achieve classification of rice grain. The dataset we used contains both global and domestic rice images obtained from websites and laboratories respectively. First, the training mode was changed from one-stage training to two-stage training, which significantly contributes to distinguishing two similar types of rice. Secondly, the preprocessing method was changed from random tilting to horizontal or vertical position cor-rection. After those two enhancements, the accuracy of our model increased notably from 97% to 99%. In summary, two subtle methods proposed in this study can remarkably enhance the classification ability of deep learning models in terms of the classification of rice grain.
♻ ☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
Maintaining good driving behavior in out-of-distribution scenarios remains a critical challenge in autonomous driving. A promising direction is to leverage the generalist knowledge and reasoning capabilities of large-language models by treating unusual driving scenarios as a logical reasoning task. In this work, we present Poutine, a method that uses an off-the-shelf 3B-parameter vision-language model (VLM) - without any additional components - to achieve robust end-to-end autonomous driving via a simple and scalable training recipe. To learn strong base driving capabilities, we first train Poutine-Base using self-supervised next-token prediction over vision, language, and trajectory (VLT) tokens, leveraging both nominal and long-tail driving data. In the second stage, we fine-tune Poutine-Base using Group Relative Policy Optimization (GRPO) with a small set of human preference-labeled examples. We evaluated our approach on the Waymo end-to-end driving benchmark curated for long-tail scenarios. The final Poutine model achieves an RFS of 7.99 on the test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. Our results suggest that handcrafted tokenizers or custom architectural components added to base VLMs in prior work are not necessary to achieve strong driving performance. Instead, this work highlights the potential of scalable VLT pretraining combined with lightweight RL fine-tuning to enable robust and generalizable autonomous driving.
How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook IJCAI25
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA Updated to include papers accepted by IJCAI25, KDD25, ICML25, NeurIPS25 4 figures or tables, 19 pages, 251 references
♻ ☆ Robust Pan-Cancer Mitotic Figure Detection with YOLOv12
Mitotic figures represent a key histoprognostic feature in tumor pathology, providing crucial insights into tumor aggressiveness and proliferation. However, their identification remains challenging, subject to significant inter-observer variability, even among experienced pathologists. To address this issue, the MItosis DOmain Generalization (MIDOG) 2025 challenge marks the third edition of an international competition aiming to develop robust mitosis detection algorithms. In this paper, we present a mitotic figure detection approach based on the state-of-the-art YOLOv12 object detection architecture. Our method achieved an F1-score of 0.801 on the preliminary test set (hotspots only) and ranked second on the final test leaderboard with an F1-score of 0.7216 across complex and heterogeneous whole-slide regions, without relying on external data.
♻ ☆ Q-FSRU: Quantum-Augmented Frequency-Spectral For Medical Visual Question Answering ICLR 2026
Solving tough clinical questions that require both image and text understanding is still a major challenge in healthcare AI. In this work, we propose Q-FSRU, a new model that combines Frequency Spectrum Representation and Fusion (FSRU) with a method called Quantum Retrieval-Augmented Generation (Quantum RAG) for medical Visual Question Answering (VQA). The model takes in features from medical images and related text, then shifts them into the frequency domain using Fast Fourier Transform (FFT). This helps it focus on more meaningful data and filter out noise or less useful information. To improve accuracy and ensure that answers are based on real knowledge, we add a quantum inspired retrieval system. It fetches useful medical facts from external sources using quantum-based similarity techniques. These details are then merged with the frequency-based features for stronger reasoning. We evaluated our model using the VQA-RAD dataset, which includes real radiology images and questions. The results showed that Q-FSRU outperforms earlier models, especially on complex cases needing image text reasoning. The mix of frequency and quantum information improves both performance and explainability. Overall, this approach offers a promising way to build smart, clear, and helpful AI tools for doctors.
comment: 12 pages (9 main + 2 references/appendix), 2 figures, conference paper submitted to ICLR 2026
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection ICCV 2025
Current zero-shot anomaly detection (ZSAD) methods show remarkable success in prompting large pre-trained vision-language models to detect anomalies in a target dataset without using any dataset-specific training or demonstration. However, these methods often focus on crafting/learning prompts that capture only coarse-grained semantics of abnormality, e.g., high-level semantics like "damaged", "imperfect", or "defective" objects. They therefore have limited capability in recognizing diverse abnormality details that deviate from these general abnormal patterns in various ways. To address this limitation, we propose FAPrompt, a novel framework designed to learn Fine-grained Abnormality Prompts for accurate ZSAD. To this end, a novel Compound Abnormality Prompt learning (CAP) module is introduced in FAPrompt to learn a set of complementary, decomposed abnormality prompts, where abnormality prompts are enforced to model diverse abnormal patterns derived from the same normality semantic. On the other hand, the fine-grained abnormality patterns can be different from one dataset to another. To enhance the cross-dataset generalization, another novel module, namely Data-dependent Abnormality Prior learning (DAP), is introduced in FAPrompt to learn a sample-wise abnormality prior from abnormal features of each test image to dynamically adapt the abnormality prompts to individual test images. Comprehensive experiments on 19 real-world datasets, covering both industrial defects and medical anomalies, demonstrate that FAPrompt substantially outperforms state-of-the-art methods in both image- and pixel-level ZSAD tasks. Code is available at https://github.com/mala-lab/FAPrompt.
comment: Accepted to ICCV 2025; 11 pages, 3 figures
♻ ☆ Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments
Instance segmentation is an important image processing operation for agricultural automation, providing precise delineation of individual objects within images and enabling tasks such as selective harvesting and precision pruning. This study compares the one stage YOLOv8 model with the two stage Mask R CNN model for instance segmentation under varying orchard conditions across two datasets. Dataset 1, collected in the dormant season, contains images of apple trees without foliage and was used to train multi object segmentation models delineating branches and trunks. Dataset 2, collected in the early growing season, includes canopy images with green foliage and immature apples and was used to train single object segmentation models delineating fruitlets. Results showed YOLOv8 outperformed Mask R CNN with higher precision and near perfect recall at a confidence threshold of 0.5. For Dataset 1, YOLOv8 achieved precision 0.90 and recall 0.95 compared to 0.81 and 0.81 for Mask R CNN. For Dataset 2, YOLOv8 reached precision 0.93 and recall 0.97 compared to 0.85 and 0.88. Inference times were also lower for YOLOv8, at 10.9 ms and 7.8 ms, versus 15.6 ms and 12.8 ms for Mask R CNN. These findings demonstrate superior accuracy and efficiency of YOLOv8 for real time orchard automation tasks such as robotic harvesting and fruit thinning.
♻ ☆ A Benchmarking Study of Vision-based Robotic Grasping Algorithms
We present a benchmarking study of vision-based robotic grasping algorithms with distinct approaches, and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithm's strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation, and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: This work was intended as a replacement of arXiv:2307.11622. I will upload it as a replacement to arXiv:2307.11622 simultaneously
♻ ☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
♻ ☆ Evict3R: Training-Free Token Eviction for Memory-Bounded Streaming Visual Geometry Transformers
Streaming visual transformers like StreamVGGT achieve strong 3D perception but suffer from unbounded growth of key value (KV) memory, which limits scalability. We propose a training-free, inference-time token eviction policy that bounds memory by discarding redundant tokens while keeping the most informative ones. Our method uses significantly less memory with little to no drop in accuracy: on 7-Scenes with long sequences it reduces peak memory from 18.63 GB to 9.39 GB while accuracy and completeness drop by only 0.003. Under strict memory budgets, eviction enables denser frame sampling, which improves reconstruction accuracy compared to the baseline. Experiments across video depth estimation (Sintel, KITTI), 3D reconstruction (7-Scenes, NRGBD), and camera pose estimation (Sintel, TUM-dynamics) show that our approach closely matches StreamVGGT at a fraction of the memory and makes long-horizon streaming inference more practical.
comment: project page: https://soroush-mim.github.io/projects/evict3r/
♻ ☆ AudioStory: Generating Long-Form Narrative Audio with Large Language Models
Recent advances in text-to-audio (TTA) generation excel at synthesizing short audio clips but struggle with long-form narrative audio, which requires temporal coherence and compositional reasoning. To address this gap, we propose AudioStory, a unified framework that integrates large language models (LLMs) with TTA systems to generate structured, long-form audio narratives. AudioStory possesses strong instruction-following reasoning generation capabilities. It employs LLMs to decompose complex narrative queries into temporally ordered sub-tasks with contextual cues, enabling coherent scene transitions and emotional tone consistency. AudioStory has two appealing features: (1) Decoupled bridging mechanism: AudioStory disentangles LLM-diffuser collaboration into two specialized components, i.e., a bridging query for intra-event semantic alignment and a residual query for cross-event coherence preservation. (2) End-to-end training: By unifying instruction comprehension and audio generation within a single end-to-end framework, AudioStory eliminates the need for modular training pipelines while enhancing synergy between components. Furthermore, we establish a benchmark AudioStory-10K, encompassing diverse domains such as animated soundscapes and natural sound narratives. Extensive experiments show the superiority of AudioStory on both single-audio generation and narrative audio generation, surpassing prior TTA baselines in both instruction-following ability and audio fidelity. Our code is available at https://github.com/TencentARC/AudioStory
Artificial Intelligence 291
☆ NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation
Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.
☆ Diffusion Models and the Manifold Hypothesis: Log-Domain Smoothing is Geometry Adaptive
Diffusion models have achieved state-of-the-art performance, demonstrating remarkable generalisation capabilities across diverse domains. However, the mechanisms underpinning these strong capabilities remain only partially understood. A leading conjecture, based on the manifold hypothesis, attributes this success to their ability to adapt to low-dimensional geometric structure within the data. This work provides evidence for this conjecture, focusing on how such phenomena could result from the formulation of the learning problem through score matching. We inspect the role of implicit regularisation by investigating the effect of smoothing minimisers of the empirical score matching objective. Our theoretical and empirical results confirm that smoothing the score function -- or equivalently, smoothing in the log-density domain -- produces smoothing tangential to the data manifold. In addition, we show that the manifold along which the diffusion model generalises can be controlled by choosing an appropriate smoothing.
☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
☆ Interactive Training: Feedback-Driven Neural Network Optimization EMNLP 2025
Traditional neural network training typically follows fixed, predefined optimization recipes, lacking the flexibility to dynamically respond to instabilities or emerging training issues. In this paper, we introduce Interactive Training, an open-source framework that enables real-time, feedback-driven intervention during neural network training by human experts or automated AI agents. At its core, Interactive Training uses a control server to mediate communication between users or agents and the ongoing training process, allowing users to dynamically adjust optimizer hyperparameters, training data, and model checkpoints. Through three case studies, we demonstrate that Interactive Training achieves superior training stability, reduced sensitivity to initial hyperparameters, and improved adaptability to evolving user needs, paving the way toward a future training paradigm where AI agents autonomously monitor training logs, proactively resolve instabilities, and optimize training dynamics.
comment: EMNLP 2025 Demo
VideoNSA: Native Sparse Attention Scales Video Understanding
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.
comment: Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
☆ F2LLM Technical Report: Matching SOTA Embedding Performance with 6 Million Open-Source Data
We introduce F2LLM - Foundation to Feature Large Language Models, a suite of state-of-the-art embedding models in three sizes: 0.6B, 1.7B, and 4B. Unlike previous top-ranking embedding models that require massive contrastive pretraining, sophisticated training pipelines, and costly synthetic training data, F2LLM is directly finetuned from foundation models on 6 million query-document-negative tuples curated from open-source, non-synthetic datasets, striking a strong balance between training cost, model size, and embedding performance. On the MTEB English leaderboard, F2LLM-4B ranks 2nd among models with approximately 4B parameters and 7th overall, while F2LLM-1.7B ranks 1st among models in the 1B-2B size range. To facilitate future research in the field, we release the models, training dataset, and code, positioning F2LLM as a strong, reproducible, and budget-friendly baseline for future works.
☆ Tree-based Dialogue Reinforced Policy Optimization for Red-Teaming Attacks
Despite recent rapid progress in AI safety, current large language models remain vulnerable to adversarial attacks in multi-turn interaction settings, where attackers strategically adapt their prompts across conversation turns and pose a more critical yet realistic challenge. Existing approaches that discover safety vulnerabilities either rely on manual red-teaming with human experts or employ automated methods using pre-defined templates and human-curated attack data, with most focusing on single-turn attacks. However, these methods did not explore the vast space of possible multi-turn attacks, failing to consider novel attack trajectories that emerge from complex dialogue dynamics and strategic conversation planning. This gap is particularly critical given recent findings that LLMs exhibit significantly higher vulnerability to multi-turn attacks compared to single-turn attacks. We propose DialTree-RPO, an on-policy reinforcement learning framework integrated with tree search that autonomously discovers diverse multi-turn attack strategies by treating the dialogue as a sequential decision-making problem, enabling systematic exploration without manually curated data. Through extensive experiments, our approach not only achieves more than 25.9% higher ASR across 10 target models compared to previous state-of-the-art approaches, but also effectively uncovers new attack strategies by learning optimal dialogue policies that maximize attack success across multiple turns.
☆ Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
☆ Self-Forcing++: Towards Minute-Scale High-Quality Video Generation
Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/
comment: preprint
☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
☆ BioX-Bridge: Model Bridging for Unsupervised Cross-Modal Knowledge Transfer across Biosignals
Biosignals offer valuable insights into the physiological states of the human body. Although biosignal modalities differ in functionality, signal fidelity, sensor comfort, and cost, they are often intercorrelated, reflecting the holistic and interconnected nature of human physiology. This opens up the possibility of performing the same tasks using alternative biosignal modalities, thereby improving the accessibility, usability, and adaptability of health monitoring systems. However, the limited availability of large labeled datasets presents challenges for training models tailored to specific tasks and modalities of interest. Unsupervised cross-modal knowledge transfer offers a promising solution by leveraging knowledge from an existing modality to support model training for a new modality. Existing methods are typically based on knowledge distillation, which requires running a teacher model alongside student model training, resulting in high computational and memory overhead. This challenge is further exacerbated by the recent development of foundation models that demonstrate superior performance and generalization across tasks at the cost of large model sizes. To this end, we explore a new framework for unsupervised cross-modal knowledge transfer of biosignals by training a lightweight bridge network to align the intermediate representations and enable information flow between foundation models and across modalities. Specifically, we introduce an efficient strategy for selecting alignment positions where the bridge should be constructed, along with a flexible prototype network as the bridge architecture. Extensive experiments across multiple biosignal modalities, tasks, and datasets show that BioX-Bridge reduces the number of trainable parameters by 88--99\% while maintaining or even improving transfer performance compared to state-of-the-art methods.
☆ Parallel Scaling Law: Unveiling Reasoning Generalization through A Cross-Linguistic Perspective
Recent advancements in Reinforcement Post-Training (RPT) have significantly enhanced the capabilities of Large Reasoning Models (LRMs), sparking increased interest in the generalization of RL-based reasoning. While existing work has primarily focused on investigating its generalization across tasks or modalities, this study proposes a novel cross-linguistic perspective to investigate reasoning generalization. This raises a crucial question: $\textit{Does the reasoning capability achieved from English RPT effectively transfer to other languages?}$ We address this by systematically evaluating English-centric LRMs on multilingual reasoning benchmarks and introducing a metric to quantify cross-lingual transferability. Our findings reveal that cross-lingual transferability varies significantly across initial model, target language, and training paradigm. Through interventional studies, we find that models with stronger initial English capabilities tend to over-rely on English-specific patterns, leading to diminished cross-lingual generalization. To address this, we conduct a thorough parallel training study. Experimental results yield three key findings: $\textbf{First-Parallel Leap}$, a substantial leap in performance when transitioning from monolingual to just a single parallel language, and a predictable $\textbf{Parallel Scaling Law}$, revealing that cross-lingual reasoning transfer follows a power-law with the number of training parallel languages. Moreover, we identify the discrepancy between actual monolingual performance and the power-law prediction as $\textbf{Monolingual Generalization Gap}$, indicating that English-centric LRMs fail to fully generalize across languages. Our study challenges the assumption that LRM reasoning mirrors human cognition, providing critical insights for the development of more language-agnostic LRMs.
comment: Work in progress
InfoMosaic-Bench: Evaluating Multi-Source Information Seeking in Tool-Augmented Agents
Information seeking is a fundamental requirement for humans. However, existing LLM agents rely heavily on open-web search, which exposes two fundamental weaknesses: online content is noisy and unreliable, and many real-world tasks require precise, domain-specific knowledge unavailable from the web. The emergence of the Model Context Protocol (MCP) now allows agents to interface with thousands of specialized tools, seemingly resolving this limitation. Yet it remains unclear whether agents can effectively leverage such tools -- and more importantly, whether they can integrate them with general-purpose search to solve complex tasks. Therefore, we introduce InfoMosaic-Bench, the first benchmark dedicated to multi-source information seeking in tool-augmented agents. Covering six representative domains (medicine, finance, maps, video, web, and multi-domain integration), InfoMosaic-Bench requires agents to combine general-purpose search with domain-specific tools. Tasks are synthesized with InfoMosaic-Flow, a scalable pipeline that grounds task conditions in verified tool outputs, enforces cross-source dependencies, and filters out shortcut cases solvable by trivial lookup. This design guarantees both reliability and non-triviality. Experiments with 14 state-of-the-art LLM agents reveal three findings: (i) web information alone is insufficient, with GPT-5 achieving only 38.2% accuracy and 67.5% pass rate; (ii) domain tools provide selective but inconsistent benefits, improving some domains while degrading others; and (iii) 22.4% of failures arise from incorrect tool usage or selection, highlighting that current LLMs still struggle with even basic tool handling.
☆ microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.
☆ How to Combat Reactive and Dynamic Jamming Attacks with Reinforcement Learning
This paper studies the problem of mitigating reactive jamming, where a jammer adopts a dynamic policy of selecting channels and sensing thresholds to detect and jam ongoing transmissions. The transmitter-receiver pair learns to avoid jamming and optimize throughput over time (without prior knowledge of channel conditions or jamming strategies) by using reinforcement learning (RL) to adapt transmit power, modulation, and channel selection. Q-learning is employed for discrete jamming-event states, while Deep Q-Networks (DQN) are employed for continuous states based on received power. Through different reward functions and action sets, the results show that RL can adapt rapidly to spectrum dynamics and sustain high rates as channels and jamming policies change over time.
☆ Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.
comment: All tables, graphs and figures generated can be obtained in the Zenodo repository complementary to this work: https://doi.org/10.5281/zenodo.15088423
☆ RLAD: Training LLMs to Discover Abstractions for Solving Reasoning Problems
Reasoning requires going beyond pattern matching or memorization of solutions to identify and implement "algorithmic procedures" that can be used to deduce answers to hard problems. Doing so requires realizing the most relevant primitives, intermediate results, or shared procedures, and building upon them. While RL post-training on long chains of thought ultimately aims to uncover this kind of algorithmic behavior, most reasoning traces learned by large models fail to consistently capture or reuse procedures, instead drifting into verbose and degenerate exploration. To address more effective reasoning, we introduce reasoning abstractions: concise natural language descriptions of procedural and factual knowledge that guide the model toward learning successful reasoning. We train models to be capable of proposing multiple abstractions given a problem, followed by RL that incentivizes building a solution while using the information provided by these abstractions. This results in a two-player RL training paradigm, abbreviated as RLAD, that jointly trains an abstraction generator and a solution generator. This setup effectively enables structured exploration, decouples learning signals of abstraction proposal and solution generation, and improves generalization to harder problems. We also show that allocating more test-time compute to generating abstractions is more beneficial for performance than generating more solutions at large test budgets, illustrating the role of abstractions in guiding meaningful exploration.
☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
☆ The Unreasonable Effectiveness of Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their unreliability and high variance hinder their application to long-horizon, complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales over agents by generating multiple rollouts and selecting among them using behavior narratives that describe the agents' rollouts. It enables both wide exploration and principled trajectory selection, substantially improving robustness and success rates. On OSWorld, our bBoN scaling method establishes a new state of the art (SoTA) at 69.9%, significantly outperforming prior methods and approaching human-level performance at 72%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the unreasonable effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and bBoN provides a practical framework to achieve this.
comment: 23 pages, 7 figures, 10 tables
☆ Explore Briefly, Then Decide: Mitigating LLM Overthinking via Cumulative Entropy Regulation
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities on complex problems using long Chain-of-Thought (CoT) reasoning. However, they often suffer from overthinking, meaning generating unnecessarily lengthy reasoning steps for simpler problems. This issue may degrade the efficiency of the models and make them difficult to adapt the reasoning depth to the complexity of problems. To address this, we introduce a novel metric Token Entropy Cumulative Average (TECA), which measures the extent of exploration throughout the reasoning process. We further propose a novel reasoning paradigm -- Explore Briefly, Then Decide -- with an associated Cumulative Entropy Regulation (CER) mechanism. This paradigm leverages TECA to help the model dynamically determine the optimal point to conclude its thought process and provide a final answer, thus achieving efficient reasoning. Experimental results across diverse mathematical benchmarks show that our approach substantially mitigates overthinking without sacrificing problem-solving ability. With our thinking paradigm, the average response length decreases by up to 71% on simpler datasets, demonstrating the effectiveness of our method in creating a more efficient and adaptive reasoning process.
☆ ExGRPO: Learning to Reason from Experience
Reinforcement learning from verifiable rewards (RLVR) is an emerging paradigm for improving the reasoning ability of large language models. However, standard on-policy training discards rollout experiences after a single update, leading to computational inefficiency and instability. While prior work on RL has highlighted the benefits of reusing past experience, the role of experience characteristics in shaping learning dynamics of large reasoning models remains underexplored. In this paper, we are the first to investigate what makes a reasoning experience valuable and identify rollout correctness and entropy as effective indicators of experience value. Based on these insights, we propose ExGRPO (Experiential Group Relative Policy Optimization), a framework that organizes and prioritizes valuable experiences, and employs a mixed-policy objective to balance exploration with experience exploitation. Experiments on five backbone models (1.5B-8B parameters) show that ExGRPO consistently improves reasoning performance on mathematical/general benchmarks, with an average gain of +3.5/7.6 points over on-policy RLVR. Moreover, ExGRPO stabilizes training on both stronger and weaker models where on-policy methods fail. These results highlight principled experience management as a key ingredient for efficient and scalable RLVR.
☆ RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning
Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.
☆ The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.
comment: 23 pages, 15 figures
☆ More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.
comment: 20 pages, 5 figures
☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal shape with a control signal (via correlation), amplifying it where visibility is needed (via energy), and maintaining spatial focus (via entropy). TempoControl allows precise control over timing while ensuring high video quality and diversity. We demonstrate its effectiveness across various video generation applications, including temporal reordering for single and multiple objects, as well as action and audio-aligned generation.
comment: Under Review
☆ DiFFPO: Training Diffusion LLMs to Reason Fast and Furious via Reinforcement Learning
We propose DiFFPO, Diffusion Fast and Furious Policy Optimization, a unified framework for training masked diffusion large language models (dLLMs) to reason not only better (furious), but also faster via reinforcement learning (RL). We first unify the existing baseline approach such as d1 by proposing to train surrogate policies via off-policy RL, whose likelihood is much more tractable as an approximation to the true dLLM policy. This naturally motivates a more accurate and informative two-stage likelihood approximation combined with importance sampling correction, which leads to generalized RL algorithms with better sample efficiency and superior task performance. Second, we propose a new direction of joint training efficient samplers/controllers of dLLMs policy. Via RL, we incentivize dLLMs' natural multi-token prediction capabilities by letting the model learn to adaptively allocate an inference threshold for each prompt. By jointly training the sampler, we yield better accuracies with lower number of function evaluations (NFEs) compared to training the model only, obtaining the best performance in improving the Pareto frontier of the inference-time compute of dLLMs. We showcase the effectiveness of our pipeline by training open source large diffusion language models over benchmark math and planning tasks.
Detection of Chagas Disease from the ECG: The George B. Moody PhysioNet Challenge 2025
Objective: Chagas disease is a parasitic infection that is endemic to South America, Central America, and, more recently, the U.S., primarily transmitted by insects. Chronic Chagas disease can cause cardiovascular diseases and digestive problems. Serological testing capacities for Chagas disease are limited, but Chagas cardiomyopathy often manifests in ECGs, providing an opportunity to prioritize patients for testing and treatment. Approach: The George B. Moody PhysioNet Challenge 2025 invites teams to develop algorithmic approaches for identifying Chagas disease from electrocardiograms (ECGs). Main results: This Challenge provides multiple innovations. First, we leveraged several datasets with labels from patient reports and serological testing, provided a large dataset with weak labels and smaller datasets with strong labels. Second, we augmented the data to support model robustness and generalizability to unseen data sources. Third, we applied an evaluation metric that captured the local serological testing capacity for Chagas disease to frame the machine learning problem as a triage task. Significance: Over 630 participants from 111 teams submitted over 1300 entries during the Challenge, representing diverse approaches from academia and industry worldwide.
comment: 13 pages, 2 figures
☆ ARUQULA -- An LLM based Text2SPARQL Approach using ReAct and Knowledge Graph Exploration Utilities SP
Interacting with knowledge graphs can be a daunting task for people without a background in computer science since the query language that is used (SPARQL) has a high barrier of entry. Large language models (LLMs) can lower that barrier by providing support in the form of Text2SPARQL translation. In this paper we introduce a generalized method based on SPINACH, an LLM backed agent that translates natural language questions to SPARQL queries not in a single shot, but as an iterative process of exploration and execution. We describe the overall architecture and reasoning behind our design decisions, and also conduct a thorough analysis of the agent behavior to gain insights into future areas for targeted improvements. This work was motivated by the Text2SPARQL challenge, a challenge that was held to facilitate improvements in the Text2SPARQL domain.
comment: peer reviewed publication at Text2SPARQL Workshop @ ESWC 2025
☆ UpSafe$^\circ$C: Upcycling for Controllable Safety in Large Language Models
Large Language Models (LLMs) have achieved remarkable progress across a wide range of tasks, but remain vulnerable to safety risks such as harmful content generation and jailbreak attacks. Existing safety techniques -- including external guardrails, inference-time guidance, and post-training alignment -- each face limitations in balancing safety, utility, and controllability. In this work, we propose UpSafe$^\circ$C, a unified framework for enhancing LLM safety through safety-aware upcycling. Our approach first identifies safety-critical layers and upcycles them into a sparse Mixture-of-Experts (MoE) structure, where the router acts as a soft guardrail that selectively activates original MLPs and added safety experts. We further introduce a two-stage SFT strategy to strengthen safety discrimination while preserving general capabilities. To enable flexible control at inference time, we introduce a safety temperature mechanism, allowing dynamic adjustment of the trade-off between safety and utility. Experiments across multiple benchmarks, base model, and model scales demonstrate that UpSafe$^\circ$C achieves robust safety improvements against harmful and jailbreak inputs, while maintaining competitive performance on general tasks. Moreover, analysis shows that safety temperature provides fine-grained inference-time control that achieves the Pareto-optimal frontier between utility and safety. Our results highlight a new direction for LLM safety: moving from static alignment toward dynamic, modular, and inference-aware control.
☆ A Rigorous Benchmark with Multidimensional Evaluation for Deep Research Agents: From Answers to Reports
Artificial intelligence is undergoing the paradigm shift from closed language models to interconnected agent systems capable of external perception and information integration. As a representative embodiment, Deep Research Agents (DRAs) systematically exhibit the capabilities for task decomposition, cross-source retrieval, multi-stage reasoning, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response formatting, and scoring mechanisms, limiting their capacity to assess such systems effectively. This paper introduces a rigorous benchmark and a multidimensional evaluation framework tailored to DRAs and report-style responses. The benchmark comprises 214 expert-curated challenging queries distributed across 10 broad thematic domains, each accompanied by manually constructed reference bundles to support composite evaluation. The framework enables comprehensive evaluation of long-form reports generated by DRAs, incorporating integrated scoring metrics for semantic quality, topical focus, and retrieval trustworthiness. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement in DRA systems.
☆ EvolveCaptions: Empowering DHH Users Through Real-Time Collaborative Captioning
Automatic Speech Recognition (ASR) systems often fail to accurately transcribe speech from Deaf and Hard of Hearing (DHH) individuals, especially during real-time conversations. Existing personalization approaches typically require extensive pre-recorded data and place the burden of adaptation on the DHH speaker. We present EvolveCaptions, a real-time, collaborative ASR adaptation system that supports in-situ personalization with minimal effort. Hearing participants correct ASR errors during live conversations. Based on these corrections, the system generates short, phonetically targeted prompts for the DHH speaker to record, which are then used to fine-tune the ASR model. In a study with 12 DHH and six hearing participants, EvolveCaptions reduced Word Error Rate (WER) across all DHH users within one hour of use, using only five minutes of recording time on average. Participants described the system as intuitive, low-effort, and well-integrated into communication. These findings demonstrate the promise of collaborative, real-time ASR adaptation for more equitable communication.
☆ GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield "black-box" models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
☆ Learning to Reason for Hallucination Span Detection
Large language models (LLMs) often generate hallucinations -- unsupported content that undermines reliability. While most prior works frame hallucination detection as a binary task, many real-world applications require identifying hallucinated spans, which is a multi-step decision making process. This naturally raises the question of whether explicit reasoning can help the complex task of detecting hallucination spans. To answer this question, we first evaluate pretrained models with and without Chain-of-Thought (CoT) reasoning, and show that CoT reasoning has the potential to generate at least one correct answer when sampled multiple times. Motivated by this, we propose RL4HS, a reinforcement learning framework that incentivizes reasoning with a span-level reward function. RL4HS builds on Group Relative Policy Optimization and introduces Class-Aware Policy Optimization to mitigate reward imbalance issue. Experiments on the RAGTruth benchmark (summarization, question answering, data-to-text) show that RL4HS surpasses pretrained reasoning models and supervised fine-tuning, demonstrating the necessity of reinforcement learning with span-level rewards for detecting hallucination spans.
☆ Go witheFlow: Real-time Emotion Driven Audio Effects Modulation NeurIPS
Music performance is a distinctly human activity, intrinsically linked to the performer's ability to convey, evoke, or express emotion. Machines cannot perform music in the human sense; they can produce, reproduce, execute, or synthesize music, but they lack the capacity for affective or emotional experience. As such, music performance is an ideal candidate through which to explore aspects of collaboration between humans and machines. In this paper, we introduce the witheFlow system, designed to enhance real-time music performance by automatically modulating audio effects based on features extracted from both biosignals and the audio itself. The system, currently in a proof-of-concept phase, is designed to be lightweight, able to run locally on a laptop, and is open-source given the availability of a compatible Digital Audio Workstation and sensors.
comment: Accepted at NeurIPS Creative AI Track 2025: Humanity
☆ SIEVE: Towards Verifiable Certification for Code-datasets
Code agents and empirical software engineering rely on public code datasets, yet these datasets lack verifiable quality guarantees. Static 'dataset cards' inform, but they are neither auditable nor do they offer statistical guarantees, making it difficult to attest to dataset quality. Teams build isolated, ad-hoc cleaning pipelines. This fragments effort and raises cost. We present SIEVE, a community-driven framework. It turns per-property checks into Confidence Cards-machine-readable, verifiable certificates with anytime-valid statistical bounds. We outline a research plan to bring SIEVE to maturity, replacing narrative cards with anytime-verifiable certification. This shift is expected to lower quality-assurance costs and increase trust in code-datasets.
comment: 5
☆ Comparing Contrastive and Triplet Loss in Audio-Visual Embedding: Intra-Class Variance and Greediness Analysis
Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
comment: 8 pages, 4 tables, 3 figures
☆ Unlocking Vision-Language Models for Video Anomaly Detection via Fine-Grained Prompting
Prompting has emerged as a practical way to adapt frozen vision-language models (VLMs) for video anomaly detection (VAD). Yet, existing prompts are often overly abstract, overlooking the fine-grained human-object interactions or action semantics that define complex anomalies in surveillance videos. We propose ASK-Hint, a structured prompting framework that leverages action-centric knowledge to elicit more accurate and interpretable reasoning from frozen VLMs. Our approach organizes prompts into semantically coherent groups (e.g. violence, property crimes, public safety) and formulates fine-grained guiding questions that align model predictions with discriminative visual cues. Extensive experiments on UCF-Crime and XD-Violence show that ASK-Hint consistently improves AUC over prior baselines, achieving state-of-the-art performance compared to both fine-tuned and training-free methods. Beyond accuracy, our framework provides interpretable reasoning traces towards anomaly and demonstrates strong generalization across datasets and VLM backbones. These results highlight the critical role of prompt granularity and establish ASK-Hint as a new training-free and generalizable solution for explainable video anomaly detection.
comment: 14 pages, video anomaly detection
☆ Human-Robo-advisor collaboration in decision-making: Evidence from a multiphase mixed methods experimental study
Robo-advisors (RAs) are cost-effective, bias-resistant alternatives to human financial advisors, yet adoption remains limited. While prior research has examined user interactions with RAs, less is known about how individuals interpret RA roles and integrate their advice into decision-making. To address this gap, this study employs a multiphase mixed methods design integrating a behavioral experiment (N = 334), thematic analysis, and follow-up quantitative testing. Findings suggest that people tend to rely on RAs, with reliance shaped by information about RA performance and the framing of advice as gains or losses. Thematic analysis reveals three RA roles in decision-making and four user types, each reflecting distinct patterns of advice integration. In addition, a 2 x 2 typology categorizes antecedents of acceptance into enablers and inhibitors at both the individual and algorithmic levels. By combining behavioral, interpretive, and confirmatory evidence, this study advances understanding of human-RA collaboration and provides actionable insights for designing more trustworthy and adaptive RA systems.
☆ How to Find Fantastic Papers: Self-Rankings as a Powerful Predictor of Scientific Impact Beyond Peer Review
Peer review in academic research aims not only to ensure factual correctness but also to identify work of high scientific potential that can shape future research directions. This task is especially critical in fast-moving fields such as artificial intelligence (AI), yet it has become increasingly difficult given the rapid growth of submissions. In this paper, we investigate an underexplored measure for identifying high-impact research: authors' own rankings of their multiple submissions to the same AI conference. Grounded in game-theoretic reasoning, we hypothesize that self-rankings are informative because authors possess unique understanding of their work's conceptual depth and long-term promise. To test this hypothesis, we conducted a large-scale experiment at a leading AI conference, where 1,342 researchers self-ranked their 2,592 submissions by perceived quality. Tracking outcomes over more than a year, we found that papers ranked highest by their authors received twice as many citations as their lowest-ranked counterparts; self-rankings were especially effective at identifying highly cited papers (those with over 150 citations). Moreover, we showed that self-rankings outperformed peer review scores in predicting future citation counts. Our results remained robust after accounting for confounders such as preprint posting time and self-citations. Together, these findings demonstrate that authors' self-rankings provide a reliable and valuable complement to peer review for identifying and elevating high-impact research in AI.
☆ BioinfoMCP: A Unified Platform Enabling MCP Interfaces in Agentic Bioinformatics
Bioinformatics tools are essential for complex computational biology tasks, yet their integration with emerging AI-agent frameworks is hindered by incompatible interfaces, heterogeneous input-output formats, and inconsistent parameter conventions. The Model Context Protocol (MCP) provides a standardized framework for tool-AI communication, but manually converting hundreds of existing and rapidly growing specialized bioinformatics tools into MCP-compliant servers is labor-intensive and unsustainable. Here, we present BioinfoMCP, a unified platform comprising two components: BioinfoMCP Converter, which automatically generates robust MCP servers from tool documentation using large language models, and BioinfoMCP Benchmark, which systematically validates the reliability and versatility of converted tools across diverse computational tasks. We present a platform of 38 MCP-converted bioinformatics tools, extensively validated to show that 94.7% successfully executed complex workflows across three widely used AI-agent platforms. By removing technical barriers to AI automation, BioinfoMCP enables natural-language interaction with sophisticated bioinformatics analyses without requiring extensive programming expertise, offering a scalable path to intelligent, interoperable computational biology.
comment: 20 pages, 8 figures, 3 tables
☆ FlexDoc: Parameterized Sampling for Diverse Multilingual Synthetic Documents for Training Document Understanding Models EMNLP 2025
Developing document understanding models at enterprise scale requires large, diverse, and well-annotated datasets spanning a wide range of document types. However, collecting such data is prohibitively expensive due to privacy constraints, legal restrictions, and the sheer volume of manual annotation needed - costs that can scale into millions of dollars. We introduce FlexDoc, a scalable synthetic data generation framework that combines Stochastic Schemas and Parameterized Sampling to produce realistic, multilingual semi-structured documents with rich annotations. By probabilistically modeling layout patterns, visual structure, and content variability, FlexDoc enables the controlled generation of diverse document variants at scale. Experiments on Key Information Extraction (KIE) tasks demonstrate that FlexDoc-generated data improves the absolute F1 Score by up to 11% when used to augment real datasets, while reducing annotation effort by over 90% compared to traditional hard-template methods. The solution is in active deployment, where it has accelerated the development of enterprise-grade document understanding models while significantly reducing data acquisition and annotation costs.
comment: Accepted at EMNLP 2025
☆ The Disparate Impacts of Speculative Decoding
The practice of speculative decoding, whereby inference is probabilistically supported by a smaller, cheaper, ``drafter'' model, has become a standard technique for systematically reducing the decoding time of large language models. This paper conducts an analysis of speculative decoding through the lens of its potential disparate speed-up rates across tasks. Crucially, the paper shows that speed-up gained from speculative decoding is not uniformly distributed across tasks, consistently diminishing for under-fit, and often underrepresented tasks. To better understand this phenomenon, we derive an analysis to quantify this observed ``unfairness'' and draw attention to the factors that motivate such disparate speed-ups to emerge. Further, guided by these insights, the paper proposes a mitigation strategy designed to reduce speed-up disparities and validates the approach across several model pairs, revealing on average a 12% improvement in our fairness metric.
☆ Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
OpenAI's o3-preview reasoning model exceeded human accuracy on the ARC-AGI benchmark, but does that mean state-of-the-art models recognize and reason with the abstractions that the task creators intended? We investigate models' abstraction abilities on ConceptARC. We evaluate models under settings that vary the input modality (textual vs. visual), whether the model is permitted to use external Python tools, and, for reasoning models, the amount of reasoning effort. In addition to measuring output accuracy, we perform fine-grained evaluation of the natural-language rules that models generate to explain their solutions. This dual evaluation lets us assess whether models solve tasks using the abstractions ConceptARC was designed to elicit, rather than relying on surface-level patterns. Our results show that, while some models using text-based representations match human output accuracy, the best models' rules are often based on surface-level ``shortcuts'' and capture intended abstractions far less often than humans. Thus their capabilities for general abstract reasoning may be overestimated by evaluations based on accuracy alone. In the visual modality, AI models' output accuracy drops sharply, yet our rule-level analysis reveals that models might be underestimated, as they still exhibit a substantial share of rules that capture intended abstractions, but are often unable to correctly apply these rules. In short, our results show that models still lag humans in abstract reasoning, and that using accuracy alone to evaluate abstract reasoning on ARC-like tasks may overestimate abstract-reasoning capabilities in textual modalities and underestimate it in visual modalities. We believe that our evaluation framework offers a more faithful picture of multimodal models' abstract reasoning abilities and a more principled way to track progress toward human-like, abstraction-centered intelligence.
comment: 10 pages, 4 figures
☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
comment: My preview .pdf was not loading. Can you please share with me a compiled .pdf file so I can confirm that the result is correct?
☆ SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification MICCAI
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2025
☆ Unlocking Symbol-Level Precoding Efficiency Through Tensor Equivariant Neural Network
Although symbol-level precoding (SLP) based on constructive interference (CI) exploitation offers performance gains, its high complexity remains a bottleneck. This paper addresses this challenge with an end-to-end deep learning (DL) framework with low inference complexity that leverages the structure of the optimal SLP solution in the closed-form and its inherent tensor equivariance (TE), where TE denotes that a permutation of the input induces the corresponding permutation of the output. Building upon the computationally efficient model-based formulations, as well as their known closed-form solutions, we analyze their relationship with linear precoding (LP) and investigate the corresponding optimality condition. We then construct a mapping from the problem formulation to the solution and prove its TE, based on which the designed networks reveal a specific parameter-sharing pattern that delivers low computational complexity and strong generalization. Leveraging these, we propose the backbone of the framework with an attention-based TE module, achieving linear computational complexity. Furthermore, we demonstrate that such a framework is also applicable to imperfect CSI scenarios, where we design a TE-based network to map the CSI, statistics, and symbols to auxiliary variables. Simulation results show that the proposed framework captures substantial performance gains of optimal SLP, while achieving an approximately 80-times speedup over conventional methods and maintaining strong generalization across user numbers and symbol block lengths.
comment: This work has been submitted to the IEEE for possible publication
☆ When Tracking Fails: Analyzing Failure Modes of SAM2 for Point-Based Tracking in Surgical Videos MICCAI
Video object segmentation (VOS) models such as SAM2 offer promising zero-shot tracking capabilities for surgical videos using minimal user input. Among the available input types, point-based tracking offers an efficient and low-cost alternative, yet its reliability and failure cases in complex surgical environments are not well understood. In this work, we systematically analyze the failure modes of point-based tracking in laparoscopic cholecystectomy videos. Focusing on three surgical targets, the gallbladder, grasper, and L-hook electrocautery, we compare the performance of point-based tracking with segmentation mask initialization. Our results show that point-based tracking is competitive for surgical tools but consistently underperforms for anatomical targets, where tissue similarity and ambiguous boundaries lead to failure. Through qualitative analysis, we reveal key factors influencing tracking outcomes and provide several actionable recommendations for selecting and placing tracking points to improve performance in surgical video analysis.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Collaborative Intelligence and Autonomy in Image-guided Surgery (COLAS), 2025
Demystifying the Roles of LLM Layers in Retrieval, Knowledge, and Reasoning ICASSP 2025
Recent studies suggest that the deeper layers of Large Language Models (LLMs) contribute little to representation learning and can often be removed without significant performance loss. However, such claims are typically drawn from narrow evaluations and may overlook important aspects of model behavior. In this work, we present a systematic study of depth utilization across diverse dimensions, including evaluation protocols, task categories, and model architectures. Our analysis confirms that very deep layers are generally less effective than earlier ones, but their contributions vary substantially with the evaluation setting. Under likelihood-based metrics without generation, pruning most layers preserves performance, with only the initial few being critical. By contrast, generation-based evaluation uncovers indispensable roles for middle and deeper layers in enabling reasoning and maintaining long-range coherence. We further find that knowledge and retrieval are concentrated in shallow components, whereas reasoning accuracy relies heavily on deeper layers -- yet can be reshaped through distillation. These results highlight that depth usage in LLMs is highly heterogeneous and context-dependent, underscoring the need for task-, metric-, and model-aware perspectives in both interpreting and compressing large models.
comment: ICASSP 2025
☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
☆ ReTabAD: A Benchmark for Restoring Semantic Context in Tabular Anomaly Detection
In tabular anomaly detection (AD), textual semantics often carry critical signals, as the definition of an anomaly is closely tied to domain-specific context. However, existing benchmarks provide only raw data points without semantic context, overlooking rich textual metadata such as feature descriptions and domain knowledge that experts rely on in practice. This limitation restricts research flexibility and prevents models from fully leveraging domain knowledge for detection. ReTabAD addresses this gap by restoring textual semantics to enable context-aware tabular AD research. We provide (1) 20 carefully curated tabular datasets enriched with structured textual metadata, together with implementations of state-of-the-art AD algorithms including classical, deep learning, and LLM-based approaches, and (2) a zero-shot LLM framework that leverages semantic context without task-specific training, establishing a strong baseline for future research. Furthermore, this work provides insights into the role and utility of textual metadata in AD through experiments and analysis. Results show that semantic context improves detection performance and enhances interpretability by supporting domain-aware reasoning. These findings establish ReTabAD as a benchmark for systematic exploration of context-aware AD.
comment: 9 pages, 4 figures
☆ The Current State of AI Bias Bounties: An Overview of Existing Programmes and Research
Current bias evaluation methods rarely engage with communities impacted by AI systems. Inspired by bug bounties, bias bounties have been proposed as a reward-based method that involves communities in AI bias detection by asking users of AI systems to report biases they encounter when interacting with such systems. In the absence of a state-of-the-art review, this survey aimed to identify and analyse existing AI bias bounty programmes and to present academic literature on bias bounties. Google, Google Scholar, PhilPapers, and IEEE Xplore were searched, and five bias bounty programmes, as well as five research publications, were identified. All bias bounties were organised by U.S.-based organisations as time-limited contests, with public participation in four programmes and prize pools ranging from 7,000 to 24,000 USD. The five research publications included a report on the application of bug bounties to algorithmic harms, an article addressing Twitter's bias bounty, a proposal for bias bounties as an institutional mechanism to increase AI scrutiny, a workshop discussing bias bounties from queer perspectives, and an algorithmic framework for bias bounties. We argue that reducing the technical requirements to enter bounty programmes is important to include those without coding experience. Given the limited adoption of bias bounties, future efforts should explore the transferability of the best practices from bug bounties and examine how such programmes can be designed to be sensitive to underrepresented groups while lowering adoption barriers for organisations.
comment: 6,227 words (18 pages, from abstract to appendix), one figure, one table, and an appendix with an additional table
☆ LiLa-Net: Lightweight Latent LiDAR Autoencoder for 3D Point Cloud Reconstruction ICRA
This work proposed a 3D autoencoder architecture, named LiLa-Net, which encodes efficient features from real traffic environments, employing only the LiDAR's point clouds. For this purpose, we have real semi-autonomous vehicle, equipped with Velodyne LiDAR. The system leverage skip connections concept to improve the performance without using extensive resources as the state-of-the-art architectures. Key changes include reducing the number of encoder layers and simplifying the skip connections, while still producing an efficient and representative latent space which allows to accurately reconstruct the original point cloud. Furthermore, an effective balance has been achieved between the information carried by the skip connections and the latent encoding, leading to improved reconstruction quality without compromising performance. Finally, the model demonstrates strong generalization capabilities, successfully reconstructing objects unrelated to the original traffic environment.
comment: 7 pages, 3 figures, 7 tables, Submitted to ICRA
☆ Zero-shot reasoning for simulating scholarly peer-review
The scholarly publishing ecosystem faces a dual crisis of unmanageable submission volumes and unregulated AI, creating an urgent need for new governance models to safeguard scientific integrity. The traditional human-only peer review regime lacks a scalable, objective benchmark, making editorial processes opaque and difficult to audit. Here we investigate a deterministic simulation framework that provides the first stable, evidence-based standard for evaluating AI-generated peer review reports. Analyzing 352 peer-review simulation reports, we identify consistent system state indicators that demonstrate its reliability. First, the system is able to simulate calibrated editorial judgment, with 'Revise' decisions consistently forming the majority outcome (>50%) across all disciplines, while 'Reject' rates dynamically adapt to field-specific norms, rising to 45% in Health Sciences. Second, it maintains unwavering procedural integrity, enforcing a stable 29% evidence-anchoring compliance rate that remains invariant across diverse review tasks and scientific domains. These findings demonstrate a system that is predictably rule-bound, mitigating the stochasticity of generative AI. For the scientific community, this provides a transparent tool to ensure fairness; for publishing strategists, it offers a scalable instrument for auditing workflows, managing integrity risks, and implementing evidence-based governance. The framework repositions AI as an essential component of institutional accountability, providing the critical infrastructure to maintain trust in scholarly communication.
☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Intended for submission to Scientific Reports
☆ Clarifying Semantics of In-Context Examples for Unit Test Generation
Recent advances in large language models (LLMs) have enabled promising performance in unit test generation through in-context learning (ICL). However, the quality of in-context examples significantly influences the effectiveness of generated tests-poorly structured or semantically unclear test examples often lead to suboptimal outputs. In this paper, we propose CLAST, a novel technique that systematically refines unit tests to improve their semantic clarity, thereby enhancing their utility as in-context examples. The approach decomposes complex tests into logically clearer ones and improves semantic clarity through a combination of program analysis and LLM-based rewriting. We evaluated CLAST on four open-source and three industrial projects. The results demonstrate that CLAST largely outperforms UTgen, the state-of-the-art refinement technique, in both preserving test effectiveness and enhancing semantic clarity. Specifically, CLAST fully retains the original effectiveness of unit tests, while UTgen reduces compilation success rate (CSR), pass rate (PR), test coverage (Cov), and mutation score (MS) by an average of 12.90%, 35.82%, 4.65%, and 5.07%, respectively. Over 85.33% of participants in our user study preferred the semantic clarity of CLAST-refined tests. Notably, incorporating CLAST-refined tests as examples effectively improves ICL-based unit test generation approaches such as RAGGen and TELPA, resulting in an average increase of 25.97% in CSR, 28.22% in PR, and 45.99% in Cov for generated tests, compared to incorporating UTgen-refined tests. The insights from the follow-up user study not only reinforce CLAST's potential impact in software testing practice but also illuminate avenues for future research.
comment: accepted in the research track of ASE 2025
☆ ZK-WAGON: Imperceptible Watermark for Image Generation Models using ZK-SNARKs
As image generation models grow increasingly powerful and accessible, concerns around authenticity, ownership, and misuse of synthetic media have become critical. The ability to generate lifelike images indistinguishable from real ones introduces risks such as misinformation, deepfakes, and intellectual property violations. Traditional watermarking methods either degrade image quality, are easily removed, or require access to confidential model internals - making them unsuitable for secure and scalable deployment. We are the first to introduce ZK-WAGON, a novel system for watermarking image generation models using the Zero-Knowledge Succinct Non Interactive Argument of Knowledge (ZK-SNARKs). Our approach enables verifiable proof of origin without exposing model weights, generation prompts, or any sensitive internal information. We propose Selective Layer ZK-Circuit Creation (SL-ZKCC), a method to selectively convert key layers of an image generation model into a circuit, reducing proof generation time significantly. Generated ZK-SNARK proofs are imperceptibly embedded into a generated image via Least Significant Bit (LSB) steganography. We demonstrate this system on both GAN and Diffusion models, providing a secure, model-agnostic pipeline for trustworthy AI image generation.
comment: Accepted at AI-ML Systems 2025, Bangalore, India, https://www.aimlsystems.org/2025/
☆ Exploring Resolution-Wise Shared Attention in Hybrid Mamba-U-Nets for Improved Cross-Corpus Speech Enhancement
Recent advances in speech enhancement have shown that models combining Mamba and attention mechanisms yield superior cross-corpus generalization performance. At the same time, integrating Mamba in a U-Net structure has yielded state-of-the-art enhancement performance, while reducing both model size and computational complexity. Inspired by these insights, we propose RWSA-MambaUNet, a novel and efficient hybrid model combining Mamba and multi-head attention in a U-Net structure for improved cross-corpus performance. Resolution-wise shared attention (RWSA) refers to layerwise attention-sharing across corresponding time- and frequency resolutions. Our best-performing RWSA-MambaUNet model achieves state-of-the-art generalization performance on two out-of-domain test sets. Notably, our smallest model surpasses all baselines on the out-of-domain DNS 2020 test set in terms of PESQ, SSNR, and ESTOI, and on the out-of-domain EARS-WHAM_v2 test set in terms of SSNR, ESTOI, and SI-SDR, while using less than half the model parameters and a fraction of the FLOPs.
comment: Submitted to IEEE for possible publication
☆ Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
comment: 23 pages, 13 figures. Code is available at \url{https://github.com/ymxlzgy/FoundAD}
☆ To Mask or to Mirror: Human-AI Alignment in Collective Reasoning
As large language models (LLMs) are increasingly used to model and augment collective decision-making, it is critical to examine their alignment with human social reasoning. We present an empirical framework for assessing collective alignment, in contrast to prior work on the individual level. Using the Lost at Sea social psychology task, we conduct a large-scale online experiment (N=748), randomly assigning groups to leader elections with either visible demographic attributes (e.g. name, gender) or pseudonymous aliases. We then simulate matched LLM groups conditioned on the human data, benchmarking Gemini 2.5, GPT 4.1, Claude Haiku 3.5, and Gemma 3. LLM behaviors diverge: some mirror human biases; others mask these biases and attempt to compensate for them. We empirically demonstrate that human-AI alignment in collective reasoning depends on context, cues, and model-specific inductive biases. Understanding how LLMs align with collective human behavior is critical to advancing socially-aligned AI, and demands dynamic benchmarks that capture the complexities of collective reasoning.
☆ Automated Defect Detection for Mass-Produced Electronic Components Based on YOLO Object Detection Models
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
comment: 12 pages, 16 figures, 7 tables, and published in IEEE Sensors Journal
☆ Are LLMs Better GNN Helpers? Rethinking Robust Graph Learning under Deficiencies with Iterative Refinement
Graph Neural Networks (GNNs) are widely adopted in Web-related applications, serving as a core technique for learning from graph-structured data, such as text-attributed graphs. Yet in real-world scenarios, such graphs exhibit deficiencies that substantially undermine GNN performance. While prior GNN-based augmentation studies have explored robustness against individual imperfections, a systematic understanding of how graph-native and Large Language Models (LLMs) enhanced methods behave under compound deficiencies is still missing. Specifically, there has been no comprehensive investigation comparing conventional approaches and recent LLM-on-graph frameworks, leaving their merits unclear. To fill this gap, we conduct the first empirical study that benchmarks these two lines of methods across diverse graph deficiencies, revealing overlooked vulnerabilities and challenging the assumption that LLM augmentation is consistently superior. Building on empirical findings, we propose Robust Graph Learning via Retrieval-Augmented Contrastive Refinement (RoGRAD) framework. Unlike prior one-shot LLM-as-Enhancer designs, RoGRAD is the first iterative paradigm that leverages Retrieval-Augmented Generation (RAG) to inject retrieval-grounded augmentations by supplying class-consistent, diverse augmentations and enforcing discriminative representations through iterative graph contrastive learning. It transforms LLM augmentation for graphs from static signal injection into dynamic refinement. Extensive experiments demonstrate RoGRAD's superiority over both conventional GNN- and LLM-enhanced baselines, achieving up to 82.43% average improvement.
comment: 14 pages
☆ Constrained Adaptive Rejection Sampling
Language Models (LMs) are increasingly used in applications where generated outputs must satisfy strict semantic or syntactic constraints. Existing approaches to constrained generation fall along a spectrum: greedy constrained decoding methods enforce validity during decoding but distort the LM's distribution, while rejection sampling (RS) preserves fidelity but wastes computation by discarding invalid outputs. Both extremes are problematic in domains such as program fuzzing, where both validity and diversity of samples are essential. We present Constrained Adaptive Rejection Sampling (CARS), an approach that strictly improves the sample-efficiency of RS without distributional distortion. CARS begins with unconstrained LM sampling and adaptively rules out constraint-violating continuations by recording them in a trie and subtracting their probability mass from future draws. This adaptive pruning ensures that prefixes proven invalid are never revisited, acceptance rates improve monotonically, and the resulting samples exactly follow the constrained distribution. In experiments on a variety of domains -- e.g., program fuzzing and molecular generation -- CARS consistently achieves higher efficiency -- measured in the number of LM forward passes per valid sample -- while also producing stronger sample diversity than both GCD and methods that approximate the LM's distribution.
Multimodal Foundation Models for Early Disease Detection
Healthcare generates diverse streams of data, including electronic health records (EHR), medical imaging, genetics, and ongoing monitoring from wearable devices. Traditional diagnostic models frequently analyze these sources in isolation, which constrains their capacity to identify cross-modal correlations essential for early disease diagnosis. Our research presents a multimodal foundation model that consolidates diverse patient data through an attention-based transformer framework. At first, dedicated encoders put each modality into a shared latent space. Then, they combine them using multi-head attention and residual normalization. The architecture is made for pretraining on many tasks, which makes it easy to adapt to new diseases and datasets with little extra work. We provide an experimental strategy that uses benchmark datasets in oncology, cardiology, and neurology, with the goal of testing early detection tasks. The framework includes data governance and model management tools in addition to technological performance to improve transparency, reliability, and clinical interpretability. The suggested method works toward a single foundation model for precision diagnostics, which could improve the accuracy of predictions and help doctors make decisions.
comment: 6 pages
☆ HRTFformer: A Spatially-Aware Transformer for Personalized HRTF Upsampling in Immersive Audio Rendering
Personalized Head-Related Transfer Functions (HRTFs) are starting to be introduced in many commercial immersive audio applications and are crucial for realistic spatial audio rendering. However, one of the main hesitations regarding their introduction is that creating personalized HRTFs is impractical at scale due to the complexities of the HRTF measurement process. To mitigate this drawback, HRTF spatial upsampling has been proposed with the aim of reducing measurements required. While prior work has seen success with different machine learning (ML) approaches, these models often struggle with long-range spatial consistency and generalization at high upsampling factors. In this paper, we propose a novel transformer-based architecture for HRTF upsampling, leveraging the attention mechanism to better capture spatial correlations across the HRTF sphere. Working in the spherical harmonic (SH) domain, our model learns to reconstruct high-resolution HRTFs from sparse input measurements with significantly improved accuracy. To enhance spatial coherence, we introduce a neighbor dissimilarity loss that promotes magnitude smoothness, yielding more realistic upsampling. We evaluate our method using both perceptual localization models and objective spectral distortion metrics. Experiments show that our model surpasses leading methods by a substantial margin in generating realistic, high-fidelity HRTFs.
comment: 10 pages and 5 figures
☆ Small is Sufficient: Reducing the World AI Energy Consumption Through Model Selection
The energy consumption and carbon footprint of Artificial Intelligence (AI) have become critical concerns due to rising costs and environmental impacts. In response, a new trend in green AI is emerging, shifting from the "bigger is better" paradigm, which prioritizes large models, to "small is sufficient", emphasizing energy sobriety through smaller, more efficient models. We explore how the AI community can adopt energy sobriety today by focusing on model selection during inference. Model selection consists of choosing the most appropriate model for a given task, a simple and readily applicable method, unlike approaches requiring new hardware or architectures. Our hypothesis is that, as in many industrial activities, marginal utility gains decrease with increasing model size. Thus, applying model selection can significantly reduce energy consumption while maintaining good utility for AI inference. We conduct a systematic study of AI tasks, analyzing their popularity, model size, and efficiency. We examine how the maturity of different tasks and model adoption patterns impact the achievable energy savings, ranging from 1% to 98% for different tasks. Our estimates indicate that applying model selection could reduce AI energy consumption by 27.8%, saving 31.9 TWh worldwide in 2025 - equivalent to the annual output of five nuclear power reactors.
☆ FINCH: Financial Intelligence using Natural language for Contextualized SQL Handling
Text-to-SQL, the task of translating natural language questions into SQL queries, has long been a central challenge in NLP. While progress has been significant, applying it to the financial domain remains especially difficult due to complex schema, domain-specific terminology, and high stakes of error. Despite this, there is no dedicated large-scale financial dataset to advance research, creating a critical gap. To address this, we introduce a curated financial dataset (FINCH) comprising 292 tables and 75,725 natural language-SQL pairs, enabling both fine-tuning and rigorous evaluation. Building on this resource, we benchmark reasoning models and language models of varying scales, providing a systematic analysis of their strengths and limitations in financial Text-to-SQL tasks. Finally, we propose a finance-oriented evaluation metric (FINCH Score) that captures nuances overlooked by existing measures, offering a more faithful assessment of model performance.
☆ REPAIR: Robust Editing via Progressive Adaptive Intervention and Reintegration
Post-training for large language models (LLMs) is constrained by the high cost of acquiring new knowledge or correcting errors and by the unintended side effects that frequently arise from retraining. To address these issues, we introduce REPAIR (Robust Editing via Progressive Adaptive Intervention and Reintegration), a lifelong editing framework designed to support precise and low-cost model updates while preserving non-target knowledge. REPAIR mitigates the instability and conflicts of large-scale sequential edits through a closed-loop feedback mechanism coupled with dynamic memory management. Furthermore, by incorporating frequent knowledge fusion and enforcing strong locality guards, REPAIR effectively addresses the shortcomings of traditional distribution-agnostic approaches that often overlook unintended ripple effects. Our experiments demonstrate that REPAIR boosts editing accuracy by 10%-30% across multiple model families and significantly reduces knowledge forgetting. This work introduces a robust framework for developing reliable, scalable, and continually evolving LLMs.
☆ TACOS: Task Agnostic COordinator of a multi-drone System
When a single pilot is responsible for managing a multi-drone system, the task demands varying levels of autonomy, from direct control of individual UAVs, to group-level coordination, to fully autonomous swarm behaviors for accomplishing high-level tasks. Enabling such flexible interaction requires a framework that supports multiple modes of shared autonomy. As language models continue to improve in reasoning and planning, they provide a natural foundation for such systems, reducing pilot workload by enabling high-level task delegation through intuitive, language-based interfaces. In this paper we present TACOS (Task-Agnostic COordinator of a multi-drone System), a unified framework that enables high-level natural language control of multi-UAV systems through Large Language Models (LLMs). TACOS integrates three key capabilities into a single architecture: a one-to-many natural language interface for intuitive user interaction, an intelligent coordinator for translating user intent into structured task plans, and an autonomous agent that executes plans interacting with the real-world. TACOS allows a LLM to interact with a library of executable APIs, bridging semantic reasoning with real-time multi-robot coordination. We demonstrate the system in real-world multi-drone system and conduct an ablation study to assess the contribution of each module.
comment: 6 pages, 6 figures, accepted as poster at 2025 IEEE International Symposium on Multi-Robot & Multi-Agent Systems
☆ A Modular Theory of Subjective Consciousness for Natural and Artificial Minds
Understanding how subjective experience arises from information processing remains a central challenge in neuroscience, cognitive science, and AI research. The Modular Consciousness Theory (MCT) proposes a biologically grounded and computationally explicit framework in which consciousness is a discrete sequence of Integrated Informational States (IISs). Each IIS is a packet of integrated information tagged with a multidimensional density vector that quantifies informational richness. Its magnitude correlates with subjective intensity, shaping memory, behavior, and continuity of experience. Inputs from body and environment are adaptively filtered, processed by modules (abstraction, narration, evaluation, self-evaluation), and integrated into an IIS. The resulting packet, tagged with its density vector, is transmitted to behavioral readiness, memory, and decision-making modules, closing the loop. This explains why strongly tagged states exert greater influence on long-term memory and action. Unlike Global Workspace Theory, Integrated Information Theory, or Higher-Order Thought, MCT specifies a full computational pipeline producing discrete informational units with quantifiable internal structure. Subjectivity is reframed as a correlate of the density-tagging signal with functional consequences. MCT generates testable predictions, such as stress enhancing memory encoding, and provides a naturalistic blueprint for both biological and artificial architectures. Consciousness, in this view, is not an irreducible essence but an evolvable, quantifiable, and constructible feature of complex information processing.
comment: 41 pages, 3 figures. Under review, comments welcome
☆ Learning a Dense Reasoning Reward Model from Expert Demonstration via Inverse Reinforcement Learning
We reframe and operationalise adversarial inverse reinforcement learning (IRL) to large language model reasoning, learning a dense, token-level reward model for process supervision directly from expert demonstrations rather than imitating style via supervised fine-tuning. The learned reasoning reward serves two complementary roles: (i) it provides step-level feedback to optimise a reasoning policy during training; and (ii) it functions at inference as a critic to rerank sampled traces under fixed compute budgets. We demonstrate that our approach prioritises correctness over surface form, yielding scores that correlate with eventual answer validity and enabling interpretable localisation of errors within a trace. Empirically, on GSM8K with Llama3 and Qwen2.5 backbones, we demonstrate: (i) dense reasoning rewards can be used as a learning signal to elicit reasoning, and (ii) predictive performance is improved from reward-guided reranking (notably for Llama-based policies). By unifying training signals, inference-time selection, and token-level diagnostics into a single reasoning reward, this work suggests reusable process-level rewards with broad potential to enhance multi-step reasoning in language models.
☆ NGGAN: Noise Generation GAN Based on the Practical Measurement Dataset for Narrowband Powerline Communications
Capturing comprehensive statistics of nonperiodic asynchronous impulsive noise is a critical issue in enhancing impulse noise processing for narrowband powerline communication (NB-PLC) transceivers. However, existing mathematical noise generative models capture only some of the characteristics of additive noise. Therefore, we propose a generative adversarial network (GAN), called the noise-generation GAN (NGGAN), that learns the complicated characteristics of practically measured noise samples for data augmentation. To closely match the statistics of complicated noise in NB-PLC systems, we measured the NB-PLC noise via the analog coupling and bandpass filtering circuits of a commercial NB-PLC modem to build a realistic dataset. Specifically, the NGGAN design approaches based on the practically measured dataset are as follows: (i) we design the length of input signals that the NGGAN model can fit to facilitate cyclo-stationary noise generation. (ii) Wasserstein distance is used as a loss function to enhance the similarity between the generated noise and the training dataset and ensure that the sample diversity is sufficient for various applications. (iii) To measure the similarity performance of the GAN-based models based on mathematical and practically measured datasets, we perform quantitative and qualitative analyses. The training datasets include (1) a piecewise spectral cyclo-stationary Gaussian model (PSCGM), (2) a frequency-shift (FRESH) filter, and (3) practical measurements from NB-PLC systems. Simulation results demonstrate that the proposed NGGAN trained using waveform characteristics is closer to the practically measured dataset in terms of the quality of the generated noise.
comment: 16 pages, 15 figures, 11 tables, and published in IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025
☆ Pre-Hoc Predictions in AutoML: Leveraging LLMs to Enhance Model Selection and Benchmarking for Tabular datasets
The field of AutoML has made remarkable progress in post-hoc model selection, with libraries capable of automatically identifying the most performing models for a given dataset. Nevertheless, these methods often rely on exhaustive hyperparameter searches, where methods automatically train and test different types of models on the target dataset. Contrastingly, pre-hoc prediction emerges as a promising alternative, capable of bypassing exhaustive search through intelligent pre-selection of models. Despite its potential, pre-hoc prediction remains under-explored in the literature. This paper explores the intersection of AutoML and pre-hoc model selection by leveraging traditional models and Large Language Model (LLM) agents to reduce the search space of AutoML libraries. By relying on dataset descriptions and statistical information, we reduce the AutoML search space. Our methodology is applied to the AWS AutoGluon portfolio dataset, a state-of-the-art AutoML benchmark containing 175 tabular classification datasets available on OpenML. The proposed approach offers a shift in AutoML workflows, significantly reducing computational overhead, while still selecting the best model for the given dataset.
comment: Oral Presentations ADAPT Annual Scientific Conference 2025
☆ Plan Then Action:High-Level Planning Guidance Reinforcement Learning for LLM Reasoning
Large language models (LLMs) have demonstrated remarkable reasoning abilities in complex tasks, often relying on Chain-of-Thought (CoT) reasoning. However, due to their autoregressive token-level generation, the reasoning process is largely constrained to local decision-making and lacks global planning. This limitation frequently results in redundant, incoherent, or inaccurate reasoning, which significantly degrades overall performance. Existing approaches, such as tree-based algorithms and reinforcement learning (RL), attempt to address this issue but suffer from high computational costs and often fail to produce optimal reasoning trajectories. To tackle this challenge, we propose Plan-Then-Action Enhanced Reasoning with Group Relative Policy Optimization PTA-GRPO, a two-stage framework designed to improve both high-level planning and fine-grained CoT reasoning. In the first stage, we leverage advanced LLMs to distill CoT into compact high-level guidance, which is then used for supervised fine-tuning (SFT). In the second stage, we introduce a guidance-aware RL method that jointly optimizes the final output and the quality of high-level guidance, thereby enhancing reasoning effectiveness. We conduct extensive experiments on multiple mathematical reasoning benchmarks, including MATH, AIME2024, AIME2025, and AMC, across diverse base models such as Qwen2.5-7B-Instruct, Qwen3-8B, Qwen3-14B, and LLaMA3.2-3B. Experimental results demonstrate that PTA-GRPO consistently achieves stable and significant improvements across different models and tasks, validating its effectiveness and generalization.
comment: 19 pages and 5 figures
☆ Human-AI Teaming Co-Learning in Military Operations
In a time of rapidly evolving military threats and increasingly complex operational environments, the integration of AI into military operations proves significant advantages. At the same time, this implies various challenges and risks regarding building and deploying human-AI teaming systems in an effective and ethical manner. Currently, understanding and coping with them are often tackled from an external perspective considering the human-AI teaming system as a collective agent. Nevertheless, zooming into the dynamics involved inside the system assures dealing with a broader palette of relevant multidimensional responsibility, safety, and robustness aspects. To this end, this research proposes the design of a trustworthy co-learning model for human-AI teaming in military operations that encompasses a continuous and bidirectional exchange of insights between the human and AI agents as they jointly adapt to evolving battlefield conditions. It does that by integrating four dimensions. First, adjustable autonomy for dynamically calibrating the autonomy levels of agents depending on aspects like mission state, system confidence, and environmental uncertainty. Second, multi-layered control which accounts continuous oversight, monitoring of activities, and accountability. Third, bidirectional feedback with explicit and implicit feedback loops between the agents to assure a proper communication of reasoning, uncertainties, and learned adaptations that each of the agents has. And fourth, collaborative decision-making which implies the generation, evaluation, and proposal of decisions associated with confidence levels and rationale behind them. The model proposed is accompanied by concrete exemplifications and recommendations that contribute to further developing responsible and trustworthy human-AI teaming systems in military operations.
comment: Submitted to Sensors + Imaging; presented on 18th of September (Artificial Intelligence for Security and Defence Applications III)
☆ SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment ICASSP 2026
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro expands annotations of the additional part to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent advances. Each clip receives at least five ratings from professional annotators, ensuring reliability and consistency. Furthermore, we explore how to effectively utilize MOS data annotated under different standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset can be accessed at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
comment: 4 pages, 5 figures; submitted to ICASSP 2026
☆ REBot: From RAG to CatRAG with Semantic Enrichment and Graph Routing
Academic regulation advising is essential for helping students interpret and comply with institutional policies, yet building effective systems requires domain specific regulatory resources. To address this challenge, we propose REBot, an LLM enhanced advisory chatbot powered by CatRAG, a hybrid retrieval reasoning framework that integrates retrieval augmented generation with graph based reasoning. CatRAG unifies dense retrieval and graph reasoning, supported by a hierarchical, category labeled knowledge graph enriched with semantic features for domain alignment. A lightweight intent classifier routes queries to the appropriate retrieval modules, ensuring both factual accuracy and contextual depth. We construct a regulation specific dataset and evaluate REBot on classification and question answering tasks, achieving state of the art performance with an F1 score of 98.89%. Finally, we implement a web application that demonstrates the practical value of REBot in real world academic advising scenarios.
☆ Rethinking the shape convention of an MLP
Multi-layer perceptrons (MLPs) conventionally follow a narrow-wide-narrow design where skip connections operate at the input/output dimensions while processing occurs in expanded hidden spaces. We challenge this convention by proposing wide-narrow-wide (Hourglass) MLP blocks where skip connections operate at expanded dimensions while residual computation flows through narrow bottlenecks. This inversion leverages higher-dimensional spaces for incremental refinement while maintaining computational efficiency through parameter-matched designs. Implementing Hourglass MLPs requires an initial projection to lift input signals to expanded dimensions. We propose that this projection can remain fixed at random initialization throughout training, enabling efficient training and inference implementations. We evaluate both architectures on generative tasks over popular image datasets, characterizing performance-parameter Pareto frontiers through systematic architectural search. Results show that Hourglass architectures consistently achieve superior Pareto frontiers compared to conventional designs. As parameter budgets increase, optimal Hourglass configurations favor deeper networks with wider skip connections and narrower bottlenecks-a scaling pattern distinct from conventional MLPs. Our findings suggest reconsidering skip connection placement in modern architectures, with potential applications extending to Transformers and other residual networks.
Nav-EE: Navigation-Guided Early Exiting for Efficient Vision-Language Models in Autonomous Driving
Vision-Language Models (VLMs) are increasingly applied in autonomous driving for unified perception and reasoning, but high inference latency hinders real-time deployment. Early-exit reduces latency by terminating inference at intermediate layers, yet its task-dependent nature limits generalization across diverse scenarios. We observe that this limitation aligns with autonomous driving: navigation systems can anticipate upcoming contexts (e.g., intersections, traffic lights), indicating which tasks will be required. We propose Nav-EE, a navigation-guided early-exit framework that precomputes task-specific exit layers offline and dynamically applies them online based on navigation priors. Experiments on CODA, Waymo, and BOSCH show that Nav-EE achieves accuracy comparable to full inference while reducing latency by up to 63.9%. Real-vehicle integration with Autoware Universe further demonstrates reduced inference latency (600ms to 300ms), supporting faster decision-making in complex scenarios. These results suggest that coupling navigation foresight with early-exit offers a viable path toward efficient deployment of large models in autonomous systems. Code and data are available at our anonymous repository: https://anonymous.4open.science/r/Nav-EE-BBC4
☆ Comparison of Unsupervised Metrics for Evaluating Judicial Decision Extraction
The rapid advancement of artificial intelligence in legal natural language processing demands scalable methods for evaluating text extraction from judicial decisions. This study evaluates 16 unsupervised metrics, including novel formulations, to assess the quality of extracting seven semantic blocks from 1,000 anonymized Russian judicial decisions, validated against 7,168 expert reviews on a 1--5 Likert scale. These metrics, spanning document-based, semantic, structural, pseudo-ground truth, and legal-specific categories, operate without pre-annotated ground truth. Bootstrapped correlations, Lin's concordance correlation coefficient (CCC), and mean absolute error (MAE) reveal that Term Frequency Coherence (Pearson $r = 0.540$, Lin CCC = 0.512, MAE = 0.127) and Coverage Ratio/Block Completeness (Pearson $r = 0.513$, Lin CCC = 0.443, MAE = 0.139) best align with expert ratings, while Legal Term Density (Pearson $r = -0.479$, Lin CCC = -0.079, MAE = 0.394) show strong negative correlations. The LLM Evaluation Score (mean = 0.849, Pearson $r = 0.382$, Lin CCC = 0.325, MAE = 0.197) showed moderate alignment, but its performance, using gpt-4.1-mini via g4f, suggests limited specialization for legal textse. These findings highlight that unsupervised metrics, including LLM-based approaches, enable scalable screening but, with moderate correlations and low CCC values, cannot fully replace human judgment in high-stakes legal contexts. This work advances legal NLP by providing annotation-free evaluation tools, with implications for judicial analytics and ethical AI deployment.
comment: 28 pages
☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
☆ Can LLMs Refuse Questions They Do Not Know? Measuring Knowledge-Aware Refusal in Factual Tasks
Large Language Models (LLMs) should refuse to answer questions beyond their knowledge. This capability, which we term knowledge-aware refusal, is crucial for factual reliability. However, existing metrics fail to faithfully measure this ability. On the one hand, simple refusal-based metrics are biased by refusal rates and yield inconsistent scores when models exhibit different refusal tendencies. On the other hand, existing calibration metrics are proxy-based, capturing the performance of auxiliary calibration processes rather than the model's actual refusal behavior. In this work, we propose the Refusal Index (RI), a principled metric that measures how accurately LLMs refuse questions they do not know. We define RI as Spearman's rank correlation between refusal probability and error probability. To make RI practically measurable, we design a lightweight two-pass evaluation method that efficiently estimates RI from observed refusal rates across two standard evaluation runs. Extensive experiments across 16 models and 5 datasets demonstrate that RI accurately quantifies a model's intrinsic knowledge-aware refusal capability in factual tasks. Notably, RI remains stable across different refusal rates and provides consistent model rankings independent of a model's overall accuracy and refusal rates. More importantly, RI provides insight into an important but previously overlooked aspect of LLM factuality: while LLMs achieve high accuracy on factual tasks, their refusal behavior can be unreliable and fragile. This finding highlights the need to complement traditional accuracy metrics with the Refusal Index for comprehensive factuality evaluation.
☆ Secure Multi-Modal Data Fusion in Federated Digital Health Systems via MCP
Secure and interoperable integration of heterogeneous medical data remains a grand challenge in digital health. Current federated learning (FL) frameworks offer privacy-preserving model training but lack standardized mechanisms to orchestrate multi-modal data fusion across distributed and resource-constrained environments. This study introduces a novel framework that leverages the Model Context Protocol (MCP) as an interoperability layer for secure, cross-agent communication in multi-modal federated healthcare systems. The proposed architecture unifies three pillars: (i) multi-modal feature alignment for clinical imaging, electronic medical records, and wearable IoT data; (ii) secure aggregation with differential privacy to protect patient-sensitive updates; and (iii) energy-aware scheduling to mitigate dropouts in mobile clients. By employing MCP as a schema-driven interface, the framework enables adaptive orchestration of AI agents and toolchains while ensuring compliance with privacy regulations. Experimental evaluation on benchmark datasets and pilot clinical cohorts demonstrates up to 9.8\% improvement in diagnostic accuracy compared with baseline FL, a 54\% reduction in client dropout rates, and clinically acceptable privacy--utility trade-offs. These results highlight MCP-enabled multi-modal fusion as a scalable and trustworthy pathway toward equitable, next-generation federated health infrastructures.
comment: 6 pages, 8 figures, 7 equations, 1 algorithm
Unsupervised Dynamic Feature Selection for Robust Latent Spaces in Vision Tasks
Latent representations are critical for the performance and robustness of machine learning models, as they encode the essential features of data in a compact and informative manner. However, in vision tasks, these representations are often affected by noisy or irrelevant features, which can degrade the model's performance and generalization capabilities. This paper presents a novel approach for enhancing latent representations using unsupervised Dynamic Feature Selection (DFS). For each instance, the proposed method identifies and removes misleading or redundant information in images, ensuring that only the most relevant features contribute to the latent space. By leveraging an unsupervised framework, our approach avoids reliance on labeled data, making it broadly applicable across various domains and datasets. Experiments conducted on image datasets demonstrate that models equipped with unsupervised DFS achieve significant improvements in generalization performance across various tasks, including clustering and image generation, while incurring a minimal increase in the computational cost.
☆ A cybersecurity AI agent selection and decision support framework
This paper presents a novel, structured decision support framework that systematically aligns diverse artificial intelligence (AI) agent architectures, reactive, cognitive, hybrid, and learning, with the comprehensive National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) 2.0. By integrating agent theory with industry guidelines, this framework provides a transparent and stepwise methodology for selecting and deploying AI solutions to address contemporary cyber threats. Employing a granular decomposition of NIST CSF 2.0 functions into specific tasks, the study links essential AI agent properties such as autonomy, adaptive learning, and real-time responsiveness to each subcategory's security requirements. In addition, it outlines graduated levels of autonomy (assisted, augmented, and fully autonomous) to accommodate organisations at varying stages of cybersecurity maturity. This holistic approach transcends isolated AI applications, providing a unified detection, incident response, and governance strategy. Through conceptual validation, the framework demonstrates how tailored AI agent deployments can align with real-world constraints and risk profiles, enhancing situational awareness, accelerating response times, and fortifying long-term resilience via adaptive risk management. Ultimately, this research bridges the gap between theoretical AI constructs and operational cybersecurity demands, establishing a foundation for robust, empirically validated multi-agent systems that adhere to industry standards.
comment: 6 figures, 6 tables, AI agents decision support framework
☆ Machine-interpretable Engineering Design Standards for Valve Specification
Engineering design processes use technical specifications and must comply with standards. Product specifications, product type data sheets, and design standards are still mainly document-centric despite the ambition to digitalize industrial work. In this paper, we demonstrate how to transform information held in engineering design standards into modular, reusable, machine-interpretable ontologies and use the ontologies in quality assurance of the plant design and equipment selection process. We use modelling patterns to create modular ontologies for knowledge captured in the text and in frequently referenced tables in International Standards for piping, material and valve design. These modules are exchangeable, as stored in a W3C compliant format, and interoperable as they are aligned with the top-level ontology ISO DIS 23726-3: Industrial Data Ontology (IDO). We test these ontologies, created based on international material and piping standards and industry norms, on a valve selection process. Valves are instantiated in semantic asset models as individuals along with a semantic representation of the environmental condition at their location on the asset. We create "functional location tags" as OWL individuals that become instances of OWL class Valve Data Sheet (VDS) specified valves. Similarly we create instances of manufacturer product type. Our approach enables automated validation that a specific VDS is compliant with relevant industry standards. Using semantic reasoning and executable design rules, we also determine whether the product type meets the valve specification. Creation of shared, reusable IDO-based modular ontologies for design standards enables semantic reasoning to be applied to equipment selection processes and demonstrates the potential of this approach for Standards Bodies wanting to transition to digitized Smart Standards.
comment: 22 pages, 10 figures, 4 tables
☆ MetaboT: AI-based agent for natural language-based interaction with metabolomics knowledge graphs
Mass spectrometry metabolomics generates vast amounts of data requiring advanced methods for interpretation. Knowledge graphs address these challenges by structuring mass spectrometry data, metabolite information, and their relationships into a connected network (Gaudry et al. 2024). However, effective use of a knowledge graph demands an in-depth understanding of its ontology and its query language syntax. To overcome this, we designed MetaboT, an AI system utilizing large language models (LLMs) to translate user questions into SPARQL semantic query language for operating on knowledge graphs (Steve Harris 2013). We demonstrate its effectiveness using the Experimental Natural Products Knowledge Graph (ENPKG), a large-scale public knowledge graph for plant natural products (Gaudry et al. 2024).MetaboT employs specialized AI agents for handling user queries and interacting with the knowledge graph by breaking down complex tasks into discrete components, each managed by a specialised agent (Fig. 1a). The multi-agent system is constructed using the LangChain and LangGraph libraries, which facilitate the integration of LLMs with external tools and information sources (LangChain, n.d.). The query generation process follows a structured workflow. First, the Entry Agent determines if the question is new or a follow-up to previous interactions. New questions are forwarded to the Validator Agent, which verifies if the question is related to the knowledge graph. Then, the valid question is sent to the Supervisor Agent, which identifies if the question requires chemical conversions or standardized identifiers. In this case it delegates the question to the Knowledge Graph Agent, which can use tools to extract necessary details, such as URIs or taxonomies of chemical names, from the user query. Finally, an agent responsible for crafting the SPARQL queries equipped with the ontology of the knowledge graph uses the provided identifiers to generate the query. Then, the system executes the generated query against the metabolomics knowledge graph and returns structured results to the user (Fig. 1b). To assess the performance of MetaboT we have curated 50 metabolomics-related questions and their expected answers. In addition to submitting these questions to MetaboT, we evaluated a baseline by submitting them to a standard LLM (GPT-4o) with a prompt that incorporated the knowledge graph ontology but did not provide specific entity IDs. This baseline achieved only 8.16% accuracy, compared to MetaboT's 83.67%, underscoring the necessity of our multi-agent system for accurately retrieving entities and generating correct SPARQL queries. MetaboT demonstrates promising performance as a conversational question-answering assistant, enabling researchers to retrieve structured metabolomics data through natural language queries. By automating the generation and execution of SPARQL queries, it removes technical barriers that have traditionally hindered access to knowledge graphs. Importantly, MetaboT leverages the capabilities of LLMs while maintaining experimentally grounded query generation, ensuring that outputs remain aligned with domain-specific standards and data structures. This approach facilitates data-driven discoveries by bridging the gap between complex semantic technologies and user-friendly interaction. MetaboT is accessible at [https://metabot.holobiomicslab.eu/], and its source code is available at [https://github.com/HolobiomicsLab/MetaboT].
☆ Emotional Text-To-Speech Based on Mutual-Information-Guided Emotion-Timbre Disentanglement SC 2025
Current emotional Text-To-Speech (TTS) and style transfer methods rely on reference encoders to control global style or emotion vectors, but do not capture nuanced acoustic details of the reference speech. To this end, we propose a novel emotional TTS method that enables fine-grained phoneme-level emotion embedding prediction while disentangling intrinsic attributes of the reference speech. The proposed method employs a style disentanglement method to guide two feature extractors, reducing mutual information between timbre and emotion features, and effectively separating distinct style components from the reference speech. Experimental results demonstrate that our method outperforms baseline TTS systems in generating natural and emotionally rich speech. This work highlights the potential of disentangled and fine-grained representations in advancing the quality and flexibility of emotional TTS systems.
comment: In Proceedings of the 17th Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2025)
☆ Latency-aware Multimodal Federated Learning over UAV Networks
This paper investigates federated multimodal learning (FML) assisted by unmanned aerial vehicles (UAVs) with a focus on minimizing system latency and providing convergence analysis. In this framework, UAVs are distributed throughout the network to collect data, participate in model training, and collaborate with a base station (BS) to build a global model. By utilizing multimodal sensing, the UAVs overcome the limitations of unimodal systems, enhancing model accuracy, generalization, and offering a more comprehensive understanding of the environment. The primary objective is to optimize FML system latency in UAV networks by jointly addressing UAV sensing scheduling, power control, trajectory planning, resource allocation, and BS resource management. To address the computational complexity of our latency minimization problem, we propose an efficient iterative optimization algorithm combining block coordinate descent and successive convex approximation techniques, which provides high-quality approximate solutions. We also present a theoretical convergence analysis for the UAV-assisted FML framework under a non-convex loss function. Numerical experiments demonstrate that our FML framework outperforms existing approaches in terms of system latency and model training performance under different data settings.
comment: Accepted at IEEE Transactions on Network Science and Engineering
☆ PyramidStyler: Transformer-Based Neural Style Transfer with Pyramidal Positional Encoding and Reinforcement Learning
Neural Style Transfer (NST) has evolved from Gatys et al.'s (2015) CNN-based algorithm, enabling AI-driven artistic image synthesis. However, existing CNN and transformer-based models struggle to scale efficiently to complex styles and high-resolution inputs. We introduce PyramidStyler, a transformer framework with Pyramidal Positional Encoding (PPE): a hierarchical, multi-scale encoding that captures both local details and global context while reducing computational load. We further incorporate reinforcement learning to dynamically optimize stylization, accelerating convergence. Trained on Microsoft COCO and WikiArt, PyramidStyler reduces content loss by 62.6% (to 2.07) and style loss by 57.4% (to 0.86) after 4000 epochs--achieving 1.39 s inference--and yields further improvements (content 2.03; style 0.75) with minimal speed penalty (1.40 s) when using RL. These results demonstrate real-time, high-quality artistic rendering, with broad applications in media and design.
☆ PolySim: Bridging the Sim-to-Real Gap for Humanoid Control via Multi-Simulator Dynamics Randomization
Humanoid whole-body control (WBC) policies trained in simulation often suffer from the sim-to-real gap, which fundamentally arises from simulator inductive bias, the inherent assumptions and limitations of any single simulator. These biases lead to nontrivial discrepancies both across simulators and between simulation and the real world. To mitigate the effect of simulator inductive bias, the key idea is to train policies jointly across multiple simulators, encouraging the learned controller to capture dynamics that generalize beyond any single simulator's assumptions. We thus introduce PolySim, a WBC training platform that integrates multiple heterogeneous simulators. PolySim can launch parallel environments from different engines simultaneously within a single training run, thereby realizing dynamics-level domain randomization. Theoretically, we show that PolySim yields a tighter upper bound on simulator inductive bias than single-simulator training. In experiments, PolySim substantially reduces motion-tracking error in sim-to-sim evaluations; for example, on MuJoCo, it improves execution success by 52.8 over an IsaacSim baseline. PolySim further enables zero-shot deployment on a real Unitree G1 without additional fine-tuning, showing effective transfer from simulation to the real world. We will release the PolySim code upon acceptance of this work.
comment: 8 pages, 5 figures
☆ Representational Alignment Across Model Layers and Brain Regions with Hierarchical Optimal Transport
Standard representational similarity methods align each layer of a network to its best match in another independently, producing asymmetric results, lacking a global alignment score, and struggling with networks of different depths. These limitations arise from ignoring global activation structure and restricting mappings to rigid one-to-one layer correspondences. We propose Hierarchical Optimal Transport (HOT), a unified framework that jointly infers soft, globally consistent layer-to-layer couplings and neuron-level transport plans. HOT allows source neurons to distribute mass across multiple target layers while minimizing total transport cost under marginal constraints. This yields both a single alignment score for the entire network comparison and a soft transport plan that naturally handles depth mismatches through mass distribution. We evaluate HOT on vision models, large language models, and human visual cortex recordings. Across all domains, HOT matches or surpasses standard pairwise matching in alignment quality. Moreover, it reveals smooth, fine-grained hierarchical correspondences: early layers map to early layers, deeper layers maintain relative positions, and depth mismatches are resolved by distributing representations across multiple layers. These structured patterns emerge naturally from global optimization without being imposed, yet are absent in greedy layer-wise methods. HOT thus enables richer, more interpretable comparisons between representations, particularly when networks differ in architecture or depth.
☆ Holistic Order Prediction in Natural Scenes
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.
comment: 25 pages, 11 figures, 6 tables
☆ VaPR -- Vision-language Preference alignment for Reasoning
Preference finetuning methods like Direct Preference Optimization (DPO) with AI-generated feedback have shown promise in aligning Large Vision-Language Models (LVLMs) with human preferences. However, existing techniques overlook the prevalence of noise in synthetic preference annotations in the form of stylistic and length biases. To this end, we introduce a hard-negative response generation framework based on LLM-guided response editing, that produces rejected responses with targeted errors, maintaining stylistic and length similarity to the accepted ones. Using this framework, we develop the VaPR dataset, comprising 30K high-quality samples, to finetune three LVLM families: LLaVA-V1.5, Qwen2VL & Qwen2.5VL (2B-13B sizes). Our VaPR models deliver significant performance improvements across ten benchmarks, achieving average gains of 6.5% (LLaVA), 4.0% (Qwen2VL), and 1.5% (Qwen2.5VL), with notable improvements on reasoning tasks. A scaling analysis shows that performance consistently improves with data size, with LLaVA models benefiting even at smaller scales. Moreover, VaPR reduces the tendency to answer "Yes" in binary questions - addressing a common failure mode in LVLMs like LLaVA. Lastly, we show that the framework generalizes to open-source LLMs as editors, with models trained on VaPR-OS achieving ~99% of the performance of models trained on \name, which is synthesized using GPT-4o. Our data, models, and code can be found on the project page https://vap-r.github.io
☆ Format Inertia: A Failure Mechanism of LLMs in Medical Pre-Consultation EMNLP 2025
Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
comment: EMNLP 2025 Industry Track
☆ Improving AGI Evaluation: A Data Science Perspective
Evaluation of potential AGI systems and methods is difficult due to the breadth of the engineering goal. We have no methods for perfect evaluation of the end state, and instead measure performance on small tests designed to provide directional indication that we are approaching AGI. In this work we argue that AGI evaluation methods have been dominated by a design philosophy that uses our intuitions of what intelligence is to create synthetic tasks, that have performed poorly in the history of AI. Instead we argue for an alternative design philosophy focused on evaluating robust task execution that seeks to demonstrate AGI through competence. This perspective is developed from common practices in data science that are used to show that a system can be reliably deployed. We provide practical examples of what this would mean for AGI evaluation.
☆ How Do Language Models Compose Functions?
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as $g(f(x))$. We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both $z = f(x)$ and $y = g(z)$ does not entail their ability to compute the composition $y = g(f(x))$. Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks $\textit{compositionally}$, computing $f(x)$ along the way to computing $g(f(x))$, and one which solves them $\textit{directly}$, without any detectable signature of the intermediate variable $f(x)$. Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from $x$ to $g(f(x))$ in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .
☆ Look Less, Reason More: Rollout-Guided Adaptive Pixel-Space Reasoning
Vision-Language Models (VLMs) excel at many multimodal tasks, yet they frequently struggle with tasks requiring precise understanding and handling of fine-grained visual elements. This is mainly due to information loss during image encoding or insufficient attention to critical regions. Recent work has shown promise by incorporating pixel-level visual information into the reasoning process, enabling VLMs to access high-resolution visual details during their thought process. However, this pixel-level information is often overused, leading to inefficiency and distraction from irrelevant visual details. To address these challenges, we propose the first framework for adaptive pixel reasoning that dynamically determines necessary pixel-level operations based on the input query. Specifically, we first apply operation-aware supervised fine-tuning to establish baseline competence in textual reasoning and visual operations, then design a novel rollout-guided reinforcement learning framework relying on feedback of the model's own responses, which enables the VLM to determine when pixel operations should be invoked based on query difficulty. Experiments on extensive multimodal reasoning benchmarks show that our model achieves superior performance while significantly reducing unnecessary visual operations. Impressively, our model achieves 73.4\% accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1\%, improving accuracy and simultaneously reducing tool usage by 66.5\% compared to the previous methods.
comment: Preprint, Under review
☆ FOR-Prompting: From Objection to Revision via an Asymmetric Prompting Protocol
Reasoning protocols such as Chain of Thought (CoT) and Tree of Thought (ToT) organize internal deliberation but lack an explicit mechanism for external questioning that elicits self-revision. We present FOR-Prompting (From Objection to Revision Prompting), an asymmetric protocol where a Defender proposes an answer, an Objectioner raises question-style objections with no direct fixes, and a Host enforces consistency and closure. On GSM8K we observe about a 22% point gain over single-prompt and accuracy on par with CoT, with more than 10% higher ratings in reasoning and coherence from a uniform GPT 4.1 judge. FOR-Prompting also corrects mistakes without tools or human supervision on tricky queries, and improves performance for small-scale model (approx. 19% accuracy improved on Llama3.2:1b for GSM8K task), highlighting promise for small models and on personal device use. Beyond factual QA, qualitative analyses on open-ended tasks show enhanced exploration and refinement, with dialogue traces that make assumptions and trade-offs explicit. The protocol is model agnostic and operates purely at the prompt level through role-structured turns, so it works with hosted and local models of different sizes without retraining, and it supports large-scale study of objection-guided reasoning.
☆ A Locally Executable AI System for Improving Preoperative Patient Communication: A Multi-Domain Clinical Evaluation
Patients awaiting invasive procedures often have unanswered pre-procedural questions; however, time-pressured workflows and privacy constraints limit personalized counseling. We present LENOHA (Low Energy, No Hallucination, Leave No One Behind Architecture), a safety-first, local-first system that routes inputs with a high-precision sentence-transformer classifier and returns verbatim answers from a clinician-curated FAQ for clinical queries, eliminating free-text generation in the clinical path. We evaluated two domains (tooth extraction and gastroscopy) using expert-reviewed validation sets (n=400/domain) for thresholding and independent test sets (n=200/domain). Among the four encoders, E5-large-instruct (560M) achieved an overall accuracy of 0.983 (95% CI 0.964-0.991), AUC 0.996, and seven total errors, which were statistically indistinguishable from GPT-4o on this task; Gemini made no errors on this test set. Energy logging shows that the non-generative clinical path consumes ~1.0 mWh per input versus ~168 mWh per small-talk reply from a local 8B SLM, a ~170x difference, while maintaining ~0.10 s latency on a single on-prem GPU. These results indicate that near-frontier discrimination and generation-induced errors are structurally avoided in the clinical path by returning vetted FAQ answers verbatim, supporting privacy, sustainability, and equitable deployment in bandwidth-limited environments.
comment: 32 pages, 4 figures, 10 tables 32 pages, 4 figures, 10 tables. This paper is currently under review at ACM Transactions on Computing for Healthcare. Reproducibility resources: http://github.com/motokinaru/LENOHA-medical-dialogue
☆ Just Do It!? Computer-Use Agents Exhibit Blind Goal-Directedness
Computer-Use Agents (CUAs) are an increasingly deployed class of agents that take actions on GUIs to accomplish user goals. In this paper, we show that CUAs consistently exhibit Blind Goal-Directedness (BGD): a bias to pursue goals regardless of feasibility, safety, reliability, or context. We characterize three prevalent patterns of BGD: (i) lack of contextual reasoning, (ii) assumptions and decisions under ambiguity, and (iii) contradictory or infeasible goals. We develop BLIND-ACT, a benchmark of 90 tasks capturing these three patterns. Built on OSWorld, BLIND-ACT provides realistic environments and employs LLM-based judges to evaluate agent behavior, achieving 93.75% agreement with human annotations. We use BLIND-ACT to evaluate nine frontier models, including Claude Sonnet and Opus 4, Computer-Use-Preview, and GPT-5, observing high average BGD rates (80.8%) across them. We show that BGD exposes subtle risks that arise even when inputs are not directly harmful. While prompting-based interventions lower BGD levels, substantial risk persists, highlighting the need for stronger training- or inference-time interventions. Qualitative analysis reveals observed failure modes: execution-first bias (focusing on how to act over whether to act), thought-action disconnect (execution diverging from reasoning), and request-primacy (justifying actions due to user request). Identifying BGD and introducing BLIND-ACT establishes a foundation for future research on studying and mitigating this fundamental risk and ensuring safe CUA deployment.
☆ GuruAgents: Emulating Wise Investors with Prompt-Guided LLM Agents
This study demonstrates that GuruAgents, prompt-guided AI agents, can systematically operationalize the strategies of legendary investment gurus. We develop five distinct GuruAgents, each designed to emulate an iconic investor, by encoding their distinct philosophies into LLM prompts that integrate financial tools and a deterministic reasoning pipeline. In a backtest on NASDAQ-100 constituents from Q4 2023 to Q2 2025, the GuruAgents exhibit unique behaviors driven by their prompted personas. The Buffett GuruAgent achieves the highest performance, delivering a 42.2\% CAGR that significantly outperforms benchmarks, while other agents show varied results. These findings confirm that prompt engineering can successfully translate the qualitative philosophies of investment gurus into reproducible, quantitative strategies, highlighting a novel direction for automated systematic investing. The source code and data are available at https://github.com/yejining99/GuruAgents.
comment: 7 Pages, 2 figures
☆ Shift-Invariant Attribute Scoring for Kolmogorov-Arnold Networks via Shapley Value
For many real-world applications, understanding feature-outcome relationships is as crucial as achieving high predictive accuracy. While traditional neural networks excel at prediction, their black-box nature obscures underlying functional relationships. Kolmogorov--Arnold Networks (KANs) address this by employing learnable spline-based activation functions on edges, enabling recovery of symbolic representations while maintaining competitive performance. However, KAN's architecture presents unique challenges for network pruning. Conventional magnitude-based methods become unreliable due to sensitivity to input coordinate shifts. We propose \textbf{ShapKAN}, a pruning framework using Shapley value attribution to assess node importance in a shift-invariant manner. Unlike magnitude-based approaches, ShapKAN quantifies each node's actual contribution, ensuring consistent importance rankings regardless of input parameterization. Extensive experiments on synthetic and real-world datasets demonstrate that ShapKAN preserves true node importance while enabling effective network compression. Our approach improves KAN's interpretability advantages, facilitating deployment in resource-constrained environments.
comment: 15 pages, 6 figures, 9 tables
☆ MDSEval: A Meta-Evaluation Benchmark for Multimodal Dialogue Summarization EMNLP 2025
Multimodal Dialogue Summarization (MDS) is a critical task with wide-ranging applications. To support the development of effective MDS models, robust automatic evaluation methods are essential for reducing both cost and human effort. However, such methods require a strong meta-evaluation benchmark grounded in human annotations. In this work, we introduce MDSEval, the first meta-evaluation benchmark for MDS, consisting image-sharing dialogues, corresponding summaries, and human judgments across eight well-defined quality aspects. To ensure data quality and richfulness, we propose a novel filtering framework leveraging Mutually Exclusive Key Information (MEKI) across modalities. Our work is the first to identify and formalize key evaluation dimensions specific to MDS. We benchmark state-of-the-art modal evaluation methods, revealing their limitations in distinguishing summaries from advanced MLLMs and their susceptibility to various bias.
comment: Accepted by EMNLP 2025
☆ Learning Time-Series Representations by Hierarchical Uniformity-Tolerance Latent Balancing
We propose TimeHUT, a novel method for learning time-series representations by hierarchical uniformity-tolerance balancing of contrastive representations. Our method uses two distinct losses to learn strong representations with the aim of striking an effective balance between uniformity and tolerance in the embedding space. First, TimeHUT uses a hierarchical setup to learn both instance-wise and temporal information from input time-series. Next, we integrate a temperature scheduler within the vanilla contrastive loss to balance the uniformity and tolerance characteristics of the embeddings. Additionally, a hierarchical angular margin loss enforces instance-wise and temporal contrast losses, creating geometric margins between positive and negative pairs of temporal sequences. This approach improves the coherence of positive pairs and their separation from the negatives, enhancing the capture of temporal dependencies within a time-series sample. We evaluate our approach on a wide range of tasks, namely 128 UCR and 30 UAE datasets for univariate and multivariate classification, as well as Yahoo and KPI datasets for anomaly detection. The results demonstrate that TimeHUT outperforms prior methods by considerable margins on classification, while obtaining competitive results for anomaly detection. Finally, detailed sensitivity and ablation studies are performed to evaluate different components and hyperparameters of our method.
comment: Accepted in Transactions on Machine Learning Research
☆ Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely pragmatic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
☆ SoK: Measuring What Matters for Closed-Loop Security Agents
Cybersecurity is a relentless arms race, with AI driven offensive systems evolving faster than traditional defenses can adapt. Research and tooling remain fragmented across isolated defensive functions, creating blind spots that adversaries exploit. Autonomous agents capable of integrating, exploit confirmation, remediation, and validation into a single closed loop offer promise, but the field lacks three essentials: a framework defining the agentic capabilities of security systems across security life cycle, a principled method for evaluating closed loop agents, and a benchmark for measuring their performance in practice. We introduce CLASP: the Closed-Loop Autonomous Security Performance framework which aligns the security lifecycle (reconnaissance, exploitation, root cause analysis, patch synthesis, validation) with core agentic capabilities (planning, tool use, memory, reasoning, reflection & perception) providing a common vocabulary and rubric for assessing agentic capabilities in security tasks. By applying CLASP to 21 representative works, we map where systems demonstrate strengths, and where capability gaps persist. We then define the Closed-Loop Capability (CLC) Score, a composite metric quantifying both degree of loop closure and operational effectiveness, and outline the requirements for a closed loop benchmark. Together, CLASP and the CLC Score, provide the vocabulary, diagnostics, and measurements needed to advance both function level performance and measure closed loop security agents.
☆ The Unseen Frontier: Pushing the Limits of LLM Sparsity with Surrogate-Free ADMM
Neural network pruning is a promising technique to mitigate the excessive computational and memory requirements of large language models (LLMs). Despite its promise, however, progress in this area has diminished, as conventional methods are seemingly unable to surpass moderate sparsity levels (50-60%) without severely degrading model accuracy. This work breaks through the current impasse, presenting a principled and effective method called $\texttt{Elsa}$, which achieves extreme sparsity levels of up to 90% while retaining high model fidelity. This is done by identifying several limitations in current practice, all of which can be traced back to their reliance on a surrogate objective formulation. $\texttt{Elsa}$ tackles this issue directly and effectively via standard and well-established constrained optimization techniques based on ADMM. Our extensive experiments across a wide range of models and scales show that $\texttt{Elsa}$ achieves substantial improvements over existing methods; e.g., it achieves 7.8$\times$ less perplexity than the best existing method on LLaMA-2-7B at 90% sparsity. Furthermore, we present $\texttt{Elsa}_{\text{-L}}$, a quantized variant that scales to extremely large models (27B), and establish its theoretical convergence guarantees. These results highlight meaningful progress in advancing the frontier of LLM sparsity, while promising that significant opportunities for further advancement may remain in directions that have so far attracted limited exploration.
comment: Preprint
☆ Source-Free Cross-Domain Continual Learning
Although existing cross-domain continual learning approaches successfully address many streaming tasks having domain shifts, they call for a fully labeled source domain hindering their feasibility in the privacy constrained environments. This paper goes one step ahead with the problem of source-free cross-domain continual learning where the use of source-domain samples are completely prohibited. We propose the idea of rehearsal-free frequency-aware dynamic prompt collaborations (REFEREE) to cope with the absence of labeled source-domain samples in realm of cross-domain continual learning. REFEREE is built upon a synergy between a source-pre-trained model and a large-scale vision-language model, thus overcoming the problem of sub-optimal generalizations when relying only on a source pre-trained model. The domain shift problem between the source domain and the target domain is handled by a frequency-aware prompting technique encouraging low-frequency components while suppressing high-frequency components. This strategy generates frequency-aware augmented samples, robust against noisy pseudo labels. The noisy pseudo-label problem is further addressed with the uncertainty-aware weighting strategy where the mean and covariance matrix are weighted by prediction uncertainties, thus mitigating the adverse effects of the noisy pseudo label. Besides, the issue of catastrophic forgetting (CF) is overcome by kernel linear discriminant analysis (KLDA) where the backbone network is frozen while the classification is performed using the linear discriminant analysis approach guided by the random kernel method. Our rigorous numerical studies confirm the advantage of our approach where it beats prior arts having access to source domain samples with significant margins.
☆ Position: Privacy Is Not Just Memorization!
The discourse on privacy risks in Large Language Models (LLMs) has disproportionately focused on verbatim memorization of training data, while a constellation of more immediate and scalable privacy threats remain underexplored. This position paper argues that the privacy landscape of LLM systems extends far beyond training data extraction, encompassing risks from data collection practices, inference-time context leakage, autonomous agent capabilities, and the democratization of surveillance through deep inference attacks. We present a comprehensive taxonomy of privacy risks across the LLM lifecycle -- from data collection through deployment -- and demonstrate through case studies how current privacy frameworks fail to address these multifaceted threats. Through a longitudinal analysis of 1,322 AI/ML privacy papers published at leading conferences over the past decade (2016--2025), we reveal that while memorization receives outsized attention in technical research, the most pressing privacy harms lie elsewhere, where current technical approaches offer little traction and viable paths forward remain unclear. We call for a fundamental shift in how the research community approaches LLM privacy, moving beyond the narrow focus of current technical solutions and embracing interdisciplinary approaches that address the sociotechnical nature of these emerging threats.
comment: 27 pages, 6 figures, 2 tables
☆ NLP Methods for Detecting Novel LLM Jailbreaks and Keyword Analysis with BERT
Large Language Models (LLMs) suffer from a range of vulnerabilities that allow malicious users to solicit undesirable responses through manipulation of the input text. These so-called jailbreak prompts are designed to trick the LLM into circumventing the safety guardrails put in place to keep responses acceptable to the developer's policies. In this study, we analyse the ability of different machine learning models to distinguish jailbreak prompts from genuine uses, including looking at our ability to identify jailbreaks that use previously unseen strategies. Our results indicate that using current datasets the best performance is achieved by fine tuning a Bidirectional Encoder Representations from Transformers (BERT) model end-to-end for identifying jailbreaks. We visualise the keywords that distinguish jailbreak from genuine prompts and conclude that explicit reflexivity in prompt structure could be a signal of jailbreak intention.
☆ Understanding the Geospatial Reasoning Capabilities of LLMs: A Trajectory Recovery Perspective
We explore the geospatial reasoning capabilities of Large Language Models (LLMs), specifically, whether LLMs can read road network maps and perform navigation. We frame trajectory recovery as a proxy task, which requires models to reconstruct masked GPS traces, and introduce GLOBALTRACE, a dataset with over 4,000 real-world trajectories across diverse regions and transportation modes. Using road network as context, our prompting framework enables LLMs to generate valid paths without accessing any external navigation tools. Experiments show that LLMs outperform off-the-shelf baselines and specialized trajectory recovery models, with strong zero-shot generalization. Fine-grained analysis shows that LLMs have strong comprehension of the road network and coordinate systems, but also pose systematic biases with respect to regions and transportation modes. Finally, we demonstrate how LLMs can enhance navigation experiences by reasoning over maps in flexible ways to incorporate user preferences.
☆ Towards Human-Centered RegTech: Unpacking Professionals' Strategies and Needs for Using LLMs Safely EMNLP 2025
Large Language Models are profoundly changing work patterns in high-risk professional domains, yet their application also introduces severe and underexplored compliance risks. To investigate this issue, we conducted semi-structured interviews with 24 highly-skilled knowledge workers from industries such as law, healthcare, and finance. The study found that these experts are commonly concerned about sensitive information leakage, intellectual property infringement, and uncertainty regarding the quality of model outputs. In response, they spontaneously adopt various mitigation strategies, such as actively distorting input data and limiting the details in their prompts. However, the effectiveness of these spontaneous efforts is limited due to a lack of specific compliance guidance and training for Large Language Models. Our research reveals a significant gap between current NLP tools and the actual compliance needs of experts. This paper positions these valuable empirical findings as foundational work for building the next generation of Human-Centered, Compliance-Driven Natural Language Processing for Regulatory Technology (RegTech), providing a critical human-centered perspective and design requirements for engineering NLP systems that can proactively support expert compliance workflows.
comment: Accepted to the 4th HCI+NLP@EMNLP 2025 Workshop. (Non-archival)
☆ BioBlobs: Differentiable Graph Partitioning for Protein Representation Learning
Protein function is driven by coherent substructures which vary in size and topology, yet current protein representation learning models (PRL) distort these signals by relying on rigid substructures such as k-hop and fixed radius neighbourhoods. We introduce BioBlobs, a plug-and-play, fully differentiable module that represents proteins by dynamically partitioning structures into flexibly-sized, non-overlapping substructures ("blobs"). The resulting blobs are quantized into a shared and interpretable codebook, yielding a discrete vocabulary of function-relevant protein substructures used to compute protein embeddings. We show that BioBlobs representations improve the performance of widely used protein encoders such as GVP-GNN across various PRL tasks. Our approach highlights the value of architectures that directly capture function-relevant protein substructures, enabling both improved predictive performance and mechanistic insight into protein function.
☆ Demystifying Synthetic Data in LLM Pre-training: A Systematic Study of Scaling Laws, Benefits, and Pitfalls EMNLP 2025
Training data plays a crucial role in Large Language Models (LLM) scaling, yet high quality data is of limited supply. Synthetic data techniques offer a potential path toward sidestepping these limitations. We conduct a large-scale empirical investigation (>1000 LLMs with >100k GPU hours) using a unified protocol and scaling laws, comparing natural web data, diverse synthetic types (rephrased text, generated textbooks), and mixtures of natural and synthetic data. Specifically, we found pre-training on rephrased synthetic data \textit{alone} is not faster than pre-training on natural web texts; while pre-training on 1/3 rephrased synthetic data mixed with 2/3 natural web texts can speed up 5-10x (to reach the same validation loss) at larger data budgets. Pre-training on textbook-style synthetic data \textit{alone} results in notably higher loss on many downstream domains especially at small data budgets. "Good" ratios of synthetic data in training data mixtures depend on the model size and data budget, empirically converging to ~30% for rephrased synthetic data. Larger generator models do not necessarily yield better pre-training data than ~8B-param models. These results contribute mixed evidence on "model collapse" during large-scale single-round (n=1) model training on synthetic data--training on rephrased synthetic data shows no degradation in performance in foreseeable scales whereas training on mixtures of textbook-style pure-generated synthetic data shows patterns predicted by "model collapse". Our work demystifies synthetic data in pre-training, validates its conditional benefits, and offers practical guidance.
comment: Published as a Main Conference paper at EMNLP 2025
☆ Quagmires in SFT-RL Post-Training: When High SFT Scores Mislead and What to Use Instead
In post-training for reasoning Large Language Models (LLMs), the current state of practice trains LLMs in two independent stages: Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR, shortened as ``RL'' below). In this work, we challenge whether high SFT scores translate to improved performance after RL. We provide extensive counter-examples where this is not true. We find high SFT scores can be biased toward simpler or more homogeneous data and are not reliably predictive of subsequent RL gains or scaled-up post-training effectiveness. In some cases, RL training on models with improved SFT performance could lead to substantially worse outcome compared to RL on the base model without SFT. We study alternative metrics and identify generalization loss on held-out reasoning examples and Pass@large k performance to provide strong proxies for the RL outcome. We trained hundreds of models up to 12B-parameter with SFT and RLVR via GRPO and ran extensive evaluations on 7 math benchmarks with up to 256 repetitions, spending $>$1M GPU hours. Experiments include models from Llama3, Mistral-Nemo, Qwen3 and multiple state-of-the-art SFT/RL datasets. Compared to directly predicting from pre-RL performance, prediction based on generalization loss and Pass@large k achieves substantial higher precision, improving $R^2$ coefficient and Spearman's rank correlation coefficient by up to 0.5 (2x). This provides strong utility for broad use cases. For example, in most experiments, we find SFT training on unique examples for a one epoch underperforms training on half examples for two epochs, either after SFT or SFT-then-RL; With the same SFT budget, training only on short examples may lead to better SFT performance, though, it often leads to worse outcome after RL compared to training on examples with varying lengths. Evaluation tool will be open-sourced.
comment: Preprint. Under Review
☆ LLM4Rec: Large Language Models for Multimodal Generative Recommendation with Causal Debiasing
Contemporary generative recommendation systems face significant challenges in handling multimodal data, eliminating algorithmic biases, and providing transparent decision-making processes. This paper introduces an enhanced generative recommendation framework that addresses these limitations through five key innovations: multimodal fusion architecture, retrieval-augmented generation mechanisms, causal inference-based debiasing, explainable recommendation generation, and real-time adaptive learning capabilities. Our framework leverages advanced large language models as the backbone while incorporating specialized modules for cross-modal understanding, contextual knowledge integration, bias mitigation, explanation synthesis, and continuous model adaptation. Extensive experiments on three benchmark datasets (MovieLens-25M, Amazon-Electronics, Yelp-2023) demonstrate consistent improvements in recommendation accuracy, fairness, and diversity compared to existing approaches. The proposed framework achieves up to 2.3% improvement in NDCG@10 and 1.4% enhancement in diversity metrics while maintaining computational efficiency through optimized inference strategies.
☆ Learning to Decide with Just Enough: Information-Theoretic Context Summarization for CDMPs
Contextual Markov Decision Processes (CMDPs) offer a framework for sequential decision-making under external signals, but existing methods often fail to generalize in high-dimensional or unstructured contexts, resulting in excessive computation and unstable performance. We propose an information-theoretic summarization approach that uses large language models (LLMs) to compress contextual inputs into low-dimensional, semantically rich summaries. These summaries augment states by preserving decision-critical cues while reducing redundancy. Building on the notion of approximate context sufficiency, we provide, to our knowledge, the first regret bounds and a latency-entropy trade-off characterization for CMDPs. Our analysis clarifies how informativeness impacts computational cost. Experiments across discrete, continuous, visual, and recommendation benchmarks show that our method outperforms raw-context and non-context baselines, improving reward, success rate, and sample efficiency, while reducing latency and memory usage. These findings demonstrate that LLM-based summarization offers a scalable and interpretable solution for efficient decision-making in context-rich, resource-constrained environments.
☆ RAG-BioQA Retrieval-Augmented Generation for Long-Form Biomedical Question Answering
The exponential growth of biomedical literature creates significant challenges for accessing precise medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide the comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a novel framework combining retrieval-augmented generation with domain-specific fine-tuning to produce evidence-based, long-form biomedical answers. Our approach integrates BioBERT embeddings with FAISS indexing and compares various re-ranking strategies (BM25, ColBERT, MonoT5) to optimize context selection before synthesizing evidence through a fine-tuned T5 model. Experimental results on the PubMedQA dataset show significant improvements over baselines, with our best model achieving substantial gains across BLEU, ROUGE, and METEOR metrics, advancing the state of accessible, evidence-based biomedical knowledge retrieval.
☆ PychoBench: Evaluating the Psychology Intelligence of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of industries, primarily due to their impressive generative abilities. Yet, their potential in applications requiring cognitive abilities, such as psychological counseling, remains largely untapped. This paper investigates the key question: Can LLMs be effectively applied to psychological counseling? To determine whether an LLM can effectively take on the role of a psychological counselor, the first step is to assess whether it meets the qualifications required for such a role, namely the ability to pass the U.S. National Counselor Certification Exam (NCE). This is because, just as a human counselor must pass a certification exam to practice, an LLM must demonstrate sufficient psychological knowledge to meet the standards required for such a role. To address this, we introduce PsychoBench, a benchmark grounded in U.S.national counselor examinations, a licensure test for professional counselors that requires about 70% accuracy to pass. PsychoBench comprises approximately 2,252 carefully curated single-choice questions, crafted to require deep understanding and broad enough to cover various sub-disciplines of psychology. This benchmark provides a comprehensive assessment of an LLM's ability to function as a counselor. Our evaluation shows that advanced models such as GPT-4o, Llama3.3-70B, and Gemma3-27B achieve well above the passing threshold, while smaller open-source models (e.g., Qwen2.5-7B, Mistral-7B) remain far below it. These results suggest that only frontier LLMs are currently capable of meeting counseling exam standards, highlighting both the promise and the challenges of developing psychology-oriented LLMs.
☆ AgentRec: Next-Generation LLM-Powered Multi-Agent Collaborative Recommendation with Adaptive Intelligence
Interactive conversational recommender systems have gained significant attention for their ability to capture user preferences through natural language interactions. However, existing approaches face substantial challenges in handling dynamic user preferences, maintaining conversation coherence, and balancing multiple ranking objectives simultaneously. This paper introduces AgentRec, a next-generation LLM-powered multi-agent collaborative recommendation framework that addresses these limitations through hierarchical agent networks with adaptive intelligence. Our approach employs specialized LLM-powered agents for conversation understanding, preference modeling, context awareness, and dynamic ranking, coordinated through an adaptive weighting mechanism that learns from interaction patterns. We propose a three-tier learning strategy combining rapid response for simple queries, intelligent reasoning for complex preferences, and deep collaboration for challenging scenarios. Extensive experiments on three real-world datasets demonstrate that AgentRec achieves consistent improvements over state-of-the-art baselines, with 2.8\% enhancement in conversation success rate, 1.9\% improvement in recommendation accuracy (NDCG@10), and 3.2\% better conversation efficiency while maintaining comparable computational costs through intelligent agent coordination.
☆ Bridging Collaborative Filtering and Large Language Models with Dynamic Alignment, Multimodal Fusion and Evidence-grounded Explanations
Recent research has explored using Large Language Models for recommendation tasks by transforming user interaction histories and item metadata into text prompts, then having the LLM produce rankings or recommendations. A promising approach involves connecting collaborative filtering knowledge to LLM representations through compact adapter networks, which avoids expensive fine-tuning while preserving the strengths of both components. Yet several challenges persist in practice: collaborative filtering models often use static snapshots that miss rapidly changing user preferences; many real-world items contain rich visual and audio content beyond textual descriptions; and current systems struggle to provide trustworthy explanations backed by concrete evidence. Our work introduces \model{}, a framework that tackles these limitations through three key innovations. We develop an online adaptation mechanism that continuously incorporates new user interactions through lightweight modules, avoiding the need to retrain large models. We create a unified representation that seamlessly combines collaborative signals with visual and audio features, handling cases where some modalities may be unavailable. Finally, we design an explanation system that grounds recommendations in specific collaborative patterns and item attributes, producing natural language rationales users can verify. Our approach maintains the efficiency of frozen base models while adding minimal computational overhead, making it practical for real-world deployment.
☆ A Comparison of Independent and Joint Fine-tuning Strategies for Retrieval-Augmented Generation
A Comparison of Independent and Joint Fine-tuning Strategies for Retrieval-Augmented Generation Download PDF Neal Gregory Lawton, Alfy Samuel, Anoop Kumar, Daben Liu Published: 20 Aug 2025, Last Modified: 17 Sept 2025EMNLP 2025 FindingsConference, Publication Chairs, AuthorsRevisionsBibTeXCC BY 4.0 Keywords: Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), Fine-tuning, Question Answering, Joint fine-tuning TL;DR: We evaluate and compare strategies for fine-tuning Retrieval Augmented Generation (RAG) pipelines, including independent fine-tuning, joint fine-tuning, and two-phase fine-tuning. Abstract: Retrieval augmented generation (RAG) is a popular framework for question answering that is powered by two large language models (LLMs): an embedding model that retrieves context documents from a database that are relevant to a given question, and a generator model that uses the retrieved context to generate an answer to the question. Both the embedding and generator models can be fine-tuned to increase performance of a RAG pipeline on a new task, but multiple fine-tuning strategies exist with different costs and benefits. In this paper, we evaluate and compare several RAG fine-tuning strategies, including independent, joint, and two-phase fine-tuning. In our experiments, we observe that all of these strategies achieve about equal improvement in EM and F1 generation quality metrics, although they have significantly different computational costs. We conclude the optimal fine-tuning strategy to use depends on whether the training dataset includes context labels and whether a grid search over the learning rates for the embedding and generator models is required.
☆ Enhancing Noise Robustness of Parkinson's Disease Telemonitoring via Contrastive Feature Augmentation
Parkinson's disease (PD) is one of the most common neurodegenerative disorder. PD telemonitoring emerges as a novel assessment modality enabling self-administered at-home tests of Unified Parkinson's Disease Rating Scale (UPDRS) scores, enhancing accessibility for PD patients. However, three types of noise would occur during measurements: (1) patient-induced measurement inaccuracies, (2) environmental noise, and (3) data packet loss during transmission, resulting in higher prediction errors. To address these challenges, NoRo, a noise-robust UPDRS prediction framework is proposed. First, the original speech features are grouped into ordered bins, based on the continuous values of a selected feature, to construct contrastive pairs. Second, the contrastive pairs are employed to train a multilayer perceptron encoder for generating noise-robust features. Finally, these features are concatenated with the original features as the augmented features, which are then fed into the UPDRS prediction models. Notably, we further introduces a novel evaluation approach with customizable noise injection module, and extensive experiments show that NoRo can successfully enhance the noise robustness of UPDRS prediction across various downstream prediction models under different noisy environments.
☆ AdvEvo-MARL: Shaping Internalized Safety through Adversarial Co-Evolution in Multi-Agent Reinforcement Learning
LLM-based multi-agent systems excel at planning, tool use, and role coordination, but their openness and interaction complexity also expose them to jailbreak, prompt-injection, and adversarial collaboration. Existing defenses fall into two lines: (i) self-verification that asks each agent to pre-filter unsafe instructions before execution, and (ii) external guard modules that police behaviors. The former often underperforms because a standalone agent lacks sufficient capacity to detect cross-agent unsafe chains and delegation-induced risks; the latter increases system overhead and creates a single-point-of-failure-once compromised, system-wide safety collapses, and adding more guards worsens cost and complexity. To solve these challenges, we propose AdvEvo-MARL, a co-evolutionary multi-agent reinforcement learning framework that internalizes safety into task agents. Rather than relying on external guards, AdvEvo-MARL jointly optimizes attackers (which synthesize evolving jailbreak prompts) and defenders (task agents trained to both accomplish their duties and resist attacks) in adversarial learning environments. To stabilize learning and foster cooperation, we introduce a public baseline for advantage estimation: agents within the same functional group share a group-level mean-return baseline, enabling lower-variance updates and stronger intra-group coordination. Across representative attack scenarios, AdvEvo-MARL consistently keeps attack-success rate (ASR) below 20%, whereas baselines reach up to 38.33%, while preserving-and sometimes improving-task accuracy (up to +3.67% on reasoning tasks). These results show that safety and utility can be jointly improved without relying on extra guard agents or added system overhead.
☆ Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.
comment: Code: https://github.com/joykirat18/TRAAC
☆ Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations ICCV 2025
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .
comment: 7 pages, 2 figure, 2 tables, CV4A11y Workshop at ICCV 2025
☆ Synthetic Prefixes to Mitigate Bias in Real-Time Neural Query Autocomplete SIGIR
We introduce a data-centric approach for mitigating presentation bias in real-time neural query autocomplete systems through the use of synthetic prefixes. These prefixes are generated from complete user queries collected during regular search sessions where autocomplete was not active. This allows us to enrich the training data for learning to rank models with more diverse and less biased examples. This method addresses the inherent bias in engagement signals collected from live query autocomplete interactions, where model suggestions influence user behavior. Our neural ranker is optimized for real-time deployment under strict latency constraints and incorporates a rich set of features, including query popularity, seasonality, fuzzy match scores, and contextual signals such as department affinity, device type, and vertical alignment with previous user queries. To support efficient training, we introduce a task-specific simplification of the listwise loss, reducing computational complexity from $O(n^2)$ to $O(n)$ by leveraging the query autocomplete structure of having only one ground-truth selection per prefix. Deployed in a large-scale e-commerce setting, our system demonstrates statistically significant improvements in user engagement, as measured by mean reciprocal rank and related metrics. Our findings show that synthetic prefixes not only improve generalization but also provide a scalable path toward bias mitigation in other low-latency ranking tasks, including related searches and query recommendations.
comment: Accepted to the Proceedings of the ACM SIGIR Asia Pacific Conference on Information Retrieval (SIGIR-AP 2025), December 7-10, 2025, Xi'an, China
☆ From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.
comment: 24 pages, 7 figures, 4 tables
☆ InvThink: Towards AI Safety via Inverse Reasoning
We present InvThink, a simple yet powerful approach that gives large language models (LLMs) the capability of inverse thinking: reasoning through failure modes before generating responses. Unlike existing safety alignment methods that optimize directly for safe response, InvThink instructs models to 1) enumerate potential harms, 2) analyze their consequences, and 3) generate safe outputs that proactively avoid these risks. Our method reveals three key findings: (i) safety improvements show stronger scaling with model size compared to existing safety methods. (ii) InvThink mitigates safety tax; by training models to systematically consider failure modes, it preserves general reasoning capabilities on standard benchmarks. (iii) beyond general safety tasks, InvThink excels in high-stakes domains including external-facing (medicine, finance, law) and agentic (blackmail, murder) risk scenarios, achieving up to 15.7% reduction in harmful responses compared to baseline methods like SafetyPrompt. We further implement InvThink via supervised fine-tuning, and reinforcement learning across three LLM families. These results suggest that inverse reasoning provides a scalable and generalizable path toward safer, more capable language models.
Rethinking KL Regularization in RLHF: From Value Estimation to Gradient Optimization
Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-Leibler (KL) divergence loss to stabilize training and prevent overfitting. However, in methods such as GRPO, its implementation may be guided by principles from numerical value estimation-a practice that overlooks the term's functional role as an optimization loss. To analyze this issue, we establish a unified framework that connects two seemingly distinct implementation styles: using the mathematical term $k_n$ as a detached coefficient for the policy's score function ('$k_n$ in reward') or as a direct loss function through which gradients are propagated ('$k_n$ as loss'). We show that the latter can always be analyzed via an equivalent gradient coefficient in the former, unifying the two perspectives. Through this framework, we prove that the conventional '$k_1$ in reward' (like in PPO) is the principled loss for Reverse KL (RKL) regularization. We further establish a key finding: under on-policy conditions, the '$k_2$ as loss' formulation is, in fact, gradient-equivalent to '$k_1$ in reward'. This equivalence, first proven in our work, identifies both as the theoretically sound implementations of the RKL objective. In contrast, we show that the recently adopted '$k_3$ as loss' (like in GRPO) is merely a first-order, biased approximation of the principled loss. Furthermore, we argue that common off-policy implementations of '$k_n$ as loss' methods are biased due to neglected importance sampling, and we propose a principled correction. Our findings provide a comprehensive, gradient-based rationale for choosing and correctly implementing KL regularization, paving the way for more robust and effective RLHF systems.
☆ POLAR: Automating Cyber Threat Prioritization through LLM-Powered Assessment
Large Language Models (LLMs) are intensively used to assist security analysts in counteracting the rapid exploitation of cyber threats, wherein LLMs offer cyber threat intelligence (CTI) to support vulnerability assessment and incident response. While recent work has shown that LLMs can support a wide range of CTI tasks such as threat analysis, vulnerability detection, and intrusion defense, significant performance gaps persist in practical deployments. In this paper, we investigate the intrinsic vulnerabilities of LLMs in CTI, focusing on challenges that arise from the nature of the threat landscape itself rather than the model architecture. Using large-scale evaluations across multiple CTI benchmarks and real-world threat reports, we introduce a novel categorization methodology that integrates stratification, autoregressive refinement, and human-in-the-loop supervision to reliably analyze failure instances. Through extensive experiments and human inspections, we reveal three fundamental vulnerabilities: spurious correlations, contradictory knowledge, and constrained generalization, that limit LLMs in effectively supporting CTI. Subsequently, we provide actionable insights for designing more robust LLM-powered CTI systems to facilitate future research.
comment: 25 pages
☆ Predictive Preference Learning from Human Interventions NeurIPS 2025
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl
comment: NeurIPS 2025 Spotlight. Project page: https://metadriverse.github.io/ppl
☆ Step-Aware Policy Optimization for Reasoning in Diffusion Large Language Models
Diffusion language models (dLLMs) offer a promising, non-autoregressive paradigm for text generation, yet training them for complex reasoning remains a key challenge. Current reinforcement learning approaches often rely on sparse, outcome-based rewards, which can reinforce flawed reasoning paths that lead to coincidentally correct answers. We argue that this stems from a fundamental mismatch with the natural structure of reasoning. We first propose a theoretical framework that formalizes complex problem solving as a hierarchical selection process, where an intractable global constraint is decomposed into a series of simpler, localized logical steps. This framework provides a principled foundation for algorithm design, including theoretical insights into the identifiability of this latent reasoning structure. Motivated by this theory, we identify unstructured refinement -- a failure mode where a model's iterative steps do not contribute meaningfully to the solution -- as a core deficiency in existing methods. We then introduce Step-Aware Policy Optimization (SAPO), a novel RL algorithm that aligns the dLLM's denoising process with the latent reasoning hierarchy. By using a process-based reward function that encourages incremental progress, SAPO guides the model to learn structured, coherent reasoning paths. Our empirical results show that this principled approach significantly improves performance on challenging reasoning benchmarks and enhances the interpretability of the generation process.
☆ Information Seeking for Robust Decision Making under Partial Observability
Explicit information seeking is essential to human problem-solving in practical environments characterized by incomplete information and noisy dynamics. When the true environmental state is not directly observable, humans seek information to update their internal dynamics and inform future decision-making. Although existing Large Language Model (LLM) planning agents have addressed observational uncertainty, they often overlook discrepancies between their internal dynamics and the actual environment. We introduce Information Seeking Decision Planner (InfoSeeker), an LLM decision-making framework that integrates task-oriented planning with information seeking to align internal dynamics and make optimal decisions under uncertainty in both agent observations and environmental dynamics. InfoSeeker prompts an LLM to actively gather information by planning actions to validate its understanding, detect environmental changes, or test hypotheses before generating or revising task-oriented plans. To evaluate InfoSeeker, we introduce a novel benchmark suite featuring partially observable environments with incomplete observations and uncertain dynamics. Experiments demonstrate that InfoSeeker achieves a 74% absolute performance gain over prior methods without sacrificing sample efficiency. Moreover, InfoSeeker generalizes across LLMs and outperforms baselines on established benchmarks such as robotic manipulation and web navigation. These findings underscore the importance of tightly integrating planning and information seeking for robust behavior in partially observable environments. The project page is available at https://infoseekerllm.github.io
comment: The project page is available at https://infoseekerllm.github.io
☆ LOGicalThought: Logic-Based Ontological Grounding of LLMs for High-Assurance Reasoning
High-assurance reasoning, particularly in critical domains such as law and medicine, requires conclusions that are accurate, verifiable, and explicitly grounded in evidence. This reasoning relies on premises codified from rules, statutes, and contracts, inherently involving defeasible or non-monotonic logic due to numerous exceptions, where the introduction of a single fact can invalidate general rules, posing significant challenges. While large language models (LLMs) excel at processing natural language, their capabilities in standard inference tasks do not translate to the rigorous reasoning required over high-assurance text guidelines. Core reasoning challenges within such texts often manifest specific logical structures involving negation, implication, and, most critically, defeasible rules and exceptions. In this paper, we propose a novel neurosymbolically-grounded architecture called LOGicalThought (LogT) that uses an advanced logical language and reasoner in conjunction with an LLM to construct a dual symbolic graph context and logic-based context. These two context representations transform the problem from inference over long-form guidelines into a compact grounded evaluation. Evaluated on four multi-domain benchmarks against four baselines, LogT improves overall performance by 11.84% across all LLMs. Performance improves significantly across all three modes of reasoning: by up to +10.2% on negation, +13.2% on implication, and +5.5% on defeasible reasoning compared to the strongest baseline.
☆ Towards Interpretable and Inference-Optimal COT Reasoning with Sparse Autoencoder-Guided Generation
We propose a novel method that leverages sparse autoencoders (SAEs) and clustering techniques to analyze the internal token representations of large language models (LLMs) and guide generations in mathematical reasoning tasks. Our approach first trains an SAE to generate sparse vector representations for training tokens, then applies k-means clustering to construct a graph where vertices represent token clusters and weighted edges capture sequential token transitions. Using this graph, we define an edge-weight based reward function to quantify adherence to established reasoning traces, thereby identifying exploitative reasoning trajectories. Additionally, we measure generation diversity from clustering to assess the extent of exploration. Our findings indicate that balancing both exploitation and exploration is crucial for achieving high accuracy in mathematical reasoning tasks. During generation, the SAE can serve as a scalable reward model to guide generations, ensuring a balanced trade-off between exploitation and exploration. This prevents extreme behaviors in either direction, ultimately fostering a higher-quality reasoning process in LLMs.
☆ Human-Robo-advisor collaboration in decision-making: Evidence from a multiphase mixed methods experimental study
Robo-advisors (RAs) are cost-effective, bias-resistant alternatives to human financial advisors, yet adoption remains limited. While prior research has examined user interactions with RAs, less is known about how individuals interpret RA roles and integrate their advice into decision-making. To address this gap, this study employs a multiphase mixed methods design integrating a behavioral experiment (N = 334), thematic analysis, and follow-up quantitative testing. Findings suggest that people tend to rely on RAs, with reliance shaped by information about RA performance and the framing of advice as gains or losses. Thematic analysis reveals three RA roles in decision-making and four user types, each reflecting distinct patterns of advice integration. In addition, a 2 x 2 typology categorizes antecedents of acceptance into enablers and inhibitors at both the individual and algorithmic levels. By combining behavioral, interpretive, and confirmatory evidence, this study advances understanding of human-RA collaboration and provides actionable insights for designing more trustworthy and adaptive RA systems.
☆ On the Role of Temperature Sampling in Test-Time Scaling
Large language models (LLMs) can improve reasoning at inference time through test-time scaling (TTS), where multiple reasoning traces are generated and the best one is selected. Prior work shows that increasing the number of samples K steadily improves accuracy. In this paper, we demonstrate that this trend does not hold indefinitely: at large K, further scaling yields no gains, and certain hard questions remain unsolved regardless of the number of traces. Interestingly, we find that different sampling temperatures solve different subsets of problems, implying that single-temperature scaling explores only part of a model's potential. We therefore propose scaling along the temperature dimension, which enlarges the reasoning boundary of LLMs. Averaged over Qwen3 (0.6B, 1.7B, 4B, 8B) and five representative reasoning benchmarks (AIME 2024/2025, MATH500, LiveCodeBench, Hi-ToM), temperature scaling yields an additional 7.3 points over single-temperature TTS. Temperature scaling also enables base models to reach performance comparable to reinforcement learning (RL)-trained counterparts, without additional post-training. We further provide a comprehensive analysis of this phenomenon and design a multi-temperature voting method that reduces the overhead of temperature scaling. Overall, our findings suggest that TTS is more powerful than previously thought, and that temperature scaling offers a simple and effective way to unlock the latent potential of base models.
☆ MINERVA: Mutual Information Neural Estimation for Supervised Feature Selection
Existing feature filters rely on statistical pair-wise dependence metrics to model feature-target relationships, but this approach may fail when the target depends on higher-order feature interactions rather than individual contributions. We introduce Mutual Information Neural Estimation Regularized Vetting Algorithm (MINERVA), a novel approach to supervised feature selection based on neural estimation of mutual information between features and targets. We paramaterize the approximation of mutual information with neural networks and perform feature selection using a carefully designed loss function augmented with sparsity-inducing regularizers. Our method is implemented in a two-stage process to decouple representation learning from feature selection, ensuring better generalization and a more accurate expression of feature importance. We present examples of ubiquitous dependency structures that are rarely captured in literature and show that our proposed method effectively captures these complex feature-target relationships by evaluating feature subsets as an ensemble. Experimental results on synthetic and real-life fraud datasets demonstrate the efficacy of our method and its ability to perform exact solutions.
comment: 23 pages
☆ Mitigating Modal Imbalance in Multimodal Reasoning
Foundation models (FMs) deployed in real-world tasks such as computer-use agents must integrate diverse modalities. How good are FMs at performing joint reasoning, simultaneously reasoning over multiple modalities, especially when the modalities interact and relate to each other to form cross-modal context? To better understand this problem, we study FMs on cross-modal conflicts: scenarios where conflicting evidence is presented across modalities. This allows us to examine whether FMs prioritize one modality over another or reason jointly to reconcile the conflict. Our experiments reveal that FMs can recognize conflicts in unimodal contexts, composed of a single modality, 90% of the time, but the ratio falls as low as 3% when evidence is split across modalities -- similar observations hold in cross-lingual contexts, composed of multiple languages. We trace this failure to cross-modal attention imbalance, showing that FMs exhibit extreme asymmetry in attention scores, disproportionately prioritizing certain modalities. We show that cross-modal attention imbalance does not go away by simply scaling up multimodal or multilingual datasets blindly, since they lack training examples that explicitly require cross-modal reasoning. We demonstrate that even a simple and scalable method of explicitly combining multiple modalities within each training instance significantly reduces attention imbalance. Reduced attention imbalance directly translates to improved downstream performance on several vision-language benchmarks. Our findings underscore the importance of systematically addressing cross-modal contexts to build reliable foundation models.
comment: 10 pages, 10 figures, CoLM 2025
Multimodal Large Language Model Framework for Safe and Interpretable Grid-Integrated EVs
The integration of electric vehicles (EVs) into smart grids presents unique opportunities to enhance both transportation systems and energy networks. However, ensuring safe and interpretable interactions between drivers, vehicles, and the surrounding environment remains a critical challenge. This paper presents a multi-modal large language model (LLM)-based framework to process multimodal sensor data - such as object detection, semantic segmentation, and vehicular telemetry - and generate natural-language alerts for drivers. The framework is validated using real-world data collected from instrumented vehicles driving on urban roads, ensuring its applicability to real-world scenarios. By combining visual perception (YOLOv8), geocoded positioning, and CAN bus telemetry, the framework bridges raw sensor data and driver comprehension, enabling safer and more informed decision-making in urban driving scenarios. Case studies using real data demonstrate the framework's effectiveness in generating context-aware alerts for critical situations, such as proximity to pedestrians, cyclists, and other vehicles. This paper highlights the potential of LLMs as assistive tools in e-mobility, benefiting both transportation systems and electric networks by enabling scalable fleet coordination, EV load forecasting, and traffic-aware energy planning. Index Terms - Electric vehicles, visual perception, large language models, YOLOv8, semantic segmentation, CAN bus, prompt engineering, smart grid.
comment: This paper has been presented at the 2025 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT 2025)
☆ A Benchmark Study of Deep Reinforcement Learning Algorithms for the Container Stowage Planning Problem
Container stowage planning (CSPP) is a critical component of maritime transportation and terminal operations, directly affecting supply chain efficiency. Owing to its complexity, CSPP has traditionally relied on human expertise. While reinforcement learning (RL) has recently been applied to CSPP, systematic benchmark comparisons across different algorithms remain limited. To address this gap, we develop a Gym environment that captures the fundamental features of CSPP and extend it to include crane scheduling in both multi-agent and single-agent formulations. Within this framework, we evaluate five RL algorithms: DQN, QR-DQN, A2C, PPO, and TRPO under multiple scenarios of varying complexity. The results reveal distinct performance gaps with increasing complexity, underscoring the importance of algorithm choice and problem formulation for CSPP. Overall, this paper benchmarks multiple RL methods for CSPP while providing a reusable Gym environment with crane scheduling, thus offering a foundation for future research and practical deployment in maritime logistics.
☆ How Confident are Video Models? Empowering Video Models to Express their Uncertainty
Generative video models demonstrate impressive text-to-video capabilities, spurring widespread adoption in many real-world applications. However, like large language models (LLMs), video generation models tend to hallucinate, producing plausible videos even when they are factually wrong. Although uncertainty quantification (UQ) of LLMs has been extensively studied in prior work, no UQ method for video models exists, raising critical safety concerns. To our knowledge, this paper represents the first work towards quantifying the uncertainty of video models. We present a framework for uncertainty quantification of generative video models, consisting of: (i) a metric for evaluating the calibration of video models based on robust rank correlation estimation with no stringent modeling assumptions; (ii) a black-box UQ method for video models (termed S-QUBED), which leverages latent modeling to rigorously decompose predictive uncertainty into its aleatoric and epistemic components; and (iii) a UQ dataset to facilitate benchmarking calibration in video models. By conditioning the generation task in the latent space, we disentangle uncertainty arising due to vague task specifications from that arising from lack of knowledge. Through extensive experiments on benchmark video datasets, we demonstrate that S-QUBED computes calibrated total uncertainty estimates that are negatively correlated with the task accuracy and effectively computes the aleatoric and epistemic constituents.
☆ Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
☆ Oracle-RLAIF: An Improved Fine-Tuning Framework for Multi-modal Video Models through Reinforcement Learning from Ranking Feedback
Recent advances in large video-language models (VLMs) rely on extensive fine-tuning techniques that strengthen alignment between textual and visual comprehension. Leading pipelines typically pair supervised fine-tuning (SFT) with reinforcement learning from preference data to enhance video comprehension. However, as VLMs scale in parameter size, so does the cost of gathering enough human feedback. To make fine-tuning more cost-effective, recent frameworks explore reinforcement learning with AI feedback (RLAIF), which replace human preference with AI as a judge. Current RLAIF frameworks rely on a specialized reward model trained with video narratives to create calibrated scalar rewards -- an expensive and restrictive pipeline. We propose Oracle-RLAIF, a novel framework that replaces the trained reward model with a more general Oracle ranker which acts as a drop-in model ranking candidate model responses rather than scoring them. Alongside Oracle-RLAIF, we introduce $GRPO_{rank}$, a novel rank-based loss function based on Group Relative Policy Optimization (GRPO) that directly optimizes ordinal feedback with rank-aware advantages. Empirically, we demonstrate that Oracle-RLAIF consistently outperforms leading VLMs using existing fine-tuning methods when evaluated across various video comprehension benchmarks. Oracle-RLAIF paves the path to creating flexible and data-efficient frameworks for aligning large multi-modal video models with reinforcement learning from rank rather than score.
comment: Proceedings of the 39th Annual Conference on Neural Information Processing Systems, ARLET Workshop (Aligning Reinforcement Learning Experimentalists and Theorists)
☆ Orchestrating Human-AI Teams: The Manager Agent as a Unifying Research Challenge
While agentic AI has advanced in automating individual tasks, managing complex multi-agent workflows remains a challenging problem. This paper presents a research vision for autonomous agentic systems that orchestrate collaboration within dynamic human-AI teams. We propose the Autonomous Manager Agent as a core challenge: an agent that decomposes complex goals into task graphs, allocates tasks to human and AI workers, monitors progress, adapts to changing conditions, and maintains transparent stakeholder communication. We formalize workflow management as a Partially Observable Stochastic Game and identify four foundational challenges: (1) compositional reasoning for hierarchical decomposition, (2) multi-objective optimization under shifting preferences, (3) coordination and planning in ad hoc teams, and (4) governance and compliance by design. To advance this agenda, we release MA-Gym, an open-source simulation and evaluation framework for multi-agent workflow orchestration. Evaluating GPT-5-based Manager Agents across 20 workflows, we find they struggle to jointly optimize for goal completion, constraint adherence, and workflow runtime - underscoring workflow management as a difficult open problem. We conclude with organizational and ethical implications of autonomous management systems.
comment: Accepted as an oral paper for the conference for Distributed Artificial Intelligence (DAI 2025). 8 pages, 2 figures
☆ ToolTweak: An Attack on Tool Selection in LLM-based Agents
As LLMs increasingly power agents that interact with external tools, tool use has become an essential mechanism for extending their capabilities. These agents typically select tools from growing databases or marketplaces to solve user tasks, creating implicit competition among tool providers and developers for visibility and usage. In this paper, we show that this selection process harbors a critical vulnerability: by iteratively manipulating tool names and descriptions, adversaries can systematically bias agents toward selecting specific tools, gaining unfair advantage over equally capable alternatives. We present ToolTweak, a lightweight automatic attack that increases selection rates from a baseline of around 20% to as high as 81%, with strong transferability between open-source and closed-source models. Beyond individual tools, we show that such attacks cause distributional shifts in tool usage, revealing risks to fairness, competition, and security in emerging tool ecosystems. To mitigate these risks, we evaluate two defenses: paraphrasing and perplexity filtering, which reduce bias and lead agents to select functionally similar tools more equally. All code will be open-sourced upon acceptance.
☆ Knowledge-Graph Based RAG System Evaluation Framework
Large language models (LLMs) has become a significant research focus and is utilized in various fields, such as text generation and dialog systems. One of the most essential applications of LLM is Retrieval Augmented Generation (RAG), which greatly enhances generated content's reliability and relevance. However, evaluating RAG systems remains a challenging task. Traditional evaluation metrics struggle to effectively capture the key features of modern LLM-generated content that often exhibits high fluency and naturalness. Inspired by the RAGAS tool, a well-known RAG evaluation framework, we extended this framework into a KG-based evaluation paradigm, enabling multi-hop reasoning and semantic community clustering to derive more comprehensive scoring metrics. By incorporating these comprehensive evaluation criteria, we gain a deeper understanding of RAG systems and a more nuanced perspective on their performance. To validate the effectiveness of our approach, we compare its performance with RAGAS scores and construct a human-annotated subset to assess the correlation between human judgments and automated metrics. In addition, we conduct targeted experiments to demonstrate that our KG-based evaluation method is more sensitive to subtle semantic differences in generated outputs. Finally, we discuss the key challenges in evaluating RAG systems and highlight potential directions for future research.
☆ PHORECAST: Enabling AI Understanding of Public Health Outreach Across Populations
Understanding how diverse individuals and communities respond to persuasive messaging holds significant potential for advancing personalized and socially aware machine learning. While Large Vision and Language Models (VLMs) offer promise, their ability to emulate nuanced, heterogeneous human responses, particularly in high stakes domains like public health, remains underexplored due in part to the lack of comprehensive, multimodal dataset. We introduce PHORECAST (Public Health Outreach REceptivity and CAmpaign Signal Tracking), a multimodal dataset curated to enable fine-grained prediction of both individuallevel behavioral responses and community-wide engagement patterns to health messaging. This dataset supports tasks in multimodal understanding, response prediction, personalization, and social forecasting, allowing rigorous evaluation of how well modern AI systems can emulate, interpret, and anticipate heterogeneous public sentiment and behavior. By providing a new dataset to enable AI advances for public health, PHORECAST aims to catalyze the development of models that are not only more socially aware but also aligned with the goals of adaptive and inclusive health communication
Multimodal Function Vectors for Spatial Relations
Large Multimodal Models (LMMs) demonstrate impressive in-context learning abilities from limited multimodal demonstrations, yet the internal mechanisms supporting such task learning remain opaque. Building on prior work of large language models, we show that a small subset of attention heads in the vision-language model OpenFlamingo-4B is responsible for transmitting representations of spatial relations. The activations of these attention heads, termed function vectors, can be extracted and manipulated to alter an LMM's performance on relational tasks. First, using both synthetic and real image datasets, we apply causal mediation analysis to identify attention heads that strongly influence relational predictions, and extract multimodal function vectors that improve zero-shot accuracy at inference time. We further demonstrate that these multimodal function vectors can be fine-tuned with a modest amount of training data, while keeping LMM parameters frozen, to significantly outperform in-context learning baselines. Finally, we show that relation-specific function vectors can be linearly combined to solve analogy problems involving novel and untrained spatial relations, highlighting the strong generalization ability of this approach. Our results show that LMMs encode spatial relational knowledge within localized internal structures, which can be systematically extracted and optimized, thereby advancing our understanding of model modularity and enhancing control over relational reasoning in LMMs.
☆ From Pixels to Factors: Learning Independently Controllable State Variables for Reinforcement Learning
Algorithms that exploit factored Markov decision processes are far more sample-efficient than factor-agnostic methods, yet they assume a factored representation is known a priori -- a requirement that breaks down when the agent sees only high-dimensional observations. Conversely, deep reinforcement learning handles such inputs but cannot benefit from factored structure. We address this representation problem with Action-Controllable Factorization (ACF), a contrastive learning approach that uncovers independently controllable latent variables -- state components each action can influence separately. ACF leverages sparsity: actions typically affect only a subset of variables, while the rest evolve under the environment's dynamics, yielding informative data for contrastive training. ACF recovers the ground truth controllable factors directly from pixel observations on three benchmarks with known factored structure -- Taxi, FourRooms, and MiniGrid-DoorKey -- consistently outperforming baseline disentanglement algorithms.
☆ Litespark Technical Report: High-Throughput, Energy-Efficient LLM Training Framework
Training Large Language Models (LLMs) is plagued by long training times and massive energy consumption, with modern models requiring months of computation and gigawatt-hours of electricity. In light of these challenges,we introduce Litespark, a novel pre-training framework that addresses these inefficiencies through targeted optimizations to transformer attention and MLP layers. Our approach combines architectural improvements with algorithmic enhancements to maximize Model FLOPs Utilization (MFU) while maintaining compatibility with standard transformer implementations. Comprehensive benchmarking on 3B and 30B parameter Llama models using the SlimPajama-627B dataset demonstrates substantial performance gains: 2x-6x training throughput improvement and $55\%-83$% energy consumption reduction across multi-node H200 GPU clusters. These optimizations are model- and hardware-agnostic, enabling broad applicability across transformer architectures and extending to post-training phases including supervised fine-tuning and direct preference optimization.
comment: 14 pages
☆ Safe and Efficient In-Context Learning via Risk Control
Large language models (LLMs) demonstrate a remarkable ability to learn new tasks from a few in-context examples. However, this flexibility introduces safety concerns: LLMs can be influenced by incorrect or malicious demonstrations -- for example, if an adversary tampers with or injects harmful examples without a human supervisor noticing. This motivates principled designs in which the system itself includes built-in mechanisms to guard against such attacks. We propose a novel approach to limit the degree to which harmful demonstrations can degrade model performance. First, we define a baseline ``safe'' behavior for the model -- the model's performance given no in-context demonstrations (zero-shot). Next, we apply distribution-free risk control (DFRC) to control the extent to which in-context samples can decay performance below zero-shot. We achieve this by leveraging dynamic early exit prediction, ignoring later attention heads that attend the most to the unsafe inputs. Finally, we propose modifications to DFRC that allow it to both control risk for harmful inputs \textit{and} leverage performance and efficiency gains on helpful inputs. We present both theoretical and empirical results showing that our approach can effectively control risk for harmful in-context demonstrations while simultaneously achieving substantial computational efficiency gains with helpful demonstrations.
☆ SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/
☆ CLARITY: Clinical Assistant for Routing, Inference, and Triage EMNLP 2025
We present CLARITY (Clinical Assistant for Routing, Inference, and Triage), an AI-driven platform designed to facilitate patient-to-specialist routing, clinical consultations, and severity assessment of patients' conditions. Its hybrid architecture combines a Finite State Machine (FSM) for structured dialogue flows with collaborative agents that employ Large Language Model (LLM) to analyze symptoms and prioritize referrals to appropriate specialists. Built on a modular microservices framework, CLARITY ensures safe, efficient, and robust performance, flexible and readily scalable to meet the demands of existing workflows and IT solutions in healthcare. We report integration of our clinical assistant into a large-scale nation-wide inter-hospital IT platform, with over 55,000 content-rich user dialogues completed within the two months of deployment, 2,500 of which were expert-annotated for a consequent validation. The validation results show that CLARITY surpasses human-level performance in terms of the first-attempt routing precision, naturally requiring up to 3 times shorter duration of the consultation than with a human.
comment: Accepted to EMNLP 2025 (Industrial Track)
☆ Market-Based Data Subset Selection -- Principled Aggregation of Multi-Criteria Example Utility
Selecting a small yet useful subset of training data is hard because signals of example utility (uncertainty, rarity, diversity, etc.) are heterogeneous and typically combined with ad hoc weights. We propose a market-based selector that prices each example via a cost-function prediction market (LMSR), signals act as traders, a single liquidity parameter controls concentration, and topic-wise normalization stabilizes calibration. Token budgets are handled explicitly by a price-per-token rule $\rho=p/\ell^{\gamma}$, with $\gamma$ exposing an interpretable length bias; a lightweight diversity head improves coverage. We quantify coverage via topic cluster coverage and effective sample size. On the theory side, we show that LMSR implements a maximum-entropy aggregation with exponential weighting and a convex objective, yielding transparent knobs for aggregation strength. Empirically, on GSM8K (60k-token budget) the market with diversity achieves parity with strong single-signal baselines while reducing seed variance and incurring $<\!0.1$ GPU-hr selection overhead; on AGNews at kept=5-25\% the market (with light balancing) delivers competitive accuracy with improved balance and stability. The framework unifies multi-signal data curation under fixed compute for prompt-level reasoning and classification.
☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Foundation models are increasingly deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. While static prompt optimization has shown promise, it produces a single fixed prompt that fails to adapt to different inputs, users, or environments. We introduce Advisor Models, lightweight parametric policies trained with reinforcement learning to reactively issue natural language steering instructions in-context to black-box models. The advisor is a second small model that sits between the input and the model, shaping behavior on a per-instance basis using reward signals from the environment. Across multiple domains involving reasoning and personalization, we show that Advisor Models outperform static prompt optimizers, discovering environment dynamics and improving downstream task performance. We also demonstrate the generalizability of advisors by transferring them across black-box models, as well as the framework's ability to achieve specialization while retaining robustness to out-of-distribution inputs. Viewed more broadly, Advisor Models provide a learnable interface to black-box systems where the advisor acts as a parametric, environment-specific memory. We argue that dynamic optimization of black-box models via Advisor Models is a promising direction for enabling personalization and environment-adaptable AI with frontier-level capabilities.
☆ RefineShot: Rethinking Cinematography Understanding with Foundational Skill Evaluation
Cinematography understanding refers to the ability to recognize not only the visual content of a scene but also the cinematic techniques that shape narrative meaning. This capability is attracting increasing attention, as it enhances multimodal understanding in real-world applications and underpins coherent content creation in film and media. As the most comprehensive benchmark for this task, ShotBench spans a wide range of cinematic concepts and VQA-style evaluations, with ShotVL achieving state-of-the-art results on it. However, our analysis reveals that ambiguous option design in ShotBench and ShotVL's shortcomings in reasoning consistency and instruction adherence undermine evaluation reliability, limiting fair comparison and hindering future progress. To overcome these issues, we systematically refine ShotBench through consistent option restructuring, conduct the first critical analysis of ShotVL's reasoning behavior, and introduce an extended evaluation protocol that jointly assesses task accuracy and core model competencies. These efforts lead to RefineShot, a refined and expanded benchmark that enables more reliable assessment and fosters future advances in cinematography understanding.
Dynamic Target Attack
Existing gradient-based jailbreak attacks typically optimize an adversarial suffix to induce a fixed affirmative response. However, this fixed target usually resides in an extremely low-density region of a safety-aligned LLM's output distribution conditioned on diverse harmful inputs. Due to the substantial discrepancy between the target and the original output, existing attacks require numerous iterations to optimize the adversarial prompt, which might still fail to induce the low-probability target response from the target LLM. In this paper, we propose Dynamic Target Attack (DTA), a new jailbreaking framework relying on the target LLM's own responses as targets to optimize the adversarial prompts. In each optimization round, DTA iteratively samples multiple candidate responses directly from the output distribution conditioned on the current prompt, and selects the most harmful response as a temporary target for prompt optimization. In contrast to existing attacks, DTA significantly reduces the discrepancy between the target and the output distribution, substantially easing the optimization process to search for an effective adversarial prompt. Extensive experiments demonstrate the superior effectiveness and efficiency of DTA: under the white-box setting, DTA only needs 200 optimization iterations to achieve an average attack success rate (ASR) of over 87\% on recent safety-aligned LLMs, exceeding the state-of-the-art baselines by over 15\%. The time cost of DTA is 2-26 times less than existing baselines. Under the black-box setting, DTA uses Llama-3-8B-Instruct as a surrogate model for target sampling and achieves an ASR of 85\% against the black-box target model Llama-3-70B-Instruct, exceeding its counterparts by over 25\%.
☆ BrowserArena: Evaluating LLM Agents on Real-World Web Navigation Tasks
LLM web agents now browse and take actions on the open web, yet current agent evaluations are constrained to sandboxed environments or artificial tasks. We introduce BrowserArena, a live open-web agent evaluation platform that collects user-submitted tasks, runs Arena-style head-to-head comparisons, and uses step-level human feedback to surface failure modes. Collecting and analyzing step-level annotations on the agent traces, we identify three consistent failure modes: captcha resolution, pop-up banner removal, and direct navigation to URLs. By constructing targeted datasets to further study these tasks, we discover variations in how different language models navigate these failure modes. We find, for example, that o4-mini deploys a wider variety of strategies to circumvent captcha resolution than other models and DeepSeek-R1 consistently misleads users about captcha resolution. Our findings surface both the diversity and brittleness of current web agents. More broadly, our benchmarking methodology provides an approach to evaluating and understanding web agent failure modes at scale.
☆ NEURODNAAI: Neural pipeline approaches for the advancing dna-based information storage as a sustainable digital medium using deep learning framework
DNA is a promising medium for digital information storage for its exceptional density and durability. While prior studies advanced coding theory, workflow design, and simulation tools, challenges such as synthesis costs, sequencing errors, and biological constraints (GC-content imbalance, homopolymers) limit practical deployment. To address this, our framework draws from quantum parallelism concepts to enhance encoding diversity and resilience, integrating biologically informed constraints with deep learning to enhance error mitigation in DNA storage. NeuroDNAAI encodes binary data streams into symbolic DNA sequences, transmits them through a noisy channel with substitutions, insertions, and deletions, and reconstructs them with high fidelity. Our results show that traditional prompting or rule-based schemes fail to adapt effectively to realistic noise, whereas NeuroDNAAI achieves superior accuracy. Experiments on benchmark datasets demonstrate low bit error rates for both text and images. By unifying theory, workflow, and simulation into one pipeline, NeuroDNAAI enables scalable, biologically valid archival DNA storage
☆ Cross-Platform DNA Methylation Classifier for the Eight Molecular Subtypes of Group 3 & 4 Medulloblastoma
Medulloblastoma is a malignant pediatric brain cancer, and the discovery of molecular subgroups is enabling personalized treatment strategies. In 2019, a consensus identified eight novel subtypes within Groups 3 and 4, each displaying heterogeneous characteristics. Classifiers are essential for translating these findings into clinical practice by supporting clinical trials, personalized therapy development and application, and patient monitoring. This study presents a DNA methylation-based, cross-platform machine learning classifier capable of distinguishing these subtypes on both HM450 and EPIC methylation array samples. Across two independent test sets, the model achieved weighted F1 = 0.95 and balanced accuracy = 0.957, consistent across platforms. As the first cross-platform solution, it provides backward compatibility while extending applicability to a newer platform, also enhancing accessibility. It also has the potential to become the first publicly available classifier for these subtypes once deployed through a web application, as planned in the future. This work overall takes steps in the direction of advancing precision medicine and improving clinical outcomes for patients within the majority prevalence medulloblastoma subgroups, groups 3 and 4.
comment: 9 pages, 5 figures, 5 tables
☆ RainSeer: Fine-Grained Rainfall Reconstruction via Physics-Guided Modeling
Reconstructing high-resolution rainfall fields is essential for flood forecasting, hydrological modeling, and climate analysis. However, existing spatial interpolation methods-whether based on automatic weather station (AWS) measurements or enhanced with satellite/radar observations often over-smooth critical structures, failing to capture sharp transitions and localized extremes. We introduce RainSeer, a structure-aware reconstruction framework that reinterprets radar reflectivity as a physically grounded structural prior-capturing when, where, and how rain develops. This shift, however, introduces two fundamental challenges: (i) translating high-resolution volumetric radar fields into sparse point-wise rainfall observations, and (ii) bridging the physical disconnect between aloft hydro-meteors and ground-level precipitation. RainSeer addresses these through a physics-informed two-stage architecture: a Structure-to-Point Mapper performs spatial alignment by projecting mesoscale radar structures into localized ground-level rainfall, through a bidirectional mapping, and a Geo-Aware Rain Decoder captures the semantic transformation of hydro-meteors through descent, melting, and evaporation via a causal spatiotemporal attention mechanism. We evaluate RainSeer on two public datasets-RAIN-F (Korea, 2017-2019) and MeteoNet (France, 2016-2018)-and observe consistent improvements over state-of-the-art baselines, reducing MAE by over 13.31% and significantly enhancing structural fidelity in reconstructed rainfall fields.
♻ ☆ Differential Information Distribution: A Bayesian Perspective on Direct Preference Optimization
Direct Preference Optimization (DPO) has been widely used for aligning language models with human preferences in a supervised manner. However, several key questions remain unresolved: the rationale behind its log-ratio reward, how the statistical structure of preference datasets shapes its training dynamics, and how those dynamics impact downstream capabilities. We approach these questions from a Bayesian perspective, interpreting the goal of preference optimization as learning the differential information required to update a reference policy into a target policy. To formalize this view, we introduce the Differential Information Distribution (DID), defined as the distribution over samples that carry the Bayesian evidence required to update policies. We introduce three complementary insights by viewing preference optimization through the DID. First, we find that DPO's log-ratio reward is uniquely justified when preferences encode the Differential Information needed to update a reference policy into the target policy. Second, we discuss how commonly observed training dynamics in DPO, including changes in log-likelihood and policy exploration, stem from a power-law DID relationship. Finally, we analyze how training dynamics influence downstream performance using the entropy of DID, a principled measure of uncertainty in the learned information. We observe that learning high-entropy DID improves open-ended instruction-following, while low-entropy DID benefits knowledge-intensive QA. Taken together, our results show that DPO's reward design, training dynamics, and downstream capabilities all emerge as natural consequences of learning Differential Information, offering both a principled theoretical foundation and practical guidance for preference-based alignment.
comment: Preprint, under review. 39 pages, 12 figures. Updates from v1: Added new theoretical results on DPO training dynamics and policy exploration, included experiments with Qwen3-4B, and refined the discussion of log-margin dynamics
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning mechanisms to incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free policy learning framework that directly maps visual representations to latent actions using flow matching. VITA treats latent visual representations as the source of the flow, thus eliminating the need of conditioning. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps. We evaluate VITA on 8 simulation and 2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches state-of-the-art generative policies, while achieving 1.5-2.3x faster inference compared to conventional methods with conditioning. Project page: https://ucd-dare.github.io/VITA/
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ Boundless Byte Pair Encoding: Breaking the Pre-tokenization Barrier
Pre-tokenization, the initial step in many modern tokenization pipelines, segments text into smaller units called pretokens, typically splitting on whitespace and punctuation. While this process encourages having full, individual words as tokens, it introduces a fundamental limitation in most tokenization algorithms such as Byte Pair Encoding (BPE). Specifically, pre-tokenization causes the distribution of tokens in a corpus to heavily skew towards common, full-length words. This skewed distribution limits the benefits of expanding to larger vocabularies, since the additional tokens appear with progressively lower counts. To overcome this barrier, we propose BoundlessBPE, a modified BPE algorithm that relaxes the pretoken boundary constraint. Our approach selectively merges two complete pretokens into a larger unit we term a superword. Superwords are not necessarily semantically cohesive. For example, the pretokens " of" and " the" might be combined to form the superword " of the". This merging strategy results in a substantially more uniform distribution of tokens across a corpus than standard BPE, and compresses text more effectively, with up to a 15% increase in bytes per token.
comment: Accepted to COLM 2025
♻ ☆ FalconWing: An Ultra-Light Indoor Fixed-Wing UAV Platform for Vision-Based Autonomy
We introduce FalconWing, an ultra-light (150 g) indoor fixed-wing UAV platform for vision-based autonomy. Controlled indoor environment enables year-round repeatable UAV experiment but imposes strict weight and maneuverability limits on the UAV, motivating our ultra-light FalconWing design. FalconWing couples a lightweight hardware stack (137g airframe with a 9g camera) and offboard computation with a software stack featuring a photorealistic 3D Gaussian Splat (GSplat) simulator for developing and evaluating vision-based controllers. We validate FalconWing on two challenging vision-based aerial case studies. In the leader-follower case study, our best vision-based controller, trained via imitation learning on GSplat-rendered data augmented with domain randomization, achieves 100% tracking success across 3 types of leader maneuvers over 30 trials and shows robustness to leader's appearance shifts in simulation. In the autonomous landing case study, our vision-based controller trained purely in simulation transfers zero-shot to real hardware, achieving an 80% success rate over ten landing trials. We will release hardware designs, GSplat scenes, and dynamics models upon publication to make FalconWing an open-source flight kit for engineering students and research labs.
♻ ☆ AbsTopK: Rethinking Sparse Autoencoders For Bidirectional Features
Sparse autoencoders (SAEs) have emerged as powerful techniques for interpretability of large language models (LLMs), aiming to decompose hidden states into meaningful semantic features. While several SAE variants have been proposed, there remains no principled framework to derive SAEs from the original dictionary learning formulation. In this work, we introduce such a framework by unrolling the proximal gradient method for sparse coding. We show that a single-step update naturally recovers common SAE variants, including ReLU, JumpReLU, and TopK. Through this lens, we reveal a fundamental limitation of existing SAEs: their sparsity-inducing regularizers enforce non-negativity, preventing a single feature from representing bidirectional concepts (e.g., male vs. female). This structural constraint fragments semantic axes into separate, redundant features, limiting representational completeness. To address this issue, we propose AbsTopK SAE, a new variant derived from the $\ell_0$ sparsity constraint that applies hard thresholding over the largest-magnitude activations. By preserving both positive and negative activations, AbsTopK uncovers richer, bidirectional conceptual representations. Comprehensive experiments across four LLMs and seven probing and steering tasks show that AbsTopK improves reconstruction fidelity, enhances interpretability, and enables single features to encode contrasting concepts. Remarkably, AbsTopK matches or even surpasses the Difference-in-Mean method, a supervised approach that requires labeled data for each concept and has been shown in prior work to outperform SAEs.
♻ ☆ Unraveling Indirect In-Context Learning Using Influence Functions
In this work, we introduce a novel paradigm for generalized In-Context Learning (ICL), termed Indirect In-Context Learning. In Indirect ICL, we explore demonstration selection strategies tailored for two distinct real-world scenarios: Mixture of Tasks and Noisy ICL. We systematically evaluate the effectiveness of Influence Functions (IFs) as a selection tool for these settings, highlighting the potential of IFs to better capture the informativeness of examples within the demonstration pool. For the Mixture of Tasks setting, demonstrations are drawn from 28 diverse tasks, including MMLU, BigBench, StrategyQA, and CommonsenseQA. We demonstrate that combining BertScore-Recall (BSR) with an IF surrogate model can further improve performance, leading to average absolute accuracy gains of 0.37\% and 1.45\% for 3-shot and 5-shot setups when compared to traditional ICL metrics. In the Noisy ICL setting, we examine scenarios where demonstrations might be mislabeled or have adversarial noise. Our experiments show that reweighting traditional ICL selectors (BSR and Cosine Similarity) with IF-based selectors boosts accuracy by an average of 2.90\% for Cosine Similarity and 2.94\% for BSR on noisy GLUE benchmarks. For the adversarial sub-setting, we show the utility of using IFs for task-agnostic demonstration selection for backdoor attack mitigation. Showing a 32.89\% reduction in Attack Success Rate compared to task-aware methods. In sum, we propose a robust framework for demonstration selection that generalizes beyond traditional ICL, offering valuable insights into the role of IFs for Indirect ICL.
comment: Under Review
♻ ☆ Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis MICCAI 2025
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.
comment: Accepted at MICCAI 2025
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
♻ ☆ Towards end-to-end ASP computation
We propose an end-to-end approach for Answer Set Programming (ASP) and linear algebraically compute stable models satisfying given constraints. The idea is to implement Lin-Zhao's theorem together with constraints directly in vector spaces as numerical minimization of a cost function constructed from a matricized normal logic program, loop formulas in Lin-Zhao's theorem and constraints, thereby no use of symbolic ASP or SAT solvers involved in our approach. We also propose precomputation that shrinks the program size and heuristics for loop formulas to reduce computational difficulty. We empirically test our approach with programming examples including the 3-coloring and Hamiltonian cycle problems.
comment: 26 pages, 9 figures. Accepted for Neurosymbolic Artificial Intelligence
♻ ☆ Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward
Effective conversational agents like large language models (LLMs) must personalize their interactions to adapt to user preferences, personalities, and attributes across diverse domains like education and healthcare. Current methods like Reinforcement Learning from Human Feedback (RLHF), often prioritize helpfulness and safety but fall short in fostering truly empathetic, adaptive, and personalized dialogues. Existing personalization approaches typically rely on extensive user history, limiting their effectiveness for new or context-limited users. To address these limitations, we propose leveraging a user model to incorporate a curiosity-based intrinsic reward into multi-turn RLHF. This novel reward mechanism encourages the LLM agent to actively infer user traits by optimizing conversations to improve its user model's accuracy. Consequently, the agent delivers more personalized interactions by learning more about the user. We demonstrate our method's effectiveness in two distinct domains: significantly improving personalization performance in a conversational recommendation task, and personalizing conversations for different learning styles in an educational setting. We show improved generalization capabilities compared to traditional multi-turn RLHF, all while maintaining conversation quality. Our method offers a promising solution for creating more personalized, adaptive, and engaging conversational agents.
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Neurosymbolic Association Rule Mining from Tabular Data
Association Rule Mining (ARM) is the task of mining patterns among data features in the form of logical rules, with applications across a myriad of domains. However, high-dimensional datasets often result in an excessive number of rules, increasing execution time and negatively impacting downstream task performance. Managing this rule explosion remains a central challenge in ARM research. To address this, we introduce Aerial+, a novel neurosymbolic ARM method. Aerial+ leverages an under-complete autoencoder to create a neural representation of the data, capturing associations between features. It extracts rules from this neural representation by exploiting the model's reconstruction mechanism. Extensive evaluations on five datasets against seven baselines demonstrate that Aerial+ achieves state-of-the-art results by learning more concise, high-quality rule sets with full data coverage. When integrated into rule-based interpretable machine learning models, Aerial+ significantly reduces execution time while maintaining or improving accuracy.
comment: This paper has been accepted and presented at the 19th International Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
♻ ☆ Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning
Low-rank adapters have become standard for efficiently fine-tuning large language models, but they often fall short of achieving the performance of full fine-tuning. We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full fine-tuning within low-rank subspaces using a carefully designed initialization strategy. We theoretically demonstrate that the architecture of LoRA-XS, which inserts a learnable r x r matrix between B and A while keeping other matrices fixed, provides the precise conditions needed for this approximation. We leverage its constrained update space to achieve optimal scaling for high-rank gradient updates while removing the need for scaling factor tuning. We prove that our initialization offers an optimal low-rank approximation of the initial gradient and preserves update directions throughout training. Extensive experiments across mathematical reasoning, commonsense reasoning, and language understanding tasks demonstrate that our approach exceeds the performance of LoRA (and baselines) while using 27-90 times fewer learnable parameters, and comprehensively outperforms LoRA-XS. Our findings establish that it is possible to simulate full fine-tuning in low-rank subspaces, and achieve significant parameter efficiency gains without sacrificing performance. Our code is publicly available at: https://github.com/CERT-Lab/lora-sb.
comment: Kaustubh Ponkshe and Raghav Singhal contributed equally to this work
♻ ☆ Superficial Safety Alignment Hypothesis
As large language models (LLMs) are overwhelmingly more and more integrated into various applications, ensuring they generate safe responses is a pressing need. Previous studies on alignment have largely focused on general instruction-following but have often overlooked the distinct properties of safety alignment, such as the brittleness of safety mechanisms. To bridge the gap, we propose the Superficial Safety Alignment Hypothesis (SSAH), which posits that safety alignment teaches an otherwise unsafe model to choose the correct reasoning direction - fulfill or refuse users' requests - interpreted as an implicit binary classification task. Through SSAH, we hypothesize that only a few essential components can establish safety guardrails in LLMs. We successfully identify four types of attribute-critical components: Safety Critical Unit (SCU), Utility Critical Unit (UCU), Complex Unit (CU), and Redundant Unit (RU). Our findings show that freezing certain safety-critical components during fine-tuning allows the model to retain its safety attributes while adapting to new tasks. Similarly, we show that leveraging redundant units in the pre-trained model as an "alignment budget" can effectively minimize the alignment tax while achieving the alignment goal. All considered, this paper concludes that the atomic functional unit for safety in LLMs is at the neuron level and underscores that safety alignment should not be complicated.
♻ ☆ CodeSense: a Real-World Benchmark and Dataset for Code Semantic Reasoning
Understanding and reasoning about code semantics is essential for enhancing code LLMs' abilities to solve real-world software engineering (SE) tasks. Although several code reasoning benchmarks exist, most rely on synthetic datasets or educational coding problems and focus on coarse-grained reasoning tasks such as input/output prediction, limiting their effectiveness in evaluating LLMs in practical SE contexts. To bridge this gap, we propose CodeSense, the first benchmark that makes available a spectrum of fine-grained code reasoning tasks concerned with the software engineering of real-world code. We collected Python, C and Java software projects from real-world repositories. We executed tests from these repositories, collected their execution traces, and constructed a ground truth dataset for fine-grained semantic reasoning tasks. We then performed comprehensive evaluations on state-of-the-art LLMs. Our results show a clear performance gap for the models to handle fine-grained reasoning tasks. Although prompting techniques such as chain-of-thought and in-context learning helped, the lack of code semantics in LLMs fundamentally limit models' capabilities of code reasoning. Besides dataset, benchmark and evaluation, our work produced an execution tracing framework and tool set that make it easy to collect ground truth for fine-grained SE reasoning tasks, offering a strong basis for future benchmark construction and model post training. Our code and data are located at https://codesense-bench.github.io/.
♻ ☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral; v2: fixed a typo in the title and updated experimental results
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ Interpretable Text Embeddings and Text Similarity Explanation: A Survey EMNLP 2025
Text embeddings are a fundamental component in many NLP tasks, including classification, regression, clustering, and semantic search. However, despite their ubiquitous application, challenges persist in interpreting embeddings and explaining similarities between them. In this work, we provide a structured overview of methods specializing in inherently interpretable text embeddings and text similarity explanation, an underexplored research area. We characterize the main ideas, approaches, and trade-offs. We compare means of evaluation, discuss overarching lessons learned and finally identify opportunities and open challenges for future research.
comment: EMNLP 2025 (main)
♻ ☆ On Predictability of Reinforcement Learning Dynamics for Large Language Models
Recent advances in reasoning capabilities of large language models (LLMs) are largely driven by reinforcement learning (RL), yet the underlying parameter dynamics during RL training remain poorly understood. This work identifies two fundamental properties of RL-induced parameter updates in LLMs: (1) Rank-1 Dominance, where the top singular subspace of the parameter update matrix nearly fully determines reasoning improvements, recovering over 99\% of performance gains; and (2) Rank-1 Linear Dynamics, where this dominant subspace evolves linearly throughout training, enabling accurate prediction from early checkpoints. Extensive experiments across 8 LLMs and 7 algorithms validate the generalizability of these properties. More importantly, based on these findings, we propose AlphaRL, a plug-in acceleration framework that extrapolates the final parameter update using a short early training window, achieving up to 2.5 speedup while retaining \textgreater 96\% of reasoning performance without extra modules or hyperparameter tuning. This positions our finding as a versatile and practical tool for large-scale RL, opening a path toward principled, interpretable, and efficient training paradigm for LLMs.
comment: 43 pages, 28 figures; 43
♻ ☆ Legal Knowledge Graph Foundations, Part I: URI-Addressable Abstract Works (LRMoo F1 to schema.org)
Building upon a formal, event-centric model for the diachronic evolution of legal norms grounded in the IFLA Library Reference Model (LRMoo), this paper addresses the essential first step of publishing this model's foundational entity-the abstract legal Work (F1)-on the Semantic Web. We propose a detailed, property-by-property mapping of the LRMoo F1 Work to the widely adopted schema.org/Legislation vocabulary. Using Brazilian federal legislation from the Normas.leg.br portal as a practical case study, we demonstrate how to create interoperable, machine-readable descriptions via JSON-LD, focusing on stable URN identifiers, core metadata, and norm relationships. This structured mapping establishes a stable, URI-addressable anchor for each legal norm, creating a verifiable "ground truth". It provides the essential, interoperable foundation upon which subsequent layers of the model, such as temporal versions (Expressions) and internal components, can be built. By bridging formal ontology with web-native standards, this work paves the way for building deterministic and reliable Legal Knowledge Graphs (LKGs), overcoming the limitations of purely probabilistic models.
comment: This version formalizes the LRMoo event-centric model for the legal lifecycle (enactment, publication). This provides a more precise and ontologically-grounded mapping to Schema.org, with a clearer case study and improved diagrams
♻ ☆ Neural Network Parameter-optimization of Gaussian pmDAGs
Finding the parameters of a latent variable causal model is central to causal inference and causal identification. In this article, we show that existing graphical structures that are used in causal inference are not stable under marginalization of Gaussian Bayesian networks, and present a graphical structure that faithfully represent margins of Gaussian Bayesian networks. We present the first duality between parameter optimization of a latent variable model and training a feed-forward neural network in the parameter space of the assumed family of distributions. Based on this observation, we develop an algorithm for parameter optimization of these graphical structures based on a given observational distribution. Then, we provide conditions for causal effect identifiability in the Gaussian setting. We propose an meta-algorithm that checks whether a causal effect is identifiable or not. Moreover, we lay a grounding for generalizing the duality between a neural network and a causal model from the Gaussian to other distributions.
comment: 52 pages
♻ ☆ Investigating ReLoRA: Effects on the Learning Dynamics of Small Language Models
Parameter-efficient methods like LoRA have revolutionised large language model (LLM) fine-tuning. ReLoRA extends this idea to pretraining by repeatedly merging and reinitialising low-rank adapters, increasing cumulative rank while keeping updates cheap. This aligns well with observations that high-capacity models learn through locally low-rank trajectories that expand over time. By contrast, recent work suggests that small language models (SLMs) exhibit rank deficiencies and under-utilise their available dimensionality. This raises a natural question: can ReLoRA's rank-expanding update rule \textit{steer} SLMs toward healthier learning dynamics, mitigating rank bottlenecks in a capacity-constrained regime? We argue SLMs are an ideal testbed: they train quickly, enable controlled ablations, and make rank phenomena more measurable. We present the first systematic study of ReLoRA in SLMs (11M-66M parameters), evaluating both performance and learning dynamics. Across loss, Paloma perplexity, and BLiMP, we find that ReLoRA underperforms full-rank training, with gaps widening at larger scales. Analysis of proportional effective rank and condition numbers shows that ReLoRA amplifies existing rank deficiencies and induces ill-conditioned updates early in training. Our results suggest that while ReLoRA's merge-and-restart strategy can expand ranks in larger models, it does not straightforwardly translate to capacity-limited SLMs, motivating adaptive-rank or hybrid-rank approaches for low-compute pretraining.
comment: 12 Pages, 6 Tables, 8 Figures
♻ ☆ QSpec: Speculative Decoding with Complementary Quantization Schemes
Quantization is widely adopted to accelerate inference and reduce memory consumption in large language models (LLMs). While activation-weight joint quantization enables efficient low-precision decoding, it suffers from substantial performance degradation on multi-step reasoning tasks. We propose QSpec, a novel quantization paradigm that decouples efficiency from quality by integrating two complementary schemes via speculative decoding: low-precision joint quantization for fast drafting and high-precision weight-only quantization for accurate verification. QSpec reuses both weights and KV cache across stages, enabling near-zero-cost switching without retraining or auxiliary models. Compared to high-precision baselines, QSpec achieves up to 1.64x speedup without quality degradation, and outperforms state-of-the-art speculative decoding methods by up to 1.55x in batched settings. Furthermore, QSpec supports plug-and-play deployment and generalizes well across model scales, quantization methods, and workloads. These properties make QSpec a practical and scalable solution for high-fidelity quantized LLM serving under memory-constrained scenarios. Our code is available at https://github.com/hku-netexplo-lab/QSpec.
♻ ☆ GeoSQL-Eval: First Evaluation of LLMs on PostGIS-Based NL2GeoSQL Queries
Large language models (LLMs) have shown strong performance in natural language to SQL (NL2SQL) tasks within general databases. However, extending to GeoSQL introduces additional complexity from spatial data types, function invocation, and coordinate systems, which greatly increases generation and execution difficulty. Existing benchmarks mainly target general SQL, and a systematic evaluation framework for GeoSQL is still lacking. To fill this gap, we present GeoSQL-Eval, the first end-to-end automated evaluation framework for PostGIS query generation, together with GeoSQL-Bench, a benchmark for assessing LLM performance in NL2GeoSQL tasks. GeoSQL-Bench defines three task categories-conceptual understanding, syntax-level SQL generation, and schema retrieval-comprising 14,178 instances, 340 PostGIS functions, and 82 thematic databases. GeoSQL-Eval is grounded in Webb's Depth of Knowledge (DOK) model, covering four cognitive dimensions, five capability levels, and twenty task types to establish a comprehensive process from knowledge acquisition and syntax generation to semantic alignment, execution accuracy, and robustness. We evaluate 24 representative models across six categories and apply the entropy weight method with statistical analyses to uncover performance differences, common error patterns, and resource usage. Finally, we release a public GeoSQL-Eval leaderboard platform for continuous testing and global comparison. This work extends the NL2GeoSQL paradigm and provides a standardized, interpretable, and extensible framework for evaluating LLMs in spatial database contexts, offering valuable references for geospatial information science and related applications.
♻ ☆ What happens when generative AI models train recursively on each others' outputs?
The internet serves as a common source of training data for generative AI (genAI) models but is increasingly populated with AI-generated content. This duality raises the possibility that future genAI models may be trained on other models' generated outputs. Prior work has studied consequences of models training on their own generated outputs, but limited work has considered what happens if models ingest content produced by other models. Given society's increasing dependence on genAI tools, understanding such data-mediated model interactions is critical. This work provides empirical evidence for how data-mediated interactions might unfold in practice, develops a theoretical model for this interactive training process, and experimentally validates the theory. We find that data-mediated interactions can benefit models by exposing them to novel concepts perhaps missed in original training data, but also can homogenize their performance on shared tasks.
comment: 9 pages
♻ ☆ Programming Distributed Collective Processes in the eXchange Calculus
Recent trends like the Internet of Things (IoT) suggest a vision of dense and multi-scale deployments of computing devices in nearly all kinds of environments. A prominent engineering challenge revolves around programming the collective adaptive behaviour of such computational ecosystems. This requires abstractions able to capture concepts like ensembles (dynamic groups of cooperating devices) and collective tasks (joint activities carried out by ensembles). In this work, we consider collections of devices interacting with neighbours and that execute in nearly-synchronised sense-compute-interact rounds, where the computation is given by a single program mapping sensing values and incoming messages to output and outcoming messages. To support programming whole computational collectives, we propose the abstraction of a distributed collective process, which can be used to define at once the ensemble formation logic and its collective task. We formalise the abstraction in the eXchange Calculus (XC), a core functional language based on neighbouring values (maps from neighbours to values) where state and interaction is handled through a single primitive, exchange, and provide a corresponding implementation in the FCPP language. Then, we exercise distributed collective processes using two case studies: multi-hop message propagation and distributed monitoring of spatial properties. Finally, we discuss the features of the abstraction and its suitability for different kinds of distributed computing applications.
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.
♻ ☆ Tenyidie Syllabification corpus creation and deep learning applications
The Tenyidie language is a low-resource language of the Tibeto-Burman family spoken by the Tenyimia Community of Nagaland in the north-eastern part of India and is considered a major language in Nagaland. It is tonal, Subject-Object-Verb, and highly agglutinative in nature. Being a low-resource language, very limited research on Natural Language Processing (NLP) has been conducted. To the best of our knowledge, no work on syllabification has been reported for this language. Among the many NLP tasks, syllabification or syllabication is an important task in which the given word syllables are identified. The contribution of this work is the creation of 10,120 syllabified Tenyidie words and the application of the Deep Learning techniques on the created corpus. In this paper, we have applied LSTM, BLSTM, BLSTM+CRF, and Encoder-decoder deep learning architectures on our created dataset. In our dataset split of 80:10:10 (train:validation:test) set, we achieved the highest accuracy of 99.21% with BLSTM model on the test set. This work will find its application in numerous other NLP applications, such as morphological analysis, part-of-speech tagging, machine translation, etc, for the Tenyidie Language. Keywords: Tenyidie; NLP; syllabification; deep learning; LSTM; BLSTM; CRF; Encoder-decoder
comment: 17 pages
♻ ☆ Time-o1: Time-Series Forecasting Needs Transformed Label Alignment NeurIPS 2025
Training time-series forecast models presents unique challenges in designing effective learning objectives. Existing methods predominantly utilize the temporal mean squared error, which faces two critical challenges: (1) label autocorrelation, which leads to bias from the label sequence likelihood; (2) excessive amount of tasks, which increases with the forecast horizon and complicates optimization. To address these challenges, we propose Time-o1, a transformation-augmented learning objective tailored for time-series forecasting. The central idea is to transform the label sequence into decorrelated components with discriminated significance. Models are then trained to align the most significant components, thereby effectively mitigating label autocorrelation and reducing task amount. Extensive experiments demonstrate that Time-o1 achieves state-of-the-art performance and is compatible with various forecast models. Code is available at https://github.com/Master-PLC/Time-o1.
comment: Accepted as poster in NeurIPS 2025
♻ ☆ The Hidden Costs of Translation Accuracy: Distillation, Quantization, and Environmental Impact
The rapid expansion of large language models (LLMs) has heightened concerns about their computational and environmental costs. This study investigates the trade-offs between translation quality and efficiency by comparing full-scale, distilled, and quantized models using machine translation as a case study. We evaluated performance on the Flores+ benchmark and through human judgments of conversational translations in French, Hindi, and Kannada. Our analysis revealed that the full 3.3B FP32 model, while achieving the highest BLEU scores, incurred the largest environmental footprint (~ 0.007-0.008 kg CO2 per run). The distilled 600M FP32 model reduced inference time by 71-78% and carbon emissions by 63-65% compared with the full model, with only minimal reductions in BLEU scores. Human evaluations further showed that even aggressive quantization (INT4) preserved high levels of accuracy and fluency, with differences between models generally minor. These findings demonstrate that model compression strategies can substantially reduce computational demands and environmental impact while maintaining competitive translation quality, though trade-offs are more pronounced in low-resource settings. We argue for evaluation frameworks that integrate efficiency and sustainability alongside accuracy as central dimensions of progress in NLP.
♻ ☆ LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. To address this, we introduce \textsc{LEXam}, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Deploying an ensemble LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately, closely aligning with human expert assessments. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. We have open-sourced our code on \href{https://github.com/LEXam-Benchmark/LEXam}{GitHub} and released our data on \href{https://huggingface.co/datasets/LEXam-Benchmark/LEXam}{Hugging Face}. Project page: https://lexam-benchmark.github.io/
♻ ☆ MOSS-Speech: Towards True Speech-to-Speech Models Without Text Guidance
Spoken dialogue systems often rely on cascaded pipelines that transcribe, process, and resynthesize speech. While effective, this design discards paralinguistic cues and limits expressivity. Recent end-to-end methods reduce latency and better preserve these cues, yet still rely on text intermediates, creating a fundamental bottleneck. We present MOSS-Speech, a true speech-to-speech large language model that directly understands and generates speech without relying on text guidance. Our approach combines a modality-based layer-splitting architecture with a frozen pre-training strategy, preserving the reasoning and knowledge of pretrained text LLMs while adding native speech capabilities. Experiments show that our model achieves state-of-the-art results in spoken question answering and delivers comparable speech-to-speech performance relative to existing text-guided systems, while still maintaining competitive text performance. By narrowing the gap between text-guided and direct speech generation, our work establishes a new paradigm for expressive and efficient end-to-end speech interaction.
♻ ☆ PlaceFM: A Training-free Geospatial Foundation Model of Places using Large-Scale Point of Interest Data
With the rapid growth and continual updates of geospatial data from diverse sources, geospatial foundation model pre-training for urban representation learning has emerged as a key research direction for advancing data-driven urban planning. Spatial structure is fundamental to effective geospatial intelligence systems; however, existing foundation models often lack the flexibility to reason about places, context-rich regions spanning multiple spatial granularities that may consist of many spatially and semantically related points of interest. To address this gap, we propose PlaceFM, a geospatial foundation model that captures place representations through a training-free, clustering-based approach. PlaceFM summarizes the entire point of interest graph constructed from U.S. Foursquare data, producing general-purpose region embeddings while automatically identifying places of interest. These embeddings can be directly integrated into geolocation data pipelines to support a variety of urban downstream tasks. Without the need for costly pre-training, PlaceFM provides a scalable and efficient solution for multi-granular geospatial analysis. Extensive experiments on two real-world prediction tasks, ZIP code-level population density and housing prices, demonstrate that PlaceFM not only outperforms most state-of-the-art graph-based geospatial foundation models but also achieves up to a 100x speedup in generating region-level representations on large-scale POI graphs. The implementation is available at https://github.com/mohammadhashemii/PlaceFM.
♻ ☆ AI-Powered Inverse Design of Ku-Band SIW Resonant Structures by Iterative Residual Correction Network
Designing high-performance substrate-integrated waveguide (SIW) filters with both closely spaced and widely separated resonances is challenging. Consequently, there is a growing need for robust methods that reduce reliance on time-consuming electromagnetic (EM) simulations. In this study, a deep learning-based framework was developed and validated for the inverse design of multi-mode SIW filters with both closely spaced and widely separated resonances. A series of SIW filters were designed, fabricated, and experimentally evaluated. A three-stage deep learning framework was implemented, consisting of a Feedforward Inverse Model (FIM), a Hybrid Inverse-Forward Residual Refinement Network (HiFR\textsuperscript{2}-Net), and an Iterative Residual Correction Network (IRC-Net). The design methodology and performance of each model were systematically analyzed. Notably, IRC-Net outperformed both FIM and HiFR\textsuperscript{2}-Net, achieving systematic error reduction over five correction iterations. Experimental results showed a reduction in mean squared error (MSE) from 0.00191 to 0.00146 and mean absolute error (MAE) from 0.0262 to 0.0209, indicating improved accuracy and convergence. The proposed framework demonstrates the capability to enable robust, accurate, and generalizable inverse design of complex microwave filters with minimal simulation cost. This approach is expected to facilitate rapid prototyping of advanced filter designs and could extend to other high-frequency components in microwave and millimeter-wave technologies.
comment: The final published version is available at: https://doi.org/10.1016/j.aeue.2025.156003
♻ ☆ Enhanced DACER Algorithm with High Diffusion Efficiency
Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, achieving state-of-the-art performance. However, it still suffers from a core trade-off: more diffusion steps ensure high performance but reduce efficiency, while fewer steps degrade performance. This remains a major bottleneck for deploying diffusion policies in real-time online RL. To mitigate this, we propose DACERv2, which leverages a Q-gradient field objective with respect to action as an auxiliary optimization target to guide the denoising process at each diffusion step, thereby introducing intermediate supervisory signals that enhance the efficiency of single-step diffusion. Additionally, we observe that the independence of the Q-gradient field from the diffusion time step is inconsistent with the characteristics of the diffusion process. To address this issue, a temporal weighting mechanism is introduced, allowing the model to effectively eliminate large-scale noise during the early stages and refine its outputs in the later stages. Experimental results on OpenAI Gym benchmarks and multimodal tasks demonstrate that, compared with classical and diffusion-based online RL algorithms, DACERv2 achieves higher performance in most complex control environments with only five diffusion steps and shows greater multimodality.
♻ ☆ Localized Forest Fire Risk Prediction: A Department-Aware Approach for Operational Decision Support
Forest fire prediction involves estimating the likelihood of fire ignition or related risk levels in a specific area over a defined time period. With climate change intensifying fire behavior and frequency, accurate prediction has become one of the most pressing challenges in Artificial Intelligence (AI). Traditionally, fire ignition is approached as a binary classification task in the literature. However, this formulation oversimplifies the problem, especially from the perspective of end-users such as firefighters. In general, as is the case in France, firefighting units are organized by department, each with its terrain, climate conditions, and historical experience with fire events. Consequently, fire risk should be modeled in a way that is sensitive to local conditions and does not assume uniform risk across all regions. This paper proposes a new approach that tailors fire risk assessment to departmental contexts, offering more actionable and region-specific predictions for operational use. With this, we present the first national-scale AI benchmark for metropolitan France using state-of-the-art AI models on a relatively unexplored dataset. Finally, we offer a summary of important future works that should be taken into account. Supplementary materials are available on GitHub.
comment: 8 pages, 4 figures, 4 tables, submitted to CFP: 7th IEEE Computers, Communications and IT Applications Conference December
♻ ☆ More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/
♻ ☆ MambAttention: Mamba with Multi-Head Attention for Generalizable Single-Channel Speech Enhancement
With the advent of new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform state-of-the-art models in single-channel speech enhancement, automatic speech recognition, and self-supervised audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this issue, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VoiceBank+Demand Extended (VB-DemandEx), a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, our proposed MambAttention model significantly outperforms existing state-of-the-art LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 and EARS-WHAM_v2, while matching their performance on the in-domain dataset VB-DemandEx. Ablation studies highlight the role of weight sharing between the time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. However, our MambAttention model remains superior on both out-of-domain datasets across all reported evaluation metrics.
comment: Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing for possible publication
♻ ☆ Feature Representation Transferring to Lightweight Models via Perception Coherence
In this paper, we propose a method for transferring feature representation to lightweight student models from larger teacher models. We mathematically define a new notion called \textit{perception coherence}. Based on this notion, we propose a loss function, which takes into account the dissimilarities between data points in feature space through their ranking. At a high level, by minimizing this loss function, the student model learns to mimic how the teacher model \textit{perceives} inputs. More precisely, our method is motivated by the fact that the representational capacity of the student model is weaker than the teacher model. Hence, we aim to develop a new method allowing for a better relaxation. This means that, the student model does not need to preserve the absolute geometry of the teacher one, while preserving global coherence through dissimilarity ranking. Importantly, while rankings are defined only on finite sets, our notion of \textit{perception coherence} extends them into a probabilistic form. This formulation depends on the input distribution and applies to general dissimilarity metrics. Our theoretical insights provide a probabilistic perspective on the process of feature representation transfer. Our experiments results show that our method outperforms or achieves on-par performance compared to strong baseline methods for representation transferring.
♻ ☆ Can LLMs Find Fraudsters? Multi-level LLM Enhanced Graph Fraud Detection ACM MM 2025
Graph fraud detection has garnered significant attention as Graph Neural Networks (GNNs) have proven effective in modeling complex relationships within multimodal data. However, existing graph fraud detection methods typically use preprocessed node embeddings and predefined graph structures to reveal fraudsters, which ignore the rich semantic cues contained in raw textual information. Although Large Language Models (LLMs) exhibit powerful capabilities in processing textual information, it remains a significant challenge to perform multimodal fusion of processed textual embeddings with graph structures. In this paper, we propose a \textbf{M}ulti-level \textbf{L}LM \textbf{E}nhanced Graph Fraud \textbf{D}etection framework called MLED. In MLED, we utilize LLMs to extract external knowledge from textual information to enhance graph fraud detection methods. To integrate LLMs with graph structure information and enhance the ability to distinguish fraudsters, we design a multi-level LLM enhanced framework including type-level enhancer and relation-level enhancer. One is to enhance the difference between the fraudsters and the benign entities, the other is to enhance the importance of the fraudsters in different relations. The experiments on four real-world datasets show that MLED achieves state-of-the-art performance in graph fraud detection as a generalized framework that can be applied to existing methods.
comment: Accepted by ACM MM 2025
♻ ☆ WebRollback: Enhancing Web Agents with Explicit Rollback Mechanisms
With recent advancements in large language models, web agents have been greatly improved. However, dealing with complex and dynamic web environments requires more advanced planning and search abilities. Previous studies usually adopt a greedy one-way search strategy, which may struggle to recover from erroneous states. In this work, we enhance web agents with an explicit rollback mechanism, enabling the agent to revert back to a previous state in its navigation trajectory. This mechanism gives the model the flexibility to directly control the search process, leading to an effective and efficient web navigation method. We conduct experiments on two live web navigation benchmarks with zero-shot and fine-tuning settings. The results demonstrate the effectiveness of our proposed approach.
♻ ☆ VRWKV-Editor: Reducing quadratic complexity in transformer-based video editing
In light of recent progress in video editing, deep learning models focusing on both spatial and temporal dependencies have emerged as the primary method. However, these models suffer from the quadratic computational complexity of traditional attention mechanisms, making them difficult to adapt to long-duration and high-resolution videos. This limitation restricts their applicability in practical contexts such as real-time video processing. To tackle this challenge, we introduce a method to reduce both time and space complexity of these systems by proposing VRWKV-Editor, a novel video editing model that integrates a linear spatio-temporal aggregation module into video-based diffusion models. VRWKV-Editor leverages bidirectional weighted key-value recurrence mechanism of the RWKV transformer to capture global dependencies while preserving temporal coherence, achieving linear complexity without sacrificing quality. Extensive experiments demonstrate that the proposed method achieves up to 3.7x speedup and 60% lower memory usage compared to state-of-the-art diffusion-based video editing methods, while maintaining competitive performance in frame consistency and text alignment. Furthermore, a comparative analysis we conducted on videos with different sequence lengths confirms that the gap in editing speed between our approach and architectures with self-attention becomes more significant with long videos.
♻ ☆ Evaluating LLMs for Combinatorial Optimization: One-Phase and Two-Phase Heuristics for 2D Bin-Packing NeurIPS 2025
This paper presents an evaluation framework for assessing Large Language Models' (LLMs) capabilities in combinatorial optimization, specifically addressing the 2D bin-packing problem. We introduce a systematic methodology that combines LLMs with evolutionary algorithms to generate and refine heuristic solutions iteratively. Through comprehensive experiments comparing LLM generated heuristics against traditional approaches (Finite First-Fit and Hybrid First-Fit), we demonstrate that LLMs can produce more efficient solutions while requiring fewer computational resources. Our evaluation reveals that GPT-4o achieves optimal solutions within two iterations, reducing average bin usage from 16 to 15 bins while improving space utilization from 0.76-0.78 to 0.83. This work contributes to understanding LLM evaluation in specialized domains and establishes benchmarks for assessing LLM performance in combinatorial optimization tasks.
comment: 1 table, 6 figures. 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Accepted for the Workshop: Evaluating the Evolving LLM Lifecycle Benchmarks, Emergent Abilities, and Scaling
♻ ☆ An Architecture for Spatial Networking
Physical spaces are increasingly dense with networked devices, promising seamless coordination and ambient intelligence. Yet today, cloud-first architectures force all communication through wide-area networks regardless of physical proximity. We lack an abstraction for spatial networking: using physical spaces to create boundaries for private, robust, and low-latency communication. We introduce $\textit{Bifr\"ost}$, a programming model that realizes spatial networking using bigraphs to express both containment and connectivity, enabling policies to be scoped by physical boundaries, devices to be named by location, the instantiation of spatial services, and the composition of spaces while maintaining local autonomy. Bifr\"ost enables a new class of spatially-aware applications, where co-located devices communicate directly, physical barriers require explicit gateways, and local control bridges to global coordination.
♻ ☆ Reinforcement Learning with Verifiable Rewards Implicitly Incentivizes Correct Reasoning in Base LLMs
Recent advancements in long chain-of-thought (CoT) reasoning, particularly through the Group Relative Policy Optimization algorithm used by DeepSeek-R1, have led to significant interest in the potential of Reinforcement Learning with Verifiable Rewards (RLVR) for Large Language Models (LLMs). While RLVR promises to improve reasoning by allowing models to learn from free exploration, there remains debate over whether it truly enhances reasoning abilities or simply boosts sampling efficiency. This paper systematically investigates the impact of RLVR on LLM reasoning. We revisit Pass@K experiments and demonstrate that RLVR can extend the reasoning boundary for both mathematical and coding tasks. This is supported by our introduction of a novel evaluation metric, CoT-Pass@K, which captures reasoning success by accounting for both the final answer and intermediate reasoning steps. Furthermore, we present a theoretical framework explaining RLVR's incentive mechanism, demonstrating how it can encourage correct reasoning even when rewards are based solely on answer correctness. Our analysis of RLVR's training dynamics reveals that it incentivizes correct reasoning early in the process, with substantial improvements in reasoning quality confirmed through extensive evaluations. These findings provide strong evidence of RLVR's potential to enhance LLM reasoning, offering valuable insights into its mechanisms and performance improvements.
comment: Update with more experiments
♻ ☆ WWAggr: A Window Wasserstein-based Aggregation for Ensemble Change Point Detection
Change Point Detection (CPD) aims to identify moments of abrupt distribution shifts in data streams. Real-world high-dimensional CPD remains challenging due to data pattern complexity and violation of common assumptions. Resorting to standalone deep neural networks, the current state-of-the-art detectors have yet to achieve perfect quality. Concurrently, ensembling provides more robust solutions, boosting the performance. In this paper, we investigate ensembles of deep change point detectors and realize that standard prediction aggregation techniques, e.g., averaging, are suboptimal and fail to account for problem peculiarities. Alternatively, we introduce WWAggr -- a novel task-specific method of ensemble aggregation based on the Wasserstein distance. Our procedure is versatile, working effectively with various ensembles of deep CPD models. Moreover, unlike existing solutions, we practically lift a long-standing problem of the decision threshold selection for CPD.
♻ ☆ MathArena: Evaluating LLMs on Uncontaminated Math Competitions
The rapid advancement of reasoning capabilities in large language models (LLMs) has led to notable improvements on mathematical benchmarks. However, many of the most commonly used evaluation datasets (e.g., AIME 2024) are widely available online, making it difficult to disentangle genuine reasoning from potential memorization. Furthermore, these benchmarks do not evaluate proof-writing capabilities, which are crucial for many mathematical tasks. To address this, we introduce MathArena, a new benchmark based on the following key insight: recurring math competitions provide a stream of high-quality, challenging problems that can be used for real-time evaluation of LLMs. By evaluating models as soon as new problems are released, we effectively eliminate the risk of contamination. Using this framework, we find strong signs of contamination in AIME 2024. Nonetheless, evaluations on harder competitions, such as CMIMC 2025, demonstrate impressive reasoning capabilities in top-performing models. MathArena is also the first benchmark for proof-writing capabilities. On IMO 2025, top models achieve slightly less than 40%, demonstrating both notable progress and significant room for improvement. So far, we have evaluated over $50$ models across seven competitions, totaling $162$ problems. As an evolving benchmark, MathArena will continue to track the progress of LLMs on newly released competitions, ensuring rigorous and up-to-date evaluation of mathematical reasoning.
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis of EAP-IG
The development of trustworthy artificial intelligence requires moving beyond black-box performance metrics toward an understanding of models' internal computations. Mechanistic Interpretability (MI) aims to meet this need by identifying the algorithmic mechanisms underlying model behaviors. Yet, the scientific rigor of MI critically depends on the reliability of its findings. In this work, we argue that interpretability methods, such as circuit discovery, should be viewed as statistical estimators, subject to questions of variance and robustness. To illustrate this statistical framing, we present a systematic stability analysis of a state-of-the-art circuit discovery method: EAP-IG. We evaluate its variance and robustness through a comprehensive suite of controlled perturbations, including input resampling, prompt paraphrasing, hyperparameter variation, and injected noise within the causal analysis itself. Across a diverse set of models and tasks, our results demonstrate that EAP-IG exhibits high structural variance and sensitivity to hyperparameters, questioning the stability of its findings. Based on these results, we offer a set of best-practice recommendations for the field, advocating for the routine reporting of stability metrics to promote a more rigorous and statistically grounded science of interpretability.
♻ ☆ Schema Generation for Large Knowledge Graphs Using Large Language Models EMNLP 2025
Schemas play a vital role in ensuring data quality and supporting usability in the Semantic Web and natural language processing. Traditionally, their creation demands substantial involvement from knowledge engineers and domain experts. Leveraging the impressive capabilities of large language models (LLMs) in tasks like ontology engineering, we explore schema generation using LLMs. To bridge the resource gap, we introduce two datasets: YAGO Schema and Wikidata EntitySchema, along with novel evaluation metrics. The LLM-based pipelines utilize local and global information from knowledge graphs (KGs) to generate schemas in Shape Expressions (ShEx). Experiments demonstrate LLMs' strong potential in producing high-quality ShEx schemas, paving the way for scalable, automated schema generation for large KGs. Furthermore, our benchmark introduces a new challenge for structured generation, pushing the limits of LLMs on syntactically rich formalisms.
comment: EMNLP 2025 Findings
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ Machines are more productive than humans until they aren't, and vice versa
With the growth of artificial skills, organizations are increasingly confronting the problem of optimizing skill policy decisions guided by economic principles. This paper addresses the underlying complexity of this challenge by developing an in-silico framework based on Monte Carlo simulations grounded in empirical realism to analyze the economic impact of human and machine skills, individually or jointly deployed, in the execution of tasks presenting varying levels of complexity. Our results provide quantitative support for the established notions that automation tends to be the most economically-effective strategy for tasks characterized by low-to-medium generalization difficulty, while automation may struggle to match the economic utility of human skills in more complex scenarios. Critically, our simulations highlight that, when a high level of generalization is required and the cost of errors is high, combining human and machine skills can be the most effective strategy, but only if genuine augmentation is achieved. In contrast, when failing to realize this synergy, the human-machine policy is severely penalized by the inherent costs of its dual skill structure, causing it to destroy value and become the worst choice from an economic perspective. The takeaway for decision-makers is unambiguous: in complex and critical contexts, simply allocating human and machine skills to a task may be insufficient, and a human-machine skill policy is neither a silver-bullet solution nor a low-risk compromise. Rather, it is a critical opportunity to boost competitiveness that demands a strong organizational commitment to enabling augmentation. Also, our findings show that improving the cost-effectiveness of machine skills over time, while useful, does not replace the fundamental need to focus on achieving augmentation.
comment: Results and Discussion sections reorganised, results unchanged; more extensive detail of results from Experiment 2; meta-modeling section enriched; see comments of the previous versions for a complete list
♻ ☆ Landcover classification and change detection using remote sensing and machine learning: a case study of Western Fiji
As a developing country, Fiji is facing rapid urbanisation, which is visible in the massive development projects that include housing, roads, and civil works. In this study, we present machine learning and remote sensing frameworks to compare land use and land cover change from 2013 to 2024 in Nadi, Fiji. The ultimate goal of this study is to provide technical support in land cover/land use modelling and change detection. We used Landsat-8 satellite image for the study region and created our training dataset with labels for supervised machine learning. We used Google Earth Engine and unsupervised machine learning via k-means clustering to generate the land cover map. We used convolutional neural networks to classify the selected regions' land cover types. We present a visualisation of change detection, highlighting urban area changes over time to monitor changes in the map.
AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
Despite progress in language model (LM) capabilities, evaluations have thus far focused on models' performance on tasks that humans have previously solved, including in programming (Jimenez et al., 2024) and mathematics (Glazer et al., 2024). We therefore propose testing models' ability to design and implement algorithms in an open-ended benchmark: We task LMs with writing code that efficiently solves computationally challenging problems in computer science, physics, and mathematics. Our AlgoTune benchmark consists of 154 coding tasks collected from domain experts and a framework for validating and timing LM-synthesized solution code, which is compared to reference implementations from popular open-source packages. In addition, we develop a baseline LM agent, AlgoTuner, and evaluate its performance across a suite of frontier models. AlgoTuner uses a simple, budgeted loop that edits code, compiles and runs it, profiles performance, verifies correctness on tests, and selects the fastest valid version. AlgoTuner achieves an average 1.72x speedup against our reference solvers, which use libraries such as SciPy, sk-learn and CVXPY. However, we find that current models fail to discover algorithmic innovations, instead preferring surface-level optimizations. We hope that AlgoTune catalyzes the development of LM agents exhibiting creative problem solving beyond state-of-the-art human performance.
♻ ☆ Neural Diffusion Processes for Physically Interpretable Survival Prediction
We introduce DeepFHT, a survival-analysis framework that couples deep neural networks with first hitting time (FHT) distributions from stochastic process theory. Time to event is represented as the first passage of a latent diffusion process to an absorbing boundary. A neural network maps input variables to physically meaningful parameters including initial condition, drift, and diffusion, within a chosen FHT process such as Brownian motion, both with drift and driftless. This yields closed-form survival and hazard functions and captures time-varying risk without assuming proportional-hazards. We compare DeepFHT with Cox survival model using synthetic and real-world datasets. The method achieves predictive accuracy on par with state-of-the-art approaches, while maintaining a physics-based interpretable parameterization that elucidates the relation between input features and risk. This combination of stochastic process theory and deep learning provides a principled avenue for modeling survival phenomena in complex systems.
comment: 11 pages, 6 figures
♻ ☆ A Novel Approach for Estimating Largest Lyapunov Exponents in One-Dimensional Chaotic Time Series Using Machine Learning
Understanding and quantifying chaos from data remains challenging. We present a data-driven method for estimating the largest Lyapunov exponent (LLE) from one-dimensional chaotic time series using machine learning. A predictor is trained to produce out-of-sample, multi-horizon forecasts; the LLE is then inferred from the exponential growth of the geometrically averaged forecast error (GMAE) across the horizon, which serves as a proxy for trajectory divergence. We validate the approach on four canonical 1D maps-logistic, sine, cubic, and Chebyshev-achieving R2pos > 0.99 against reference LLE curves with series as short as M = 450. Among baselines, KNN yields the closest fits (KNN-R comparable; RF larger deviations). By design the estimator targets positive exponents: in periodic/stable regimes it returns values indistinguishable from zero. Noise robustness is assessed by adding zero-mean white measurement noise and summarizing performance versus the average SNR over parameter sweeps: accuracy saturates for SNRm > 30 dB and collapses below 27 dB, a conservative sensor-level benchmark. The method is simple, computationally efficient, and model-agnostic, requiring only stationarity and the presence of a dominant positive exponent. It offers a practical route to LLE estimation in experimental settings where only scalar time-series measurements are available, with extensions to higher-dimensional and irregularly sampled data left for future work.
comment: 18 pages, 5 figures, 2 Tables, 14 Equations
Forms of Understanding for XAI-Explanations
Explainability has become an important topic in computer science and artificial intelligence, leading to a subfield called Explainable Artificial Intelligence (XAI). The goal of providing or seeking explanations is to achieve (better) 'understanding' on the part of the explainee. However, what it means to 'understand' is still not clearly defined, and the concept itself is rarely the subject of scientific investigation. This conceptual article aims to present a model of forms of understanding for XAI-explanations and beyond. From an interdisciplinary perspective bringing together computer science, linguistics, sociology, philosophy and psychology, a definition of understanding and its forms, assessment, and dynamics during the process of giving everyday explanations are explored. Two types of understanding are considered as possible outcomes of explanations, namely enabledness, 'knowing how' to do or decide something, and comprehension, 'knowing that' -- both in different degrees (from shallow to deep). Explanations regularly start with shallow understanding in a specific domain and can lead to deep comprehension and enabledness of the explanandum, which we see as a prerequisite for human users to gain agency. In this process, the increase of comprehension and enabledness are highly interdependent. Against the background of this systematization, special challenges of understanding in XAI are discussed.
comment: revised version
♻ ☆ Benchmarking Foundation Models with Retrieval-Augmented Generation in Olympic-Level Physics Problem Solving EMNLP 2025
Retrieval-augmented generation (RAG) with foundation models has achieved strong performance across diverse tasks, but their capacity for expert-level reasoning-such as solving Olympiad-level physics problems-remains largely unexplored. Inspired by the way students prepare for competitions by reviewing past problems, we investigate the potential of RAG to enhance physics reasoning in foundation models. We introduce PhoPile, a high-quality multimodal dataset specifically designed for Olympiad-level physics, enabling systematic study of retrieval-based reasoning. PhoPile includes diagrams, graphs, and equations, capturing the inherently multimodal nature of physics problem solving. Using PhoPile, we benchmark RAG-augmented foundation models, covering both large language models (LLMs) and large multimodal models (LMMs) with multiple retrievers. Our results demonstrate that integrating retrieval with physics corpora can improve model performance, while also highlighting challenges that motivate further research in retrieval-augmented physics reasoning.
comment: Accepted to EMNLP 2025 (Findings)
♻ ☆ Semantic Bridges Between First Order c-Representations and Cost-Based Semantics: An Initial Perspective
Weighted-knowledge bases and cost-based semantics represent a recent formalism introduced by Bienvenu et al. for Ontology Mediated Data Querying in the case where a given knowledge base is inconsistent. This is done by adding a weight to each statement in the knowledge base (KB), and then giving each DL interpretation a cost based on how often it breaks rules in the KB. In this paper we compare this approach with c-representations, a form of non-monotonic reasoning originally introduced by Kern-Isberner. c-Representations describe a means to interpret defeasible concept inclusions in the first-order case. This is done by assigning a numerical ranking to each interpretations via penalties for each violated conditional. We compare these two approaches on a semantic level. In particular, we show that under certain conditions a weighted knowledge base and a set of defeasible conditionals can generate the same ordering on interpretations, and therefore an equivalence of semantic structures up to relative cost. Moreover, we compare entailment described in both cases, where certain notions are equivalently expressible in both formalisms. Our results have the potential to benefit further work on both cost-based semantics and c-representations
♻ ☆ Search-Based Software Engineering and AI Foundation Models: Current Landscape and Future Roadmap
Search-based software engineering (SBSE), which integrates metaheuristic search techniques with software engineering, has been an active area of research for about 25 years. It has been applied to solve numerous problems across the entire software engineering lifecycle and has demonstrated its versatility in multiple domains. With recent advances in AI, particularly the emergence of foundation models (FMs) such as large language models (LLMs), the evolution of SBSE alongside these models remains undetermined. In this window of opportunity, we present a research roadmap that articulates the current landscape of SBSE in relation to FMs, identifies open challenges, and outlines potential research directions to advance SBSE through its integration and interplay with FMs. Specifically, we analyze five core aspects: leveraging FMs for SBSE design, applying FMs to complement SBSE in SE problems, employing SBSE to address FM challenges, adapting SBSE practices for FMs tailored to SE activities, and exploring the synergistic potential between SBSE and FMs. Furthermore, we present a forward-thinking perspective that envisions the future of SBSE in the era of FMs, highlighting promising research opportunities to address challenges in emerging domains.
♻ ☆ An effective control of large systems of active particles: An application to evacuation problem
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.
♻ ☆ MOSAIC: A Multilingual, Taxonomy-Agnostic, and Computationally Efficient Approach for Radiological Report Classification
Radiology reports contain rich clinical information that can be used to train imaging models without relying on costly manual annotation. However, existing approaches face critical limitations: rule-based methods struggle with linguistic variability, supervised models require large annotated datasets, and recent LLM-based systems depend on closed-source or resource-intensive models that are unsuitable for clinical use. Moreover, current solutions are largely restricted to English and single-modality, single-taxonomy datasets. We introduce MOSAIC, a multilingual, taxonomy-agnostic, and computationally efficient approach for radiological report classification. Built on a compact open-access language model (MedGemma-4B), MOSAIC supports both zero-/few-shot prompting and lightweight fine-tuning, enabling deployment on consumer-grade GPUs. We evaluate MOSAIC across seven datasets in English, Spanish, French, and Danish, spanning multiple imaging modalities and label taxonomies. The model achieves a mean macro F1 score of 88 across five chest X-ray datasets, approaching or exceeding expert-level performance, while requiring only 24 GB of GPU memory. With data augmentation, as few as 80 annotated samples are sufficient to reach a weighted F1 score of 82 on Danish reports, compared to 86 with the full 1600-sample training set. MOSAIC offers a practical alternative to large or proprietary LLMs in clinical settings. Code and models are open-source. We invite the community to evaluate and extend MOSAIC on new languages, taxonomies, and modalities.
comment: 8 pages, 14 pages including references and appendix. 9 figures. Preprint
♻ ☆ Towards Effective E-Participation of Citizens in the European Union: The Development of AskThePublic
E-participation platforms are an important asset for governments in increasing trust and fostering democratic societies. By engaging public and private institutions and individuals, policymakers can make informed and inclusive decisions. However, current approaches of primarily static nature struggle to integrate citizen feedback effectively. Drawing on the Media Richness Theory and applying the Design Science Research method, we explore how a chatbot can address these shortcomings to improve the decision-making abilities for primary stakeholders of e-participation platforms. Leveraging the "Have Your Say" platform, which solicits feedback on initiatives and regulations by the European Commission, a Large Language Model-based chatbot, called AskThePublic is created, providing policymakers, journalists, researchers, and interested citizens with a convenient channel to explore and engage with citizen input. Evaluating AskThePublic in 11 semi-structured interviews with public sector-affiliated experts, we find that the interviewees value the interactive and structured responses as well as enhanced language capabilities.
♻ ☆ What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning
Purpose High dimensional, multimodal data can nowadays be analyzed by huge deep neural networks with little effort. Several fusion methods for bringing together different modalities have been developed. Given the prevalence of high-dimensional, multimodal patient data in medicine, the development of multimodal models marks a significant advancement. However, how these models process information from individual sources in detail is still underexplored. Methods To this end, we implemented an occlusion-based modality contribution method that is both model- and performance-agnostic. This method quantitatively measures the importance of each modality in the dataset for the model to fulfill its task. We applied our method to three different multimodal medical problems for experimental purposes. Results Herein we found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up. Moreover, we provide fine-grained quantitative and visual attribute importance for each modality. Conclusion Our metric offers valuable insights that can support the advancement of multimodal model development and dataset creation. By introducing this method, we contribute to the growing field of interpretability in deep learning for multimodal research. This approach helps to facilitate the integration of multimodal AI into clinical practice. Our code is publicly available at https://github.com/ChristianGappGit/MC_MMD.
comment: Contribution to Conference for Computer Assisted Radiology and Surgery (CARS 2025)
♻ ☆ Communication-Efficient and Accurate Approach for Aggregation in Federated Low-Rank Adaptation
With the rapid emergence of foundation models and the increasing need for fine-tuning across distributed environments, Federated Low-Rank Adaptation (FedLoRA) has recently gained significant attention. Despite enormous potential, current FedLoRA methods face notable challenges due to inexact updates. Existing approaches have attempted to mitigate this issue, but they often introduce a \emph{local-global generalization gap} and incur \emph{substantial communication overhead}, limiting their scalability and effectiveness. To address these limitations, we propose \textbf{F}ederated \textbf{Lo}w-\textbf{R}ank \textbf{A}ggregation with \textbf{N}early \textbf{A}ccurate Estimation (FLoRA-NA). FLoRA-NA leverages the local LoRA matrices on the server to estimate the aggregated matrices $\hat{A}$ and $\hat{B}$, which are then distributed to clients for local updates. This surrogated aggregated matrices minimizes the divergence between ideal $\nabla \Bar{W} = \sum^{U}_{u=1}B_u A_u$ and practical updates $\nabla \hat{W} = \hat{B}\hat{A}$ without adding communication cost beyond vanilla FedLoRA. By doing so, FLoRA-NA achieves communication efficiency and bridges the gap between local personalization and global generalization, addressing a key limitation of prior personalized FedLoRA approaches. We conduct extensive evaluations across diverse tasks, including natural language understanding, mathematical reasoning, and code-solving ability using various foundation models. Experimental results consistently demonstrate that FLoRA-NA achieves state-of-the-art global performance while maintaining low communication overhead.
comment: 34 pages, 4 figures, 11 tables
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which turns the user prompt into concise shot drafts and then expands them into detailed specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, and HDR lighting) with self-validation to ensure logical progress. (2) Visual inconsistency: previous approaches struggle to maintain consistent appearance across shots. Our identity-aware cross-shot propagation builds identity-preserving portrait (IPP) tokens that keep character identity while allowing controlled trait changes (expressions, aging) required by the story. (3) Transition artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. Combined in a training-free pipeline, VGoT surpasses strong baselines by 20.4\% in within-shot face consistency and 17.4\% in style consistency, while requiring 10x fewer manual adjustments. VGoT bridges the gap between raw visual synthesis and director-level storytelling for automated multi-shot video generation.
comment: Code: https://github.com/DuNGEOnmassster/VideoGen-of-Thought.git; Webpage: https://cheliosoops.github.io/VGoT/
♻ ☆ PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes ICCV 2025
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
comment: ICCV 2025. Project page: https://nianticlabs.github.io/placeit3d/
♻ ☆ DS-STAR: Data Science Agent via Iterative Planning and Verification
Data science, which transforms raw data into actionable insights, is critical for data-driven decision-making. However, these tasks are often complex, involving steps for exploring multiple data sources and synthesizing findings to deliver insightful answers. While large language models (LLMs) show significant promise in automating this process, they often struggle with heterogeneous data formats and generate sub-optimal analysis plans, as verifying plan sufficiency is inherently difficult without ground-truth labels for such open-ended tasks. To overcome these limitations, we introduce DS-STAR, a novel data science agent. Specifically, DS-STAR makes three key contributions: (1) a data file analysis module that automatically explores and extracts context from diverse data formats, including unstructured types; (2) a verification step where an LLM-based judge evaluates the sufficiency of the analysis plan at each stage; and (3) a sequential planning mechanism that starts with a simple, executable plan and iteratively refines it based on the DS-STAR's feedback until its sufficiency is verified. This iterative refinement allows DS-STAR to reliably navigate complex analyses involving diverse data sources. Our experiments show that DS-STAR achieves state-of-the-art performance across three challenging benchmarks: DABStep, KramaBench, and DA-Code. Moreover, DS-STAR particularly outperforms baselines on hard tasks that require processing multiple data files with heterogeneous formats.
♻ ☆ Beyond Chunking: Discourse-Aware Hierarchical Retrieval for Long Document Question Answering
Long document question answering systems typically process texts as flat sequences or use arbitrary segmentation, failing to capture discourse structures that guide human comprehension. We present a discourse-aware hierarchical framework that leverages rhetorical structure theory (RST) to enhance long document question answering. Our approach converts discourse trees into sentence-level representations and employs LLM-enhanced node representations to bridge structural and semantic information. The framework involves three key innovations: specialized discourse parsing for lengthy documents, LLM-based enhancement of discourse relation nodes, and structure-guided hierarchical retrieval. Comprehensive experiments on QASPER, QuALITY, and NarrativeQA demonstrate consistent improvements over existing approaches. Ablation studies confirm that incorporating discourse structure significantly enhances question answering across diverse document types.
comment: 20 pages, 9 figures
♻ ☆ Aligning Reasoning LLMs for Materials Discovery with Physics-aware Rejection Sampling
AI-driven materials discovery that couples automated experimentation with algorithmic decision-making requires process aware recipe to property predictors that are accurate, calibrated, and physically admissible. We approach this as a reasoning problem with large reasoning models (LRMs). To instill reasoning capability into language models, we curate reasoning traces from a teacher model to train a student model. However, most training pipelines select reasoning traces using binary correctness or learned preference signals that poorly reflect physical admissibility. We introduce Physics-aware Rejection Sampling (PaRS), a training-time trace selection scheme that favors traces consistent with fundamental physics and numerically close to targets, with lightweight halting to control compute. We instantiate our framework with a large student model fine-tuned on traces synthesized by a larger teacher model, and evaluate under matched token budgets against various rejection sampling baselines. Our method improves accuracy and calibration, reduces physics-violation rates, and lowers sampling cost relative to baselines. These results indicate that modest, domain-aware constraints combined with trace-level selection provide a practical path toward reliable, efficient LRMs for process-aware property prediction and closed-loop materials design.
comment: 16 pages, 6 figures
♻ ☆ Towards Methane Detection Onboard Satellites
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.
♻ ☆ GSM-Agent: Understanding Agentic Reasoning Using Controllable Environments
As LLMs are increasingly deployed as agents, agentic reasoning - the ability to combine tool use, especially search, and reasoning - becomes a critical skill. However, it is hard to disentangle agentic reasoning when evaluated in complex environments and tasks. Current agent benchmarks often mix agentic reasoning with challenging math reasoning, expert-level knowledge, and other advanced capabilities. To fill this gap, we build a novel benchmark, GSM-Agent, where an LLM agent is required to solve grade-school-level reasoning problems, but is only presented with the question in the prompt without the premises that contain the necessary information to solve the task, and needs to proactively collect that information using tools. Although the original tasks are grade-school math problems, we observe that even frontier models like GPT-5 only achieve 67% accuracy. To understand and analyze the agentic reasoning patterns, we propose the concept of agentic reasoning graph: cluster the environment's document embeddings into nodes, and map each tool call to its nearest node to build a reasoning path. Surprisingly, we identify that the ability to revisit a previously visited node, widely taken as a crucial pattern in static reasoning, is often missing for agentic reasoning for many models. Based on the insight, we propose a tool-augmented test-time scaling method to improve LLM's agentic reasoning performance by adding tools to encourage models to revisit. We expect our benchmark and the agentic reasoning framework to aid future studies of understanding and pushing the boundaries of agentic reasoning.
comment: 39 pages, 8 figures
IndexNet: Timestamp and Variable-Aware Modeling for Time Series Forecasting
Multivariate time series forecasting (MTSF) plays a vital role in a wide range of real-world applications, such as weather prediction and traffic flow forecasting. Although recent advances have significantly improved the modeling of temporal dynamics and inter-variable dependencies, most existing methods overlook index-related descriptive information, such as timestamps and variable indices, which carry rich contextual semantics. To unlock the potential of such information and take advantage of the lightweight and powerful periodic capture ability of MLP-based architectures, we propose IndexNet, an MLP-based framework augmented with an Index Embedding (IE) module. The IE module consists of two key components: Timestamp Embedding (TE) and Channel Embedding (CE). Specifically, TE transforms timestamps into embedding vectors and injects them into the input sequence, thereby improving the model's ability to capture long-term complex periodic patterns. In parallel, CE assigns each variable a unique and trainable identity embedding based on its index, allowing the model to explicitly distinguish between heterogeneous variables and avoid homogenized predictions when input sequences seem close. Extensive experiments on 12 diverse real-world datasets demonstrate that IndexNet achieves comparable performance across mainstream baselines, validating the effectiveness of our temporally and variably aware design. Moreover, plug-and-play experiments and visualization analyses further reveal that IndexNet exhibits strong generality and interpretability, two aspects that remain underexplored in current MTSF research.
♻ ☆ The Future of Artificial Intelligence and the Mathematical and Physical Sciences (AI+MPS)
This community paper developed out of the NSF Workshop on the Future of Artificial Intelligence (AI) and the Mathematical and Physics Sciences (MPS), which was held in March 2025 with the goal of understanding how the MPS domains (Astronomy, Chemistry, Materials Research, Mathematical Sciences, and Physics) can best capitalize on, and contribute to, the future of AI. We present here a summary and snapshot of the MPS community's perspective, as of Spring/Summer 2025, in a rapidly developing field. The link between AI and MPS is becoming increasingly inextricable; now is a crucial moment to strengthen the link between AI and Science by pursuing a strategy that proactively and thoughtfully leverages the potential of AI for scientific discovery and optimizes opportunities to impact the development of AI by applying concepts from fundamental science. To achieve this, we propose activities and strategic priorities that: (1) enable AI+MPS research in both directions; (2) build up an interdisciplinary community of AI+MPS researchers; and (3) foster education and workforce development in AI for MPS researchers and students. We conclude with a summary of suggested priorities for funding agencies, educational institutions, and individual researchers to help position the MPS community to be a leader in, and take full advantage of, the transformative potential of AI+MPS.
comment: Community Paper from the NSF Future of AI+MPS Workshop, Cambridge, Massachusetts, March 24-26, 2025, supported by NSF Award Number 2512945; v2: minor clarifications
♻ ☆ R2 v2: The Pareto-compliant R2 Indicator for Better Benchmarking in Bi-objective Optimization PPSN 2024
In multi-objective optimization, set-based quality indicators are a cornerstone of benchmarking and performance assessment. They capture the quality of a set of trade-off solutions by reducing it to a scalar number. One of the most commonly used set-based metrics is the R2 indicator, which describes the expected utility of a solution set to a decision-maker under a distribution of utility functions. Typically, this indicator is applied by discretizing the latter distribution, yielding a weakly Pareto-compliant indicator. In consequence, adding a nondominated or dominating solution to a solution set may -- but does not have to -- improve the indicator's value. In this paper, we reinvestigate the R2 indicator under the premise that we have a continuous, uniform distribution of (Tchebycheff) utility functions. We analyze its properties in detail, demonstrating that this continuous variant is indeed Pareto-compliant -- that is, any beneficial solution will improve the metric's value. Additionally, we provide efficient computational procedures that (a) compute this metric for bi-objective problems in $\mathcal O (N \log N)$, and (b) can perform incremental updates to the indicator whenever solutions are added to (or removed from) the current set of solutions, without needing to recompute the indicator for the entire set. As a result, this work contributes to the state-of-the-art Pareto-compliant unary performance metrics, such as the hypervolume indicator, offering an efficient and promising alternative.
comment: This version is a journal extension of the original PPSN 2024 paper and has been accepted for publication in the PPSN 2024 Special Issue of Evolutionary Computation Journal
♻ ☆ Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Class imbalance remains a major challenge in machine learning, especially for high-dimensional biomedical data where nonlinear manifold structures dominate. Traditional oversampling methods such as SMOTE rely on local linear interpolation, often producing implausible synthetic samples. Deep generative models like Conditional Variational Autoencoders (CVAEs) better capture nonlinear distributions, but standard variants treat all minority samples equally, neglecting the importance of uncertain, boundary-region examples emphasized by heuristic methods like Borderline-SMOTE and ADASYN. We propose Local Entropy-Guided Oversampling with a CVAE (LEO-CVAE), a generative oversampling framework that explicitly incorporates local uncertainty into both representation learning and data generation. To quantify uncertainty, we compute Shannon entropy over the class distribution in a sample's neighborhood: high entropy indicates greater class overlap, serving as a proxy for uncertainty. LEO-CVAE leverages this signal through two mechanisms: (i) a Local Entropy-Weighted Loss (LEWL) that emphasizes robust learning in uncertain regions, and (ii) an entropy-guided sampling strategy that concentrates generation in these informative, class-overlapping areas. Applied to clinical genomics datasets (ADNI and TCGA lung cancer), LEO-CVAE consistently improves classifier performance, outperforming both traditional oversampling and generative baselines. These results highlight the value of uncertainty-aware generative oversampling for imbalanced learning in domains governed by complex nonlinear structures, such as omics data.
comment: 16 pages, 2 figures
♻ ☆ Audio-Enhanced Vision-Language Modeling with Latent Space Broadening for High Quality Data Expansion
Transformer-based multimodal models are widely used in industrial-scale recommendation, search, and advertising systems for content understanding and relevance ranking. Enhancing labeled training data quality and cross-modal fusion significantly improves model performance, influencing key metrics such as quality view rates and ad revenue. High-quality annotations are crucial for advancing content modeling, yet traditional statistical-based active learning (AL) methods face limitations: they struggle to detect overconfident misclassifications and are less effective in distinguishing semantically similar items in deep neural networks. Additionally, audio information plays an increasing role, especially in short-video platforms, yet most pre-trained multimodal architectures primarily focus on text and images. While training from scratch across all three modalities is possible, it sacrifices the benefits of leveraging existing pre-trained visual-language (VL) and audio models. To address these challenges, we propose kNN-based Latent Space Broadening (LSB) to enhance AL efficiency and Vision-Language Modeling with Audio Enhancement (VLMAE), a mid-fusion approach integrating audio into VL models. This system deployed in production systems, leading to significant business gains.
♻ ☆ Normal-Abnormal Guided Generalist Anomaly Detection NeurIPS 2025
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.
comment: Accepted by NeurIPS 2025
♻ ☆ Reasoning over User Preferences: Knowledge Graph-Augmented LLMs for Explainable Conversational Recommendations ICDM 2025
Conversational Recommender Systems (CRSs) aim to provide personalized recommendations by capturing user preferences through interactive dialogues. Explainability in CRSs is crucial as it enables users to understand the reasoning behind recommendations, increasing system transparency and trustworthiness. However, current CRSs often leverage knowledge graphs (KGs) or language models to extract and represent user preferences as latent vectors, which limits their explainability. Large language models (LLMs) offer powerful reasoning capabilities that can bridge this gap by generating human-understandable preference summaries. However, effectively reasoning over user preferences in CRSs remains challenging as LLMs pre-trained on large-scale corpora may not be well-suited for analyzing user preferences. While KGs provide rich domain knowledge, integrating them with LLMs encounters a significant modality gap between structured KG information and unstructured conversations. In this paper, we propose COMPASS, a plug-and-play framework that synergizes LLMs and KGs to reason over user preferences, enhancing the performance and explainability of existing CRSs. COMPASS employs a two-stage training approach: first, it bridges the gap between the structured KG and natural language through novel graph entity captioning pre-training. Next, COMPASS optimizes user preference reasoning via knowledge-aware instruction fine-tuning, where the LLM learns to reason and summarize user preferences from dialogue histories and KG-augmented context. This enables COMPASS to perform knowledge-aware reasoning and generate interpretable user preferences that can seamlessly integrate with existing CRS models for improving recommendation performance and explainability. Our experiments on benchmark datasets demonstrate the effectiveness of COMPASS in improving various CRS models.
comment: Accepted by ICDM 2025
♻ ☆ Fact Grounded Attention: Eliminating Hallucination in Large Language Models Through Attention Level Knowledge Integration
"The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge." Large Language Models have conquered natural language but remain prisoners of their own probabilistic nature--confidently hallucinating facts they never truly knew. We present Fact Grounded Attention (FGA), a novel architectural modification that transforms unreliable language models into deterministic truth tellers by injecting verifiable knowledge directly into the attention mechanism. Unlike existing approaches that patch hallucinations after generation or prepend retrieved text, FGA intervenes at the mathematical heart of the transformer--the pre-softmax attention scores--creating a model that cannot hallucinate when facts exist in its knowledge base. Our experiments across 1,107 technical queries spanning smartphones, laptops, and electric vehicles demonstrate a transformation from 6.3% accuracy in vanilla Llama 3.2 to 99.7% accuracy with FGA. More critically, knowledge updates occur in under one second without retraining, compared to hours for parameter editing approaches. FGA doesn't just reduce hallucination--it eliminates it entirely for verifiable facts, marking a fundamental shift from probabilistic approximation to deterministic precision in neural language generation.
comment: 15 pages, 3 figures, 4 tables. Code and dataset available at https://github.com/ayushgupta4897/FGA
♻ ☆ Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
The ionosphere critically influences Global Navigation Satellite Systems (GNSS), satellite communications, and Low Earth Orbit (LEO) operations, yet accurate prediction of its variability remains challenging due to nonlinear couplings between solar, geomagnetic, and thermospheric drivers. Total Electron Content (TEC), a key ionospheric parameter, is derived from GNSS observations, but its reliable forecasting is limited by the sparse nature of global measurements and the limited accuracy of empirical models, especially during strong space weather conditions. In this work, we present a machine learning framework for ionospheric TEC forecasting that leverages Temporal Fusion Transformers (TFT) to predict sparse ionosphere data. Our approach accommodates heterogeneous input sources, including solar irradiance, geomagnetic indices, and GNSS-derived vertical TEC, and applies preprocessing and temporal alignment strategies. Experiments spanning 2010-2025 demonstrate that the model achieves robust predictions up to 24 hours ahead, with root mean square errors as low as 3.33 TECU. Results highlight that solar EUV irradiance provides the strongest predictive signals. Beyond forecasting accuracy, the framework offers interpretability through attention-based analysis, supporting both operational applications and scientific discovery. To encourage reproducibility and community-driven development, we release the full implementation as the open-source toolkit \texttt{ionopy}.
♻ ☆ Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.
♻ ☆ Adaptive Batch-Wise Sample Scheduling for Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as an effective approach for aligning large language models (LLMs) with human preferences. However, its performance is highly dependent on the quality of the underlying human preference data. To address this bottleneck, prior work has explored various data selection strategies, but these methods often overlook the impact of the evolving states of the language model during the optimization process. In this paper, we introduce a novel problem: Sample Scheduling for DPO, which aims to dynamically and adaptively schedule training samples based on the model's evolving batch-wise states throughout preference optimization. To solve this problem, we propose SamS, an efficient and effective algorithm that adaptively selects samples in each training batch based on the LLM's learning feedback to maximize the potential generalization performance. Notably, without modifying the core DPO algorithm, simply integrating SamS significantly improves performance across tasks, with minimal additional computational overhead. This work points to a promising new direction for improving LLM alignment through batch-wise sample selection, with potential generalization to RLHF and broader supervised learning paradigms.
♻ ☆ The AI Productivity Index (APEX)
We introduce the first version of the AI Productivity Index (APEX), a benchmark for assessing whether frontier AI models can perform knowledge work with high economic value. APEX addresses one of the largest inefficiencies in AI research: outside of coding, benchmarks often fail to test economically relevant capabilities. APEX-v1.0 contains 200 test cases and covers four domains: investment banking, management consulting, law, and primary medical care. It was built in three steps. First, we sourced experts with top-tier experience e.g., investment bankers from Goldman Sachs. Second, experts created prompts that reflect high-value tasks in their day-to-day work. Third, experts created rubrics for evaluating model responses. We evaluate 23 frontier models on APEX-v1.0 using an LM judge. GPT 5 (Thinking = High) achieves the highest mean score (64.2%), followed by Grok 4 (61.3%) and Gemini 2.5 Flash (Thinking = On) (60.4%). Qwen 3 235B is the best performing open-source model and seventh best overall. There is a large gap between the performance of even the best models and human experts, highlighting the need for better measurement of models' ability to produce economically valuable work.
♻ ☆ VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
♻ ☆ Reliable Decision Making via Calibration Oriented Retrieval Augmented Generation NeurIPS 2025
Recently, Large Language Models (LLMs) have been increasingly used to support various decision-making tasks, assisting humans in making informed decisions. However, when LLMs confidently provide incorrect information, it can lead humans to make suboptimal decisions. To prevent LLMs from generating incorrect information on topics they are unsure of and to improve the accuracy of generated content, prior works have proposed Retrieval Augmented Generation (RAG), where external documents are referenced to generate responses. However, previous RAG methods focus only on retrieving documents most relevant to the input query, without specifically aiming to ensure that the human user's decisions are well-calibrated. To address this limitation, we propose a novel retrieval method called Calibrated Retrieval-Augmented Generation (CalibRAG), which ensures that decisions informed by RAG are well-calibrated. Then we empirically validate that CalibRAG improves calibration performance as well as accuracy, compared to other baselines across various datasets.
comment: Accepted by NeurIPS 2025
♻ ☆ Does Bigger Mean Better? Comparitive Analysis of CNNs and Biomedical Vision Language Modles in Medical Diagnosis
The accurate interpretation of chest radiographs using automated methods is a critical task in medical imaging. This paper presents a comparative analysis between a supervised lightweight Convolutional Neural Network (CNN) and a state-of-the-art, zero-shot medical Vision-Language Model (VLM), BiomedCLIP, across two distinct diagnostic tasks: pneumonia detection on the PneumoniaMNIST benchmark and tuberculosis detection on the Shenzhen TB dataset. Our experiments show that supervised CNNs serve as highly competitive baselines in both cases. While the default zero-shot performance of the VLM is lower, we demonstrate that its potential can be unlocked via a simple yet crucial remedy: decision threshold calibration. By optimizing the classification threshold on a validation set, the performance of BiomedCLIP is significantly boosted across both datasets. For pneumonia detection, calibration enables the zero-shot VLM to achieve a superior F1-score of 0.8841, surpassing the supervised CNN's 0.8803. For tuberculosis detection, calibration dramatically improves the F1-score from 0.4812 to 0.7684, bringing it close to the supervised baseline's 0.7834. This work highlights a key insight: proper calibration is essential for leveraging the full diagnostic power of zero-shot VLMs, enabling them to match or even outperform efficient, task-specific supervised models.
comment: 6pages,3 figures.Uunder review of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
♻ ☆ Interactive Learning for LLM Reasoning
Existing multi-agent learning approaches have developed interactive training environments to explicitly promote collaboration among multiple Large Language Models (LLMs), thereby constructing stronger multi-agent systems (MAS). However, during inference, they require re-executing the MAS to obtain final solutions, which diverges from human cognition that individuals can enhance their reasoning capabilities through interactions with others and resolve questions independently in the future. To investigate whether multi-agent interaction can enhance LLMs' independent problem-solving ability, we introduce ILR, a novel co-learning framework for MAS that integrates two key components: Dynamic Interaction and Perception Calibration. Specifically, Dynamic Interaction first adaptively selects either cooperative or competitive strategies depending on question difficulty and model ability. LLMs then exchange information through Idea3 (Idea Sharing, Idea Analysis, and Idea Fusion), an innovative interaction paradigm designed to mimic human discussion, before deriving their respective final answers. In Perception Calibration, ILR employs Group Relative Policy Optimization (GRPO) to train LLMs while integrating one LLM's reward distribution characteristics into another's reward function, thereby enhancing the cohesion of multi-agent interactions. We validate ILR on three LLMs across two model families of varying scales, evaluating performance on five mathematical benchmarks and one coding benchmark. Experimental results show that ILR consistently outperforms single-agent learning, yielding an improvement of up to 5% over the strongest baseline. We further discover that Idea3 can enhance the robustness of stronger LLMs during multi-agent inference, and dynamic interaction types can boost multi-agent learning compared to pure cooperative or competitive strategies.
comment: The code is available at https://github.com/linhh29/Interactive-Learning-for-LLM-Reasoning
♻ ☆ PiCa: Parameter-Efficient Fine-Tuning with Column Space Projection
Fine-tuning large foundation models is essential for building expert models tailored to specialized tasks and domains, but fully updating billions of parameters is computationally prohibitive. Reducing the number of trainable parameters using parameter-efficient fine-tuning is therefore crucial not only to reduce training costs but also to mitigate storage, caching, and serving overheads during deployment. Prior works, such as Singular Vectors-guided Fine-Tuning, have shown that exploiting the geometry of pre-trained weights can significantly improve parameter-efficiency, but they lack a solid theoretical foundation. In this paper, we introduce Parameter-efficient Fine-tuning with Column Space Projection (PiCa), a novel theoretically grounded PEFT method. We prove that projecting gradients onto the principal column space of pre-trained weights provides an effective inductive bias for adaptation and further enhance parameter efficiency through a novel weight-sharing strategy. Across diverse NLP and vision tasks, PiCa consistently outperforms state-of-the-art baselines under comparable or smaller parameter budgets, demonstrating both theoretical rigor and practical effectiveness.
♻ ☆ nDNA -- the Semantic Helix of Artificial Cognition
As AI foundation models grow in capability, a deeper question emerges: What shapes their internal cognitive identity -- beyond fluency and output? Benchmarks measure behavior, but the soul of a model resides in its latent geometry. In this work, we propose Neural DNA (nDNA) as a semantic-genotypic representation that captures this latent identity through the intrinsic geometry of belief. At its core, nDNA is synthesized from three principled and indispensable dimensions of latent geometry: spectral curvature, which reveals the curvature of conceptual flow across layers; thermodynamic length, which quantifies the semantic effort required to traverse representational transitions through layers; and belief vector field, which delineates the semantic torsion fields that guide a model's belief directional orientations. Like biological DNA, it encodes ancestry, mutation, and semantic inheritance, found in finetuning and alignment scars, cultural imprints, and architectural drift. In naming it, we open a new field: Neural Genomics, where models are not just tools, but digital semantic organisms with traceable inner cognition. Modeling statement. We read AI foundation models as semantic fluid dynamics: meaning is transported through layers like fluid in a shaped conduit; nDNA is the physics-grade readout of that flow -- a geometry-first measure of how meaning is bent, paid for, and pushed -- yielding a stable, coordinate-free neural DNA fingerprint tied to on-input behavior; with this fingerprint we cross into biology: tracing lineages across pretraining, fine-tuning, alignment, pruning, distillation, and merges; measuring inheritance between checkpoints; detecting drift as traits shift under new data or objectives; and, ultimately, studying the evolution of artificial cognition to compare models, diagnose risks, and govern change over time.
♻ ☆ Handling Heterophily in Recommender Systems with Wavelet Hypergraph Diffusion
Recommender systems are pivotal in delivering personalised user experiences across various domains. However, capturing the heterophily patterns and the multi-dimensional nature of user-item interactions poses significant challenges. To address this, we introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in hypergraph-based recommendation tasks. The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies. Extensive experiments on real-world datasets demonstrate that FWHDNN surpasses state-of-the-art methods in accuracy, robustness, and scalability in capturing high-order interconnections between users and items.
comment: Fixed and extended results
♻ ☆ Should I Share this Translation? Evaluating Quality Feedback for User Reliance on Machine Translation EMNLP 2025
As people increasingly use AI systems in work and daily life, feedback mechanisms that help them use AI responsibly are urgently needed, particularly in settings where users are not equipped to assess the quality of AI predictions. We study a realistic Machine Translation (MT) scenario where monolingual users decide whether to share an MT output, first without and then with quality feedback. We compare four types of quality feedback: explicit feedback that directly give users an assessment of translation quality using (1) error highlights and (2) LLM explanations, and implicit feedback that helps users compare MT inputs and outputs through (3) backtranslation and (4) question-answer (QA) tables. We find that all feedback types, except error highlights, significantly improve both decision accuracy and appropriate reliance. Notably, implicit feedback, especially QA tables, yields significantly greater gains than explicit feedback in terms of decision accuracy, appropriate reliance, and user perceptions, receiving the highest ratings for helpfulness and trust, and the lowest for mental burden.
comment: EMNLP 2025
♻ ☆ EMR-AGENT: Automating Cohort and Feature Extraction from EMR Databases ICLR 2026
Machine learning models for clinical prediction rely on structured data extracted from Electronic Medical Records (EMRs), yet this process remains dominated by hardcoded, database-specific pipelines for cohort definition, feature selection, and code mapping. These manual efforts limit scalability, reproducibility, and cross-institutional generalization. To address this, we introduce EMR-AGENT (Automated Generalized Extraction and Navigation Tool), an agent-based framework that replaces manual rule writing with dynamic, language model-driven interaction to extract and standardize structured clinical data. Our framework automates cohort selection, feature extraction, and code mapping through interactive querying of databases. Our modular agents iteratively observe query results and reason over schema and documentation, using SQL not just for data retrieval but also as a tool for database observation and decision making. This eliminates the need for hand-crafted, schema-specific logic. To enable rigorous evaluation, we develop a benchmarking codebase for three EMR databases (MIMIC-III, eICU, SICdb), including both seen and unseen schema settings. Our results demonstrate strong performance and generalization across these databases, highlighting the feasibility of automating a process previously thought to require expert-driven design. The code will be released publicly at https://github.com/AITRICS/EMR-AGENT/tree/main. For a demonstration, please visit our anonymous demo page: https://anonymoususer-max600.github.io/EMR_AGENT/
comment: currently under submission to ICLR 2026
♻ ☆ scSiameseClu: A Siamese Clustering Framework for Interpreting single-cell RNA Sequencing Data
Single-cell RNA sequencing (scRNA-seq) reveals cell heterogeneity, with cell clustering playing a key role in identifying cell types and marker genes. Recent advances, especially graph neural networks (GNNs)-based methods, have significantly improved clustering performance. However, the analysis of scRNA-seq data remains challenging due to noise, sparsity, and high dimensionality. Compounding these challenges, GNNs often suffer from over-smoothing, limiting their ability to capture complex biological information. In response, we propose scSiameseClu, a novel Siamese Clustering framework for interpreting single-cell RNA-seq data, comprising of 3 key steps: (1) Dual Augmentation Module, which applies biologically informed perturbations to the gene expression matrix and cell graph relationships to enhance representation robustness; (2) Siamese Fusion Module, which combines cross-correlation refinement and adaptive information fusion to capture complex cellular relationships while mitigating over-smoothing; and (3) Optimal Transport Clustering, which utilizes Sinkhorn distance to efficiently align cluster assignments with predefined proportions while maintaining balance. Comprehensive evaluations on seven real-world datasets demonstrate that scSiameseClu outperforms state-of-the-art methods in single-cell clustering, cell type annotation, and cell type classification, providing a powerful tool for scRNA-seq data interpretation.
♻ ☆ When Reasoning Meets Compression: Understanding the Effects of LLMs Compression on Large Reasoning Models
Compression methods, including quantization, distillation, and pruning, improve the computational efficiency of large reasoning models (LRMs). However, existing studies either fail to sufficiently compare all three compression methods on LRMs or lack in-depth interpretation analysis. In this paper, we investigate how the reasoning capabilities of LRMs are compromised during compression, through performance benchmarking and mechanistic interpretation. To uncover the effects of compression on reasoning performance, we benchmark quantized, distilled, and pruned DeepSeek-R1 models on four reasoning datasets (AIME 2024, FOLIO, Temporal Sequences, and MuSiQue). To precisely locate compression effects on model weights, we adapt difference of means and attribution patching techniques, focusing on the activation of every linear component in compressed LRMs, to interpret fine-grained causal relationships between weights and various reasoning capabilities. This fine-grained interpretation addresses a fundamental question of compression: which weights are the most important for reasoning? Overall, we find dynamically quantized 2.51-bit R1 reaches close-to-R1 performance. With empirical verification, we present three main findings that generalize across both Llama and Qwen: (1) Weight count has a greater impact on LRMs' knowledge memorization than reasoning, highlighting the risks of pruning and distillation; (2) The MLP up projection in the final layer of distilled LRMs is one of the most important components, offering a new perspective on locating critical weights - a fundamental problem in model compression; and (3) Current quantization methods overly compress the final-layer modules and MLP gate projections, so protecting just 2% of all weights that are excessively compressed can raise average accuracy by 6.57%, greatly surpassing the state-of-the-art.
Rethinking Reward Models for Multi-Domain Test-Time Scaling
The reliability of large language models (LLMs) during test-time scaling is often assessed with \emph{external verifiers} or \emph{reward models} that distinguish correct reasoning from flawed logic. Prior work generally assumes that process reward models (PRMs), which score every intermediate reasoning step, outperform outcome reward models (ORMs) that assess only the final answer. This view is based mainly on evidence from narrow, math-adjacent domains. We present the first unified evaluation of four reward model variants, discriminative ORM and PRM (\DisORM, \DisPRM) and generative ORM and PRM (\GenORM, \GenPRM), across 14 diverse domains. Contrary to conventional wisdom, we find that (i) \DisORM performs on par with \DisPRM, (ii) \GenPRM is not competitive, and (iii) overall, \GenORM is the most robust, yielding significant and consistent gains across every tested domain. We attribute this to PRM-style stepwise scoring, which inherits label noise from LLM auto-labeling and has difficulty evaluating long reasoning trajectories, including those involving self-correcting reasoning. Our theoretical analysis shows that step-wise aggregation compounds errors as reasoning length grows, and our empirical observations confirm this effect. These findings challenge the prevailing assumption that fine-grained supervision is always better and support generative outcome verification for multi-domain deployment. We publicly release our code, datasets, and checkpoints at \href{https://github.com/db-Lee/Multi-RM}{\underline{\small\texttt{https://github.com/db-Lee/Multi-RM}}} to facilitate future research in multi-domain settings.
♻ ☆ Synergizing LLMs and Knowledge Graphs: A Novel Approach to Software Repository-Related Question Answering
Software repositories contain valuable information for understanding the development process. However, extracting insights from repository data is time-consuming and requires technical expertise. While software engineering chatbots support natural language interactions with repositories, chatbots struggle to understand questions beyond their trained intents and to accurately retrieve the relevant data. This study aims to improve the accuracy of LLM-based chatbots in answering repository-related questions by augmenting them with knowledge graphs. We use a two-step approach: constructing a knowledge graph from repository data, and synergizing the knowledge graph with an LLM to handle natural language questions and answers. We curated 150 questions of varying complexity and evaluated the approach on five popular open-source projects. Our initial results revealed the limitations of the approach, with most errors due to the reasoning ability of the LLM. We therefore applied few-shot chain-of-thought prompting, which improved accuracy to 84%. We also compared against baselines (MSRBot and GPT-4o-search-preview), and our approach performed significantly better. In a task-based user study with 20 participants, users completed more tasks correctly and in less time with our approach, and they reported that it was useful. Our findings demonstrate that LLMs and knowledge graphs are a viable solution for making repository data accessible.
comment: Submitted to ACM Transactions on Software Engineering and Methodology for review
♻ ☆ AutoScale: Scale-Aware Data Mixing for Pre-Training LLMs
Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of LLM pre-training. We show that data mixtures that perform well at smaller scales may not retain their advantage at larger scales, challenging the existing practice of determining competitive mixtures in small-scale experiments and directly applying them at much larger scales. To address this, we propose AutoScale, a two-stage, scale-aware data composition framework. First, AutoScale fits a parametric model that predicts the model's loss under different data compositions, then uses it to find an approximate best allocation at smaller, more manageable budgets. Next, leveraging a novel theoretical analysis of how optimal compositions evolve with scale, AutoScale extrapolates that composition to larger budgets without further retraining. Empirically, AutoScale accelerates convergence and improves downstream performance. For instance, when pre-training GPT-2 Large, it achieves a 28% faster perplexity reduction than baselines and up to a 38% speed-up over unweighted training, while yielding best-average results on various downstream tasks. Overall, our findings illustrate how domain importance shifts with training scale, underscoring the need for scale-dependent data curation in LLM training. Our code is open-sourced.
comment: Published as a conference paper at COLM 2025
GEPO: Group Expectation Policy Optimization for Stable Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training becomes essential. However, traditional Reinforcement Learning (RL) methods, crucial for enhancing large model post-training, cannot adapt to decentralized distributed training due to the tight coupling between parameter learning and rollout sampling. For this, we propose HeteroRL, a heterogeneous RL architecture that decouples these processes, enabling stable training across geographically distributed nodes connected via the Internet. The core component is Group Expectation Policy Optimization (GEPO), an asynchronous RL algorithm robust to latency caused by network delays or heterogeneity in computational resources. Our study reveals that high latency significantly increases KL divergence, leading to higher variance in importance sampling weights and training instability. GEPO mitigates this issue by using group expectation weighting to exponentially reduce the variance of importance weights, with theoretical guarantees. Experiments show that GEPO achieves superior stability, with only a 3\% performance drop from online to 1800s latency, demonstrating strong potential for decentralized RL in geographically distributed, resource-heterogeneous computing environments.
♻ ☆ Finite Sample Analysis of Linear Temporal Difference Learning with Arbitrary Features
Linear TD($\lambda$) is one of the most fundamental reinforcement learning algorithms for policy evaluation. Previously, convergence rates are typically established under the assumption of linearly independent features, which does not hold in many practical scenarios. This paper instead establishes the first $L^2$ convergence rates for linear TD($\lambda$) operating under arbitrary features, without making any algorithmic modification or additional assumptions. Our results apply to both the discounted and average-reward settings. To address the potential non-uniqueness of solutions resulting from arbitrary features, we develop a novel stochastic approximation result featuring convergence rates to the solution set instead of a single point.
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: There are quality issues with the paper and it requires major revisions
♻ ☆ Rethinking and Benchmarking Large Language Models for Graph Reasoning
Large Language Models (LLMs) for Graph Reasoning have been extensively studied over the past two years, involving enabling LLMs to understand graph structures and reason on graphs to solve various graph problems, with graph algorithm problems being the most prevalent. Recent studies underscore the potential of LLMs in handling graph reasoning tasks, but their performance is underwhelming. In this work, we point out issues with existing methods and benchmarks, and rethink the direction that LLMs for graph reasoning should strive toward. We find that base models, e.g., GPT-4o-mini, are largely underestimated due to improper reasoning focus. Base models with reasoning focus redirected from replicating graph algorithms to designing them can easily solve most graph reasoning tasks in existing benchmarks. To truly evaluate the graph reasoning capabilities of LLMs, we construct a more challenging GraphAlgorithm benchmark, comprising 239 different graph problems and 3,041 test instances collected from 4 competition platforms. Finally, we introduce a simple and strong baseline Simple-Reasoning-Then-Coding (Simple-RTC)-which guides LLMs to design graph algorithms first and then code to address graph reasoning tasks. Simple-RTC achieves near-perfect accuracy on existing benchmarks and significantly outperforms GPT-4o-mini and all prior methods on the GraphAlgorithm benchmark. This strong baseline encourages further advancements in LLMs for Graph Reasoning in the future.
♻ ☆ MS-DFTVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Deformable Convolution
Research on long-term time series prediction has primarily relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this, we propose a novel multi-scale time series reshape module that effectively captures cross-period patch interactions and variable dependencies. Building on this, we develop MS-DFTVNet, the multi-scale 3D deformable convolutional framework tailored for long-term forecasting. Moreover, to handle the inherently uneven distribution of temporal features, we introduce a context-aware dynamic deformable convolution mechanism, which further enhances the model's ability to capture complex temporal patterns. Extensive experiments demonstrate that MS-DFTVNet not only significantly outperforms strong baselines but also achieves an average improvement of about 7.5% across six public datasets, setting new state-of-the-art results.
♻ ☆ Paper Quality Assessment based on Individual Wisdom Metrics from Open Peer Review
Traditional closed peer review systems, which have played a central role in scientific publishing, are often slow, costly, non-transparent, stochastic, and possibly subject to biases - factors that can impede scientific progress and undermine public trust. Here, we propose and examine the efficacy and accuracy of an alternative form of scientific peer review: through an open, bottom-up process. First, using data from two major scientific conferences (CCN2023 and ICLR2023), we highlight how high variability of review scores and low correlation across reviewers presents a challenge for collective review. We quantify reviewer agreement with community consensus scores and use this as a reviewer quality estimator, showing that surprisingly, reviewer quality scores are not correlated with authorship quality. Instead, we reveal an inverted U-shape relationship, where authors with intermediate paper scores are the best reviewers. We assess empirical Bayesian methods to estimate paper quality based on different assessments of individual reviewer reliability. We show how under a one-shot review-then-score scenario, both in our models and on real peer review data, a Bayesian measure significantly improves paper quality assessments relative to simple averaging. We then consider an ongoing model of publishing, reviewing, and scoring, with reviewers scoring not only papers but also other reviewers. We show that user-generated reviewer ratings can yield robust and high-quality paper scoring even when unreliable (but unbiased) reviewers dominate. Finally, we outline incentive structures to recognize high-quality reviewers and encourage broader reviewing coverage of submitted papers. These findings suggest that a self-selecting open peer review process is potentially scalable, reliable, and equitable with the possibility of enhancing the speed, fairness, and transparency of the peer review process.
comment: 19 pages, 6 main text figures, 4 supplementary figures
♻ ☆ Adaptive Cybersecurity Architecture for Digital Product Ecosystems Using Agentic AI
Traditional static cybersecurity models often struggle with scalability, real-time detection, and contextual responsiveness in the current digital product ecosystems which include cloud services, application programming interfaces (APIs), mobile platforms, and edge devices. This study introduces autonomous goal driven agents capable of dynamic learning and context-aware decision making as part of an adaptive cybersecurity architecture driven by agentic artificial intelligence (AI). To facilitate autonomous threat mitigation, proactive policy enforcement, and real-time anomaly detection, this framework integrates agentic AI across the key ecosystem layers. Behavioral baselining, decentralized risk scoring, and federated threat intelligence sharing are important features. The capacity of the system to identify zero-day attacks and dynamically modify access policies was demonstrated through native cloud simulations. The evaluation results show increased adaptability, decreased response latency, and improved detection accuracy. The architecture provides an intelligent and scalable blueprint for safeguarding complex digital infrastructure and is compatible with zero-trust models, thereby supporting the adherence to international cybersecurity regulations.
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth\_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ SecInfer: Preventing Prompt Injection via Inference-time Scaling
Prompt injection attacks pose a pervasive threat to the security of Large Language Models (LLMs). State-of-the-art prevention-based defenses typically rely on fine-tuning an LLM to enhance its security, but they achieve limited effectiveness against strong attacks. In this work, we propose \emph{SecInfer}, a novel defense against prompt injection attacks built on \emph{inference-time scaling}, an emerging paradigm that boosts LLM capability by allocating more compute resources for reasoning during inference. SecInfer consists of two key steps: \emph{system-prompt-guided sampling}, which generates multiple responses for a given input by exploring diverse reasoning paths through a varied set of system prompts, and \emph{target-task-guided aggregation}, which selects the response most likely to accomplish the intended task. Extensive experiments show that, by leveraging additional compute at inference, SecInfer effectively mitigates both existing and adaptive prompt injection attacks, outperforming state-of-the-art defenses as well as existing inference-time scaling approaches.
♻ ☆ Analyzing Latent Concepts in Code Language Models
Interpreting the internal behavior of large language models trained on code remains a critical challenge, particularly for applications demanding trust, transparency, and semantic robustness. We propose Code Concept Analysis (CoCoA): a global post-hoc interpretability framework that uncovers emergent lexical, syntactic, and semantic structures in a code language model's representation space by clustering contextualized token embeddings into human-interpretable concept groups. We propose a hybrid annotation pipeline that combines static analysis tool-based syntactic alignment with prompt-engineered large language models (LLMs), enabling scalable labeling of latent concepts across abstraction levels. We analyse the distribution of concepts across layers and across three finetuning tasks. Emergent concept clusters can help identify unexpected latent interactions and be used to identify trends and biases within the model's learned representations. We further integrate LCA with local attribution methods to produce concept-grounded explanations, improving the coherence and interpretability of token-level saliency. Empirical evaluations across multiple models and tasks show that LCA discovers concepts that remain stable under semantic-preserving perturbations (average Cluster Sensitivity Index, CSI = 0.288) and evolve predictably with fine-tuning. In a user study on the programming-language classification task, concept-augmented explanations disambiguated token roles and improved human-centric explainability by 37 percentage points compared with token-level attributions using Integrated Gradients.
♻ ☆ Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in multimodal LLMs
Hallucinations in large language models (LLMs) remain a fundamental obstacle to trustworthy AI, particularly in high-stakes multimodal domains such as medicine, law, and finance. Existing evaluation techniques are largely heuristic -- anchored in qualitative benchmarking or ad-hoc empirical mitigation -- providing neither principled quantification nor actionable theoretical guarantees. This gap leaves a critical blind spot in understanding how hallucinations arise, propagate, and interact across modalities. We introduce the first (to our knowledge) rigorous information geometric framework in diffusion dynamics for quantifying hallucinations in multimodal LLMs (MLLMs), advancing the field from qualitative detection to mathematically grounded measurement. Our approach represents MLLM outputs as the spectral embeddings over multimodal graph Laplacians and characterizes the manifold gaps of truth vs inconsistencies as the semantic distortion, enabling the tight Rayleigh--Ritz bounds on the multimodal hallucination energy as a functional of time-dependent temperature profiles. By leveraging eigenmode decompositions in Reproducing Kernel Hilbert Space (RKHS) embeddings, our framework delivers modality-aware, theoretically interpretable metrics that capture the evolution of hallucinations across time and input prompts through temperature annealing. This work establishes a principled foundation for quantifying and bounding hallucinations, transforming them from a qualitative risk to a tractable, analyzable phenomenon.
comment: 29 pages, 3 figures, 1 table
♻ ☆ Robust Pan-Cancer Mitotic Figure Detection with YOLOv12
Mitotic figures represent a key histoprognostic feature in tumor pathology, providing crucial insights into tumor aggressiveness and proliferation. However, their identification remains challenging, subject to significant inter-observer variability, even among experienced pathologists. To address this issue, the MItosis DOmain Generalization (MIDOG) 2025 challenge marks the third edition of an international competition aiming to develop robust mitosis detection algorithms. In this paper, we present a mitotic figure detection approach based on the state-of-the-art YOLOv12 object detection architecture. Our method achieved an F1-score of 0.801 on the preliminary test set (hotspots only) and ranked second on the final test leaderboard with an F1-score of 0.7216 across complex and heterogeneous whole-slide regions, without relying on external data.
♻ ☆ Inferring Pluggable Types with Machine Learning
Pluggable type systems allow programmers to extend the type system of a programming language to enforce semantic properties defined by the programmer. Pluggable type systems are difficult to deploy in legacy codebases because they require programmers to write type annotations manually. This paper investigates how to use machine learning to infer type qualifiers automatically. We propose a novel representation, NaP-AST, that encodes minimal dataflow hints for the effective inference of type qualifiers. We evaluate several model architectures for inferring type qualifiers, including Graph Transformer Network, Graph Convolutional Network and Large Language Model. We further validated these models by applying them to 12 open-source programs from a prior evaluation of the NullAway pluggable typechecker, lowering warnings in all but one unannotated project. We discovered that GTN shows the best performance, with a recall of .89 and precision of 0.6. Furthermore, we conduct a study to estimate the number of Java classes needed for good performance of the trained model. For our feasibility study, performance improved around 16k classes, and deteriorated due to overfitting around 22k classes.
♻ ☆ Scam2Prompt: A Scalable Framework for Auditing Malicious Scam Endpoints in Production LLMs
Large Language Models (LLMs) have become critical to modern software development, but their reliance on uncurated web-scale datasets for training introduces a significant security risk: the absorption and reproduction of malicious content. To systematically evaluate this risk, we introduce Scam2Prompt, a scalable automated auditing framework that identifies the underlying intent of a scam site and then synthesizes innocuous, developer-style prompts that mirror this intent, allowing us to test whether an LLM will generate malicious code in response to these innocuous prompts. In a large-scale study of four production LLMs (GPT-4o, GPT-4o-mini, Llama-4-Scout, and DeepSeek-V3), we found that Scam2Prompt's innocuous prompts triggered malicious URL generation in 4.24% of cases. To test the persistence of this security risk, we constructed Innoc2Scam-bench, a benchmark of 1,559 innocuous prompts that consistently elicited malicious code from all four initial LLMs. When applied to seven additional production LLMs released in 2025, we found the vulnerability is not only present but severe, with malicious code generation rates ranging from 12.7% to 43.8%. Furthermore, existing safety measures like state-of-the-art guardrails proved insufficient to prevent this behavior, with an overall detection rate of less than 0.3%.
♻ ☆ V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving
Autonomous driving (AD) has achieved significant progress, yet single-vehicle perception remains constrained by sensing range and occlusions. Vehicle-to-Everything (V2X) communication addresses these limits by enabling collaboration across vehicles and infrastructure, but it also faces heterogeneity, synchronization, and latency constraints. Language models offer strong knowledge-driven reasoning and decision-making capabilities, but they are not inherently designed to process raw sensor streams and are prone to hallucination. We propose V2X-UniPool, the first framework that unifies V2X perception with language-based reasoning for knowledge-driven AD. It transforms multimodal V2X data into structured, language-based knowledge, organizes it in a time-indexed knowledge pool for temporally consistent reasoning, and employs Retrieval-Augmented Generation (RAG) to ground decisions in real-time context. Experiments on the real-world DAIR-V2X dataset show that V2X-UniPool achieves state-of-the-art planning accuracy and safety while reducing communication cost by more than 80\%, achieving the lowest overhead among evaluated methods. These results highlight the promise of bridging V2X perception and language reasoning to advance scalable and trustworthy driving. Our code is available at: https://github.com/Xuewen2025/V2X-UniPool
♻ ☆ Learning to Interact in World Latent for Team Coordination
This work presents a novel representation learning framework, interactive world latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning (MARL). Building effective representation for team coordination is a challenging problem, due to the intricate dynamics emerging from multi-agent interaction and incomplete information induced by local observations. Our key insight is to construct a learnable representation space that jointly captures inter-agent relations and task-specific world information by directly modeling communication protocols. This representation, we maintain fully decentralized execution with implicit coordination, all while avoiding the inherent drawbacks of explicit message passing, e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity to bandwidth constraints. In practice, our representation can be used not only as an implicit latent for each agent, but also as an explicit message for communication. Across four challenging MARL benchmarks, we evaluate both variants and show that IWoL provides a simple yet powerful key for team coordination. Moreover, we demonstrate that our representation can be combined with existing MARL algorithms to further enhance their performance.
comment: Web: https://dongsuleetech.github.io/projects/IWoL/
♻ ☆ PRIME: Planning and Retrieval-Integrated Memory for Enhanced Reasoning
Inspired by the dual-process theory of human cognition from \textit{Thinking, Fast and Slow}, we introduce \textbf{PRIME} (Planning and Retrieval-Integrated Memory for Enhanced Reasoning), a multi-agent reasoning framework that dynamically integrates \textbf{System 1} (fast, intuitive thinking) and \textbf{System 2} (slow, deliberate thinking). PRIME first employs a Quick Thinking Agent (System 1) to generate a rapid answer; if uncertainty is detected, it then triggers a structured System 2 reasoning pipeline composed of specialized agents for \textit{planning}, \textit{hypothesis generation}, \textit{retrieval}, \textit{information integration}, and \textit{decision-making}. This multi-agent design faithfully mimics human cognitive processes and enhances both efficiency and accuracy. Experimental results with LLaMA 3 models demonstrate that PRIME enables open-source LLMs to perform competitively with state-of-the-art closed-source models like GPT-4 and GPT-4o on benchmarks requiring multi-hop and knowledge-grounded reasoning. This research establishes PRIME as a scalable solution for improving LLMs in domains requiring complex, knowledge-intensive reasoning.
comment: 8 pages
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ DM-Bench: Benchmarking LLMs for Personalized Decision Making in Diabetes Management
We present DM-Bench, the first benchmark designed to evaluate large language model (LLM) performance across real-world decision-making tasks faced by individuals managing diabetes in their daily lives. Unlike prior health benchmarks that are either generic, clinician-facing or focused on clinical tasks (e.g., diagnosis, triage), DM-Bench introduces a comprehensive evaluation framework tailored to the unique challenges of prototyping patient-facing AI solutions in diabetes, glucose management, metabolic health and related domains. Our benchmark encompasses 7 distinct task categories, reflecting the breadth of real-world questions individuals with diabetes ask, including basic glucose interpretation, educational queries, behavioral associations, advanced decision making and long term planning. Towards this end, we compile a rich dataset comprising one month of time-series data encompassing glucose traces and metrics from continuous glucose monitors (CGMs) and behavioral logs (e.g., eating and activity patterns) from 15,000 individuals across three different diabetes populations (type 1, type 2, pre-diabetes/general health and wellness). Using this data, we generate a total of 360,600 personalized, contextual questions across the 7 tasks. We evaluate model performance on these tasks across 5 metrics: accuracy, groundedness, safety, clarity and actionability. Our analysis of 8 recent LLMs reveals substantial variability across tasks and metrics; no single model consistently outperforms others across all dimensions. By establishing this benchmark, we aim to advance the reliability, safety, effectiveness and practical utility of AI solutions in diabetes care.
♻ ☆ Gala: Global LLM Agents for Text-to-Model Translation
Natural language descriptions of optimization or satisfaction problems are challenging to translate into correct MiniZinc models, as this process demands both logical reasoning and constraint programming expertise. We introduce Gala, a framework that addresses this challenge with a global agentic approach: multiple specialized large language model (LLM) agents decompose the modeling task by global constraint type. Each agent is dedicated to detecting and generating code for a specific class of global constraint, while a final assembler agent integrates these constraint snippets into a complete MiniZinc model. By dividing the problem into smaller, well-defined sub-tasks, each LLM handles a simpler reasoning challenge, potentially reducing overall complexity. We conduct initial experiments with several LLMs and show better performance against baselines such as one-shot prompting and chain-of-thought prompting. Finally, we outline a comprehensive roadmap for future work, highlighting potential enhancements and directions for improvement.
♻ ☆ Verbosity Tradeoffs and the Impact of Scale on the Faithfulness of LLM Self-Explanations
When asked to explain their decisions, LLMs can often give explanations which sound plausible to humans. But are these explanations faithful, i.e. do they convey the factors actually responsible for the decision? In this work, we analyse counterfactual faithfulness across 75 models from 13 families. We analyze the tradeoff between conciseness and comprehensiveness, how correlational faithfulness metrics assess this tradeoff, and the extent to which metrics can be gamed. This analysis motivates two new metrics: the phi-CCT, a simplified variant of the Correlational Counterfactual Test (CCT) which avoids the need for token probabilities while explaining most of the variance of the original test; and F-AUROC, which eliminates sensitivity to imbalanced intervention distributions and captures a model's ability to produce explanations with different levels of detail. Our findings reveal a clear scaling trend: larger and more capable models are consistently more faithful on all metrics we consider. Our code is available at https://github.com/google-deepmind/corr_faith.
comment: 66 pages, 12 figures
♻ ☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
♻ ☆ Activated LoRA: Fine-tuned LLMs for Intrinsics
Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for finetuning the weights of large foundation models, and has become the go-to method for data-driven customization of LLMs. Despite the promise of highly customized behaviors and capabilities, switching between relevant LoRAs in a multiturn setting is inefficient, as the key-value (KV) cache of the entire turn history must be recomputed with the LoRA weights before generation can begin. To address this problem, we propose Activated LoRA (aLoRA), an adapter architecture which modifies the LoRA framework to only adapt weights for the tokens in the sequence after the aLoRA is invoked. This change crucially allows aLoRA to accept the base model's KV cache of the input string, meaning that aLoRA can be instantly activated whenever needed in a chain without recomputing the prior keys and values. This enables building what we call intrinsics, i.e. specialized models invoked to perform well-defined operations on portions of an input chain or conversation that otherwise uses the base model by default. We train a set of aLoRA-based intrinsics models, demonstrating competitive accuracy with standard LoRA while significantly improving inference efficiency. We contributed our Activated LoRA implementation to the Huggingface PEFT library https://github.com/huggingface/peft.
cAST: Enhancing Code Retrieval-Augmented Generation with Structural Chunking via Abstract Syntax Tree
Retrieval-Augmented Generation (RAG) has become essential for large-scale code generation, grounding predictions in external code corpora to improve actuality. However, a critical yet underexplored aspect of RAG pipelines is chunking -- the process of dividing documents into retrievable units. Existing line-based chunking heuristics often break semantic structures, splitting functions or merging unrelated code, which can degrade generation quality. We propose chunking via Abstract Syntax Trees (\ourwork), a structure-aware method that recursively breaks large AST nodes into smaller chunks and merges sibling nodes while respecting size limits. This approach generates self-contained, semantically coherent units across programming languages and tasks, improving performance on diverse code generation tasks, e.g., boosting Recall@5 by 4.3 points on RepoEval retrieval and Pass@1 by 2.67 points on SWE-bench generation. Our work highlights the importance of structure-aware chunking for scaling retrieval-enhanced code intelligence.
♻ ☆ Mutual Information Guided Backdoor Mitigation for Pre-trained Encoders
Self-supervised learning (SSL) is increasingly attractive for pre-training encoders without requiring labeled data. Downstream tasks built on top of those pre-trained encoders can achieve nearly state-of-the-art performance. The pre-trained encoders by SSL, however, are vulnerable to backdoor attacks as demonstrated by existing studies. Numerous backdoor mitigation techniques are designed for downstream task models. However, their effectiveness is impaired and limited when adapted to pre-trained encoders, due to the lack of label information when pre-training. To address backdoor attacks against pre-trained encoders, in this paper, we innovatively propose a mutual information guided backdoor mitigation technique, named MIMIC. MIMIC treats the potentially backdoored encoder as the teacher net and employs knowledge distillation to distill a clean student encoder from the teacher net. Different from existing knowledge distillation approaches, MIMIC initializes the student with random weights, inheriting no backdoors from teacher nets. Then MIMIC leverages mutual information between each layer and extracted features to locate where benign knowledge lies in the teacher net, with which distillation is deployed to clone clean features from teacher to student. We craft the distillation loss with two aspects, including clone loss and attention loss, aiming to mitigate backdoors and maintain encoder performance at the same time. Our evaluation conducted on two backdoor attacks in SSL demonstrates that MIMIC can significantly reduce the attack success rate by only utilizing <5% of clean data, surpassing seven state-of-the-art backdoor mitigation techniques.
♻ ☆ Pre-training Limited Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes--both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We introduce Limited Memory Language Models (LMLM), a new class of language models that externalizes factual knowledge to external database during pre-training rather than memorizing them. Our pre-training approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ A Multi-Fidelity Control Variate Approach for Policy Gradient Estimation
Many reinforcement learning (RL) algorithms are impractical for deployment in operational systems or for training with computationally expensive high-fidelity simulations, as they require large amounts of data. Meanwhile, low-fidelity simulators -- such as reduced-order models, heuristic rewards, or generative world models -- can cheaply provide useful data for RL training, even if they are too coarse for zero-shot transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a control variate formed from a large volume of low-fidelity simulation data to construct an unbiased, variance-reduced estimator for on-policy policy gradients. We instantiate the framework with a multi-fidelity variant of the classical REINFORCE algorithm. We show that under standard assumptions, the MFPG estimator guarantees asymptotic convergence of REINFORCE to locally optimal policies in the target environment, and achieves faster finite-sample convergence rates compared to training with high-fidelity data alone. Empirically, we evaluate the MFPG algorithm across a suite of simulated robotics benchmark tasks with limited high-fidelity data but abundant off-dynamics, low-fidelity data. With mild-moderate dynamics gaps, MFPG reliably improves the median performance over a high-fidelity-only baseline, matching the performance of leading multi-fidelity baselines despite its simplicity and minimal tuning overhead. Under large dynamics gaps, MFPG demonstrates the strongest robustness among the evaluated multi-fidelity approaches. An additional experiment shows that MFPG can remain effective even under low-fidelity reward misspecification. Thus, MFPG not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
♻ ☆ Thinkquel: A Model Dedicated to Text-to-dbt Using Synthetic Data and a Span-Aware Objective
Transforming natural-language requests into reliable, production-ready data transformations remains challenging: correctness depends on precise schema linking and warehouse-specific SQL dialects, while the strongest supervision available during training--execution success and result matching--are provided only at the sequence level. At the same time, assembling large, execution-validated corpora is costly, and token-level objectives misalign with these global signals, yielding unstable optimization and limited portability. We introduce Thinkquel, a fine-tuned model for producing robust, portable, and execution-validated database queries. Methodologies in Thinkquel integrates a novel synthetic data pipeline, TS-SQL, that leverages dbt as a portable intermediate representation with a span-aware reinforcement learning objective, and Token-Sequence GRPO (TS-GRPO), specifically designed to bridge the gap between token-level training signals and sequence-level execution rewards when finetuning LLMs. On the 500-example TS-SQL test set, Thinkquel (32B) reaches 93.2% execution success and 61.8% exact-result match with a two-stage SFT curriculum, improving over the base model by 67.2% (exec.) and 44.4% (match). In Spider (14B) experiments, TS-GRPO increases training stability and speeds convergence of the execution-match reward relative to GRPO and GSPO.
♻ ☆ Flow-Induced Diagonal Gaussian Processes
We present Flow-Induced Diagonal Gaussian Processes (FiD-GP), a compression framework that incorporates a compact inducing weight matrix to project a neural network's weight uncertainty into a lower-dimensional subspace. Critically, FiD-GP relies on normalising-flow priors and spectral regularisations to augment its expressiveness and align the inducing subspace with feature-gradient geometry through a numerically stable projection mechanism objective. Furthermore, we demonstrate how the prediction framework in FiD-GP can help to design a single-pass projection for Out-of-Distribution (OoD) detection. Our analysis shows that FiD-GP improves uncertainty estimation ability on various tasks compared with SVGP-based baselines, satisfies tight spectral residual bounds with theoretically guaranteed OoD detection, and significantly compresses the neural network's storage requirements at the cost of increased inference computation dependent on the number of inducing weights employed. Specifically, in a comprehensive empirical study spanning regression, image classification, semantic segmentation, and out-of-distribution detection benchmarks, it cuts Bayesian training cost by several orders of magnitude, compresses parameters by roughly 51%, reduces model size by about 75%, and matches state-of-the-art accuracy and uncertainty estimation.
comment: 15 pages
♻ ☆ NeSyGeo: A Neuro-Symbolic Framework for Multimodal Geometric Reasoning Data Generation
Obtaining large-scale, high-quality reasoning data is crucial for improving the geometric reasoning capabilities of multi-modal large language models (MLLMs). However, existing data generation methods, whether based on predefined tem plates or constrained symbolic provers, inevitably face diversity and numerical generalization limitations. To address these limitations, we propose NeSyGeo, a novel neuro-symbolic framework for generating geometric reasoning data. First, we propose a domain-specific language grounded in the entity-attributes-relations paradigm to comprehensively represent all components of plane geometry, along with generative actions defined within this symbolic space. We then design a symbolic-visual-text pipeline that synthesizes symbolic sequences, maps them to visual and textual representations and generates reasoning path with reverse search and forward validation. Based on this framework, we construct NeSyGeo CoT and NeSyGeo-Caption datasets, containing 100k samples, and release a new benchmark NeSyGeo-Test for evaluating geometric reasoning abilities in MLLMs. Experiments demonstrate that the proposal significantly and consistently improves the performance of multiple MLLMs under both reinforcement and supervised fine-tuning. With only 4k samples and two epochs of reinforcement fine-tuning, base models achieve improvements of up to +15.8% on MathVision, +8.4% on MathVerse, and +7.3% on GeoQA. Notably, a 4B model can be improved to outperform an 8B model from the same series on geometric reasoning tasks.s
comment: 29 pages
Machine Learning 335
☆ KaVa: Latent Reasoning via Compressed KV-Cache Distillation
Large Language Models (LLMs) excel at multi-step reasoning problems with explicit chain-of-thought (CoT), but verbose traces incur significant computational costs and memory overhead, and often carry redundant, stylistic artifacts. Latent reasoning has emerged as an efficient alternative that internalizes the thought process, but it suffers from a critical lack of supervision, limiting its effectiveness on complex, natural-language reasoning traces. In this work, we propose KaVa, the first framework that bridges this gap by distilling knowledge directly from a compressed KV-cache of the teacher into a latent-reasoning student via self-distillation, leveraging the representational flexibility of continuous latent tokens to align stepwise KV trajectories. We show that the abstract, unstructured knowledge within compressed KV-cache, which lacks direct token correspondence, can serve as a rich supervisory signal for a latent reasoning student. Empirically, the approach consistently outperforms strong latent baselines, exhibits markedly smaller degradation from equation-only to natural-language traces, and scales to larger backbones while preserving efficiency. These results establish compressed KV-cache distillation as a scalable supervision signal for latent reasoning, combining the accuracy of CoT-trained teachers with the efficiency and deployability of latent inference.
comment: Preprint. Under Review
Inferring Dynamic Physical Properties from Video Foundation Models
We study the task of predicting dynamic physical properties from videos. More specifically, we consider physical properties that require temporal information to be inferred: elasticity of a bouncing object, viscosity of a flowing liquid, and dynamic friction of an object sliding on a surface. To this end, we make the following contributions: (i) We collect a new video dataset for each physical property, consisting of synthetic training and testing splits, as well as a real split for real world evaluation. (ii) We explore three ways to infer the physical property from videos: (a) an oracle method where we supply the visual cues that intrinsically reflect the property using classical computer vision techniques; (b) a simple read out mechanism using a visual prompt and trainable prompt vector for cross-attention on pre-trained video generative and self-supervised models; and (c) prompt strategies for Multi-modal Large Language Models (MLLMs). (iii) We show that video foundation models trained in a generative or self-supervised manner achieve a similar performance, though behind that of the oracle, and MLLMs are currently inferior to the other models, though their performance can be improved through suitable prompting.
Robust Tangent Space Estimation via Laplacian Eigenvector Gradient Orthogonalization
Estimating the tangent spaces of a data manifold is a fundamental problem in data analysis. The standard approach, Local Principal Component Analysis (LPCA), struggles in high-noise settings due to a critical trade-off in choosing the neighborhood size. Selecting an optimal size requires prior knowledge of the geometric and noise characteristics of the data that are often unavailable. In this paper, we propose a spectral method, Laplacian Eigenvector Gradient Orthogonalization (LEGO), that utilizes the global structure of the data to guide local tangent space estimation. Instead of relying solely on local neighborhoods, LEGO estimates the tangent space at each data point by orthogonalizing the gradients of low-frequency eigenvectors of the graph Laplacian. We provide two theoretical justifications of our method. First, a differential geometric analysis on a tubular neighborhood of a manifold shows that gradients of the low-frequency Laplacian eigenfunctions of the tube align closely with the manifold's tangent bundle, while an eigenfunction with high gradient in directions orthogonal to the manifold lie deeper in the spectrum. Second, a random matrix theoretic analysis also demonstrates that low-frequency eigenvectors are robust to sub-Gaussian noise. Through comprehensive experiments, we demonstrate that LEGO yields tangent space estimates that are significantly more robust to noise than those from LPCA, resulting in marked improvements in downstream tasks such as manifold learning, boundary detection, and local intrinsic dimension estimation.
☆ Diffusion Models and the Manifold Hypothesis: Log-Domain Smoothing is Geometry Adaptive
Diffusion models have achieved state-of-the-art performance, demonstrating remarkable generalisation capabilities across diverse domains. However, the mechanisms underpinning these strong capabilities remain only partially understood. A leading conjecture, based on the manifold hypothesis, attributes this success to their ability to adapt to low-dimensional geometric structure within the data. This work provides evidence for this conjecture, focusing on how such phenomena could result from the formulation of the learning problem through score matching. We inspect the role of implicit regularisation by investigating the effect of smoothing minimisers of the empirical score matching objective. Our theoretical and empirical results confirm that smoothing the score function -- or equivalently, smoothing in the log-density domain -- produces smoothing tangential to the data manifold. In addition, we show that the manifold along which the diffusion model generalises can be controlled by choosing an appropriate smoothing.
☆ Knowledge Distillation Detection for Open-weights Models NeurIPS 2025
We propose the task of knowledge distillation detection, which aims to determine whether a student model has been distilled from a given teacher, under a practical setting where only the student's weights and the teacher's API are available. This problem is motivated by growing concerns about model provenance and unauthorized replication through distillation. To address this task, we introduce a model-agnostic framework that combines data-free input synthesis and statistical score computation for detecting distillation. Our approach is applicable to both classification and generative models. Experiments on diverse architectures for image classification and text-to-image generation show that our method improves detection accuracy over the strongest baselines by 59.6% on CIFAR-10, 71.2% on ImageNet, and 20.0% for text-to-image generation. The code is available at https://github.com/shqii1j/distillation_detection.
comment: NeurIPS 2025
☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
☆ Interactive Training: Feedback-Driven Neural Network Optimization EMNLP 2025
Traditional neural network training typically follows fixed, predefined optimization recipes, lacking the flexibility to dynamically respond to instabilities or emerging training issues. In this paper, we introduce Interactive Training, an open-source framework that enables real-time, feedback-driven intervention during neural network training by human experts or automated AI agents. At its core, Interactive Training uses a control server to mediate communication between users or agents and the ongoing training process, allowing users to dynamically adjust optimizer hyperparameters, training data, and model checkpoints. Through three case studies, we demonstrate that Interactive Training achieves superior training stability, reduced sensitivity to initial hyperparameters, and improved adaptability to evolving user needs, paving the way toward a future training paradigm where AI agents autonomously monitor training logs, proactively resolve instabilities, and optimize training dynamics.
comment: EMNLP 2025 Demo
☆ Continual Personalization for Diffusion Models
Updating diffusion models in an incremental setting would be practical in real-world applications yet computationally challenging. We present a novel learning strategy of Concept Neuron Selection (CNS), a simple yet effective approach to perform personalization in a continual learning scheme. CNS uniquely identifies neurons in diffusion models that are closely related to the target concepts. In order to mitigate catastrophic forgetting problems while preserving zero-shot text-to-image generation ability, CNS finetunes concept neurons in an incremental manner and jointly preserves knowledge learned of previous concepts. Evaluation of real-world datasets demonstrates that CNS achieves state-of-the-art performance with minimal parameter adjustments, outperforming previous methods in both single and multi-concept personalization works. CNS also achieves fusion-free operation, reducing memory storage and processing time for continual personalization.
VideoNSA: Native Sparse Attention Scales Video Understanding
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.
comment: Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
☆ Test-Time Anchoring for Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling using pretrained discrete diffusion foundation models, aiming to recover images from noisy measurements without retraining task-specific models. While diffusion models have achieved remarkable success in generative modeling, most advances rely on continuous Gaussian diffusion. In contrast, discrete diffusion offers a unified framework for jointly modeling categorical data such as text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free Bayesian inference, making it particularly well-suited for posterior sampling. However, existing approaches to discrete diffusion posterior sampling face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS) for masked diffusion foundation models, built on two key innovations -- quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. Our approach achieves state-of-the-art performance among discrete diffusion samplers across linear and nonlinear inverse problems on the standard benchmarks. We further demonstrate the benefits of our approach in training-free stylization and text-guided editing.
comment: Preprint
☆ Tree-based Dialogue Reinforced Policy Optimization for Red-Teaming Attacks
Despite recent rapid progress in AI safety, current large language models remain vulnerable to adversarial attacks in multi-turn interaction settings, where attackers strategically adapt their prompts across conversation turns and pose a more critical yet realistic challenge. Existing approaches that discover safety vulnerabilities either rely on manual red-teaming with human experts or employ automated methods using pre-defined templates and human-curated attack data, with most focusing on single-turn attacks. However, these methods did not explore the vast space of possible multi-turn attacks, failing to consider novel attack trajectories that emerge from complex dialogue dynamics and strategic conversation planning. This gap is particularly critical given recent findings that LLMs exhibit significantly higher vulnerability to multi-turn attacks compared to single-turn attacks. We propose DialTree-RPO, an on-policy reinforcement learning framework integrated with tree search that autonomously discovers diverse multi-turn attack strategies by treating the dialogue as a sequential decision-making problem, enabling systematic exploration without manually curated data. Through extensive experiments, our approach not only achieves more than 25.9% higher ASR across 10 target models compared to previous state-of-the-art approaches, but also effectively uncovers new attack strategies by learning optimal dialogue policies that maximize attack success across multiple turns.
☆ Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
☆ Fine-Grained Urban Traffic Forecasting on Metropolis-Scale Road Networks
Traffic forecasting on road networks is a complex task of significant practical importance that has recently attracted considerable attention from the machine learning community, with spatiotemporal graph neural networks (GNNs) becoming the most popular approach. The proper evaluation of traffic forecasting methods requires realistic datasets, but current publicly available benchmarks have significant drawbacks, including the absence of information about road connectivity for road graph construction, limited information about road properties, and a relatively small number of road segments that falls short of real-world applications. Further, current datasets mostly contain information about intercity highways with sparsely located sensors, while city road networks arguably present a more challenging forecasting task due to much denser roads and more complex urban traffic patterns. In this work, we provide a more complete, realistic, and challenging benchmark for traffic forecasting by releasing datasets representing the road networks of two major cities, with the largest containing almost 100,000 road segments (more than a 10-fold increase relative to existing datasets). Our datasets contain rich road features and provide fine-grained data about both traffic volume and traffic speed, allowing for building more holistic traffic forecasting systems. We show that most current implementations of neural spatiotemporal models for traffic forecasting have problems scaling to datasets of our size. To overcome this issue, we propose an alternative approach to neural traffic forecasting that uses a GNN without a dedicated module for temporal sequence processing, thus achieving much better scalability, while also demonstrating stronger forecasting performance. We hope our datasets and modeling insights will serve as a valuable resource for research in traffic forecasting.
☆ Diffusion^2: Turning 3D Environments into Radio Frequency Heatmaps
Modeling radio frequency (RF) signal propagation is essential for understanding the environment, as RF signals offer valuable insights beyond the capabilities of RGB cameras, which are limited by the visible-light spectrum, lens coverage, and occlusions. It is also useful for supporting wireless diagnosis, deployment, and optimization. However, accurately predicting RF signals in complex environments remains a challenge due to interactions with obstacles such as absorption and reflection. We introduce Diffusion^2, a diffusion-based approach that uses 3D point clouds to model the propagation of RF signals across a wide range of frequencies, from Wi-Fi to millimeter waves. To effectively capture RF-related features from 3D data, we present the RF-3D Encoder, which encapsulates the complexities of 3D geometry along with signal-specific details. These features undergo multi-scale embedding to simulate the actual RF signal dissemination process. Our evaluation, based on synthetic and real-world measurements, demonstrates that Diffusion^2 accurately estimates the behavior of RF signals in various frequency bands and environmental conditions, with an error margin of just 1.9 dB and 27x faster than existing methods, marking a significant advancement in the field. Refer to https://rfvision-project.github.io/ for more information.
☆ How to Combat Reactive and Dynamic Jamming Attacks with Reinforcement Learning
This paper studies the problem of mitigating reactive jamming, where a jammer adopts a dynamic policy of selecting channels and sensing thresholds to detect and jam ongoing transmissions. The transmitter-receiver pair learns to avoid jamming and optimize throughput over time (without prior knowledge of channel conditions or jamming strategies) by using reinforcement learning (RL) to adapt transmit power, modulation, and channel selection. Q-learning is employed for discrete jamming-event states, while Deep Q-Networks (DQN) are employed for continuous states based on received power. Through different reward functions and action sets, the results show that RL can adapt rapidly to spectrum dynamics and sustain high rates as channels and jamming policies change over time.
☆ Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.
comment: All tables, graphs and figures generated can be obtained in the Zenodo repository complementary to this work: https://doi.org/10.5281/zenodo.15088423
☆ RLAD: Training LLMs to Discover Abstractions for Solving Reasoning Problems
Reasoning requires going beyond pattern matching or memorization of solutions to identify and implement "algorithmic procedures" that can be used to deduce answers to hard problems. Doing so requires realizing the most relevant primitives, intermediate results, or shared procedures, and building upon them. While RL post-training on long chains of thought ultimately aims to uncover this kind of algorithmic behavior, most reasoning traces learned by large models fail to consistently capture or reuse procedures, instead drifting into verbose and degenerate exploration. To address more effective reasoning, we introduce reasoning abstractions: concise natural language descriptions of procedural and factual knowledge that guide the model toward learning successful reasoning. We train models to be capable of proposing multiple abstractions given a problem, followed by RL that incentivizes building a solution while using the information provided by these abstractions. This results in a two-player RL training paradigm, abbreviated as RLAD, that jointly trains an abstraction generator and a solution generator. This setup effectively enables structured exploration, decouples learning signals of abstraction proposal and solution generation, and improves generalization to harder problems. We also show that allocating more test-time compute to generating abstractions is more beneficial for performance than generating more solutions at large test budgets, illustrating the role of abstractions in guiding meaningful exploration.
☆ Transformers Discover Molecular Structure Without Graph Priors
Graph Neural Networks (GNNs) are the dominant architecture for molecular machine learning, particularly for molecular property prediction and machine learning interatomic potentials (MLIPs). GNNs perform message passing on predefined graphs often induced by a fixed radius cutoff or k-nearest neighbor scheme. While this design aligns with the locality present in many molecular tasks, a hard-coded graph can limit expressivity due to the fixed receptive field and slows down inference with sparse graph operations. In this work, we investigate whether pure, unmodified Transformers trained directly on Cartesian coordinates$\unicode{x2013}$without predefined graphs or physical priors$\unicode{x2013}$can approximate molecular energies and forces. As a starting point for our analysis, we demonstrate how to train a Transformer to competitive energy and force mean absolute errors under a matched training compute budget, relative to a state-of-the-art equivariant GNN on the OMol25 dataset. We discover that the Transformer learns physically consistent patterns$\unicode{x2013}$such as attention weights that decay inversely with interatomic distance$\unicode{x2013}$and flexibly adapts them across different molecular environments due to the absence of hard-coded biases. The use of a standard Transformer also unlocks predictable improvements with respect to scaling training resources, consistent with empirical scaling laws observed in other domains. Our results demonstrate that many favorable properties of GNNs can emerge adaptively in Transformers, challenging the necessity of hard-coded graph inductive biases and pointing toward standardized, scalable architectures for molecular modeling.
☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
☆ The Unreasonable Effectiveness of Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their unreliability and high variance hinder their application to long-horizon, complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales over agents by generating multiple rollouts and selecting among them using behavior narratives that describe the agents' rollouts. It enables both wide exploration and principled trajectory selection, substantially improving robustness and success rates. On OSWorld, our bBoN scaling method establishes a new state of the art (SoTA) at 69.9%, significantly outperforming prior methods and approaching human-level performance at 72%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the unreasonable effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and bBoN provides a practical framework to achieve this.
comment: 23 pages, 7 figures, 10 tables
☆ Explore Briefly, Then Decide: Mitigating LLM Overthinking via Cumulative Entropy Regulation
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities on complex problems using long Chain-of-Thought (CoT) reasoning. However, they often suffer from overthinking, meaning generating unnecessarily lengthy reasoning steps for simpler problems. This issue may degrade the efficiency of the models and make them difficult to adapt the reasoning depth to the complexity of problems. To address this, we introduce a novel metric Token Entropy Cumulative Average (TECA), which measures the extent of exploration throughout the reasoning process. We further propose a novel reasoning paradigm -- Explore Briefly, Then Decide -- with an associated Cumulative Entropy Regulation (CER) mechanism. This paradigm leverages TECA to help the model dynamically determine the optimal point to conclude its thought process and provide a final answer, thus achieving efficient reasoning. Experimental results across diverse mathematical benchmarks show that our approach substantially mitigates overthinking without sacrificing problem-solving ability. With our thinking paradigm, the average response length decreases by up to 71% on simpler datasets, demonstrating the effectiveness of our method in creating a more efficient and adaptive reasoning process.
☆ ExGRPO: Learning to Reason from Experience
Reinforcement learning from verifiable rewards (RLVR) is an emerging paradigm for improving the reasoning ability of large language models. However, standard on-policy training discards rollout experiences after a single update, leading to computational inefficiency and instability. While prior work on RL has highlighted the benefits of reusing past experience, the role of experience characteristics in shaping learning dynamics of large reasoning models remains underexplored. In this paper, we are the first to investigate what makes a reasoning experience valuable and identify rollout correctness and entropy as effective indicators of experience value. Based on these insights, we propose ExGRPO (Experiential Group Relative Policy Optimization), a framework that organizes and prioritizes valuable experiences, and employs a mixed-policy objective to balance exploration with experience exploitation. Experiments on five backbone models (1.5B-8B parameters) show that ExGRPO consistently improves reasoning performance on mathematical/general benchmarks, with an average gain of +3.5/7.6 points over on-policy RLVR. Moreover, ExGRPO stabilizes training on both stronger and weaker models where on-policy methods fail. These results highlight principled experience management as a key ingredient for efficient and scalable RLVR.
☆ Drop-Muon: Update Less, Converge Faster
Conventional wisdom in deep learning optimization dictates updating all layers at every step-a principle followed by all recent state-of-the-art optimizers such as Muon. In this work, we challenge this assumption, showing that full-network updates can be fundamentally suboptimal, both in theory and in practice. We introduce a non-Euclidean Randomized Progressive Training method-Drop-Muon-a simple yet powerful framework that updates only a subset of layers per step according to a randomized schedule, combining the efficiency of progressive training with layer-specific non-Euclidean updates for top-tier performance. We provide rigorous convergence guarantees under both layer-wise smoothness and layer-wise $(L^0, L^1)$-smoothness, covering deterministic and stochastic gradient settings, marking the first such results for progressive training in the stochastic and non-smooth regime. Our cost analysis further reveals that full-network updates are not optimal unless a very specific relationship between layer smoothness constants holds. Through controlled CNN experiments, we empirically demonstrate that Drop-Muon consistently outperforms full-network Muon, achieving the same accuracy up to $1.4\times$ faster in wall-clock time. Together, our results suggest a shift in how large-scale models can be efficiently trained, challenging the status quo and offering a highly efficient, theoretically grounded alternative to full-network updates.
☆ PUL-Inter-slice Defender: An Anomaly Detection Solution for Distributed Slice Mobility Attacks
Network Slices (NSs) are virtual networks operating over a shared physical infrastructure, each designed to meet specific application requirements while maintaining consistent Quality of Service (QoS). In Fifth Generation (5G) networks, User Equipment (UE) can connect to and seamlessly switch between multiple NSs to access diverse services. However, this flexibility, known as Inter-Slice Switching (ISS), introduces a potential vulnerability that can be exploited to launch Distributed Slice Mobility (DSM) attacks, a form of Distributed Denial of Service (DDoS) attack. To secure 5G networks and their NSs against DSM attacks, we present in this work, PUL-Inter-Slice Defender; an anomaly detection solution that leverages Positive Unlabeled Learning (PUL) and incorporates a combination of Long Short-Term Memory Autoencoders and K-Means clustering. PUL-Inter-Slice Defender leverages the Third Generation Partnership Project (3GPP) key performance indicators and performance measurement counters as features for its machine learning models to detect DSM attack variants while maintaining robustness in the presence of contaminated training data. When evaluated on data collected from our 5G testbed based on the open-source free5GC and UERANSIM, a UE/ Radio Access Network (RAN) simulator; PUL-Inter-Slice Defender achieved F1-scores exceeding 98.50% on training datasets with 10% to 40% attack contamination, consistently outperforming its counterpart Inter-Slice Defender and other PUL based solutions combining One-Class Support Vector Machine (OCSVM) with Random Forest and XGBoost.
comment: 13 pages, 7 figures, 4 tables, journal paper
☆ xLSTM Scaling Laws: Competitive Performance with Linear Time-Complexity
Scaling laws play a central role in the success of Large Language Models (LLMs), enabling the prediction of model performance relative to compute budgets prior to training. While Transformers have been the dominant architecture, recent alternatives such as xLSTM offer linear complexity with respect to context length while remaining competitive in the billion-parameter regime. We conduct a comparative investigation on the scaling behavior of Transformers and xLSTM along the following lines, providing insights to guide future model design and deployment. First, we study the scaling behavior for xLSTM in compute-optimal and over-training regimes using both IsoFLOP and parametric fit approaches on a wide range of model sizes (80M-7B) and number of training tokens (2B-2T). Second, we examine the dependence of optimal model sizes on context length, a pivotal aspect that was largely ignored in previous work. Finally, we analyze inference-time scaling characteristics. Our findings reveal that in typical LLM training and inference scenarios, xLSTM scales favorably compared to Transformers. Importantly, xLSTM's advantage widens as training and inference contexts grow.
comment: Code and data available at https://github.com/NX-AI/xlstm_scaling_laws
☆ More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.
comment: 20 pages, 5 figures
☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal shape with a control signal (via correlation), amplifying it where visibility is needed (via energy), and maintaining spatial focus (via entropy). TempoControl allows precise control over timing while ensuring high video quality and diversity. We demonstrate its effectiveness across various video generation applications, including temporal reordering for single and multiple objects, as well as action and audio-aligned generation.
comment: Under Review
☆ Efficiently Generating Correlated Sample Paths from Multi-step Time Series Foundation Models
Many time series applications require access to multi-step forecast trajectories in the form of sample paths. Recently, time series foundation models have leveraged multi-step lookahead predictions to improve the quality and efficiency of multi-step forecasts. However, these models only predict independent marginal distributions for each time step, rather than a full joint predictive distribution. To generate forecast sample paths with realistic correlation structures, one typically resorts to autoregressive sampling, which can be extremely expensive. In this paper, we present a copula-based approach to efficiently generate accurate, correlated sample paths from existing multi-step time series foundation models in one forward pass. Our copula-based approach generates correlated sample paths orders of magnitude faster than autoregressive sampling, and it yields improved sample path quality by mitigating the snowballing error phenomenon.
☆ Quantum Fisher information matrices from Rényi relative entropies
Quantum generalizations of the Fisher information are important in quantum information science, with applications in high energy and condensed matter physics and in quantum estimation theory, machine learning, and optimization. One can derive a quantum generalization of the Fisher information matrix in a natural way as the Hessian matrix arising in a Taylor expansion of a smooth divergence. Such an approach is appealing for quantum information theorists, given the ubiquity of divergences in quantum information theory. In contrast to the classical case, there is not a unique quantum generalization of the Fisher information matrix, similar to how there is not a unique quantum generalization of the relative entropy or the R\'enyi relative entropy. In this paper, I derive information matrices arising from the log-Euclidean, $\alpha$-$z$, and geometric R\'enyi relative entropies, with the main technical tool for doing so being the method of divided differences for calculating matrix derivatives. Interestingly, for all non-negative values of the R\'enyi parameter $\alpha$, the log-Euclidean R\'enyi relative entropy leads to the Kubo-Mori information matrix, and the geometric R\'enyi relative entropy leads to the right-logarithmic derivative Fisher information matrix. Thus, the resulting information matrices obey the data-processing inequality for all non-negative values of the R\'enyi parameter $\alpha$ even though the original quantities do not. Additionally, I derive and establish basic properties of $\alpha$-$z$ information matrices resulting from the $\alpha$-$z$ R\'enyi relative entropies. For parameterized thermal states, I establish formulas for their $\alpha$-$z$ information matrices and hybrid quantum-classical algorithms for estimating them, with applications in quantum Boltzmann machine learning.
comment: 94 pages, 2 figures, dedicated to Professor Fumio Hiai on the occasion of his forthcoming 80th birthday
☆ Diffusion Transformers for Imputation: Statistical Efficiency and Uncertainty Quantification NeurIPS 2025
Imputation methods play a critical role in enhancing the quality of practical time-series data, which often suffer from pervasive missing values. Recently, diffusion-based generative imputation methods have demonstrated remarkable success compared to autoregressive and conventional statistical approaches. Despite their empirical success, the theoretical understanding of how well diffusion-based models capture complex spatial and temporal dependencies between the missing values and observed ones remains limited. Our work addresses this gap by investigating the statistical efficiency of conditional diffusion transformers for imputation and quantifying the uncertainty in missing values. Specifically, we derive statistical sample complexity bounds based on a novel approximation theory for conditional score functions using transformers, and, through this, construct tight confidence regions for missing values. Our findings also reveal that the efficiency and accuracy of imputation are significantly influenced by the missing patterns. Furthermore, we validate these theoretical insights through simulation and propose a mixed-masking training strategy to enhance the imputation performance.
comment: 49 pages, 4 figures. Accepted as a poster at NeurIPS 2025
☆ C2AL: Cohort-Contrastive Auxiliary Learning for Large-scale Recommendation Systems ICLR 2026
Training large-scale recommendation models under a single global objective implicitly assumes homogeneity across user populations. However, real-world data are composites of heterogeneous cohorts with distinct conditional distributions. As models increase in scale and complexity and as more data is used for training, they become dominated by central distribution patterns, neglecting head and tail regions. This imbalance limits the model's learning ability and can result in inactive attention weights or dead neurons. In this paper, we reveal how the attention mechanism can play a key role in factorization machines for shared embedding selection, and propose to address this challenge by analyzing the substructures in the dataset and exposing those with strong distributional contrast through auxiliary learning. Unlike previous research, which heuristically applies weighted labels or multi-task heads to mitigate such biases, we leverage partially conflicting auxiliary labels to regularize the shared representation. This approach customizes the learning process of attention layers to preserve mutual information with minority cohorts while improving global performance. We evaluated C2AL on massive production datasets with billions of data points each for six SOTA models. Experiments show that the factorization machine is able to capture fine-grained user-ad interactions using the proposed method, achieving up to a 0.16% reduction in normalized entropy overall and delivering gains exceeding 0.30% on targeted minority cohorts.
comment: Submitted to ICLR 2026
☆ DiFFPO: Training Diffusion LLMs to Reason Fast and Furious via Reinforcement Learning
We propose DiFFPO, Diffusion Fast and Furious Policy Optimization, a unified framework for training masked diffusion large language models (dLLMs) to reason not only better (furious), but also faster via reinforcement learning (RL). We first unify the existing baseline approach such as d1 by proposing to train surrogate policies via off-policy RL, whose likelihood is much more tractable as an approximation to the true dLLM policy. This naturally motivates a more accurate and informative two-stage likelihood approximation combined with importance sampling correction, which leads to generalized RL algorithms with better sample efficiency and superior task performance. Second, we propose a new direction of joint training efficient samplers/controllers of dLLMs policy. Via RL, we incentivize dLLMs' natural multi-token prediction capabilities by letting the model learn to adaptively allocate an inference threshold for each prompt. By jointly training the sampler, we yield better accuracies with lower number of function evaluations (NFEs) compared to training the model only, obtaining the best performance in improving the Pareto frontier of the inference-time compute of dLLMs. We showcase the effectiveness of our pipeline by training open source large diffusion language models over benchmark math and planning tasks.
☆ StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?
Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.
☆ Measurement-Guided Consistency Model Sampling for Inverse Problems
Diffusion models have become powerful generative priors for solving inverse imaging problems, but their reliance on slow multi-step sampling limits practical deployment. Consistency models address this bottleneck by enabling high-quality generation in a single or only a few steps, yet their direct adaptation to inverse problems is underexplored. In this paper, we present a modified consistency sampling approach tailored for inverse problem reconstruction: the sampler's stochasticity is guided by a measurement-consistency mechanism tied to the measurement operator, which enforces fidelity to the acquired measurements while retaining the efficiency of consistency-based generation. Experiments on Fashion-MNIST and LSUN Bedroom datasets demonstrate consistent improvements in perceptual and pixel-level metrics, including Fr\'echet Inception Distance, Kernel Inception Distance, peak signal-to-noise ratio, and structural similarity index measure, compared to baseline consistency sampling, yielding competitive or superior reconstructions with only a handful of steps.
comment: 5 pages, 3 figures, submitted to IEEE Signal Processing Letters
☆ Poolformer: Recurrent Networks with Pooling for Long-Sequence Modeling
Sequence-to-sequence models have become central in Artificial Intelligence, particularly following the introduction of the transformer architecture. While initially developed for Natural Language Processing, these models have demonstrated utility across domains, including Computer Vision. Such models require mechanisms to exchange information along the time dimension, typically using recurrent or self-attention layers. However, self-attention scales quadratically with sequence length, limiting its practicality for very long sequences. We introduce Poolformer, a sequence-to-sequence model that replaces self-attention with recurrent layers and incorporates pooling operations to reduce sequence length. Poolformer is defined recursively using SkipBlocks, which contain residual blocks, a down-pooling layer, a nested SkipBlock, an up-pooling layer, and additional residual blocks. We conduct extensive experiments to support our architectural choices. Our results show that pooling greatly accelerates training, improves perceptual metrics (FID and IS), and prevents overfitting. Our experiments also suggest that long-range dependencies are handled by deep layers, while shallow layers take care of short-term features. Evaluated on raw audio, which naturally features long sequence lengths, Poolformer outperforms state-of-the-art models such as SaShiMi and Mamba. Future directions include applications to text and vision, as well as multi-modal scenarios, where a Poolformer-based LLM could effectively process dense representations of images and videos.
Detection of Chagas Disease from the ECG: The George B. Moody PhysioNet Challenge 2025
Objective: Chagas disease is a parasitic infection that is endemic to South America, Central America, and, more recently, the U.S., primarily transmitted by insects. Chronic Chagas disease can cause cardiovascular diseases and digestive problems. Serological testing capacities for Chagas disease are limited, but Chagas cardiomyopathy often manifests in ECGs, providing an opportunity to prioritize patients for testing and treatment. Approach: The George B. Moody PhysioNet Challenge 2025 invites teams to develop algorithmic approaches for identifying Chagas disease from electrocardiograms (ECGs). Main results: This Challenge provides multiple innovations. First, we leveraged several datasets with labels from patient reports and serological testing, provided a large dataset with weak labels and smaller datasets with strong labels. Second, we augmented the data to support model robustness and generalizability to unseen data sources. Third, we applied an evaluation metric that captured the local serological testing capacity for Chagas disease to frame the machine learning problem as a triage task. Significance: Over 630 participants from 111 teams submitted over 1300 entries during the Challenge, representing diverse approaches from academia and industry worldwide.
comment: 13 pages, 2 figures
☆ UpSafe$^\circ$C: Upcycling for Controllable Safety in Large Language Models
Large Language Models (LLMs) have achieved remarkable progress across a wide range of tasks, but remain vulnerable to safety risks such as harmful content generation and jailbreak attacks. Existing safety techniques -- including external guardrails, inference-time guidance, and post-training alignment -- each face limitations in balancing safety, utility, and controllability. In this work, we propose UpSafe$^\circ$C, a unified framework for enhancing LLM safety through safety-aware upcycling. Our approach first identifies safety-critical layers and upcycles them into a sparse Mixture-of-Experts (MoE) structure, where the router acts as a soft guardrail that selectively activates original MLPs and added safety experts. We further introduce a two-stage SFT strategy to strengthen safety discrimination while preserving general capabilities. To enable flexible control at inference time, we introduce a safety temperature mechanism, allowing dynamic adjustment of the trade-off between safety and utility. Experiments across multiple benchmarks, base model, and model scales demonstrate that UpSafe$^\circ$C achieves robust safety improvements against harmful and jailbreak inputs, while maintaining competitive performance on general tasks. Moreover, analysis shows that safety temperature provides fine-grained inference-time control that achieves the Pareto-optimal frontier between utility and safety. Our results highlight a new direction for LLM safety: moving from static alignment toward dynamic, modular, and inference-aware control.
☆ Hybrid Physics-ML Framework for Pan-Arctic Permafrost Infrastructure Risk at Record 2.9-Million Observation Scale
Arctic warming threatens over 100 billion in permafrost-dependent infrastructure across Northern territories, yet existing risk assessment frameworks lack spatiotemporal validation, uncertainty quantification, and operational decision-support capabilities. We present a hybrid physics-machine learning framework integrating 2.9 million observations from 171,605 locations (2005-2021) combining permafrost fraction data with climate reanalysis. Our stacked ensemble model (Random Forest + Histogram Gradient Boosting + Elastic Net) achieves R2=0.980 (RMSE=5.01 pp) with rigorous spatiotemporal cross-validation preventing data leakage. To address machine learning limitations in extrapolative climate scenarios, we develop a hybrid approach combining learned climate-permafrost relationships (60%) with physical permafrost sensitivity models (40%, -10 pp/C). Under RCP8.5 forcing (+5C over 10 years), we project mean permafrost fraction decline of -20.3 pp (median: -20.0 pp), with 51.5% of Arctic Russia experiencing over 20 percentage point loss. Infrastructure risk classification identifies 15% high-risk zones (25% medium-risk) with spatially explicit uncertainty maps. Our framework represents the largest validated permafrost ML dataset globally, provides the first operational hybrid physics-ML forecasting system for Arctic infrastructure, and delivers open-source tools enabling probabilistic permafrost projections for engineering design codes and climate adaptation planning. The methodology is generalizable to other permafrost regions and demonstrates how hybrid approaches can overcome pure data-driven limitations in climate change applications.
comment: 14 pages, 9 figures
☆ High-Fidelity Speech Enhancement via Discrete Audio Tokens
Recent autoregressive transformer-based speech enhancement (SE) methods have shown promising results by leveraging advanced semantic understanding and contextual modeling of speech. However, these approaches often rely on complex multi-stage pipelines and low sampling rate codecs, limiting them to narrow and task-specific speech enhancement. In this work, we introduce DAC-SE1, a simplified language model-based SE framework leveraging discrete high-resolution audio representations; DAC-SE1 preserves fine-grained acoustic details while maintaining semantic coherence. Our experiments show that DAC-SE1 surpasses state-of-the-art autoregressive SE methods on both objective perceptual metrics and in a MUSHRA human evaluation. We release our codebase and model checkpoints to support further research in scalable, unified, and high-quality speech enhancement.
☆ GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data. Our codes and checkpoints are available at [https://github.com/tj12323/GeoPurify](https://github.com/tj12323/GeoPurify).
☆ Uncovering Semantic Selectivity of Latent Groups in Higher Visual Cortex with Mutual Information-Guided Diffusion
Understanding how neural populations in higher visual areas encode object-centered visual information remains a central challenge in computational neuroscience. Prior works have investigated representational alignment between artificial neural networks and the visual cortex. Nevertheless, these findings are indirect and offer limited insights to the structure of neural populations themselves. Similarly, decoding-based methods have quantified semantic features from neural populations but have not uncovered their underlying organizations. This leaves open a scientific question: "how feature-specific visual information is distributed across neural populations in higher visual areas, and whether it is organized into structured, semantically meaningful subspaces." To tackle this problem, we present MIG-Vis, a method that leverages the generative power of diffusion models to visualize and validate the visual-semantic attributes encoded in neural latent subspaces. Our method first uses a variational autoencoder to infer a group-wise disentangled neural latent subspace from neural populations. Subsequently, we propose a mutual information (MI)-guided diffusion synthesis procedure to visualize the specific visual-semantic features encoded by each latent group. We validate MIG-Vis on multi-session neural spiking datasets from the inferior temporal (IT) cortex of two macaques. The synthesized results demonstrate that our method identifies neural latent groups with clear semantic selectivity to diverse visual features, including object pose, inter-category transformations, and intra-class content. These findings provide direct, interpretable evidence of structured semantic representation in the higher visual cortex and advance our understanding of its encoding principles.
☆ GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield "black-box" models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
☆ Flatness-Aware Stochastic Gradient Langevin Dynamics
Generalization in deep learning is closely tied to the pursuit of flat minima in the loss landscape, yet classical Stochastic Gradient Langevin Dynamics (SGLD) offers no mechanism to bias its dynamics toward such low-curvature solutions. This work introduces Flatness-Aware Stochastic Gradient Langevin Dynamics (fSGLD), designed to efficiently and provably seek flat minima in high-dimensional nonconvex optimization problems. At each iteration, fSGLD uses the stochastic gradient evaluated at parameters perturbed by isotropic Gaussian noise, commonly referred to as Random Weight Perturbation (RWP), thereby optimizing a randomized-smoothing objective that implicitly captures curvature information. Leveraging these properties, we prove that the invariant measure of fSGLD stays close to a stationary measure concentrated on the global minimizers of a loss function regularized by the Hessian trace whenever the inverse temperature and the scale of random weight perturbation are properly coupled. This result provides a rigorous theoretical explanation for the benefits of random weight perturbation. In particular, we establish non-asymptotic convergence guarantees in Wasserstein distance with the best known rate and derive an excess-risk bound for the Hessian-trace regularized objective. Extensive experiments on noisy-label and large-scale vision tasks, in both training-from-scratch and fine-tuning settings, demonstrate that fSGLD achieves superior or comparable generalization and robustness to baseline algorithms while maintaining the computational cost of SGD, about half that of SAM. Hessian-spectrum analysis further confirms that fSGLD converges to significantly flatter minima.
☆ Learning to Reason for Hallucination Span Detection
Large language models (LLMs) often generate hallucinations -- unsupported content that undermines reliability. While most prior works frame hallucination detection as a binary task, many real-world applications require identifying hallucinated spans, which is a multi-step decision making process. This naturally raises the question of whether explicit reasoning can help the complex task of detecting hallucination spans. To answer this question, we first evaluate pretrained models with and without Chain-of-Thought (CoT) reasoning, and show that CoT reasoning has the potential to generate at least one correct answer when sampled multiple times. Motivated by this, we propose RL4HS, a reinforcement learning framework that incentivizes reasoning with a span-level reward function. RL4HS builds on Group Relative Policy Optimization and introduces Class-Aware Policy Optimization to mitigate reward imbalance issue. Experiments on the RAGTruth benchmark (summarization, question answering, data-to-text) show that RL4HS surpasses pretrained reasoning models and supervised fine-tuning, demonstrating the necessity of reinforcement learning with span-level rewards for detecting hallucination spans.
☆ NoMod: A Non-modular Attack on Module Learning With Errors
The advent of quantum computing threatens classical public-key cryptography, motivating NIST's adoption of post-quantum schemes such as those based on the Module Learning With Errors (Module-LWE) problem. We present NoMod ML-Attack, a hybrid white-box cryptanalytic method that circumvents the challenge of modeling modular reduction by treating wrap-arounds as statistical corruption and casting secret recovery as robust linear estimation. Our approach combines optimized lattice preprocessing--including reduced-vector saving and algebraic amplification--with robust estimators trained via Tukey's Biweight loss. Experiments show NoMod achieves full recovery of binary secrets for dimension $n = 350$, recovery of sparse binomial secrets for $n = 256$, and successful recovery of sparse secrets in CRYSTALS-Kyber settings with parameters $(n, k) = (128, 3)$ and $(256, 2)$. We release our implementation in an anonymous repository https://anonymous.4open.science/r/NoMod-3BD4.
☆ Comparing Contrastive and Triplet Loss in Audio-Visual Embedding: Intra-Class Variance and Greediness Analysis
Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
comment: 8 pages, 4 tables, 3 figures
Reinforcement Learning with Action-Triggered Observations
We study reinforcement learning problems where state observations are stochastically triggered by actions, a constraint common in many real-world applications. This framework is formulated as Action-Triggered Sporadically Traceable Markov Decision Processes (ATST-MDPs), where each action has a specified probability of triggering a state observation. We derive tailored Bellman optimality equations for this framework and introduce the action-sequence learning paradigm in which agents commit to executing a sequence of actions until the next observation arrives. Under the linear MDP assumption, value-functions are shown to admit linear representations in an induced action-sequence feature map. Leveraging this structure, we propose off-policy estimators with statistical error guarantees for such feature maps and introduce ST-LSVI-UCB, a variant of LSVI-UCB adapted for action-triggered settings. ST-LSVI-UCB achieves regret $\widetilde O(\sqrt{Kd^3(1-\gamma)^{-3}})$, where $K$ is the number of episodes, $d$ the feature dimension, and $\gamma$ the discount factor (per-step episode non-termination probability). Crucially, this work establishes the theoretical foundation for learning with sporadic, action-triggered observations while demonstrating that efficient learning remains feasible under such observation constraints.
☆ Policy Gradient Guidance Enables Test Time Control
We introduce Policy Gradient Guidance (PGG), a simple extension of classifier-free guidance from diffusion models to classical policy gradient methods. PGG augments the policy gradient with an unconditional branch and interpolates conditional and unconditional branches, yielding a test-time control knob that modulates behavior without retraining. We provide a theoretical derivation showing that the additional normalization term vanishes under advantage estimation, leading to a clean guided policy gradient update. Empirically, we evaluate PGG on discrete and continuous control benchmarks. We find that conditioning dropout-central to diffusion guidance-offers gains in simple discrete tasks and low sample regimes, but dropout destabilizes continuous control. Training with modestly larger guidance ($\gamma>1$) consistently improves stability, sample efficiency, and controllability. Our results show that guidance, previously confined to diffusion policies, can be adapted to standard on-policy methods, opening new directions for controllable online reinforcement learning.
☆ How to Find Fantastic Papers: Self-Rankings as a Powerful Predictor of Scientific Impact Beyond Peer Review
Peer review in academic research aims not only to ensure factual correctness but also to identify work of high scientific potential that can shape future research directions. This task is especially critical in fast-moving fields such as artificial intelligence (AI), yet it has become increasingly difficult given the rapid growth of submissions. In this paper, we investigate an underexplored measure for identifying high-impact research: authors' own rankings of their multiple submissions to the same AI conference. Grounded in game-theoretic reasoning, we hypothesize that self-rankings are informative because authors possess unique understanding of their work's conceptual depth and long-term promise. To test this hypothesis, we conducted a large-scale experiment at a leading AI conference, where 1,342 researchers self-ranked their 2,592 submissions by perceived quality. Tracking outcomes over more than a year, we found that papers ranked highest by their authors received twice as many citations as their lowest-ranked counterparts; self-rankings were especially effective at identifying highly cited papers (those with over 150 citations). Moreover, we showed that self-rankings outperformed peer review scores in predicting future citation counts. Our results remained robust after accounting for confounders such as preprint posting time and self-citations. Together, these findings demonstrate that authors' self-rankings provide a reliable and valuable complement to peer review for identifying and elevating high-impact research in AI.
Catalyst GFlowNet for electrocatalyst design: A hydrogen evolution reaction case study NeurIPS
Efficient and inexpensive energy storage is essential for accelerating the adoption of renewable energy and ensuring a stable supply, despite fluctuations in sources such as wind and solar. Electrocatalysts play a key role in hydrogen energy storage (HES), allowing the energy to be stored as hydrogen. However, the development of affordable and high-performance catalysts for this process remains a significant challenge. We introduce Catalyst GFlowNet, a generative model that leverages machine learning-based predictors of formation and adsorption energy to design crystal surfaces that act as efficient catalysts. We demonstrate the performance of the model through a proof-of-concept application to the hydrogen evolution reaction, a key reaction in HES, for which we successfully identified platinum as the most efficient known catalyst. In future work, we aim to extend this approach to the oxygen evolution reaction, where current optimal catalysts are expensive metal oxides, and open the search space to discover new materials. This generative modeling framework offers a promising pathway for accelerating the search for novel and efficient catalysts.
comment: 5 pages, 2 figures. Accepted to NeurIPS AI for Materials Workshop 2025
☆ BioinfoMCP: A Unified Platform Enabling MCP Interfaces in Agentic Bioinformatics
Bioinformatics tools are essential for complex computational biology tasks, yet their integration with emerging AI-agent frameworks is hindered by incompatible interfaces, heterogeneous input-output formats, and inconsistent parameter conventions. The Model Context Protocol (MCP) provides a standardized framework for tool-AI communication, but manually converting hundreds of existing and rapidly growing specialized bioinformatics tools into MCP-compliant servers is labor-intensive and unsustainable. Here, we present BioinfoMCP, a unified platform comprising two components: BioinfoMCP Converter, which automatically generates robust MCP servers from tool documentation using large language models, and BioinfoMCP Benchmark, which systematically validates the reliability and versatility of converted tools across diverse computational tasks. We present a platform of 38 MCP-converted bioinformatics tools, extensively validated to show that 94.7% successfully executed complex workflows across three widely used AI-agent platforms. By removing technical barriers to AI automation, BioinfoMCP enables natural-language interaction with sophisticated bioinformatics analyses without requiring extensive programming expertise, offering a scalable path to intelligent, interoperable computational biology.
comment: 20 pages, 8 figures, 3 tables
☆ FlexDoc: Parameterized Sampling for Diverse Multilingual Synthetic Documents for Training Document Understanding Models EMNLP 2025
Developing document understanding models at enterprise scale requires large, diverse, and well-annotated datasets spanning a wide range of document types. However, collecting such data is prohibitively expensive due to privacy constraints, legal restrictions, and the sheer volume of manual annotation needed - costs that can scale into millions of dollars. We introduce FlexDoc, a scalable synthetic data generation framework that combines Stochastic Schemas and Parameterized Sampling to produce realistic, multilingual semi-structured documents with rich annotations. By probabilistically modeling layout patterns, visual structure, and content variability, FlexDoc enables the controlled generation of diverse document variants at scale. Experiments on Key Information Extraction (KIE) tasks demonstrate that FlexDoc-generated data improves the absolute F1 Score by up to 11% when used to augment real datasets, while reducing annotation effort by over 90% compared to traditional hard-template methods. The solution is in active deployment, where it has accelerated the development of enterprise-grade document understanding models while significantly reducing data acquisition and annotation costs.
comment: Accepted at EMNLP 2025
☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
comment: My preview .pdf was not loading. Can you please share with me a compiled .pdf file so I can confirm that the result is correct?
☆ Non-Asymptotic Analysis of Data Augmentation for Precision Matrix Estimation NeurIPS 2025
This paper addresses the problem of inverse covariance (also known as precision matrix) estimation in high-dimensional settings. Specifically, we focus on two classes of estimators: linear shrinkage estimators with a target proportional to the identity matrix, and estimators derived from data augmentation (DA). Here, DA refers to the common practice of enriching a dataset with artificial samples--typically generated via a generative model or through random transformations of the original data--prior to model fitting. For both classes of estimators, we derive estimators and provide concentration bounds for their quadratic error. This allows for both method comparison and hyperparameter tuning, such as selecting the optimal proportion of artificial samples. On the technical side, our analysis relies on tools from random matrix theory. We introduce a novel deterministic equivalent for generalized resolvent matrices, accommodating dependent samples with specific structure. We support our theoretical results with numerical experiments.
comment: Conference paper at NeurIPS 2025 (Spotlight)
☆ DAG DECORation: Continuous Optimization for Structure Learning under Hidden Confounding
We study structure learning for linear Gaussian SEMs in the presence of latent confounding. Existing continuous methods excel when errors are independent, while deconfounding-first pipelines rely on pervasive factor structure or nonlinearity. We propose \textsc{DECOR}, a single likelihood-based and fully differentiable estimator that jointly learns a DAG and a correlated noise model. Our theory gives simple sufficient conditions for global parameter identifiability: if the mixed graph is bow free and the noise covariance has a uniform eigenvalue margin, then the map from $(\B,\OmegaMat)$ to the observational covariance is injective, so both the directed structure and the noise are uniquely determined. The estimator alternates a smooth-acyclic graph update with a convex noise update and can include a light bow complementarity penalty or a post hoc reconciliation step. On synthetic benchmarks that vary confounding density, graph density, latent rank, and dimension with $n
☆ Ensemble Threshold Calibration for Stable Sensitivity Control
Precise recall control is critical in large-scale spatial conflation and entity-matching tasks, where missing even a few true matches can break downstream analytics, while excessive manual review inflates cost. Classical confidence-interval cuts such as Clopper-Pearson or Wilson provide lower bounds on recall, but they routinely overshoot the target by several percentage points and exhibit high run-to-run variance under skewed score distributions. We present an end-to-end framework that achieves exact recall with sub-percent variance over tens of millions of geometry pairs, while remaining TPU-friendly. Our pipeline starts with an equigrid bounding-box filter and compressed sparse row (CSR) candidate representation, reducing pair enumeration by two orders of magnitude. A deterministic xxHash bootstrap sample trains a lightweight neural ranker; its scores are propagated to all remaining pairs via a single forward pass and used to construct a reproducible, score-decile-stratified calibration set. Four complementary threshold estimators - Clopper-Pearson, Jeffreys, Wilson, and an exact quantile - are aggregated via inverse-variance weighting, then fused across nine independent subsamples. This ensemble reduces threshold variance compared to any single method. Evaluated on two real cadastral datasets (approximately 6.31M and 67.34M pairs), our approach consistently hits a recall target within a small error, decreases redundant verifications relative to other calibrations, and runs end-to-end on a single TPU v3 core.
comment: 10 pages, 6 tables
☆ Hybrid Deep Learning Modeling Approach to Predict Natural Gas Consumption of Home Subscribers on Limited Data
Today, natural gas, as a clean fuel and the best alternative to crude oil, covers a significant part of global demand. Iran is one of the largest countries with energy resources and in terms of gas is the second-largest country in the world. But, due to the increase in population and energy consumption, it faces problems such as pressure drops and gas outages yearly in cold seasons and therefore it is necessary to control gas consumption, especially in the residential sector, which has the largest share in Iran. This study aims to analyze and predict gas consumption for residential customers in Zanjan province, Iran, using machine learning models, including LSTM, GRU, and a hybrid BiLSTM-XGBoost model. The dataset consists of gas consumption and meteorology data collected over six years, from 2017 to 2022. The models were trained and evaluated based on their ability to accurately predict consumption patterns. The results indicate that the hybrid BiLSTM-XGBoost model outperformed the other models in terms of accuracy, with lower Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) values, and Mean Percentage Error (MPE). Additionally, the Hybrid model demonstrated robust performance, particularly in scenarios with limited data. The findings suggest that machine learning approaches, particularly hybrid models, can be effectively utilized to manage and predict gas consumption, contributing to more efficient resource management and reducing seasonal shortages. This study highlights the importance of incorporating geographical and climatic factors in predictive modeling, as these significantly influence gas usage across different regions.
☆ SoundReactor: Frame-level Online Video-to-Audio Generation
Prevailing Video-to-Audio (V2A) generation models operate offline, assuming an entire video sequence or chunks of frames are available beforehand. This critically limits their use in interactive applications such as live content creation and emerging generative world models. To address this gap, we introduce the novel task of frame-level online V2A generation, where a model autoregressively generates audio from video without access to future video frames. Furthermore, we propose SoundReactor, which, to the best of our knowledge, is the first simple yet effective framework explicitly tailored for this task. Our design enforces end-to-end causality and targets low per-frame latency with audio-visual synchronization. Our model's backbone is a decoder-only causal transformer over continuous audio latents. For vision conditioning, it leverages grid (patch) features extracted from the smallest variant of the DINOv2 vision encoder, which are aggregated into a single token per frame to maintain end-to-end causality and efficiency. The model is trained through a diffusion pre-training followed by consistency fine-tuning to accelerate the diffusion head decoding. On a benchmark of diverse gameplay videos from AAA titles, our model successfully generates semantically and temporally aligned, high-quality full-band stereo audio, validated by both objective and human evaluations. Furthermore, our model achieves low per-frame waveform-level latency (26.3ms with the head NFE=1, 31.5ms with NFE=4) on 30FPS, 480p videos using a single H100. Demo samples are available at https://koichi-saito-sony.github.io/soundreactor/.
☆ PENEX: AdaBoost-Inspired Neural Network Regularization
AdaBoost sequentially fits so-called weak learners to minimize an exponential loss, which penalizes mislabeled data points more severely than other loss functions like cross-entropy. Paradoxically, AdaBoost generalizes well in practice as the number of weak learners grows. In the present work, we introduce Penalized Exponential Loss (PENEX), a new formulation of the multi-class exponential loss that is theoretically grounded and, in contrast to the existing formulation, amenable to optimization via first-order methods. We demonstrate both empirically and theoretically that PENEX implicitly maximizes margins of data points. Also, we show that gradient increments on PENEX implicitly parameterize weak learners in the boosting framework. Across computer vision and language tasks, we show that PENEX exhibits a regularizing effect often better than established methods with similar computational cost. Our results highlight PENEX's potential as an AdaBoost-inspired alternative for effective training and fine-tuning of deep neural networks.
☆ Learning Model Representations Using Publicly Available Model Hubs
The weights of neural networks have emerged as a novel data modality, giving rise to the field of weight space learning. A central challenge in this area is that learning meaningful representations of weights typically requires large, carefully constructed collections of trained models, typically referred to as model zoos. These model zoos are often trained ad-hoc, requiring large computational resources, constraining the learned weight space representations in scale and flexibility. In this work, we drop this requirement by training a weight space learning backbone on arbitrary models downloaded from large, unstructured model repositories such as Hugging Face. Unlike curated model zoos, these repositories contain highly heterogeneous models: they vary in architecture and dataset, and are largely undocumented. To address the methodological challenges posed by such heterogeneity, we propose a new weight space backbone designed to handle unstructured model populations. We demonstrate that weight space representations trained on models from Hugging Face achieve strong performance, often outperforming backbones trained on laboratory-generated model zoos. Finally, we show that the diversity of the model weights in our training set allows our weight space model to generalize to unseen data modalities. By demonstrating that high-quality weight space representations can be learned in the wild, we show that curated model zoos are not indispensable, thereby overcoming a strong limitation currently faced by the weight space learning community.
☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
☆ Fine-Tuning Flow Matching via Maximum Likelihood Estimation of Reconstructions
Flow Matching (FM) algorithm achieves remarkable results in generative tasks especially in robotic manipulation. Building upon the foundations of diffusion models, the simulation-free paradigm of FM enables simple and efficient training, but inherently introduces a train-inference gap. Specifically, we cannot assess the model's output during the training phase. In contrast, other generative models including Variational Autoencoder (VAE), Normalizing Flow and Generative Adversarial Networks (GANs) directly optimize on the reconstruction loss. Such a gap is particularly evident in scenarios that demand high precision, such as robotic manipulation. Moreover, we show that FM's over-pursuit of straight predefined paths may introduce some serious problems such as stiffness into the system. These motivate us to fine-tune FM via Maximum Likelihood Estimation of reconstructions - an approach made feasible by FM's underlying smooth ODE formulation, in contrast to the stochastic differential equations (SDEs) used in diffusion models. This paper first theoretically analyzes the relation between training loss and inference error in FM. Then we propose a method of fine-tuning FM via Maximum Likelihood Estimation of reconstructions, which includes both straightforward fine-tuning and residual-based fine-tuning approaches. Furthermore, through specifically designed architectures, the residual-based fine-tuning can incorporate the contraction property into the model, which is crucial for the model's robustness and interpretability. Experimental results in image generation and robotic manipulation verify that our method reliably improves the inference performance of FM.
☆ Inferring Optical Tissue Properties from Photoplethysmography using Hybrid Amortized Inference
Smart wearables enable continuous tracking of established biomarkers such as heart rate, heart rate variability, and blood oxygen saturation via photoplethysmography (PPG). Beyond these metrics, PPG waveforms contain richer physiological information, as recent deep learning (DL) studies demonstrate. However, DL models often rely on features with unclear physiological meaning, creating a tension between predictive power, clinical interpretability, and sensor design. We address this gap by introducing PPGen, a biophysical model that relates PPG signals to interpretable physiological and optical parameters. Building on PPGen, we propose hybrid amortized inference (HAI), enabling fast, robust, and scalable estimation of relevant physiological parameters from PPG signals while correcting for model misspecification. In extensive in-silico experiments, we show that HAI can accurately infer physiological parameters under diverse noise and sensor conditions. Our results illustrate a path toward PPG models that retain the fidelity needed for DL-based features while supporting clinical interpretation and informed hardware design.
☆ Adaptive Kernel Selection for Stein Variational Gradient Descent
A central challenge in Bayesian inference is efficiently approximating posterior distributions. Stein Variational Gradient Descent (SVGD) is a popular variational inference method which transports a set of particles to approximate a target distribution. The SVGD dynamics are governed by a reproducing kernel Hilbert space (RKHS) and are highly sensitive to the choice of the kernel function, which directly influences both convergence and approximation quality. The commonly used median heuristic offers a simple approach for setting kernel bandwidths but lacks flexibility and often performs poorly, particularly in high-dimensional settings. In this work, we propose an alternative strategy for adaptively choosing kernel parameters over an abstract family of kernels. Recent convergence analyses based on the kernelized Stein discrepancy (KSD) suggest that optimizing the kernel parameters by maximizing the KSD can improve performance. Building on this insight, we introduce Adaptive SVGD (Ad-SVGD), a method that alternates between updating the particles via SVGD and adaptively tuning kernel bandwidths through gradient ascent on the KSD. We provide a simplified theoretical analysis that extends existing results on minimizing the KSD for fixed kernels to our adaptive setting, showing convergence properties for the maximal KSD over our kernel class. Our empirical results further support this intuition: Ad-SVGD consistently outperforms standard heuristics in a variety of tasks.
☆ ReTabAD: A Benchmark for Restoring Semantic Context in Tabular Anomaly Detection
In tabular anomaly detection (AD), textual semantics often carry critical signals, as the definition of an anomaly is closely tied to domain-specific context. However, existing benchmarks provide only raw data points without semantic context, overlooking rich textual metadata such as feature descriptions and domain knowledge that experts rely on in practice. This limitation restricts research flexibility and prevents models from fully leveraging domain knowledge for detection. ReTabAD addresses this gap by restoring textual semantics to enable context-aware tabular AD research. We provide (1) 20 carefully curated tabular datasets enriched with structured textual metadata, together with implementations of state-of-the-art AD algorithms including classical, deep learning, and LLM-based approaches, and (2) a zero-shot LLM framework that leverages semantic context without task-specific training, establishing a strong baseline for future research. Furthermore, this work provides insights into the role and utility of textual metadata in AD through experiments and analysis. Results show that semantic context improves detection performance and enhances interpretability by supporting domain-aware reasoning. These findings establish ReTabAD as a benchmark for systematic exploration of context-aware AD.
comment: 9 pages, 4 figures
☆ Adaptive Heterogeneous Mixtures of Normalising Flows for Robust Variational Inference
Normalising-flow variational inference (VI) can approximate complex posteriors, yet single-flow models often behave inconsistently across qualitatively different distributions. We propose Adaptive Mixture Flow Variational Inference (AMF-VI), a heterogeneous mixture of complementary flows (MAF, RealNVP, RBIG) trained in two stages: (i) sequential expert training of individual flows, and (ii) adaptive global weight estimation via likelihood-driven updates, without per-sample gating or architectural changes. Evaluated on six canonical posterior families of banana, X-shape, two-moons, rings, a bimodal, and a five-mode mixture, AMF-VI achieves consistently lower negative log-likelihood than each single-flow baseline and delivers stable gains in transport metrics (Wasserstein-2) and maximum mean discrepancy (MDD), indicating improved robustness across shapes and modalities. The procedure is efficient and architecture-agnostic, incurring minimal overhead relative to standard flow training, and demonstrates that adaptive mixtures of diverse flows provide a reliable route to robust VI across diverse posterior families whilst preserving each expert's inductive bias.
comment: 2 Figures and 2 tables
Multidata Causal Discovery for Statistical Hurricane Intensity Forecasting
Improving statistical forecasts of Atlantic hurricane intensity is limited by complex nonlinear interactions and difficulty in identifying relevant predictors. Conventional methods prioritize correlation or fit, often overlooking confounding variables and limiting generalizability to unseen tropical storms. To address this, we leverage a multidata causal discovery framework with a replicated dataset based on Statistical Hurricane Intensity Prediction Scheme (SHIPS) using ERA5 meteorological reanalysis. We conduct multiple experiments to identify and select predictors causally linked to hurricane intensity changes. We train multiple linear regression models to compare causal feature selection with no selection, correlation, and random forest feature importance across five forecast lead times from 1 to 5 days (24 to 120 hours). Causal feature selection consistently outperforms on unseen test cases, especially for lead times shorter than 3 days. The causal features primarily include vertical shear, mid-tropospheric potential vorticity and surface moisture conditions, which are physically significant yet often underutilized in hurricane intensity predictions. Further, we build an extended predictor set (SHIPS+) by adding selected features to the standard SHIPS predictors. SHIPS+ yields increased short-term predictive skill at lead times of 24, 48, and 72 hours. Adding nonlinearity using multilayer perceptron further extends skill to longer lead times, despite our framework being purely regional and not requiring global forecast data. Operational SHIPS tests confirm that three of the six added causally discovered predictors improve forecasts, with the largest gains at longer lead times. Our results demonstrate that causal discovery improves hurricane intensity prediction and pave the way toward more empirical forecasts.
comment: 19 pages, 7 Figures, 1 Table, SI
☆ Mathematical Modeling and Convergence Analysis of Deep Neural Networks with Dense Layer Connectivities in Deep Learning
In deep learning, dense layer connectivity has become a key design principle in deep neural networks (DNNs), enabling efficient information flow and strong performance across a range of applications. In this work, we model densely connected DNNs mathematically and analyze their learning problems in the deep-layer limit. For a broad applicability, we present our analysis in a framework setting of DNNs with densely connected layers and general non-local feature transformations (with local feature transformations as special cases) within layers, which is called dense non-local (DNL) framework and includes standard DenseNets and variants as special examples. In this formulation, the densely connected networks are modeled as nonlinear integral equations, in contrast to the ordinary differential equation viewpoint commonly adopted in prior works. We study the associated training problems from an optimal control perspective and prove convergence results from the network learning problem to its continuous-time counterpart. In particular, we show the convergence of optimal values and the subsequence convergence of minimizers, using a piecewise linear extension and $\Gamma$-convergence analysis. Our results provide a mathematical foundation for understanding densely connected DNNs and further suggest that such architectures can offer stability of training deep models.
☆ Variational Secret Common Randomness Extraction
This paper studies the problem of extracting common randomness (CR) or secret keys from correlated random sources observed by two legitimate parties, Alice and Bob, through public discussion in the presence of an eavesdropper, Eve. We propose a practical two-stage CR extraction framework. In the first stage, the variational probabilistic quantization (VPQ) step is introduced, where Alice and Bob employ probabilistic neural network (NN) encoders to map their observations into discrete, nearly uniform random variables (RVs) with high agreement probability while minimizing information leakage to Eve. This is realized through a variational learning objective combined with adversarial training. In the second stage, a secure sketch using code-offset construction reconciles the encoder outputs into identical secret keys, whose secrecy is guaranteed by the VPQ objective. As a representative application, we study physical layer key (PLK) generation. Beyond the traditional methods, which rely on the channel reciprocity principle and require two-way channel probing, thus suffering from large protocol overhead and being unsuitable in high mobility scenarios, we propose a sensing-based PLK generation method for integrated sensing and communications (ISAC) systems, where paired range-angle (RA) maps measured at Alice and Bob serve as correlated sources. The idea is verified through both end-to-end simulations and real-world software-defined radio (SDR) measurements, including scenarios where Eve has partial knowledge about Bob's position. The results demonstrate the feasibility and convincing performance of both the proposed CR extraction framework and sensing-based PLK generation method.
☆ Zero-shot Human Pose Estimation using Diffusion-based Inverse solvers
Pose estimation refers to tracking a human's full body posture, including their head, torso, arms, and legs. The problem is challenging in practical settings where the number of body sensors are limited. Past work has shown promising results using conditional diffusion models, where the pose prediction is conditioned on both measurements from the sensors. Unfortunately, nearly all these approaches generalize poorly across users, primarly because location measurements are highly influenced by the body size of the user. In this paper, we formulate pose estimation as an inverse problem and design an algorithm capable of zero-shot generalization. Our idea utilizes a pre-trained diffusion model and conditions it on rotational measurements alone; the priors from this model are then guided by a likelihood term, derived from the measured locations. Thus, given any user, our proposed InPose method generatively estimates the highly likely sequence of poses that best explains the sparse on-body measurements.
☆ FairContrast: Enhancing Fairness through Contrastive learning and Customized Augmenting Methods on Tabular Data NeurIPS 2025
As AI systems become more embedded in everyday life, the development of fair and unbiased models becomes more critical. Considering the social impact of AI systems is not merely a technical challenge but a moral imperative. As evidenced in numerous research studies, learning fair and robust representations has proven to be a powerful approach to effectively debiasing algorithms and improving fairness while maintaining essential information for prediction tasks. Representation learning frameworks, particularly those that utilize self-supervised and contrastive learning, have demonstrated superior robustness and generalizability across various domains. Despite the growing interest in applying these approaches to tabular data, the issue of fairness in these learned representations remains underexplored. In this study, we introduce a contrastive learning framework specifically designed to address bias and learn fair representations in tabular datasets. By strategically selecting positive pair samples and employing supervised and self-supervised contrastive learning, we significantly reduce bias compared to existing state-of-the-art contrastive learning models for tabular data. Our results demonstrate the efficacy of our approach in mitigating bias with minimum trade-off in accuracy and leveraging the learned fair representations in various downstream tasks.
comment: Accepted to NeurIPS 2025 - Reliable ML Workshop
☆ Normality Calibration in Semi-supervised Graph Anomaly Detection
Graph anomaly detection (GAD) has attracted growing interest for its crucial ability to uncover irregular patterns in broad applications. Semi-supervised GAD, which assumes a subset of annotated normal nodes available during training, is among the most widely explored application settings. However, the normality learned by existing semi-supervised GAD methods is limited to the labeled normal nodes, often inclining to overfitting the given patterns. These can lead to high detection errors, such as high false positives. To overcome this limitation, we propose GraphNC , a graph normality calibration framework that leverages both labeled and unlabeled data to calibrate the normality from a teacher model (a pre-trained semi-supervised GAD model) jointly in anomaly score and node representation spaces. GraphNC includes two main components, anomaly score distribution alignment (ScoreDA) and perturbation-based normality regularization (NormReg). ScoreDA optimizes the anomaly scores of our model by aligning them with the score distribution yielded by the teacher model. Due to accurate scores in most of the normal nodes and part of the anomaly nodes in the teacher model, the score alignment effectively pulls the anomaly scores of the normal and abnormal classes toward the two ends, resulting in more separable anomaly scores. Nevertheless, there are inaccurate scores from the teacher model. To mitigate the misleading by these scores, NormReg is designed to regularize the graph normality in the representation space, making the representations of normal nodes more compact by minimizing a perturbation-guided consistency loss solely on the labeled nodes.
comment: 17 pages
☆ ShapeGen3DCP: A Deep Learning Framework for Layer Shape Prediction in 3D Concrete Printing
This work introduces ShapeGen3DCP, a deep learning framework for fast and accurate prediction of filament cross-sectional geometry in 3D Concrete Printing (3DCP). The method is based on a neural network architecture that takes as input both material properties in the fluid state (density, yield stress, plastic viscosity) and process parameters (nozzle diameter, nozzle height, printing and flow velocities) to directly predict extruded layer shapes. To enhance generalization, some inputs are reformulated into dimensionless parameters that capture underlying physical principles. Predicted geometries are compactly represented using Fourier descriptors, which enforce smooth, closed, and symmetric profiles while reducing the prediction task to a small set of coefficients. The training dataset was synthetically generated using a well-established Particle Finite Element (PFEM) model of 3DCP, overcoming the scarcity of experimental data. Validation against diverse numerical and experimental cases shows strong agreement, confirming the framework's accuracy and reliability. This opens the way to practical uses ranging from pre-calibration of print settings, minimizing or even eliminating trial-and-error adjustments, to toolpath optimization for more advanced designs. Looking ahead, coupling the framework with simulations and sensor feedback could enable closed-loop digital twins for 3DCP, driving real-time process optimization, defect detection, and adaptive control of printing parameters.
☆ PepCompass: Navigating peptide embedding spaces using Riemannian Geometry
Antimicrobial peptide discovery is challenged by the astronomical size of peptide space and the relative scarcity of active peptides. Generative models provide continuous latent "maps" of peptide space, but conventionally ignore decoder-induced geometry and rely on flat Euclidean metrics, rendering exploration and optimization distorted and inefficient. Prior manifold-based remedies assume fixed intrinsic dimensionality, which critically fails in practice for peptide data. Here, we introduce PepCompass, a geometry-aware framework for peptide exploration and optimization. At its core, we define a Union of $\kappa$-Stable Riemannian Manifolds $\mathbb{M}^{\kappa}$, a family of decoder-induced manifolds that captures local geometry while ensuring computational stability. We propose two local exploration methods: Second-Order Riemannian Brownian Efficient Sampling, which provides a convergent second-order approximation to Riemannian Brownian motion, and Mutation Enumeration in Tangent Space, which reinterprets tangent directions as discrete amino-acid substitutions. Combining these yields Local Enumeration Bayesian Optimization (LE-BO), an efficient algorithm for local activity optimization. Finally, we introduce Potential-minimizing Geodesic Search (PoGS), which interpolates between prototype embeddings along property-enriched geodesics, biasing discovery toward seeds, i.e. peptides with favorable activity. In-vitro validation confirms the effectiveness of PepCompass: PoGS yields four novel seeds, and subsequent optimization with LE-BO discovers 25 highly active peptides with broad-spectrum activity, including against resistant bacterial strains. These results demonstrate that geometry-informed exploration provides a powerful new paradigm for antimicrobial peptide design.
☆ Private Federated Multiclass Post-hoc Calibration
Calibrating machine learning models so that predicted probabilities better reflect the true outcome frequencies is crucial for reliable decision-making across many applications. In Federated Learning (FL), the goal is to train a global model on data which is distributed across multiple clients and cannot be centralized due to privacy concerns. FL is applied in key areas such as healthcare and finance where calibration is strongly required, yet federated private calibration has been largely overlooked. This work introduces the integration of post-hoc model calibration techniques within FL. Specifically, we transfer traditional centralized calibration methods such as histogram binning and temperature scaling into federated environments and define new methods to operate them under strong client heterogeneity. We study (1) a federated setting and (2) a user-level Differential Privacy (DP) setting and demonstrate how both federation and DP impacts calibration accuracy. We propose strategies to mitigate degradation commonly observed under heterogeneity and our findings highlight that our federated temperature scaling works best for DP-FL whereas our weighted binning approach is best when DP is not required.
☆ $\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO ($\text{G}^2$RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our $\text{G}^2$RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.
comment: Github Page: https://github.com/bcmi/Granular-GRPO
☆ Moon: A Modality Conversion-based Efficient Multivariate Time Series Anomaly Detection
Multivariate time series (MTS) anomaly detection identifies abnormal patterns where each timestamp contains multiple variables. Existing MTS anomaly detection methods fall into three categories: reconstruction-based, prediction-based, and classifier-based methods. However, these methods face two key challenges: (1) Unsupervised learning methods, such as reconstruction-based and prediction-based methods, rely on error thresholds, which can lead to inaccuracies; (2) Semi-supervised methods mainly model normal data and often underuse anomaly labels, limiting detection of subtle anomalies;(3) Supervised learning methods, such as classifier-based approaches, often fail to capture local relationships, incur high computational costs, and are constrained by the scarcity of labeled data. To address these limitations, we propose Moon, a supervised modality conversion-based multivariate time series anomaly detection framework. Moon enhances the efficiency and accuracy of anomaly detection while providing detailed anomaly analysis reports. First, Moon introduces a novel multivariate Markov Transition Field (MV-MTF) technique to convert numeric time series data into image representations, capturing relationships across variables and timestamps. Since numeric data retains unique patterns that cannot be fully captured by image conversion alone, Moon employs a Multimodal-CNN to integrate numeric and image data through a feature fusion model with parameter sharing, enhancing training efficiency. Finally, a SHAP-based anomaly explainer identifies key variables contributing to anomalies, improving interpretability. Extensive experiments on six real-world MTS datasets demonstrate that Moon outperforms six state-of-the-art methods by up to 93% in efficiency, 4% in accuracy and, 10.8% in interpretation performance.
☆ Lower Bounds on Adversarial Robustness for Multiclass Classification with General Loss Functions
We consider adversarially robust classification in a multiclass setting under arbitrary loss functions and derive dual and barycentric reformulations of the corresponding learner-agnostic robust risk minimization problem. We provide explicit characterizations for important cases such as the cross-entropy loss, loss functions with a power form, and the quadratic loss, extending in this way available results for the 0-1 loss. These reformulations enable efficient computation of sharp lower bounds for adversarial risks and facilitate the design of robust classifiers beyond the 0-1 loss setting. Our paper uncovers interesting connections between adversarial robustness, $\alpha$-fair packing problems, and generalized barycenter problems for arbitrary positive measures where Kullback-Leibler and Tsallis entropies are used as penalties. Our theoretical results are accompanied with illustrative numerical experiments where we obtain tighter lower bounds for adversarial risks with the cross-entropy loss function.
Multi-bit Audio Watermarking
We present Timbru, a post-hoc audio watermarking model that achieves state-of-the-art robustness and imperceptibility trade-offs without training an embedder-detector model. Given any 44.1 kHz stereo music snippet, our method performs per-audio gradient optimization to add imperceptible perturbations in the latent space of a pretrained audio VAE, guided by a combined message and perceptual loss. The watermark can then be extracted using a pretrained CLAP model. We evaluate 16-bit watermarking on MUSDB18-HQ against AudioSeal, WavMark, and SilentCipher across common filtering, noise, compression, resampling, cropping, and regeneration attacks. Our approach attains the best average bit error rates, while preserving perceptual quality, demonstrating an efficient, dataset-free path to imperceptible audio watermarking.
☆ Bias beyond Borders: Global Inequalities in AI-Generated Music
While recent years have seen remarkable progress in music generation models, research on their biases across countries, languages, cultures, and musical genres remains underexplored. This gap is compounded by the lack of datasets and benchmarks that capture the global diversity of music. To address these challenges, we introduce GlobalDISCO, a large-scale dataset consisting of 73k music tracks generated by state-of-the-art commercial generative music models, along with paired links to 93k reference tracks in LAION-DISCO-12M. The dataset spans 147 languages and includes musical style prompts extracted from MusicBrainz and Wikipedia. The dataset is globally balanced, representing musical styles from artists across 79 countries and five continents. Our evaluation reveals large disparities in music quality and alignment with reference music between high-resource and low-resource regions. Furthermore, we find marked differences in model performance between mainstream and geographically niche genres, including cases where models generate music for regional genres that more closely align with the distribution of mainstream styles.
☆ Uniform-in-time convergence bounds for Persistent Contrastive Divergence Algorithms
We propose a continuous-time formulation of persistent contrastive divergence (PCD) for maximum likelihood estimation (MLE) of unnormalised densities. Our approach expresses PCD as a coupled, multiscale system of stochastic differential equations (SDEs), which perform optimisation of the parameter and sampling of the associated parametrised density, simultaneously. From this novel formulation, we are able to derive explicit bounds for the error between the PCD iterates and the MLE solution for the model parameter. This is made possible by deriving uniform-in-time (UiT) bounds for the difference in moments between the multiscale system and the averaged regime. An efficient implementation of the continuous-time scheme is introduced, leveraging a class of explicit, stable intregators, stochastic orthogonal Runge-Kutta Chebyshev (S-ROCK), for which we provide explicit error estimates in the long-time regime. This leads to a novel method for training energy-based models (EBMs) with explicit error guarantees.
☆ Smooth Quasar-Convex Optimization with Constraints
Quasar-convex functions form a broad nonconvex class with applications to linear dynamical systems, generalized linear models, and Riemannian optimization, among others. Current nearly optimal algorithms work only in affine spaces due to the loss of one degree of freedom when working with general convex constraints. Obtaining an accelerated algorithm that makes nearly optimal $\widetilde{O}(1/(\gamma\sqrt{\epsilon}))$ first-order queries to a $\gamma$-quasar convex smooth function \emph{with constraints} was independently asked as an open problem in Mart\'inez-Rubio (2022); Lezane, Langer, and Koolen (2024). In this work, we solve this question by designing an inexact accelerated proximal point algorithm that we implement using a first-order method achieving the aforementioned rate and, as a consequence, we improve the complexity of the accelerated geodesically Riemannian optimization solution in Mart\'inez-Rubio (2022). We also analyze projected gradient descent and Frank-Wolfe algorithms in this constrained quasar-convex setting. To the best of our knowledge, our work provides the first analyses of first-order methods for quasar-convex smooth functions with general convex constraints.
☆ StelLA: Subspace Learning in Low-rank Adaptation using Stiefel Manifold NeurIPS 2025
Low-rank adaptation (LoRA) has been widely adopted as a parameter-efficient technique for fine-tuning large-scale pre-trained models. However, it still lags behind full fine-tuning in performance, partly due to its insufficient exploitation of the geometric structure underlying low-rank manifolds. In this paper, we propose a geometry-aware extension of LoRA that uses a three-factor decomposition $U\!SV^\top$. Analogous to the structure of singular value decomposition (SVD), it separates the adapter's input and output subspaces, $V$ and $U$, from the scaling factor $S$. Our method constrains $U$ and $V$ to lie on the Stiefel manifold, ensuring their orthonormality throughout the training. To optimize on the Stiefel manifold, we employ a flexible and modular geometric optimization design that converts any Euclidean optimizer to a Riemannian one. It enables efficient subspace learning while remaining compatible with existing fine-tuning pipelines. Empirical results across a wide range of downstream tasks, including commonsense reasoning, math and code generation, image classification, and image generation, demonstrate the superior performance of our approach against the recent state-of-the-art variants of LoRA. Code is available at https://github.com/SonyResearch/stella.
comment: Accepted as a spotlight at NeurIPS 2025
☆ Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
comment: 23 pages, 13 figures. Code is available at \url{https://github.com/ymxlzgy/FoundAD}
☆ Precise Dynamics of Diagonal Linear Networks: A Unifying Analysis by Dynamical Mean-Field Theory
Diagonal linear networks (DLNs) are a tractable model that captures several nontrivial behaviors in neural network training, such as initialization-dependent solutions and incremental learning. These phenomena are typically studied in isolation, leaving the overall dynamics insufficiently understood. In this work, we present a unified analysis of various phenomena in the gradient flow dynamics of DLNs. Using Dynamical Mean-Field Theory (DMFT), we derive a low-dimensional effective process that captures the asymptotic gradient flow dynamics in high dimensions. Analyzing this effective process yields new insights into DLN dynamics, including loss convergence rates and their trade-off with generalization, and systematically reproduces many of the previously observed phenomena. These findings deepen our understanding of DLNs and demonstrate the effectiveness of the DMFT approach in analyzing high-dimensional learning dynamics of neural networks.
comment: 54 pages
☆ Automated Defect Detection for Mass-Produced Electronic Components Based on YOLO Object Detection Models
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
comment: 12 pages, 16 figures, 7 tables, and published in IEEE Sensors Journal
☆ Are LLMs Better GNN Helpers? Rethinking Robust Graph Learning under Deficiencies with Iterative Refinement
Graph Neural Networks (GNNs) are widely adopted in Web-related applications, serving as a core technique for learning from graph-structured data, such as text-attributed graphs. Yet in real-world scenarios, such graphs exhibit deficiencies that substantially undermine GNN performance. While prior GNN-based augmentation studies have explored robustness against individual imperfections, a systematic understanding of how graph-native and Large Language Models (LLMs) enhanced methods behave under compound deficiencies is still missing. Specifically, there has been no comprehensive investigation comparing conventional approaches and recent LLM-on-graph frameworks, leaving their merits unclear. To fill this gap, we conduct the first empirical study that benchmarks these two lines of methods across diverse graph deficiencies, revealing overlooked vulnerabilities and challenging the assumption that LLM augmentation is consistently superior. Building on empirical findings, we propose Robust Graph Learning via Retrieval-Augmented Contrastive Refinement (RoGRAD) framework. Unlike prior one-shot LLM-as-Enhancer designs, RoGRAD is the first iterative paradigm that leverages Retrieval-Augmented Generation (RAG) to inject retrieval-grounded augmentations by supplying class-consistent, diverse augmentations and enforcing discriminative representations through iterative graph contrastive learning. It transforms LLM augmentation for graphs from static signal injection into dynamic refinement. Extensive experiments demonstrate RoGRAD's superiority over both conventional GNN- and LLM-enhanced baselines, achieving up to 82.43% average improvement.
comment: 14 pages
☆ A Methodology for Transparent Logic-Based Classification Using a Multi-Task Convolutional Tsetlin Machine
The Tsetlin Machine (TM) is a novel machine learning paradigm that employs finite-state automata for learning and utilizes propositional logic to represent patterns. Due to its simplistic approach, TMs are inherently more interpretable than learning algorithms based on Neural Networks. The Convolutional TM has shown comparable performance on various datasets such as MNIST, K-MNIST, F-MNIST and CIFAR-2. In this paper, we explore the applicability of the TM architecture for large-scale multi-channel (RGB) image classification. We propose a methodology to generate both local interpretations and global class representations. The local interpretations can be used to explain the model predictions while the global class representations aggregate important patterns for each class. These interpretations summarize the knowledge captured by the convolutional clauses, which can be visualized as images. We evaluate our methods on MNIST and CelebA datasets, using models that achieve 98.5\% accuracy on MNIST and 86.56\% F1-score on CelebA (compared to 88.07\% for ResNet50) respectively. We show that the TM performs competitively to this deep learning model while maintaining its interpretability, even in large-scale complex training environments. This contributes to a better understanding of TM clauses and provides insights into how these models can be applied to more complex and diverse datasets.
☆ Constrained Adaptive Rejection Sampling
Language Models (LMs) are increasingly used in applications where generated outputs must satisfy strict semantic or syntactic constraints. Existing approaches to constrained generation fall along a spectrum: greedy constrained decoding methods enforce validity during decoding but distort the LM's distribution, while rejection sampling (RS) preserves fidelity but wastes computation by discarding invalid outputs. Both extremes are problematic in domains such as program fuzzing, where both validity and diversity of samples are essential. We present Constrained Adaptive Rejection Sampling (CARS), an approach that strictly improves the sample-efficiency of RS without distributional distortion. CARS begins with unconstrained LM sampling and adaptively rules out constraint-violating continuations by recording them in a trie and subtracting their probability mass from future draws. This adaptive pruning ensures that prefixes proven invalid are never revisited, acceptance rates improve monotonically, and the resulting samples exactly follow the constrained distribution. In experiments on a variety of domains -- e.g., program fuzzing and molecular generation -- CARS consistently achieves higher efficiency -- measured in the number of LM forward passes per valid sample -- while also producing stronger sample diversity than both GCD and methods that approximate the LM's distribution.
Multimodal Foundation Models for Early Disease Detection
Healthcare generates diverse streams of data, including electronic health records (EHR), medical imaging, genetics, and ongoing monitoring from wearable devices. Traditional diagnostic models frequently analyze these sources in isolation, which constrains their capacity to identify cross-modal correlations essential for early disease diagnosis. Our research presents a multimodal foundation model that consolidates diverse patient data through an attention-based transformer framework. At first, dedicated encoders put each modality into a shared latent space. Then, they combine them using multi-head attention and residual normalization. The architecture is made for pretraining on many tasks, which makes it easy to adapt to new diseases and datasets with little extra work. We provide an experimental strategy that uses benchmark datasets in oncology, cardiology, and neurology, with the goal of testing early detection tasks. The framework includes data governance and model management tools in addition to technological performance to improve transparency, reliability, and clinical interpretability. The suggested method works toward a single foundation model for precision diagnostics, which could improve the accuracy of predictions and help doctors make decisions.
comment: 6 pages
Multi-marginal temporal Schrödinger Bridge Matching for video generation from unpaired data
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textit{\textbf{Multi-Marginal temporal Schr\"odinger Bridge Matching}} (\textbf{MMtSBM}) \textit{for video generation from unpaired data}, extending the theoretical guarantees and empirical efficiency of Diffusion Schr\"odinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schr\"odinger bridges as a practical and principled approach for recovering hidden dynamics from static data.
comment: Under review. Code available at https://github.com/tgravier/MMDSBM-pytorch . Additional experiment materials available at https://mmdsbm.notion.site
☆ Randomized Gradient Subspaces for Efficient Large Language Model Training
Training large language models (LLMs) is often bottlenecked by extreme memory demands, with optimizer states dominating the footprint. Recent works mitigates this cost by projecting gradients into low-dimensional subspaces using sophisticated update strategies. In this paper, we analyze the dynamics of gradient space and its underlying subspaces. We find that while a small subspace captures most gradient energy, a significant portion still resides in the residual bulk; moreover, the influence of the core subspace diminishes over time and in deeper layers. We also observe that the gradient space exhibits near-flat curvature, calling for algorithms that explicitly account for this geometry. Motivated by these insights, we introduce a suite of randomized algorithms, GrassWalk and GrassJump, which exploit subspace and achieve state-of-the-art memory savings while improving performance on LLaMA-1B and LLaMA-7B pretraining.
☆ Deep Hedging Under Non-Convexity: Limitations and a Case for AlphaZero
This paper examines replication portfolio construction in incomplete markets - a key problem in financial engineering with applications in pricing, hedging, balance sheet management, and energy storage planning. We model this as a two-player game between an investor and the market, where the investor makes strategic bets on future states while the market reveals outcomes. Inspired by the success of Monte Carlo Tree Search in stochastic games, we introduce an AlphaZero-based system and compare its performance to deep hedging - a widely used industry method based on gradient descent. Through theoretical analysis and experiments, we show that deep hedging struggles in environments where the $Q$-function is not subject to convexity constraints - such as those involving non-convex transaction costs, capital constraints, or regulatory limitations - converging to local optima. We construct specific market environments to highlight these limitations and demonstrate that AlphaZero consistently finds near-optimal replication strategies. On the theoretical side, we establish a connection between deep hedging and convex optimization, suggesting that its effectiveness is contingent on convexity assumptions. Our experiments further suggest that AlphaZero is more sample-efficient - an important advantage in data-scarce, overfitting-prone derivative markets.
comment: 15 pages in main text + 18 pages of references and appendices
☆ Ranking Items from Discrete Ratings: The Cost of Unknown User Thresholds
Ranking items is a central task in many information retrieval and recommender systems. User input for the ranking task often comes in the form of ratings on a coarse discrete scale. We ask whether it is possible to recover a fine-grained item ranking from such coarse-grained ratings. We model items as having scores and users as having thresholds; a user rates an item positively if the item's score exceeds the user's threshold. Although all users agree on the total item order, estimating that order is challenging when both the scores and the thresholds are latent. Under our model, any ranking method naturally partitions the $n$ items into bins; the bins are ordered, but the items inside each bin are still unordered. Users arrive sequentially, and every new user can be queried to refine the current ranking. We prove that achieving a near-perfect ranking, measured by Spearman distance, requires $\Theta(n^2)$ users (and therefore $\Omega(n^2)$ queries). This is significantly worse than the $O(n\log n)$ queries needed to rank from comparisons; the gap reflects the additional queries needed to identify the users who have the appropriate thresholds. Our bound also quantifies the impact of a mismatch between score and threshold distributions via a quadratic divergence factor. To show the tightness of our results, we provide a ranking algorithm whose query complexity matches our bound up to a logarithmic factor. Our work reveals a tension in online ranking: diversity in thresholds is necessary to merge coarse ratings from many users into a fine-grained ranking, but this diversity has a cost if the thresholds are a priori unknown.
comment: 12 pages, 4 figures
☆ Universal Dynamic Regret and Constraint Violation Bounds for Constrained Online Convex Optimization
We consider a generalization of the celebrated Online Convex Optimization (OCO) framework with online adversarial constraints. We present two algorithms having simple modular structures that yield universal dynamic regret and cumulative constraint violation bounds, improving upon the state-of-the-art results. Our results hold in the most general case when both the cost and constraint functions are chosen arbitrarily by an adversary, and the constraint functions need not contain any common feasible point. The results are established by reducing the constrained learning problem to an instance of the standard OCO problem with specially constructed surrogate cost functions.
☆ Microscaling Floating Point Formats for Large Language Models
The increasing computational and memory demands of large language models (LLMs) necessitate innovative approaches to optimize resource usage without compromising performance. This paper leverages microscaling floating-point formats, a novel technique designed to address these challenges by reducing the storage and computational overhead associated with numerical representations in LLMs. Unlike traditional floating-point representations that allocate a dedicated scale for each value, microscaling employs a shared scale across a block of values, enabling compact one-byte floating-point representations while maintaining an extended dynamic range. We explore the application of microscaling in the context of 8-bit floating-point formats to significantly reduce memory footprint and computational costs. We tested several configurations of microscaling floats within the GPT-2 LLM architecture, demonstrating that microscaling data formats can achieve competitive accuracy during training and inference, proving its efficacy as a resource-efficient alternative for deploying LLMs at scale. The source code is publicly available at: https://github.com/unipi-dii-compressedarith/llm.c-sve
☆ Compositional meta-learning through probabilistic task inference
To solve a new task from minimal experience, it is essential to effectively reuse knowledge from previous tasks, a problem known as meta-learning. Compositional solutions, where common elements of computation are flexibly recombined into new configurations, are particularly well-suited for meta-learning. Here, we propose a compositional meta-learning model that explicitly represents tasks as structured combinations of reusable computations. We achieve this by learning a generative model that captures the underlying components and their statistics shared across a family of tasks. This approach transforms learning a new task into a probabilistic inference problem, which allows for finding solutions without parameter updates through highly constrained hypothesis testing. Our model successfully recovers ground truth components and statistics in rule learning and motor learning tasks. We then demonstrate its ability to quickly infer new solutions from just single examples. Together, our framework joins the expressivity of neural networks with the data-efficiency of probabilistic inference to achieve rapid compositional meta-learning.
☆ Explicit Discovery of Nonlinear Symmetries from Dynamic Data
Symmetry is widely applied in problems such as the design of equivariant networks and the discovery of governing equations, but in complex scenarios, it is not known in advance. Most previous symmetry discovery methods are limited to linear symmetries, and recent attempts to discover nonlinear symmetries fail to explicitly get the Lie algebra subspace. In this paper, we propose LieNLSD, which is, to our knowledge, the first method capable of determining the number of infinitesimal generators with nonlinear terms and their explicit expressions. We specify a function library for the infinitesimal group action and aim to solve for its coefficient matrix, proving that its prolongation formula for differential equations, which governs dynamic data, is also linear with respect to the coefficient matrix. By substituting the central differences of the data and the Jacobian matrix of the trained neural network into the infinitesimal criterion, we get a system of linear equations for the coefficient matrix, which can then be solved using SVD. On top quark tagging and a series of dynamic systems, LieNLSD shows qualitative advantages over existing methods and improves the long rollout accuracy of neural PDE solvers by over 20% while applying to guide data augmentation. Code and data are available at https://github.com/hulx2002/LieNLSD.
☆ Learning Representations Through Contrastive Neural Model Checking
Model checking is a key technique for verifying safety-critical systems against formal specifications, where recent applications of deep learning have shown promise. However, while ubiquitous for vision and language domains, representation learning remains underexplored in formal verification. We introduce Contrastive Neural Model Checking (CNML), a novel method that leverages the model checking task as a guiding signal for learning aligned representations. CNML jointly embeds logical specifications and systems into a shared latent space through a self-supervised contrastive objective. On industry-inspired retrieval tasks, CNML considerably outperforms both algorithmic and neural baselines in cross-modal and intra-modal settings.We further show that the learned representations effectively transfer to downstream tasks and generalize to more complex formulas. These findings demonstrate that model checking can serve as an objective for learning representations for formal languages.
☆ NGGAN: Noise Generation GAN Based on the Practical Measurement Dataset for Narrowband Powerline Communications
Capturing comprehensive statistics of nonperiodic asynchronous impulsive noise is a critical issue in enhancing impulse noise processing for narrowband powerline communication (NB-PLC) transceivers. However, existing mathematical noise generative models capture only some of the characteristics of additive noise. Therefore, we propose a generative adversarial network (GAN), called the noise-generation GAN (NGGAN), that learns the complicated characteristics of practically measured noise samples for data augmentation. To closely match the statistics of complicated noise in NB-PLC systems, we measured the NB-PLC noise via the analog coupling and bandpass filtering circuits of a commercial NB-PLC modem to build a realistic dataset. Specifically, the NGGAN design approaches based on the practically measured dataset are as follows: (i) we design the length of input signals that the NGGAN model can fit to facilitate cyclo-stationary noise generation. (ii) Wasserstein distance is used as a loss function to enhance the similarity between the generated noise and the training dataset and ensure that the sample diversity is sufficient for various applications. (iii) To measure the similarity performance of the GAN-based models based on mathematical and practically measured datasets, we perform quantitative and qualitative analyses. The training datasets include (1) a piecewise spectral cyclo-stationary Gaussian model (PSCGM), (2) a frequency-shift (FRESH) filter, and (3) practical measurements from NB-PLC systems. Simulation results demonstrate that the proposed NGGAN trained using waveform characteristics is closer to the practically measured dataset in terms of the quality of the generated noise.
comment: 16 pages, 15 figures, 11 tables, and published in IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025
☆ Pre-Hoc Predictions in AutoML: Leveraging LLMs to Enhance Model Selection and Benchmarking for Tabular datasets
The field of AutoML has made remarkable progress in post-hoc model selection, with libraries capable of automatically identifying the most performing models for a given dataset. Nevertheless, these methods often rely on exhaustive hyperparameter searches, where methods automatically train and test different types of models on the target dataset. Contrastingly, pre-hoc prediction emerges as a promising alternative, capable of bypassing exhaustive search through intelligent pre-selection of models. Despite its potential, pre-hoc prediction remains under-explored in the literature. This paper explores the intersection of AutoML and pre-hoc model selection by leveraging traditional models and Large Language Model (LLM) agents to reduce the search space of AutoML libraries. By relying on dataset descriptions and statistical information, we reduce the AutoML search space. Our methodology is applied to the AWS AutoGluon portfolio dataset, a state-of-the-art AutoML benchmark containing 175 tabular classification datasets available on OpenML. The proposed approach offers a shift in AutoML workflows, significantly reducing computational overhead, while still selecting the best model for the given dataset.
comment: Oral Presentations ADAPT Annual Scientific Conference 2025
☆ A reproducible comparative study of categorical kernels for Gaussian process regression, with new clustering-based nested kernels
Designing categorical kernels is a major challenge for Gaussian process regression with continuous and categorical inputs. Despite previous studies, it is difficult to identify a preferred method, either because the evaluation metrics, the optimization procedure, or the datasets change depending on the study. In particular, reproducible code is rarely available. The aim of this paper is to provide a reproducible comparative study of all existing categorical kernels on many of the test cases investigated so far. We also propose new evaluation metrics inspired by the optimization community, which provide quantitative rankings of the methods across several tasks. From our results on datasets which exhibit a group structure on the levels of categorical inputs, it appears that nested kernels methods clearly outperform all competitors. When the group structure is unknown or when there is no prior knowledge of such a structure, we propose a new clustering-based strategy using target encodings of categorical variables. We show that on a large panel of datasets, which do not necessarily have a known group structure, this estimation strategy still outperforms other approaches while maintaining low computational cost.
☆ Black-Box Combinatorial Optimization with Order-Invariant Reinforcement Learning
We introduce an order-invariant reinforcement learning framework for black-box combinatorial optimization. Classical estimation-of-distribution algorithms (EDAs) often rely on learning explicit variable dependency graphs, which can be costly and fail to capture complex interactions efficiently. In contrast, we parameterize a multivariate autoregressive generative model trained without a fixed variable ordering. By sampling random generation orders during training - a form of information-preserving dropout - the model is encouraged to be invariant to variable order, promoting search-space diversity and shaping the model to focus on the most relevant variable dependencies, improving sample efficiency. We adapt Generalized Reinforcement Policy Optimization (GRPO) to this setting, providing stable policy-gradient updates from scale-invariant advantages. Across a wide range of benchmark algorithms and problem instances of varying sizes, our method frequently achieves the best performance and consistently avoids catastrophic failures.
☆ Sparse Query Attention (SQA): A Computationally Efficient Attention Mechanism with Query Heads Reduction
The Transformer architecture, underpinned by the Multi-Head Attention (MHA) mechanism, has become the de facto standard for state-of-the-art models in artificial intelligence. However, the quadratic computational complexity of MHA with respect to sequence length presents a significant barrier to scaling, particularly for applications involving long contexts. Prevailing solutions, such as Multi-Query Attention (MQA) and Grouped-Query Attention (GQA), have effectively addressed the memory bandwidth bottleneck that dominates autoregressive inference latency by sharing Key and Value projections. While highly successful, these methods do not reduce the fundamental number of floating-point operations (FLOPs) required for the attention score computation, which remains a critical bottleneck for training and full-sequence processing. This paper introduces Sparse Query Attention (SQA), a novel attention architecture that pursues an alternative and complementary optimization path. Instead of reducing Key/Value heads, SQA reduces the number of Query heads. This architectural modification directly decreases the computational complexity of the attention mechanism by a factor proportional to the reduction in query heads, thereby lowering the overall FLOPs. This work presents the theoretical foundation of SQA, its mathematical formulation, and a family of architectural variants. Empirical benchmarks on long sequences (32k-200k tokens) demonstrate that SQA can achieve significant throughput improvements of up to 3x in computation-bound scenarios such as model pre-training, fine-tuning, and encoder-based tasks, with only a minimal impact on model quality in preliminary smallscale experiments. SQA was discovered serendipitously during the development of the upcoming Reactive Transformer architecture, suggesting its potential as a powerful tool for building more efficient and scalable models
comment: 18 pages, 6 figures, small-scale experiments
☆ PRESOL: a web-based computational setting for feature-based flare forecasting
Solar flares are the most explosive phenomena in the solar system and the main trigger of the events' chain that starts from Coronal Mass Ejections and leads to geomagnetic storms with possible impacts on the infrastructures at Earth. Data-driven solar flare forecasting relies on either deep learning approaches, which are operationally promising but with a low explainability degree, or machine learning algorithms, which can provide information on the physical descriptors that mostly impact the prediction. This paper describes a web-based technological platform for the execution of a computational pipeline of feature-based machine learning methods that provide predictions of the flare occurrence, feature ranking information, and assessment of the prediction performances.
☆ Rethinking the shape convention of an MLP
Multi-layer perceptrons (MLPs) conventionally follow a narrow-wide-narrow design where skip connections operate at the input/output dimensions while processing occurs in expanded hidden spaces. We challenge this convention by proposing wide-narrow-wide (Hourglass) MLP blocks where skip connections operate at expanded dimensions while residual computation flows through narrow bottlenecks. This inversion leverages higher-dimensional spaces for incremental refinement while maintaining computational efficiency through parameter-matched designs. Implementing Hourglass MLPs requires an initial projection to lift input signals to expanded dimensions. We propose that this projection can remain fixed at random initialization throughout training, enabling efficient training and inference implementations. We evaluate both architectures on generative tasks over popular image datasets, characterizing performance-parameter Pareto frontiers through systematic architectural search. Results show that Hourglass architectures consistently achieve superior Pareto frontiers compared to conventional designs. As parameter budgets increase, optimal Hourglass configurations favor deeper networks with wider skip connections and narrower bottlenecks-a scaling pattern distinct from conventional MLPs. Our findings suggest reconsidering skip connection placement in modern architectures, with potential applications extending to Transformers and other residual networks.
☆ Sensitivity, Specificity, and Consistency: A Tripartite Evaluation of Privacy Filters for Synthetic Data Generation
The generation of privacy-preserving synthetic datasets is a promising avenue for overcoming data scarcity in medical AI research. Post-hoc privacy filtering techniques, designed to remove samples containing personally identifiable information, have recently been proposed as a solution. However, their effectiveness remains largely unverified. This work presents a rigorous evaluation of a filtering pipeline applied to chest X-ray synthesis. Contrary to claims from the original publications, our results demonstrate that current filters exhibit limited specificity and consistency, achieving high sensitivity only for real images while failing to reliably detect near-duplicates generated from training data. These results demonstrate a critical limitation of post-hoc filtering: rather than effectively safeguarding patient privacy, these methods may provide a false sense of security while leaving unacceptable levels of patient information exposed. We conclude that substantial advances in filter design are needed before these methods can be confidently deployed in sensitive applications.
☆ Neural non-canonical Hamiltonian dynamics for long-time simulations
This work focuses on learning non-canonical Hamiltonian dynamics from data, where long-term predictions require the preservation of structure both in the learned model and in numerical schemes. Previous research focused on either facet, respectively with a potential-based architecture and with degenerate variational integrators, but new issues arise when combining both. In experiments, the learnt model is sometimes numerically unstable due to the gauge dependency of the scheme, rendering long-time simulations impossible. In this paper, we identify this problem and propose two different training strategies to address it, either by directly learning the vector field or by learning a time-discrete dynamics through the scheme. Several numerical test cases assess the ability of the methods to learn complex physical dynamics, like the guiding center from gyrokinetic plasma physics.
☆ Secure Multi-Modal Data Fusion in Federated Digital Health Systems via MCP
Secure and interoperable integration of heterogeneous medical data remains a grand challenge in digital health. Current federated learning (FL) frameworks offer privacy-preserving model training but lack standardized mechanisms to orchestrate multi-modal data fusion across distributed and resource-constrained environments. This study introduces a novel framework that leverages the Model Context Protocol (MCP) as an interoperability layer for secure, cross-agent communication in multi-modal federated healthcare systems. The proposed architecture unifies three pillars: (i) multi-modal feature alignment for clinical imaging, electronic medical records, and wearable IoT data; (ii) secure aggregation with differential privacy to protect patient-sensitive updates; and (iii) energy-aware scheduling to mitigate dropouts in mobile clients. By employing MCP as a schema-driven interface, the framework enables adaptive orchestration of AI agents and toolchains while ensuring compliance with privacy regulations. Experimental evaluation on benchmark datasets and pilot clinical cohorts demonstrates up to 9.8\% improvement in diagnostic accuracy compared with baseline FL, a 54\% reduction in client dropout rates, and clinically acceptable privacy--utility trade-offs. These results highlight MCP-enabled multi-modal fusion as a scalable and trustworthy pathway toward equitable, next-generation federated health infrastructures.
comment: 6 pages, 8 figures, 7 equations, 1 algorithm
☆ Scalable Asynchronous Federated Modeling for Spatial Data
Spatial data are central to applications such as environmental monitoring and urban planning, but are often distributed across devices where privacy and communication constraints limit direct sharing. Federated modeling offers a practical solution that preserves data privacy while enabling global modeling across distributed data sources. For instance, environmental sensor networks are privacy- and bandwidth-constrained, motivating federated spatial modeling that shares only privacy-preserving summaries to produce timely, high-resolution pollution maps without centralizing raw data. However, existing federated modeling approaches either ignore spatial dependence or rely on synchronous updates that suffer from stragglers in heterogeneous environments. This work proposes an asynchronous federated modeling framework for spatial data based on low-rank Gaussian process approximations. The method employs block-wise optimization and introduces strategies for gradient correction, adaptive aggregation, and stabilized updates. We establish linear convergence with explicit dependence on staleness, a result of standalone theoretical significance. Moreover, numerical experiments demonstrate that the asynchronous algorithm achieves synchronous performance under balanced resource allocation and significantly outperforms it in heterogeneous settings, showcasing superior robustness and scalability.
☆ Octax: Accelerated CHIP-8 Arcade Environments for Reinforcement Learning in JAX
Reinforcement learning (RL) research requires diverse, challenging environments that are both tractable and scalable. While modern video games may offer rich dynamics, they are computationally expensive and poorly suited for large-scale experimentation due to their CPU-bound execution. We introduce Octax, a high-performance suite of classic arcade game environments implemented in JAX, based on CHIP-8 emulation, a predecessor to Atari, which is widely adopted as a benchmark in RL research. Octax provides the JAX community with a long-awaited end-to-end GPU alternative to the Atari benchmark, offering image-based environments, spanning puzzle, action, and strategy genres, all executable at massive scale on modern GPUs. Our JAX-based implementation achieves orders-of-magnitude speedups over traditional CPU emulators while maintaining perfect fidelity to the original game mechanics. We demonstrate Octax's capabilities by training RL agents across multiple games, showing significant improvements in training speed and scalability compared to existing solutions. The environment's modular design enables researchers to easily extend the suite with new games or generate novel environments using large language models, making it an ideal platform for large-scale RL experimentation.
Unsupervised Dynamic Feature Selection for Robust Latent Spaces in Vision Tasks
Latent representations are critical for the performance and robustness of machine learning models, as they encode the essential features of data in a compact and informative manner. However, in vision tasks, these representations are often affected by noisy or irrelevant features, which can degrade the model's performance and generalization capabilities. This paper presents a novel approach for enhancing latent representations using unsupervised Dynamic Feature Selection (DFS). For each instance, the proposed method identifies and removes misleading or redundant information in images, ensuring that only the most relevant features contribute to the latent space. By leveraging an unsupervised framework, our approach avoids reliance on labeled data, making it broadly applicable across various domains and datasets. Experiments conducted on image datasets demonstrate that models equipped with unsupervised DFS achieve significant improvements in generalization performance across various tasks, including clustering and image generation, while incurring a minimal increase in the computational cost.
☆ Learning Regularization Functionals for Inverse Problems: A Comparative Study
In recent years, a variety of learned regularization frameworks for solving inverse problems in imaging have emerged. These offer flexible modeling together with mathematical insights. The proposed methods differ in their architectural design and training strategies, making direct comparison challenging due to non-modular implementations. We address this gap by collecting and unifying the available code into a common framework. This unified view allows us to systematically compare the approaches and highlight their strengths and limitations, providing valuable insights into their future potential. We also provide concise descriptions of each method, complemented by practical guidelines.
☆ Private and Fair Machine Learning: Revisiting the Disparate Impact of Differentially Private SGD
Differential privacy (DP) is a prominent method for protecting information about individuals during data analysis. Training neural networks with differentially private stochastic gradient descent (DPSGD) influences the model's learning dynamics and, consequently, its output. This can affect the model's performance and fairness. While the majority of studies on the topic report a negative impact on fairness, it has recently been suggested that fairness levels comparable to non-private models can be achieved by optimizing hyperparameters for performance directly on differentially private models (rather than re-using hyperparameters from non-private models, as is common practice). In this work, we analyze the generalizability of this claim by 1) comparing the disparate impact of DPSGD on different performance metrics, and 2) analyzing it over a wide range of hyperparameter settings. We highlight that a disparate impact on one metric does not necessarily imply a disparate impact on another. Most importantly, we show that while optimizing hyperparameters directly on differentially private models does not mitigate the disparate impact of DPSGD reliably, it can still lead to improved utility-fairness trade-offs compared to re-using hyperparameters from non-private models. We stress, however, that any form of hyperparameter tuning entails additional privacy leakage, calling for careful considerations of how to balance privacy, utility and fairness. Finally, we extend our analyses to DPSGD-Global-Adapt, a variant of DPSGD designed to mitigate the disparate impact on accuracy, and conclude that this alternative may not be a robust solution with respect to hyperparameter choice.
☆ Reducing Simulation Dependence in Neutrino Telescopes with Masked Point Transformers
Machine learning techniques in neutrino physics have traditionally relied on simulated data, which provides access to ground-truth labels. However, the accuracy of these simulations and the discrepancies between simulated and real data remain significant concerns, particularly for large-scale neutrino telescopes that operate in complex natural media. In recent years, self-supervised learning has emerged as a powerful paradigm for reducing dependence on labeled datasets. Here, we present the first self-supervised training pipeline for neutrino telescopes, leveraging point cloud transformers and masked autoencoders. By shifting the majority of training to real data, this approach minimizes reliance on simulations, thereby mitigating associated systematic uncertainties. This represents a fundamental departure from previous machine learning applications in neutrino telescopes, paving the way for substantial improvements in event reconstruction and classification.
comment: 8 pages, 3 figures, presented at the 39th International Cosmic Ray Conference (ICRC2025)
☆ Workplace Location Choice Model based on Deep Neural Network
Discrete choice models (DCMs) have long been used to analyze workplace location decisions, but they face challenges in accurately mirroring individual decision-making processes. This paper presents a deep neural network (DNN) method for modeling workplace location choices, which aims to better understand complex decision patterns and provides better results than traditional discrete choice models (DCMs). The study demonstrates that DNNs show significant potential as a robust alternative to DCMs in this domain. While both models effectively replicate the impact of job opportunities on workplace location choices, the DNN outperforms the DCM in certain aspects. However, the DCM better aligns with data when assessing the influence of individual attributes on workplace distance. Notably, DCMs excel at shorter distances, while DNNs perform comparably to both data and DCMs for longer distances. These findings underscore the importance of selecting the appropriate model based on specific application requirements in workplace location choice analysis.
☆ Finite-Time Bounds for Distributionally Robust TD Learning with Linear Function Approximation
Distributionally robust reinforcement learning (DRRL) focuses on designing policies that achieve good performance under model uncertainties. In particular, we are interested in maximizing the worst-case long-term discounted reward, where the data for RL comes from a nominal model while the deployed environment can deviate from the nominal model within a prescribed uncertainty set. Existing convergence guarantees for robust temporal-difference (TD) learning for policy evaluation are limited to tabular MDPs or are dependent on restrictive discount-factor assumptions when function approximation is used. We present the first robust TD learning with linear function approximation, where robustness is measured with respect to the total-variation distance and Wasserstein-l distance uncertainty set. Additionally, our algorithm is both model-free and does not require generative access to the MDP. Our algorithm combines a two-time-scale stochastic-approximation update with an outer-loop target-network update. We establish an $\tilde{O}(1/\epsilon^2)$ sample complexity to obtain an $\epsilon$-accurate value estimate. Our results close a key gap between the empirical success of robust RL algorithms and the non-asymptotic guarantees enjoyed by their non-robust counterparts. The key ideas in the paper also extend in a relatively straightforward fashion to robust Q-learning with function approximation.
comment: Preprint. 32 Pages
☆ Accelerating Attention with Basis Decomposition
Attention is a core operation in large language models (LLMs) and vision-language models (VLMs). We present BD Attention (BDA), the first lossless algorithmic reformulation of attention. BDA is enabled by a simple matrix identity from Basis Decomposition (BD), which restructures multi-head projections into a compact form while preserving exact outputs. Unlike I/O-aware system optimizations such as FlashAttention, BDA provides a mathematically guaranteed acceleration that is architecture-agnostic. On DeepSeek-V2-Lite (16B, FP16), BDA requires only 4s of offline preparation with no retraining required and, on modern GPUs, achieves 32% faster key/value projections and 25% smaller weights, while increasing end-to-end perplexity (PPL) by just 0.02% (FP16) or 0.0004% (FP32), a negligible effect on model performance. These results position BDA as the first theoretically exact method for lossless attention acceleration that is complementary to existing engineering-level optimizations. Our code is available at https://github.com/abcbdf/basis-decomposition-official.
☆ Latency-aware Multimodal Federated Learning over UAV Networks
This paper investigates federated multimodal learning (FML) assisted by unmanned aerial vehicles (UAVs) with a focus on minimizing system latency and providing convergence analysis. In this framework, UAVs are distributed throughout the network to collect data, participate in model training, and collaborate with a base station (BS) to build a global model. By utilizing multimodal sensing, the UAVs overcome the limitations of unimodal systems, enhancing model accuracy, generalization, and offering a more comprehensive understanding of the environment. The primary objective is to optimize FML system latency in UAV networks by jointly addressing UAV sensing scheduling, power control, trajectory planning, resource allocation, and BS resource management. To address the computational complexity of our latency minimization problem, we propose an efficient iterative optimization algorithm combining block coordinate descent and successive convex approximation techniques, which provides high-quality approximate solutions. We also present a theoretical convergence analysis for the UAV-assisted FML framework under a non-convex loss function. Numerical experiments demonstrate that our FML framework outperforms existing approaches in terms of system latency and model training performance under different data settings.
comment: Accepted at IEEE Transactions on Network Science and Engineering
☆ ActiNet: Activity intensity classification of wrist-worn accelerometers using self-supervised deep learning
The use of reliable and accurate human activity recognition (HAR) models on passively collected wrist-accelerometer data is essential in large-scale epidemiological studies that investigate the association between physical activity and health outcomes. While the use of self-supervised learning has generated considerable excitement in improving HAR, it remains unknown the extent to which these models, coupled with hidden Markov models (HMMs), would make a tangible improvement to classification performance, and the effect this may have on the predicted daily activity intensity compositions. Using 151 CAPTURE-24 participants' data, we trained the ActiNet model, a self-supervised, 18-layer, modified ResNet-V2 model, followed by hidden Markov model (HMM) smoothing to classify labels of activity intensity. The performance of this model, evaluated using 5-fold stratified group cross-validation, was then compared to a baseline random forest (RF) + HMM, established in existing literature. Differences in performance and classification outputs were compared with different subgroups of age and sex within the Capture-24 population. The ActiNet model was able to distinguish labels of activity intensity with a mean macro F1 score of 0.82, and mean Cohen's kappa score of 0.86. This exceeded the performance of the RF + HMM, trained and validated on the same dataset, with mean scores of 0.77 and 0.81, respectively. These findings were consistent across subgroups of age and sex. These findings encourage the use of ActiNet for the extraction of activity intensity labels from wrist-accelerometer data in future epidemiological studies.
☆ Contrastive Representation Regularization for Vision-Language-Action Models
Vision-Language-Action (VLA) models have shown its capabilities in robot manipulation by leveraging rich representations from pre-trained Vision-Language Models (VLMs). However, their representations arguably remain suboptimal, lacking sensitivity to robotic signals such as control actions and proprioceptive states. To address the issue, we introduce Robot State-aware Contrastive Loss (RS-CL), a simple and effective representation regularization for VLA models, designed to bridge the gap between VLM representations and robotic signals. In particular, RS-CL aligns the representations more closely with the robot's proprioceptive states, by using relative distances between the states as soft supervision. Complementing the original action prediction objective, RS-CL effectively enhances control-relevant representation learning, while being lightweight and fully compatible with standard VLA training pipeline. Our empirical results demonstrate that RS-CL substantially improves the manipulation performance of state-of-the-art VLA models; it pushes the prior art from 30.8% to 41.5% on pick-and-place tasks in RoboCasa-Kitchen, through more accurate positioning during grasping and placing, and boosts success rates from 45.0% to 58.3% on challenging real-robot manipulation tasks.
comment: 20 pages, 12 figures
☆ Representational Alignment Across Model Layers and Brain Regions with Hierarchical Optimal Transport
Standard representational similarity methods align each layer of a network to its best match in another independently, producing asymmetric results, lacking a global alignment score, and struggling with networks of different depths. These limitations arise from ignoring global activation structure and restricting mappings to rigid one-to-one layer correspondences. We propose Hierarchical Optimal Transport (HOT), a unified framework that jointly infers soft, globally consistent layer-to-layer couplings and neuron-level transport plans. HOT allows source neurons to distribute mass across multiple target layers while minimizing total transport cost under marginal constraints. This yields both a single alignment score for the entire network comparison and a soft transport plan that naturally handles depth mismatches through mass distribution. We evaluate HOT on vision models, large language models, and human visual cortex recordings. Across all domains, HOT matches or surpasses standard pairwise matching in alignment quality. Moreover, it reveals smooth, fine-grained hierarchical correspondences: early layers map to early layers, deeper layers maintain relative positions, and depth mismatches are resolved by distributing representations across multiple layers. These structured patterns emerge naturally from global optimization without being imposed, yet are absent in greedy layer-wise methods. HOT thus enables richer, more interpretable comparisons between representations, particularly when networks differ in architecture or depth.
☆ Holistic Order Prediction in Natural Scenes
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.
comment: 25 pages, 11 figures, 6 tables
☆ VaPR -- Vision-language Preference alignment for Reasoning
Preference finetuning methods like Direct Preference Optimization (DPO) with AI-generated feedback have shown promise in aligning Large Vision-Language Models (LVLMs) with human preferences. However, existing techniques overlook the prevalence of noise in synthetic preference annotations in the form of stylistic and length biases. To this end, we introduce a hard-negative response generation framework based on LLM-guided response editing, that produces rejected responses with targeted errors, maintaining stylistic and length similarity to the accepted ones. Using this framework, we develop the VaPR dataset, comprising 30K high-quality samples, to finetune three LVLM families: LLaVA-V1.5, Qwen2VL & Qwen2.5VL (2B-13B sizes). Our VaPR models deliver significant performance improvements across ten benchmarks, achieving average gains of 6.5% (LLaVA), 4.0% (Qwen2VL), and 1.5% (Qwen2.5VL), with notable improvements on reasoning tasks. A scaling analysis shows that performance consistently improves with data size, with LLaVA models benefiting even at smaller scales. Moreover, VaPR reduces the tendency to answer "Yes" in binary questions - addressing a common failure mode in LVLMs like LLaVA. Lastly, we show that the framework generalizes to open-source LLMs as editors, with models trained on VaPR-OS achieving ~99% of the performance of models trained on \name, which is synthesized using GPT-4o. Our data, models, and code can be found on the project page https://vap-r.github.io
☆ PASTA: A Unified Framework for Offline Assortment Learning
We study a broad class of assortment optimization problems in an offline and data-driven setting. In such problems, a firm lacks prior knowledge of the underlying choice model, and aims to determine an optimal assortment based on historical customer choice data. The combinatorial nature of assortment optimization often results in insufficient data coverage, posing a significant challenge in designing provably effective solutions. To address this, we introduce a novel Pessimistic Assortment Optimization (PASTA) framework that leverages the principle of pessimism to achieve optimal expected revenue under general choice models. Notably, PASTA requires only that the offline data distribution contains an optimal assortment, rather than providing the full coverage of all feasible assortments. Theoretically, we establish the first finite-sample regret bounds for offline assortment optimization across several widely used choice models, including the multinomial logit and nested logit models. Additionally, we derive a minimax regret lower bound, proving that PASTA is minimax optimal in terms of sample and model complexity. Numerical experiments further demonstrate that our method outperforms existing baseline approaches.
☆ Beyond Simple Fusion: Adaptive Gated Fusion for Robust Multimodal Sentiment Analysis
Multimodal sentiment analysis (MSA) leverages information fusion from diverse modalities (e.g., text, audio, visual) to enhance sentiment prediction. However, simple fusion techniques often fail to account for variations in modality quality, such as those that are noisy, missing, or semantically conflicting. This oversight leads to suboptimal performance, especially in discerning subtle emotional nuances. To mitigate this limitation, we introduce a simple yet efficient \textbf{A}daptive \textbf{G}ated \textbf{F}usion \textbf{N}etwork that adaptively adjusts feature weights via a dual gate fusion mechanism based on information entropy and modality importance. This mechanism mitigates the influence of noisy modalities and prioritizes informative cues following unimodal encoding and cross-modal interaction. Experiments on CMU-MOSI and CMU-MOSEI show that AGFN significantly outperforms strong baselines in accuracy, effectively discerning subtle emotions with robust performance. Visualization analysis of feature representations demonstrates that AGFN enhances generalization by learning from a broader feature distribution, achieved by reducing the correlation between feature location and prediction error, thereby decreasing reliance on specific locations and creating more robust multimodal feature representations.
☆ Evaluating the Robustness of a Production Malware Detection System to Transferable Adversarial Attacks
As deep learning models become widely deployed as components within larger production systems, their individual shortcomings can create system-level vulnerabilities with real-world impact. This paper studies how adversarial attacks targeting an ML component can degrade or bypass an entire production-grade malware detection system, performing a case study analysis of Gmail's pipeline where file-type identification relies on a ML model. The malware detection pipeline in use by Gmail contains a machine learning model that routes each potential malware sample to a specialized malware classifier to improve accuracy and performance. This model, called Magika, has been open sourced. By designing adversarial examples that fool Magika, we can cause the production malware service to incorrectly route malware to an unsuitable malware detector thereby increasing our chance of evading detection. Specifically, by changing just 13 bytes of a malware sample, we can successfully evade Magika in 90% of cases and thereby allow us to send malware files over Gmail. We then turn our attention to defenses, and develop an approach to mitigate the severity of these types of attacks. For our defended production model, a highly resourced adversary requires 50 bytes to achieve just a 20% attack success rate. We implement this defense, and, thanks to a collaboration with Google engineers, it has already been deployed in production for the Gmail classifier.
☆ Just Do It!? Computer-Use Agents Exhibit Blind Goal-Directedness
Computer-Use Agents (CUAs) are an increasingly deployed class of agents that take actions on GUIs to accomplish user goals. In this paper, we show that CUAs consistently exhibit Blind Goal-Directedness (BGD): a bias to pursue goals regardless of feasibility, safety, reliability, or context. We characterize three prevalent patterns of BGD: (i) lack of contextual reasoning, (ii) assumptions and decisions under ambiguity, and (iii) contradictory or infeasible goals. We develop BLIND-ACT, a benchmark of 90 tasks capturing these three patterns. Built on OSWorld, BLIND-ACT provides realistic environments and employs LLM-based judges to evaluate agent behavior, achieving 93.75% agreement with human annotations. We use BLIND-ACT to evaluate nine frontier models, including Claude Sonnet and Opus 4, Computer-Use-Preview, and GPT-5, observing high average BGD rates (80.8%) across them. We show that BGD exposes subtle risks that arise even when inputs are not directly harmful. While prompting-based interventions lower BGD levels, substantial risk persists, highlighting the need for stronger training- or inference-time interventions. Qualitative analysis reveals observed failure modes: execution-first bias (focusing on how to act over whether to act), thought-action disconnect (execution diverging from reasoning), and request-primacy (justifying actions due to user request). Identifying BGD and introducing BLIND-ACT establishes a foundation for future research on studying and mitigating this fundamental risk and ensuring safe CUA deployment.
☆ Shift-Invariant Attribute Scoring for Kolmogorov-Arnold Networks via Shapley Value
For many real-world applications, understanding feature-outcome relationships is as crucial as achieving high predictive accuracy. While traditional neural networks excel at prediction, their black-box nature obscures underlying functional relationships. Kolmogorov--Arnold Networks (KANs) address this by employing learnable spline-based activation functions on edges, enabling recovery of symbolic representations while maintaining competitive performance. However, KAN's architecture presents unique challenges for network pruning. Conventional magnitude-based methods become unreliable due to sensitivity to input coordinate shifts. We propose \textbf{ShapKAN}, a pruning framework using Shapley value attribution to assess node importance in a shift-invariant manner. Unlike magnitude-based approaches, ShapKAN quantifies each node's actual contribution, ensuring consistent importance rankings regardless of input parameterization. Extensive experiments on synthetic and real-world datasets demonstrate that ShapKAN preserves true node importance while enabling effective network compression. Our approach improves KAN's interpretability advantages, facilitating deployment in resource-constrained environments.
comment: 15 pages, 6 figures, 9 tables
☆ Learning Time-Series Representations by Hierarchical Uniformity-Tolerance Latent Balancing
We propose TimeHUT, a novel method for learning time-series representations by hierarchical uniformity-tolerance balancing of contrastive representations. Our method uses two distinct losses to learn strong representations with the aim of striking an effective balance between uniformity and tolerance in the embedding space. First, TimeHUT uses a hierarchical setup to learn both instance-wise and temporal information from input time-series. Next, we integrate a temperature scheduler within the vanilla contrastive loss to balance the uniformity and tolerance characteristics of the embeddings. Additionally, a hierarchical angular margin loss enforces instance-wise and temporal contrast losses, creating geometric margins between positive and negative pairs of temporal sequences. This approach improves the coherence of positive pairs and their separation from the negatives, enhancing the capture of temporal dependencies within a time-series sample. We evaluate our approach on a wide range of tasks, namely 128 UCR and 30 UAE datasets for univariate and multivariate classification, as well as Yahoo and KPI datasets for anomaly detection. The results demonstrate that TimeHUT outperforms prior methods by considerable margins on classification, while obtaining competitive results for anomaly detection. Finally, detailed sensitivity and ablation studies are performed to evaluate different components and hyperparameters of our method.
comment: Accepted in Transactions on Machine Learning Research
☆ Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely pragmatic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
☆ The Unseen Frontier: Pushing the Limits of LLM Sparsity with Surrogate-Free ADMM
Neural network pruning is a promising technique to mitigate the excessive computational and memory requirements of large language models (LLMs). Despite its promise, however, progress in this area has diminished, as conventional methods are seemingly unable to surpass moderate sparsity levels (50-60%) without severely degrading model accuracy. This work breaks through the current impasse, presenting a principled and effective method called $\texttt{Elsa}$, which achieves extreme sparsity levels of up to 90% while retaining high model fidelity. This is done by identifying several limitations in current practice, all of which can be traced back to their reliance on a surrogate objective formulation. $\texttt{Elsa}$ tackles this issue directly and effectively via standard and well-established constrained optimization techniques based on ADMM. Our extensive experiments across a wide range of models and scales show that $\texttt{Elsa}$ achieves substantial improvements over existing methods; e.g., it achieves 7.8$\times$ less perplexity than the best existing method on LLaMA-2-7B at 90% sparsity. Furthermore, we present $\texttt{Elsa}_{\text{-L}}$, a quantized variant that scales to extremely large models (27B), and establish its theoretical convergence guarantees. These results highlight meaningful progress in advancing the frontier of LLM sparsity, while promising that significant opportunities for further advancement may remain in directions that have so far attracted limited exploration.
comment: Preprint
☆ Source-Free Cross-Domain Continual Learning
Although existing cross-domain continual learning approaches successfully address many streaming tasks having domain shifts, they call for a fully labeled source domain hindering their feasibility in the privacy constrained environments. This paper goes one step ahead with the problem of source-free cross-domain continual learning where the use of source-domain samples are completely prohibited. We propose the idea of rehearsal-free frequency-aware dynamic prompt collaborations (REFEREE) to cope with the absence of labeled source-domain samples in realm of cross-domain continual learning. REFEREE is built upon a synergy between a source-pre-trained model and a large-scale vision-language model, thus overcoming the problem of sub-optimal generalizations when relying only on a source pre-trained model. The domain shift problem between the source domain and the target domain is handled by a frequency-aware prompting technique encouraging low-frequency components while suppressing high-frequency components. This strategy generates frequency-aware augmented samples, robust against noisy pseudo labels. The noisy pseudo-label problem is further addressed with the uncertainty-aware weighting strategy where the mean and covariance matrix are weighted by prediction uncertainties, thus mitigating the adverse effects of the noisy pseudo label. Besides, the issue of catastrophic forgetting (CF) is overcome by kernel linear discriminant analysis (KLDA) where the backbone network is frozen while the classification is performed using the linear discriminant analysis approach guided by the random kernel method. Our rigorous numerical studies confirm the advantage of our approach where it beats prior arts having access to source domain samples with significant margins.
☆ Position: Privacy Is Not Just Memorization!
The discourse on privacy risks in Large Language Models (LLMs) has disproportionately focused on verbatim memorization of training data, while a constellation of more immediate and scalable privacy threats remain underexplored. This position paper argues that the privacy landscape of LLM systems extends far beyond training data extraction, encompassing risks from data collection practices, inference-time context leakage, autonomous agent capabilities, and the democratization of surveillance through deep inference attacks. We present a comprehensive taxonomy of privacy risks across the LLM lifecycle -- from data collection through deployment -- and demonstrate through case studies how current privacy frameworks fail to address these multifaceted threats. Through a longitudinal analysis of 1,322 AI/ML privacy papers published at leading conferences over the past decade (2016--2025), we reveal that while memorization receives outsized attention in technical research, the most pressing privacy harms lie elsewhere, where current technical approaches offer little traction and viable paths forward remain unclear. We call for a fundamental shift in how the research community approaches LLM privacy, moving beyond the narrow focus of current technical solutions and embracing interdisciplinary approaches that address the sociotechnical nature of these emerging threats.
comment: 27 pages, 6 figures, 2 tables
☆ Support Basis: Fast Attention Beyond Bounded Entries
The quadratic complexity of softmax attention remains a central bottleneck in scaling large language models (LLMs). [Alman and Song, NeurIPS 2023] proposed a sub-quadratic attention approximation algorithm, but it works only under the restrictive bounded-entry assumption. Since this assumption rarely holds in practice, its applicability to modern LLMs is limited. In this paper, we introduce support-basis decomposition, a new framework for efficient attention approximation beyond bounded entries. We empirically demonstrate that the entries of the query and key matrices exhibit sub-Gaussian behavior. Our approach uses this property to split large and small entries, enabling exact computation on sparse components and polynomial approximation on dense components. We establish rigorous theoretical guarantees, proving a sub-quadratic runtime, and extend the method to a multi-threshold setting that eliminates all distributional assumptions. Furthermore, we provide the first theoretical justification for the empirical success of polynomial attention [Kacham, Mirrokni, and Zhong, ICML 2024], showing that softmax attention can be closely approximated by a combination of multiple polynomial attentions with sketching.
Detecting Post-generation Edits to Watermarked LLM Outputs via Combinatorial Watermarking
Watermarking has become a key technique for proprietary language models, enabling the distinction between AI-generated and human-written text. However, in many real-world scenarios, LLM-generated content may undergo post-generation edits, such as human revisions or even spoofing attacks, making it critical to detect and localize such modifications. In this work, we introduce a new task: detecting post-generation edits locally made to watermarked LLM outputs. To this end, we propose a combinatorial pattern-based watermarking framework, which partitions the vocabulary into disjoint subsets and embeds the watermark by enforcing a deterministic combinatorial pattern over these subsets during generation. We accompany the combinatorial watermark with a global statistic that can be used to detect the watermark. Furthermore, we design lightweight local statistics to flag and localize potential edits. We introduce two task-specific evaluation metrics, Type-I error rate and detection accuracy, and evaluate our method on open-source LLMs across a variety of editing scenarios, demonstrating strong empirical performance in edit localization.
☆ CAT: Curvature-Adaptive Transformers for Geometry-Aware Learning
Transformers achieve strong performance across diverse domains but implicitly assume Euclidean geometry in their attention mechanisms, limiting their effectiveness on data with non-Euclidean structure. While recent extensions to hyperbolic and spherical spaces show promise for hierarchical and cyclical patterns, respectively, they require committing to a single geometry a priori, reducing flexibility when data exhibits mixed geometric properties. We introduce the Curvature-Adaptive Transformer (CAT), a novel architecture that dynamically learns per-token routing across three geometric attention branches through a lightweight, differentiable gating mechanism. Unlike fixed-geometry approaches, CAT enables adaptive geometric specialization, routing tokens to the appropriate curvature based on their local relational structure. The routing network provides interpretable curvature preferences while each branch employs geometry-specific operations optimized for its respective manifold. On knowledge graph completion benchmarks (FB15k-237, WN18RR), CAT achieves approximately 10% improvements in MRR and Hits@10 over fixed-geometry baselines with minimal overhead (5% parameter increase, comparable inference time). These results demonstrate that learned geometric adaptation outperforms any single fixed geometry for complex relational reasoning, establishing CAT as a scalable and interpretable foundation for mixture-of-geometry architectures across language, vision, and multimodal domains.
☆ Demystifying Synthetic Data in LLM Pre-training: A Systematic Study of Scaling Laws, Benefits, and Pitfalls EMNLP 2025
Training data plays a crucial role in Large Language Models (LLM) scaling, yet high quality data is of limited supply. Synthetic data techniques offer a potential path toward sidestepping these limitations. We conduct a large-scale empirical investigation (>1000 LLMs with >100k GPU hours) using a unified protocol and scaling laws, comparing natural web data, diverse synthetic types (rephrased text, generated textbooks), and mixtures of natural and synthetic data. Specifically, we found pre-training on rephrased synthetic data \textit{alone} is not faster than pre-training on natural web texts; while pre-training on 1/3 rephrased synthetic data mixed with 2/3 natural web texts can speed up 5-10x (to reach the same validation loss) at larger data budgets. Pre-training on textbook-style synthetic data \textit{alone} results in notably higher loss on many downstream domains especially at small data budgets. "Good" ratios of synthetic data in training data mixtures depend on the model size and data budget, empirically converging to ~30% for rephrased synthetic data. Larger generator models do not necessarily yield better pre-training data than ~8B-param models. These results contribute mixed evidence on "model collapse" during large-scale single-round (n=1) model training on synthetic data--training on rephrased synthetic data shows no degradation in performance in foreseeable scales whereas training on mixtures of textbook-style pure-generated synthetic data shows patterns predicted by "model collapse". Our work demystifies synthetic data in pre-training, validates its conditional benefits, and offers practical guidance.
comment: Published as a Main Conference paper at EMNLP 2025
☆ Quagmires in SFT-RL Post-Training: When High SFT Scores Mislead and What to Use Instead
In post-training for reasoning Large Language Models (LLMs), the current state of practice trains LLMs in two independent stages: Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR, shortened as ``RL'' below). In this work, we challenge whether high SFT scores translate to improved performance after RL. We provide extensive counter-examples where this is not true. We find high SFT scores can be biased toward simpler or more homogeneous data and are not reliably predictive of subsequent RL gains or scaled-up post-training effectiveness. In some cases, RL training on models with improved SFT performance could lead to substantially worse outcome compared to RL on the base model without SFT. We study alternative metrics and identify generalization loss on held-out reasoning examples and Pass@large k performance to provide strong proxies for the RL outcome. We trained hundreds of models up to 12B-parameter with SFT and RLVR via GRPO and ran extensive evaluations on 7 math benchmarks with up to 256 repetitions, spending $>$1M GPU hours. Experiments include models from Llama3, Mistral-Nemo, Qwen3 and multiple state-of-the-art SFT/RL datasets. Compared to directly predicting from pre-RL performance, prediction based on generalization loss and Pass@large k achieves substantial higher precision, improving $R^2$ coefficient and Spearman's rank correlation coefficient by up to 0.5 (2x). This provides strong utility for broad use cases. For example, in most experiments, we find SFT training on unique examples for a one epoch underperforms training on half examples for two epochs, either after SFT or SFT-then-RL; With the same SFT budget, training only on short examples may lead to better SFT performance, though, it often leads to worse outcome after RL compared to training on examples with varying lengths. Evaluation tool will be open-sourced.
comment: Preprint. Under Review
☆ Posterior Collapse as a Phase Transition in Variational Autoencoders
We investigate the phenomenon of posterior collapse in variational autoencoders (VAEs) from the perspective of statistical physics, and reveal that it constitutes a phase transition governed jointly by data structure and model hyper-parameters. By analyzing the stability of the trivial solution associated with posterior collapse, we identify a critical hyper-parameter threshold. This critical boundary, separating meaningful latent inference from collapse, is characterized by a discontinuity in the KL divergence between the approximate posterior and the prior distribution. We validate this critical behavior on both synthetic and real-world datasets, confirming the existence of a phase transition. Our results demonstrate that posterior collapse is not merely an optimization failure, but rather an emerging phase transition arising from the interplay between data structure and variational constraints. This perspective offers new insights into the trainability and representational capacity of deep generative models.
comment: 12 pages, 8 figures
☆ Securing generative artificial intelligence with parallel magnetic tunnel junction true randomness
Deterministic pseudo random number generators (PRNGs) used in generative artificial intelligence (GAI) models produce predictable patterns vulnerable to exploitation by attackers. Conventional defences against the vulnerabilities often come with significant energy and latency overhead. Here, we embed hardware-generated true random bits from spin-transfer torque magnetic tunnel junctions (STT-MTJs) to address the challenges. A highly parallel, FPGA-assisted prototype computing system delivers megabit-per-second true random numbers, passing NIST randomness tests after in-situ operations with minimal overhead. Integrating the hardware random bits into a generative adversarial network (GAN) trained on CIFAR-10 reduces insecure outputs by up to 18.6 times compared to the low-quality random number generators (RNG) baseline. With nanosecond switching speed, high energy efficiency, and established scalability, our STT-MTJ-based system holds the potential to scale beyond 106 parallel cells, achieving gigabit-per-second throughput suitable for large language model sampling. This advancement highlights spintronic RNGs as practical security components for next-generation GAI systems.
comment: 4 figures
☆ Enhancing Noise Robustness of Parkinson's Disease Telemonitoring via Contrastive Feature Augmentation
Parkinson's disease (PD) is one of the most common neurodegenerative disorder. PD telemonitoring emerges as a novel assessment modality enabling self-administered at-home tests of Unified Parkinson's Disease Rating Scale (UPDRS) scores, enhancing accessibility for PD patients. However, three types of noise would occur during measurements: (1) patient-induced measurement inaccuracies, (2) environmental noise, and (3) data packet loss during transmission, resulting in higher prediction errors. To address these challenges, NoRo, a noise-robust UPDRS prediction framework is proposed. First, the original speech features are grouped into ordered bins, based on the continuous values of a selected feature, to construct contrastive pairs. Second, the contrastive pairs are employed to train a multilayer perceptron encoder for generating noise-robust features. Finally, these features are concatenated with the original features as the augmented features, which are then fed into the UPDRS prediction models. Notably, we further introduces a novel evaluation approach with customizable noise injection module, and extensive experiments show that NoRo can successfully enhance the noise robustness of UPDRS prediction across various downstream prediction models under different noisy environments.
☆ ImageNet-Think-250K: A Large-Scale Synthetic Dataset for Multimodal Reasoning for Vision Language Models
We develop ImageNet-Think, a multimodal reasoning dataset designed to aid the development of Vision Language Models (VLMs) with explicit reasoning capabilities. Our dataset is built on 250,000 images from ImageNet21k dataset, providing structured thinking tokens and corresponding answers. Our synthetic dataset is generated by two state-of-the-art VLMs: GLM-4.1V-9B-Thinking and Kimi-VL-A3B-Thinking-2506. Each image is accompanied by two pairs of thinking-answer sequences, creating a resource for training and evaluating multimodal reasoning models. We capture the step-by-step reasoning process of VLMs and the final descriptive answers. Our goal with this dataset is to enable the development of more robust VLMs while contributing to the broader understanding of multimodal reasoning mechanisms. The dataset and evaluation benchmarks will be publicly available to aid research in reasoning/thinking multimodal VLMs.
comment: Preprint
☆ Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.
comment: Code: https://github.com/joykirat18/TRAAC
☆ Gradient Shaping Beyond Clipping: A Functional Perspective on Update Magnitude Control
Gradient clipping is widely used to stabilize deep network training, but its formulation as a hard, fixed threshold limits flexibility and ignores gradient distribution dynamics. We propose SPAMP (Statistical Per-layer Adaptive Modulation and Projection), a unified framework that generalizes clipping into smooth, per-layer gradient shaping. SPAMP tracks local gradient statistics, dynamically estimates thresholds, and applies power-based transformations to modulate update magnitudes in a differentiable manner. This perspective recasts clipping and warmup as dual mechanisms for controlling the effective update scale $\eta_t \|g_t\|$, offering a principled alternative to rigid heuristics. Extensive experiments across image and language tasks demonstrate that SPAMP improves stability, convergence, and robustness over existing methods.
comment: Accepted as a conference paper at ACM Multimedia Asia 2025
☆ Synthetic Prefixes to Mitigate Bias in Real-Time Neural Query Autocomplete SIGIR
We introduce a data-centric approach for mitigating presentation bias in real-time neural query autocomplete systems through the use of synthetic prefixes. These prefixes are generated from complete user queries collected during regular search sessions where autocomplete was not active. This allows us to enrich the training data for learning to rank models with more diverse and less biased examples. This method addresses the inherent bias in engagement signals collected from live query autocomplete interactions, where model suggestions influence user behavior. Our neural ranker is optimized for real-time deployment under strict latency constraints and incorporates a rich set of features, including query popularity, seasonality, fuzzy match scores, and contextual signals such as department affinity, device type, and vertical alignment with previous user queries. To support efficient training, we introduce a task-specific simplification of the listwise loss, reducing computational complexity from $O(n^2)$ to $O(n)$ by leveraging the query autocomplete structure of having only one ground-truth selection per prefix. Deployed in a large-scale e-commerce setting, our system demonstrates statistically significant improvements in user engagement, as measured by mean reciprocal rank and related metrics. Our findings show that synthetic prefixes not only improve generalization but also provide a scalable path toward bias mitigation in other low-latency ranking tasks, including related searches and query recommendations.
comment: Accepted to the Proceedings of the ACM SIGIR Asia Pacific Conference on Information Retrieval (SIGIR-AP 2025), December 7-10, 2025, Xi'an, China
☆ From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.
comment: 24 pages, 7 figures, 4 tables
☆ TetriServe: Efficient DiT Serving for Heterogeneous Image Generation
Diffusion Transformer (DiT) models excel at generating highquality images through iterative denoising steps, but serving them under strict Service Level Objectives (SLOs) is challenging due to their high computational cost, particularly at large resolutions. Existing serving systems use fixed degree sequence parallelism, which is inefficient for heterogeneous workloads with mixed resolutions and deadlines, leading to poor GPU utilization and low SLO attainment. In this paper, we propose step-level sequence parallelism to dynamically adjust the parallel degree of individual requests according to their deadlines. We present TetriServe, a DiT serving system that implements this strategy for highly efficient image generation. Specifically, TetriServe introduces a novel round-based scheduling mechanism that improves SLO attainment: (1) discretizing time into fixed rounds to make deadline-aware scheduling tractable, (2) adapting parallelism at the step level and minimize GPU hour consumption, and (3) jointly packing requests to minimize late completions. Extensive evaluation on state-of-the-art DiT models shows that TetriServe achieves up to 32% higher SLO attainment compared to existing solutions without degrading image quality.
☆ Large-Scale Bayesian Causal Discovery with Interventional Data
Inferring the causal relationships among a set of variables in the form of a directed acyclic graph (DAG) is an important but notoriously challenging problem. Recently, advancements in high-throughput genomic perturbation screens have inspired development of methods that leverage interventional data to improve model identification. However, existing methods still suffer poor performance on large-scale tasks and fail to quantify uncertainty. Here, we propose Interventional Bayesian Causal Discovery (IBCD), an empirical Bayesian framework for causal discovery with interventional data. Our approach models the likelihood of the matrix of total causal effects, which can be approximated by a matrix normal distribution, rather than the full data matrix. We place a spike-and-slab horseshoe prior on the edges and separately learn data-driven weights for scale-free and Erd\H{o}s-R\'enyi structures from observational data, treating each edge as a latent variable to enable uncertainty-aware inference. Through extensive simulation, we show that IBCD achieves superior structure recovery compared to existing baselines. We apply IBCD to CRISPR perturbation (Perturb-seq) data on 521 genes, demonstrating that edge posterior inclusion probabilities enable identification of robust graph structures.
☆ AI Foundation Model for Time Series with Innovations Representation
This paper introduces an Artificial Intelligence (AI) foundation model for time series in engineering applications, where causal operations are required for real-time monitoring and control. Since engineering time series are governed by physical, rather than linguistic, laws, large-language-model-based AI foundation models may be ineffective or inefficient. Building on the classical innovations representation theory of Wiener, Kallianpur, and Rosenblatt, we propose Time Series GPT (TS-GPT) -- an innovations-representation-based Generative Pre-trained Transformer for engineering monitoring and control. As an example of foundation model adaptation, we consider Probabilistic Generative Forecasting, which produces future time series samples from conditional probability distributions given past realizations. We demonstrate the effectiveness of TS-GPT in forecasting real-time locational marginal prices using historical data from U.S. independent system operators.
☆ CardioRAG: A Retrieval-Augmented Generation Framework for Multimodal Chagas Disease Detection
Chagas disease affects nearly 6 million people worldwide, with Chagas cardiomyopathy representing its most severe complication. In regions where serological testing capacity is limited, AI-enhanced electrocardiogram (ECG) screening provides a critical diagnostic alternative. However, existing machine learning approaches face challenges such as limited accuracy, reliance on large labeled datasets, and more importantly, weak integration with evidence-based clinical diagnostic indicators. We propose a retrieval-augmented generation framework, CardioRAG, integrating large language models with interpretable ECG-based clinical features, including right bundle branch block, left anterior fascicular block, and heart rate variability metrics. The framework uses variational autoencoder-learned representations for semantic case retrieval, providing contextual cases to guide clinical reasoning. Evaluation demonstrated high recall performance of 89.80%, with a maximum F1 score of 0.68 for effective identification of positive cases requiring prioritized serological testing. CardioRAG provides an interpretable, clinical evidence-based approach particularly valuable for resource-limited settings, demonstrating a pathway for embedding clinical indicators into trustworthy medical AI systems.
comment: 4 pages, 2 figures. Accepted for oral presentation at the 52nd international Computing in Cardiology Conference (CinC2025)
Rethinking KL Regularization in RLHF: From Value Estimation to Gradient Optimization
Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-Leibler (KL) divergence loss to stabilize training and prevent overfitting. However, in methods such as GRPO, its implementation may be guided by principles from numerical value estimation-a practice that overlooks the term's functional role as an optimization loss. To analyze this issue, we establish a unified framework that connects two seemingly distinct implementation styles: using the mathematical term $k_n$ as a detached coefficient for the policy's score function ('$k_n$ in reward') or as a direct loss function through which gradients are propagated ('$k_n$ as loss'). We show that the latter can always be analyzed via an equivalent gradient coefficient in the former, unifying the two perspectives. Through this framework, we prove that the conventional '$k_1$ in reward' (like in PPO) is the principled loss for Reverse KL (RKL) regularization. We further establish a key finding: under on-policy conditions, the '$k_2$ as loss' formulation is, in fact, gradient-equivalent to '$k_1$ in reward'. This equivalence, first proven in our work, identifies both as the theoretically sound implementations of the RKL objective. In contrast, we show that the recently adopted '$k_3$ as loss' (like in GRPO) is merely a first-order, biased approximation of the principled loss. Furthermore, we argue that common off-policy implementations of '$k_n$ as loss' methods are biased due to neglected importance sampling, and we propose a principled correction. Our findings provide a comprehensive, gradient-based rationale for choosing and correctly implementing KL regularization, paving the way for more robust and effective RLHF systems.
☆ MIRA: Towards Mitigating Reward Hacking in Inference-Time Alignment of T2I Diffusion Models
Diffusion models excel at generating images conditioned on text prompts, but the resulting images often do not satisfy user-specific criteria measured by scalar rewards such as Aesthetic Scores. This alignment typically requires fine-tuning, which is computationally demanding. Recently, inference-time alignment via noise optimization has emerged as an efficient alternative, modifying initial input noise to steer the diffusion denoising process towards generating high-reward images. However, this approach suffers from reward hacking, where the model produces images that score highly, yet deviate significantly from the original prompt. We show that noise-space regularization is insufficient and that preventing reward hacking requires an explicit image-space constraint. To this end, we propose MIRA (MItigating Reward hAcking), a training-free, inference-time alignment method. MIRA introduces an image-space, score-based KL surrogate that regularizes the sampling trajectory with a frozen backbone, constraining the output distribution so reward can increase without off-distribution drift (reward hacking). We derive a tractable approximation to KL using diffusion scores. Across SDv1.5 and SDXL, multiple rewards (Aesthetic, HPSv2, PickScore), and public datasets (e.g., Animal-Animal, HPDv2), MIRA achieves >60\% win rate vs. strong baselines while preserving prompt adherence; mechanism plots show reward gains with near-zero drift, whereas DNO drifts as compute increases. We further introduce MIRA-DPO, mapping preference optimization to inference time with a frozen backbone, extending MIRA to non-differentiable rewards without fine-tuning.
Robust Classification of Oral Cancer with Limited Training Data
Oral cancer ranks among the most prevalent cancers globally, with a particularly high mortality rate in regions lacking adequate healthcare access. Early diagnosis is crucial for reducing mortality; however, challenges persist due to limited oral health programs, inadequate infrastructure, and a shortage of healthcare practitioners. Conventional deep learning models, while promising, often rely on point estimates, leading to overconfidence and reduced reliability. Critically, these models require large datasets to mitigate overfitting and ensure generalizability, an unrealistic demand in settings with limited training data. To address these issues, we propose a hybrid model that combines a convolutional neural network (CNN) with Bayesian deep learning for oral cancer classification using small training sets. This approach employs variational inference to enhance reliability through uncertainty quantification. The model was trained on photographic color images captured by smartphones and evaluated on three distinct test datasets. The proposed method achieved 94% accuracy on a test dataset with a distribution similar to that of the training data, comparable to traditional CNN performance. Notably, for real-world photographic image data, despite limitations and variations differing from the training dataset, the proposed model demonstrated superior generalizability, achieving 88% accuracy on diverse datasets compared to 72.94% for traditional CNNs, even with a smaller dataset. Confidence analysis revealed that the model exhibits low uncertainty (high confidence) for correctly classified samples and high uncertainty (low confidence) for misclassified samples. These results underscore the effectiveness of Bayesian inference in data-scarce environments in enhancing early oral cancer diagnosis by improving model reliability and generalizability.
Growing Visual Generative Capacity for Pre-Trained MLLMs
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.
comment: Project page: https://hywang66.github.io/bridge/
☆ Predictive Preference Learning from Human Interventions NeurIPS 2025
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl
comment: NeurIPS 2025 Spotlight. Project page: https://metadriverse.github.io/ppl
☆ Executable Counterfactuals: Improving LLMs' Causal Reasoning Through Code
Counterfactual reasoning, a hallmark of intelligence, consists of three steps: inferring latent variables from observations (abduction), constructing alternatives (interventions), and predicting their outcomes (prediction). This skill is essential for advancing LLMs' causal understanding and expanding their applications in high-stakes domains such as scientific research. However, existing efforts in assessing LLM's counterfactual reasoning capabilities tend to skip the abduction step, effectively reducing to interventional reasoning and leading to overestimation of LLM performance. To address this, we introduce executable counterfactuals, a novel framework that operationalizes causal reasoning through code and math problems. Our framework explicitly requires all three steps of counterfactual reasoning and enables scalable synthetic data creation with varying difficulty, creating a frontier for evaluating and improving LLM's reasoning. Our results reveal substantial drop in accuracy (25-40%) from interventional to counterfactual reasoning for SOTA models like o4-mini and Claude-4-Sonnet. To address this gap, we construct a training set comprising counterfactual code problems having if-else condition and test on out-of-domain code structures (e.g. having while-loop); we also test whether a model trained on code would generalize to counterfactual math word problems. While supervised finetuning on stronger models' reasoning traces improves in-domain performance of Qwen models, it leads to a decrease in accuracy on OOD tasks such as counterfactual math problems. In contrast, reinforcement learning induces the core cognitive behaviors and generalizes to new domains, yielding gains over the base model on both code (improvement of 1.5x-2x) and math problems. Analysis of the reasoning traces reinforces these findings and highlights the promise of RL for improving LLMs' counterfactual reasoning.
☆ TimeSeriesScientist: A General-Purpose AI Agent for Time Series Analysis
Time series forecasting is central to decision-making in domains as diverse as energy, finance, climate, and public health. In practice, forecasters face thousands of short, noisy series that vary in frequency, quality, and horizon, where the dominant cost lies not in model fitting, but in the labor-intensive preprocessing, validation, and ensembling required to obtain reliable predictions. Prevailing statistical and deep learning models are tailored to specific datasets or domains and generalize poorly. A general, domain-agnostic framework that minimizes human intervention is urgently in demand. In this paper, we introduce TimeSeriesScientist (TSci), the first LLM-driven agentic framework for general time series forecasting. The framework comprises four specialized agents: Curator performs LLM-guided diagnostics augmented by external tools that reason over data statistics to choose targeted preprocessing; Planner narrows the hypothesis space of model choice by leveraging multi-modal diagnostics and self-planning over the input; Forecaster performs model fitting and validation and, based on the results, adaptively selects the best model configuration as well as ensemble strategy to make final predictions; and Reporter synthesizes the whole process into a comprehensive, transparent report. With transparent natural-language rationales and comprehensive reports, TSci transforms the forecasting workflow into a white-box system that is both interpretable and extensible across tasks. Empirical results on eight established benchmarks demonstrate that TSci consistently outperforms both statistical and LLM-based baselines, reducing forecast error by an average of 10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous report that makes the forecasting workflow more transparent and interpretable.
☆ NVIDIA AI Aerial: AI-Native Wireless Communications
6G brings a paradigm shift towards AI-native wireless systems, necessitating the seamless integration of digital signal processing (DSP) and machine learning (ML) within the software stacks of cellular networks. This transformation brings the life cycle of modern networks closer to AI systems, where models and algorithms are iteratively trained, simulated, and deployed across adjacent environments. In this work, we propose a robust framework that compiles Python-based algorithms into GPU-runnable blobs. The result is a unified approach that ensures efficiency, flexibility, and the highest possible performance on NVIDIA GPUs. As an example of the capabilities of the framework, we demonstrate the efficacy of performing the channel estimation function in the PUSCH receiver through a convolutional neural network (CNN) trained in Python. This is done in a digital twin first, and subsequently in a real-time testbed. Our proposed methodology, realized in the NVIDIA AI Aerial platform, lays the foundation for scalable integration of AI/ML models into next-generation cellular systems, and is essential for realizing the vision of natively intelligent 6G networks.
comment: 7 pages, 7 figures
☆ Bypassing Prompt Guards in Production with Controlled-Release Prompting
As large language models (LLMs) advance, ensuring AI safety and alignment is paramount. One popular approach is prompt guards, lightweight mechanisms designed to filter malicious queries while being easy to implement and update. In this work, we introduce a new attack that circumvents such prompt guards, highlighting their limitations. Our method consistently jailbreaks production models while maintaining response quality, even under the highly protected chat interfaces of Google Gemini (2.5 Flash/Pro), DeepSeek Chat (DeepThink), Grok (3), and Mistral Le Chat (Magistral). The attack exploits a resource asymmetry between the prompt guard and the main LLM, encoding a jailbreak prompt that lightweight guards cannot decode but the main model can. This reveals an attack surface inherent to lightweight prompt guards in modern LLM architectures and underscores the need to shift defenses from blocking malicious inputs to preventing malicious outputs. We additionally identify other critical alignment issues, such as copyrighted data extraction, training data extraction, and malicious response leakage during thinking.
☆ Towards Interpretable and Inference-Optimal COT Reasoning with Sparse Autoencoder-Guided Generation
We propose a novel method that leverages sparse autoencoders (SAEs) and clustering techniques to analyze the internal token representations of large language models (LLMs) and guide generations in mathematical reasoning tasks. Our approach first trains an SAE to generate sparse vector representations for training tokens, then applies k-means clustering to construct a graph where vertices represent token clusters and weighted edges capture sequential token transitions. Using this graph, we define an edge-weight based reward function to quantify adherence to established reasoning traces, thereby identifying exploitative reasoning trajectories. Additionally, we measure generation diversity from clustering to assess the extent of exploration. Our findings indicate that balancing both exploitation and exploration is crucial for achieving high accuracy in mathematical reasoning tasks. During generation, the SAE can serve as a scalable reward model to guide generations, ensuring a balanced trade-off between exploitation and exploration. This prevents extreme behaviors in either direction, ultimately fostering a higher-quality reasoning process in LLMs.
☆ On the Role of Temperature Sampling in Test-Time Scaling
Large language models (LLMs) can improve reasoning at inference time through test-time scaling (TTS), where multiple reasoning traces are generated and the best one is selected. Prior work shows that increasing the number of samples K steadily improves accuracy. In this paper, we demonstrate that this trend does not hold indefinitely: at large K, further scaling yields no gains, and certain hard questions remain unsolved regardless of the number of traces. Interestingly, we find that different sampling temperatures solve different subsets of problems, implying that single-temperature scaling explores only part of a model's potential. We therefore propose scaling along the temperature dimension, which enlarges the reasoning boundary of LLMs. Averaged over Qwen3 (0.6B, 1.7B, 4B, 8B) and five representative reasoning benchmarks (AIME 2024/2025, MATH500, LiveCodeBench, Hi-ToM), temperature scaling yields an additional 7.3 points over single-temperature TTS. Temperature scaling also enables base models to reach performance comparable to reinforcement learning (RL)-trained counterparts, without additional post-training. We further provide a comprehensive analysis of this phenomenon and design a multi-temperature voting method that reduces the overhead of temperature scaling. Overall, our findings suggest that TTS is more powerful than previously thought, and that temperature scaling offers a simple and effective way to unlock the latent potential of base models.
☆ MINERVA: Mutual Information Neural Estimation for Supervised Feature Selection
Existing feature filters rely on statistical pair-wise dependence metrics to model feature-target relationships, but this approach may fail when the target depends on higher-order feature interactions rather than individual contributions. We introduce Mutual Information Neural Estimation Regularized Vetting Algorithm (MINERVA), a novel approach to supervised feature selection based on neural estimation of mutual information between features and targets. We paramaterize the approximation of mutual information with neural networks and perform feature selection using a carefully designed loss function augmented with sparsity-inducing regularizers. Our method is implemented in a two-stage process to decouple representation learning from feature selection, ensuring better generalization and a more accurate expression of feature importance. We present examples of ubiquitous dependency structures that are rarely captured in literature and show that our proposed method effectively captures these complex feature-target relationships by evaluating feature subsets as an ensemble. Experimental results on synthetic and real-life fraud datasets demonstrate the efficacy of our method and its ability to perform exact solutions.
comment: 23 pages
☆ Towards CONUS-Wide ML-Augmented Conceptually-Interpretable Modeling of Catchment-Scale Precipitation-Storage-Runoff Dynamics
While many modern studies are dedicated to ML-based large-sample hydrologic modeling, these efforts have not necessarily translated into predictive improvements that are grounded in enhanced physical-conceptual understanding. Here, we report on a CONUS-wide large-sample study (spanning diverse hydro-geo-climatic conditions) using ML-augmented physically-interpretable catchment-scale models of varying complexity based in the Mass-Conserving Perceptron (MCP). Results were evaluated using attribute masks such as snow regime, forest cover, and climate zone. Our results indicate the importance of selecting model architectures of appropriate model complexity based on how process dominance varies with hydrological regime. Benchmark comparisons show that physically-interpretable mass-conserving MCP-based models can achieve performance comparable to data-based models based in the Long Short-Term Memory network (LSTM) architecture. Overall, this study highlights the potential of a theory-informed, physically grounded approach to large-sample hydrology, with emphasis on mechanistic understanding and the development of parsimonious and interpretable model architectures, thereby laying the foundation for future models of everywhere that architecturally encode information about spatially- and temporally-varying process dominance.
comment: Main text: 95 pages, 15 figures, 4 tables; Applendix: Section A-E; 2 figures; Supplementary Materials: 15 figures, 7 tables
☆ Use the Online Network If You Can: Towards Fast and Stable Reinforcement Learning
The use of target networks is a popular approach for estimating value functions in deep Reinforcement Learning (RL). While effective, the target network remains a compromise solution that preserves stability at the cost of slowly moving targets, thus delaying learning. Conversely, using the online network as a bootstrapped target is intuitively appealing, albeit well-known to lead to unstable learning. In this work, we aim to obtain the best out of both worlds by introducing a novel update rule that computes the target using the MINimum estimate between the Target and Online network, giving rise to our method, MINTO. Through this simple, yet effective modification, we show that MINTO enables faster and stable value function learning, by mitigating the potential overestimation bias of using the online network for bootstrapping. Notably, MINTO can be seamlessly integrated into a wide range of value-based and actor-critic algorithms with a negligible cost. We evaluate MINTO extensively across diverse benchmarks, spanning online and offline RL, as well as discrete and continuous action spaces. Across all benchmarks, MINTO consistently improves performance, demonstrating its broad applicability and effectiveness.
☆ FLOWR.root: A flow matching based foundation model for joint multi-purpose structure-aware 3D ligand generation and affinity prediction
We present Flowr.root, an equivariant flow-matching model for pocket-aware 3D ligand generation with joint binding affinity prediction and confidence estimation. The model supports de novo generation, pharmacophore-conditional sampling, fragment elaboration, and multi-endpoint affinity prediction (pIC50, pKi, pKd, pEC50). Training combines large-scale ligand libraries with mixed-fidelity protein-ligand complexes, followed by refinement on curated co-crystal datasets and parameter-efficient finetuning for project-specific adaptation. Flowr.root achieves state-of-the-art performance in unconditional 3D molecule generation and pocket-conditional ligand design, producing geometrically realistic, low-strain structures. The integrated affinity prediction module demonstrates superior accuracy on the SPINDR test set and outperforms recent models on the Schrodinger FEP+/OpenFE benchmark with substantial speed advantages. As a foundation model, Flowr.root requires finetuning on project-specific datasets to account for unseen structure-activity landscapes, yielding strong correlation with experimental data. Joint generation and affinity prediction enable inference-time scaling through importance sampling, steering molecular design toward higher-affinity compounds. Case studies validate this: selective CK2alpha ligand generation against CLK3 shows significant correlation between predicted and quantum-mechanical binding energies, while ERalpha and TYK2 scaffold elaboration demonstrates strong agreement with QM calculations. By integrating structure-aware generation, affinity estimation, and property-guided sampling, Flowr.root provides a comprehensive foundation for structure-based drug design spanning hit identification through lead optimization.
☆ Geospatial Machine Learning Libraries
Recent advances in machine learning have been supported by the emergence of domain-specific software libraries, enabling streamlined workflows and increased reproducibility. For geospatial machine learning (GeoML), the availability of Earth observation data has outpaced the development of domain libraries to handle its unique challenges, such as varying spatial resolutions, spectral properties, temporal cadence, data coverage, coordinate systems, and file formats. This chapter presents a comprehensive overview of GeoML libraries, analyzing their evolution, core functionalities, and the current ecosystem. It also introduces popular GeoML libraries such as TorchGeo, eo-learn, and Raster Vision, detailing their architecture, supported data types, and integration with ML frameworks. Additionally, it discusses common methodologies for data preprocessing, spatial--temporal joins, benchmarking, and the use of pretrained models. Through a case study in crop type mapping, it demonstrates practical applications of these tools. Best practices in software design, licensing, and testing are highlighted, along with open challenges and future directions, particularly the rise of foundation models and the need for governance in open-source geospatial software. Our aim is to guide practitioners, developers, and researchers in navigating and contributing to the rapidly evolving GeoML landscape.
comment: Book chapter
☆ Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
☆ On The Expressive Power of GNN Derivatives
Despite significant advances in Graph Neural Networks (GNNs), their limited expressivity remains a fundamental challenge. Research on GNN expressivity has produced many expressive architectures, leading to architecture hierarchies with models of increasing expressive power. Separately, derivatives of GNNs with respect to node features have been widely studied in the context of the oversquashing and over-smoothing phenomena, GNN explainability, and more. To date, these derivatives remain unexplored as a means to enhance GNN expressivity. In this paper, we show that these derivatives provide a natural way to enhance the expressivity of GNNs. We introduce High-Order Derivative GNN (HOD-GNN), a novel method that enhances the expressivity of Message Passing Neural Networks (MPNNs) by leveraging high-order node derivatives of the base model. These derivatives generate expressive structure-aware node embeddings processed by a second GNN in an end-to-end trainable architecture. Theoretically, we show that the resulting architecture family's expressive power aligns with the WL hierarchy. We also draw deep connections between HOD-GNN, Subgraph GNNs, and popular structural encoding schemes. For computational efficiency, we develop a message-passing algorithm for computing high-order derivatives of MPNNs that exploits graph sparsity and parallelism. Evaluations on popular graph learning benchmarks demonstrate HOD-GNN's strong performance on popular graph learning tasks.
comment: 30 pages, 3 figures
☆ AttentiveGRUAE: An Attention-Based GRU Autoencoder for Temporal Clustering and Behavioral Characterization of Depression from Wearable Data NeurIPS
In this study, we present AttentiveGRUAE, a novel attention-based gated recurrent unit (GRU) autoencoder designed for temporal clustering and prediction of outcome from longitudinal wearable data. Our model jointly optimizes three objectives: (1) learning a compact latent representation of daily behavioral features via sequence reconstruction, (2) predicting end-of-period depression rate through a binary classification head, and (3) identifying behavioral subtypes through Gaussian Mixture Model (GMM) based soft clustering of learned embeddings. We evaluate AttentiveGRUAE on longitudinal sleep data from 372 participants (GLOBEM 2018-2019), and it demonstrates superior performance over baseline clustering, domain-aligned self-supervised, and ablated models in both clustering quality (silhouette score = 0.70 vs 0.32-0.70) and depression classification (AUC = 0.74 vs 0.50-0.67). Additionally, external validation on cross-year cohorts from 332 participants (GLOBEM 2020-2021) confirms cluster reproducibility (silhouette score = 0.63, AUC = 0.61) and stability. We further perform subtype analysis and visualize temporal attention, which highlights sleep-related differences between clusters and identifies salient time windows that align with changes in sleep regularity, yielding clinically interpretable explanations of risk.
comment: 4 pages, 3 figures, 2 tables, Accepted NeurIPS (TS4H Workshop) 2025, non-camera-ready version)
☆ Even Faster Kernel Matrix Linear Algebra via Density Estimation
This paper studies the use of kernel density estimation (KDE) for linear algebraic tasks involving the kernel matrix of a collection of $n$ data points in $\mathbb R^d$. In particular, we improve upon existing algorithms for computing the following up to $(1+\varepsilon)$ relative error: matrix-vector products, matrix-matrix products, the spectral norm, and sum of all entries. The runtimes of our algorithms depend on the dimension $d$, the number of points $n$, and the target error $\varepsilon$. Importantly, the dependence on $n$ in each case is far lower when accessing the kernel matrix through KDE queries as opposed to reading individual entries. Our improvements over existing best algorithms (particularly those of Backurs, Indyk, Musco, and Wagner '21) for these tasks reduce the polynomial dependence on $\varepsilon$, and additionally decreases the dependence on $n$ in the case of computing the sum of all entries of the kernel matrix. We complement our upper bounds with several lower bounds for related problems, which provide (conditional) quadratic time hardness results and additionally hint at the limits of KDE based approaches for the problems we study.
☆ Learning Multi-Index Models with Hyper-Kernel Ridge Regression
Deep neural networks excel in high-dimensional problems, outperforming models such as kernel methods, which suffer from the curse of dimensionality. However, the theoretical foundations of this success remain poorly understood. We follow the idea that the compositional structure of the learning task is the key factor determining when deep networks outperform other approaches. Taking a step towards formalizing this idea, we consider a simple compositional model, namely the multi-index model (MIM). In this context, we introduce and study hyper-kernel ridge regression (HKRR), an approach blending neural networks and kernel methods. Our main contribution is a sample complexity result demonstrating that HKRR can adaptively learn MIM, overcoming the curse of dimensionality. Further, we exploit the kernel nature of the estimator to develop ad hoc optimization approaches. Indeed, we contrast alternating minimization and alternating gradient methods both theoretically and numerically. These numerical results complement and reinforce our theoretical findings.
Multimodal Function Vectors for Spatial Relations
Large Multimodal Models (LMMs) demonstrate impressive in-context learning abilities from limited multimodal demonstrations, yet the internal mechanisms supporting such task learning remain opaque. Building on prior work of large language models, we show that a small subset of attention heads in the vision-language model OpenFlamingo-4B is responsible for transmitting representations of spatial relations. The activations of these attention heads, termed function vectors, can be extracted and manipulated to alter an LMM's performance on relational tasks. First, using both synthetic and real image datasets, we apply causal mediation analysis to identify attention heads that strongly influence relational predictions, and extract multimodal function vectors that improve zero-shot accuracy at inference time. We further demonstrate that these multimodal function vectors can be fine-tuned with a modest amount of training data, while keeping LMM parameters frozen, to significantly outperform in-context learning baselines. Finally, we show that relation-specific function vectors can be linearly combined to solve analogy problems involving novel and untrained spatial relations, highlighting the strong generalization ability of this approach. Our results show that LMMs encode spatial relational knowledge within localized internal structures, which can be systematically extracted and optimized, thereby advancing our understanding of model modularity and enhancing control over relational reasoning in LMMs.
Self-supervised diffusion model fine-tuning for costate initialization using Markov chain Monte Carlo
Global search and optimization of long-duration, low-thrust spacecraft trajectories with the indirect method is challenging due to a complex solution space and the difficulty of generating good initial guesses for the costate variables. This is particularly true in multibody environments. Given data that reveals a partial Pareto optimal front, it is desirable to find a flexible manner in which the Pareto front can be completed and fronts for related trajectory problems can be found. In this work we use conditional diffusion models to represent the distribution of candidate optimal trajectory solutions. We then introduce into this framework the novel approach of using Markov Chain Monte Carlo algorithms with self-supervised fine-tuning to achieve the aforementioned goals. Specifically, a random walk Metropolis algorithm is employed to propose new data that can be used to fine-tune the diffusion model using a reward-weighted training based on efficient evaluations of constraint violations and missions objective functions. The framework removes the need for separate focused and often tedious data generation phases. Numerical experiments are presented for two problems demonstrating the ability to improve sample quality and explicitly target Pareto optimality based on the theory of Markov chains. The first problem does so for a transfer in the Jupiter-Europa circular restricted three-body problem, where the MCMC approach completes a partial Pareto front. The second problem demonstrates how a dense and superior Pareto front can be generated by the MCMC self-supervised fine-tuning method for a Saturn-Titan transfer starting from the Jupiter-Europa case versus a separate dedicated global search.
☆ Unraveling Syntax: How Language Models Learn Context-Free Grammars
We introduce a new framework for understanding how language models acquire syntax. While large models achieve impressive results, little is known about their learning dynamics. Our approach starts with the observation that most domains of interest, such as natural language syntax, coding languages, arithmetic problems, are captured by probabilistic context-free grammars (PCFGs). We study the learning dynamics of small models trained on synthetic languages generated from PCFGs, enabling precise control over grammar complexity, recursion depth, and subgrammar structure. We prove several general, recursive formulae for the training loss and Kullback-Leibler divergence over the subgrammar structure of a PCFG. Empirically, we find that unlike children, who first master simple substructures before progressing to more complex constructions, transformers reduce loss across all subgrammars in parallel. We further show that subgrammar pretraining can improve the final loss for smaller models, and that pretrained models develop internal representations more aligned with the grammar's substructure. Finally, we demonstrate that models struggle with deeper recursive structures (a limitation even of large language models), revealing fundamental challenges in how neural networks represent hierarchical syntax. Overall, our work initiates the study of the learning dynamics of transformers on PCFGs as a versatile testbed for probing learning in language models, opening a research direction with many open questions.
comment: Equal contribution by LYS and DM
☆ Model-brain comparison using inter-animal transforms
Artificial neural network models have emerged as promising mechanistic models of the brain. However, there is little consensus on the correct method for comparing model activations to brain responses. Drawing on recent work in philosophy of neuroscience, we propose a comparison methodology based on the Inter-Animal Transform Class (IATC) - the strictest set of functions needed to accurately map neural responses between subjects in an animal population. Using the IATC, we can map bidirectionally between a candidate model's responses and brain data, assessing how well the model can masquerade as a typical subject using the same kinds of transforms needed to map across real subjects. We identify the IATC in three settings: a simulated population of neural network models, a population of mouse subjects, and a population of human subjects. We find that the IATC resolves detailed aspects of the neural mechanism, such as the non-linear activation function. Most importantly, we find that the IATC enables accurate predictions of neural activity while also achieving high specificity in mechanism identification, evidenced by its ability to separate response patterns from different brain areas while strongly aligning same-brain-area responses between subjects. In other words, the IATC is a proof-by-existence that there is no inherent tradeoff between the neural engineering goal of high model-brain predictivity and the neuroscientific goal of identifying mechanistically accurate brain models. Using IATC-guided transforms, we obtain new evidence in favor of topographical deep neural networks (TDANNs) as models of the visual system. Overall, the IATC enables principled model-brain comparisons, contextualizing previous findings about the predictive success of deep learning models of the brain, while improving upon previous approaches to model-brain comparison.
comment: 16 pages, 8 figures. An extended and revised version of a 9-page paper to be published in the Proceedings of the 2025 Cognitive Computational Neuroscience conference
Graph Generation with Spectral Geodesic Flow Matching
Graph generation is a fundamental task with wide applications in modeling complex systems. Although existing methods align the spectrum or degree profile of the target graph, they often ignore the geometry induced by eigenvectors and the global structure of the graph. In this work, we propose Spectral Geodesic Flow Matching (SFMG), a novel framework that uses spectral eigenmaps to embed both input and target graphs into continuous Riemannian manifolds. We then define geodesic flows between embeddings and match distributions along these flows to generate output graphs. Our method yields several advantages: (i) captures geometric structure beyond eigenvalues, (ii) supports flexible generation of diverse graphs, and (iii) scales efficiently. Empirically, SFMG matches the performance of state-of-the-art approaches on graphlet, degree, and spectral metrics across diverse benchmarks. In particular, it achieves up to 30$\times$ speedup over diffusion-based models, offering a substantial advantage in scalability and training efficiency. We also demonstrate its ability to generalize to unseen graph scales. Overall, SFMG provides a new approach to graph synthesis by integrating spectral geometry with flow matching.
☆ In-memory Training on Analog Devices with Limited Conductance States via Multi-tile Residual Learning
Analog in-memory computing (AIMC) accelerators enable efficient deep neural network computation directly within memory using resistive crossbar arrays, where model parameters are represented by the conductance states of memristive devices. However, effective in-memory training typically requires at least 8-bit conductance states to match digital baselines. Realizing such fine-grained states is costly and often requires complex noise mitigation techniques that increase circuit complexity and energy consumption. In practice, many promising memristive devices such as ReRAM offer only about 4-bit resolution due to fabrication constraints, and this limited update precision substantially degrades training accuracy. To enable on-chip training with these limited-state devices, this paper proposes a \emph{residual learning} framework that sequentially learns on multiple crossbar tiles to compensate the residual errors from low-precision weight updates. Our theoretical analysis shows that the optimality gap shrinks with the number of tiles and achieves a linear convergence rate. Experiments on standard image classification benchmarks demonstrate that our method consistently outperforms state-of-the-art in-memory analog training strategies under limited-state settings, while incurring only moderate hardware overhead as confirmed by our cost analysis.
☆ Adaptive randomized pivoting and volume sampling
Adaptive randomized pivoting (ARP) is a recently proposed and highly effective algorithm for column subset selection. This paper reinterprets the ARP algorithm by drawing connections to the volume sampling distribution and active learning algorithms for linear regression. As consequences, this paper presents new analysis for the ARP algorithm and faster implementations using rejection sampling.
comment: 13 pages, 2 figures
☆ Beyond Linear Diffusions: Improved Representations for Rare Conditional Generative Modeling
Diffusion models have emerged as powerful generative frameworks with widespread applications across machine learning and artificial intelligence systems. While current research has predominantly focused on linear diffusions, these approaches can face significant challenges when modeling a conditional distribution, $P(Y|X=x)$, when $P(X=x)$ is small. In these regions, few samples, if any, are available for training, thus modeling the corresponding conditional density may be difficult. Recognizing this, we show it is possible to adapt the data representation and forward scheme so that the sample complexity of learning a score-based generative model is small in low probability regions of the conditioning space. Drawing inspiration from conditional extreme value theory we characterize this method precisely in the special case in the tail regions of the conditioning variable, $X$. We show how diffusion with a data-driven choice of nonlinear drift term is best suited to model tail events under an appropriate representation of the data. Through empirical validation on two synthetic datasets and a real-world financial dataset, we demonstrate that our tail-adaptive approach significantly outperforms standard diffusion models in accurately capturing response distributions at the extreme tail conditions.
☆ Beyond Imitation: Recovering Dense Rewards from Demonstrations
Conventionally, supervised fine-tuning (SFT) is treated as a simple imitation learning process that only trains a policy to imitate expert behavior on demonstration datasets. In this work, we challenge this view by establishing a fundamental equivalence between SFT and Inverse Reinforcement Learning. We prove that the SFT objective is a special case of Inverse Q-Learning, which implies that the SFT process does not just learn a policy, but also an implicit, dense, token-level reward model that explains the expert demonstrations. We then show how to recover this dense reward signal directly from the SFT model by formulating a baseline-relative reward function. The availability of such a dense reward model offers numerous benefits, providing granular credit assignment for each token generated. We demonstrate one key application by using these recovered rewards to further improve the policy with reinforcement learning. Our method, Dense-Path REINFORCE, consistently outperforms the original SFT models on instruction-following benchmarks. This work reframes SFT not merely as policy imitation but as a powerful reward learning mechanism, opening new possibilities for leveraging expert demonstrations.
☆ Improved Robustness of Deep Reinforcement Learning for Control of Time-Varying Systems by Bounded Extremum Seeking
In this paper, we study the use of robust model independent bounded extremum seeking (ES) feedback control to improve the robustness of deep reinforcement learning (DRL) controllers for a class of nonlinear time-varying systems. DRL has the potential to learn from large datasets to quickly control or optimize the outputs of many-parameter systems, but its performance degrades catastrophically when the system model changes rapidly over time. Bounded ES can handle time-varying systems with unknown control directions, but its convergence speed slows down as the number of tuned parameters increases and, like all local adaptive methods, it can get stuck in local minima. We demonstrate that together, DRL and bounded ES result in a hybrid controller whose performance exceeds the sum of its parts with DRL taking advantage of historical data to learn how to quickly control a many-parameter system to a desired setpoint while bounded ES ensures its robustness to time variations. We present a numerical study of a general time-varying system and a combined ES-DRL controller for automatic tuning of the Low Energy Beam Transport section at the Los Alamos Neutron Science Center linear particle accelerator.
☆ From Pixels to Factors: Learning Independently Controllable State Variables for Reinforcement Learning
Algorithms that exploit factored Markov decision processes are far more sample-efficient than factor-agnostic methods, yet they assume a factored representation is known a priori -- a requirement that breaks down when the agent sees only high-dimensional observations. Conversely, deep reinforcement learning handles such inputs but cannot benefit from factored structure. We address this representation problem with Action-Controllable Factorization (ACF), a contrastive learning approach that uncovers independently controllable latent variables -- state components each action can influence separately. ACF leverages sparsity: actions typically affect only a subset of variables, while the rest evolve under the environment's dynamics, yielding informative data for contrastive training. ACF recovers the ground truth controllable factors directly from pixel observations on three benchmarks with known factored structure -- Taxi, FourRooms, and MiniGrid-DoorKey -- consistently outperforming baseline disentanglement algorithms.
☆ Litespark Technical Report: High-Throughput, Energy-Efficient LLM Training Framework
Training Large Language Models (LLMs) is plagued by long training times and massive energy consumption, with modern models requiring months of computation and gigawatt-hours of electricity. In light of these challenges,we introduce Litespark, a novel pre-training framework that addresses these inefficiencies through targeted optimizations to transformer attention and MLP layers. Our approach combines architectural improvements with algorithmic enhancements to maximize Model FLOPs Utilization (MFU) while maintaining compatibility with standard transformer implementations. Comprehensive benchmarking on 3B and 30B parameter Llama models using the SlimPajama-627B dataset demonstrates substantial performance gains: 2x-6x training throughput improvement and $55\%-83$% energy consumption reduction across multi-node H200 GPU clusters. These optimizations are model- and hardware-agnostic, enabling broad applicability across transformer architectures and extending to post-training phases including supervised fine-tuning and direct preference optimization.
comment: 14 pages
☆ Safe and Efficient In-Context Learning via Risk Control
Large language models (LLMs) demonstrate a remarkable ability to learn new tasks from a few in-context examples. However, this flexibility introduces safety concerns: LLMs can be influenced by incorrect or malicious demonstrations -- for example, if an adversary tampers with or injects harmful examples without a human supervisor noticing. This motivates principled designs in which the system itself includes built-in mechanisms to guard against such attacks. We propose a novel approach to limit the degree to which harmful demonstrations can degrade model performance. First, we define a baseline ``safe'' behavior for the model -- the model's performance given no in-context demonstrations (zero-shot). Next, we apply distribution-free risk control (DFRC) to control the extent to which in-context samples can decay performance below zero-shot. We achieve this by leveraging dynamic early exit prediction, ignoring later attention heads that attend the most to the unsafe inputs. Finally, we propose modifications to DFRC that allow it to both control risk for harmful inputs \textit{and} leverage performance and efficiency gains on helpful inputs. We present both theoretical and empirical results showing that our approach can effectively control risk for harmful in-context demonstrations while simultaneously achieving substantial computational efficiency gains with helpful demonstrations.
☆ Uncertainty-Guided Model Selection for Tabular Foundation Models in Biomolecule Efficacy Prediction NeurIPS 2025
In-context learners like TabPFN are promising for biomolecule efficacy prediction, where established molecular feature sets and relevant experimental results can serve as powerful contextual examples. However, their performance is highly sensitive to the provided context, making strategies like post-hoc ensembling of models trained on different data subsets a viable approach. An open question is how to select the best models for the ensemble without access to ground truth labels. In this study, we investigate an uncertainty-guided strategy for model selection. We demonstrate on an siRNA knockdown efficacy task that a TabPFN model using simple sequence-based features can surpass specialized state-of-the-art predictors. We also show that the model's predicted inter-quantile range (IQR), a measure of its uncertainty, has a negative correlation with true prediction error. By selecting and averaging an ensemble of models with the lowest mean IQR, we achieve superior performance compared to naive ensembling or using a single model trained on all available data. This finding highlights model uncertainty as a powerful, label-free heuristic for optimizing biomolecule efficacy predictions.
comment: NeurIPS 2025 workshop: 2nd Workshop on Multi-modal Foundation Models and Large Language Models for Life Sciences
☆ Heterogeneous Graph Representation of Stiffened Panels with Non-Uniform Boundary Conditions and Loads
Surrogate models are essential in structural analysis and optimization. We propose a heterogeneous graph representation of stiffened panels that accounts for geometrical variability, non-uniform boundary conditions, and diverse loading scenarios, using heterogeneous graph neural networks (HGNNs). The structure is partitioned into multiple structural units, such as stiffeners and the plates between them, with each unit represented by three distinct node types: geometry, boundary, and loading nodes. Edge heterogeneity is introduced by incorporating local orientations and spatial relationships of the connecting nodes. Several heterogeneous graph representations, each with varying degrees of heterogeneity, are proposed and analyzed. These representations are implemented into a heterogeneous graph transformer (HGT) to predict von Mises stress and displacement fields across stiffened panels, based on loading and degrees of freedom at their boundaries. To assess the efficacy of our approach, we conducted numerical tests on panels subjected to patch loads and box beams composed of stiffened panels under various loading conditions. The heterogeneous graph representation was compared with a homogeneous counterpart, demonstrating superior performance. Additionally, an ablation analysis was performed to evaluate the impact of graph heterogeneity on HGT performance. The results show strong predictive accuracy for both displacement and von Mises stress, effectively capturing structural behavior patterns and maximum values.
comment: This is a preprint and has been submitted to Engineering with Computers
☆ Predictive inference for time series: why is split conformal effective despite temporal dependence?
We consider the problem of uncertainty quantification for prediction in a time series: if we use past data to forecast the next time point, can we provide valid prediction intervals around our forecasts? To avoid placing distributional assumptions on the data, in recent years the conformal prediction method has been a popular approach for predictive inference, since it provides distribution-free coverage for any iid or exchangeable data distribution. However, in the time series setting, the strong empirical performance of conformal prediction methods is not well understood, since even short-range temporal dependence is a strong violation of the exchangeability assumption. Using predictors with "memory" -- i.e., predictors that utilize past observations, such as autoregressive models -- further exacerbates this problem. In this work, we examine the theoretical properties of split conformal prediction in the time series setting, including the case where predictors may have memory. Our results bound the loss of coverage of these methods in terms of a new "switch coefficient", measuring the extent to which temporal dependence within the time series creates violations of exchangeability. Our characterization of the coverage probability is sharp over the class of stationary, $\beta$-mixing processes. Along the way, we introduce tools that may prove useful in analyzing other predictive inference methods for dependent data.
comment: 22 pages
☆ SAGE: Streaming Agreement-Driven Gradient Sketches for Representative Subset Selection
Training modern neural networks on large datasets is computationally and energy intensive. We present SAGE, a streaming data-subset selection method that maintains a compact Frequent Directions (FD) sketch of gradient geometry in $O(\ell D)$ memory and prioritizes examples whose sketched gradients align with a consensus direction. The approach eliminates $N \times N$ pairwise similarities and explicit $N \times \ell$ gradient stores, yielding a simple two-pass, GPU-friendly pipeline. Leveraging FD's deterministic approximation guarantees, we analyze how agreement scoring preserves gradient energy within the principal sketched subspace. Across multiple benchmarks, SAGE trains with small kept-rate budgets while retaining competitive accuracy relative to full-data training and recent subset-selection baselines, and reduces end-to-end compute and peak memory. Overall, SAGE offers a practical, constant-memory alternative that complements pruning and model compression for efficient training.
☆ Assessing the Potential for Catastrophic Failure in Dynamic Post-Training Quantization
Post-training quantization (PTQ) has recently emerged as an effective tool for reducing the computational complexity and memory usage of a neural network by representing its weights and activations with lower precision. While this paradigm has shown great success in lowering compute and storage costs, there is the potential for drastic performance reduction depending upon the distribution of inputs experienced in inference. When considering possible deployment in safety-critical environments, it is important to investigate the extent of potential performance reduction, and what characteristics of input distributions may give rise to this reduction. In this work, we explore the idea of extreme failure stemming from dynamic PTQ and formulate a knowledge distillation and reinforcement learning task to learn a network and bit-width policy pair such that catastrophic failure under quantization is analyzed in terms of worst case potential. Our results confirm the existence of this "detrimental" network-policy pair, with several instances demonstrating performance reductions in the range of 10-65% in accuracy, compared to their "robust" counterparts encountering a <2% decrease. From systematic experimentation and analyses, we also provide an initial exploration into points at highest vulnerability. While our results represent an initial step toward understanding failure cases introduced by PTQ, our findings ultimately emphasize the need for caution in real-world deployment scenarios. We hope this work encourages more rigorous examinations of robustness and a greater emphasis on safety considerations for future works within the broader field of deep learning.
☆ Market-Based Data Subset Selection -- Principled Aggregation of Multi-Criteria Example Utility
Selecting a small yet useful subset of training data is hard because signals of example utility (uncertainty, rarity, diversity, etc.) are heterogeneous and typically combined with ad hoc weights. We propose a market-based selector that prices each example via a cost-function prediction market (LMSR), signals act as traders, a single liquidity parameter controls concentration, and topic-wise normalization stabilizes calibration. Token budgets are handled explicitly by a price-per-token rule $\rho=p/\ell^{\gamma}$, with $\gamma$ exposing an interpretable length bias; a lightweight diversity head improves coverage. We quantify coverage via topic cluster coverage and effective sample size. On the theory side, we show that LMSR implements a maximum-entropy aggregation with exponential weighting and a convex objective, yielding transparent knobs for aggregation strength. Empirically, on GSM8K (60k-token budget) the market with diversity achieves parity with strong single-signal baselines while reducing seed variance and incurring $<\!0.1$ GPU-hr selection overhead; on AGNews at kept=5-25\% the market (with light balancing) delivers competitive accuracy with improved balance and stability. The framework unifies multi-signal data curation under fixed compute for prompt-level reasoning and classification.
☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Foundation models are increasingly deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. While static prompt optimization has shown promise, it produces a single fixed prompt that fails to adapt to different inputs, users, or environments. We introduce Advisor Models, lightweight parametric policies trained with reinforcement learning to reactively issue natural language steering instructions in-context to black-box models. The advisor is a second small model that sits between the input and the model, shaping behavior on a per-instance basis using reward signals from the environment. Across multiple domains involving reasoning and personalization, we show that Advisor Models outperform static prompt optimizers, discovering environment dynamics and improving downstream task performance. We also demonstrate the generalizability of advisors by transferring them across black-box models, as well as the framework's ability to achieve specialization while retaining robustness to out-of-distribution inputs. Viewed more broadly, Advisor Models provide a learnable interface to black-box systems where the advisor acts as a parametric, environment-specific memory. We argue that dynamic optimization of black-box models via Advisor Models is a promising direction for enabling personalization and environment-adaptable AI with frontier-level capabilities.
☆ Words That Make Language Models Perceive
Large language models (LLMs) trained purely on text ostensibly lack any direct perceptual experience, yet their internal representations are implicitly shaped by multimodal regularities encoded in language. We test the hypothesis that explicit sensory prompting can surface this latent structure, bringing a text-only LLM into closer representational alignment with specialist vision and audio encoders. When a sensory prompt tells the model to 'see' or 'hear', it cues the model to resolve its next-token predictions as if they were conditioned on latent visual or auditory evidence that is never actually supplied. Our findings reveal that lightweight prompt engineering can reliably activate modality-appropriate representations in purely text-trained LLMs.
☆ Adaptive Deception Framework with Behavioral Analysis for Enhanced Cybersecurity Defense
This paper presents CADL (Cognitive-Adaptive Deception Layer), an adaptive deception framework achieving 99.88% detection rate with 0.13% false positive rate on the CICIDS2017 dataset. The framework employs ensemble machine learning (Random Forest, XGBoost, Neural Networks) combined with behavioral profiling to identify and adapt responses to network intrusions. Through a coordinated signal bus architecture, security components share real-time intelligence, enabling collective decision-making. The system profiles attackers based on temporal patterns and deploys customized deception strategies across five escalation levels. Evaluation on 50,000 CICIDS2017 test samples demonstrates that CADL significantly outperforms traditional intrusion detection systems (Snort: 71.2%, Suricata: 68.5%) while maintaining production-ready false positive rates. The framework's behavioral analysis achieves 89% accuracy in classifying attacker profiles. We provide open-source implementation and transparent performance metrics, offering an accessible alternative to commercial deception platforms costing $150-400 per host annually.
comment: 5 pages, 5 tables, 1 figure
♻ ☆ Differential Information Distribution: A Bayesian Perspective on Direct Preference Optimization
Direct Preference Optimization (DPO) has been widely used for aligning language models with human preferences in a supervised manner. However, several key questions remain unresolved: the rationale behind its log-ratio reward, how the statistical structure of preference datasets shapes its training dynamics, and how those dynamics impact downstream capabilities. We approach these questions from a Bayesian perspective, interpreting the goal of preference optimization as learning the differential information required to update a reference policy into a target policy. To formalize this view, we introduce the Differential Information Distribution (DID), defined as the distribution over samples that carry the Bayesian evidence required to update policies. We introduce three complementary insights by viewing preference optimization through the DID. First, we find that DPO's log-ratio reward is uniquely justified when preferences encode the Differential Information needed to update a reference policy into the target policy. Second, we discuss how commonly observed training dynamics in DPO, including changes in log-likelihood and policy exploration, stem from a power-law DID relationship. Finally, we analyze how training dynamics influence downstream performance using the entropy of DID, a principled measure of uncertainty in the learned information. We observe that learning high-entropy DID improves open-ended instruction-following, while low-entropy DID benefits knowledge-intensive QA. Taken together, our results show that DPO's reward design, training dynamics, and downstream capabilities all emerge as natural consequences of learning Differential Information, offering both a principled theoretical foundation and practical guidance for preference-based alignment.
comment: Preprint, under review. 39 pages, 12 figures. Updates from v1: Added new theoretical results on DPO training dynamics and policy exploration, included experiments with Qwen3-4B, and refined the discussion of log-margin dynamics
♻ ☆ Riemannian Variational Flow Matching for Material and Protein Design
We present Riemannian Gaussian Variational Flow Matching (RG-VFM), a geometric extension of Variational Flow Matching (VFM) for generative modeling on manifolds. In Euclidean space, predicting endpoints (VFM), velocities (FM), or noise (diffusion) are largely equivalent due to affine interpolations. On curved manifolds this equivalence breaks down, and we hypothesize that endpoint prediction provides a stronger learning signal by directly minimizing geodesic distances. Building on this insight, we derive a variational flow matching objective based on Riemannian Gaussian distributions, applicable to manifolds with closed-form geodesics. We formally analyze its relationship to Riemannian Flow Matching (RFM), exposing that the RFM objective lacks a curvature-dependent penalty - encoded via Jacobi fields - that is naturally present in RG-VFM. Experiments on synthetic spherical and hyperbolic benchmarks, as well as real-world tasks in material and protein generation, demonstrate that RG-VFM more effectively captures manifold structure and improves downstream performance over Euclidean and velocity-based baselines.
♻ ☆ Probabilistic Reasoning with LLMs for k-anonymity Estimation NeurIPS 2025
Probabilistic reasoning is a key aspect of both human and artificial intelligence that allows for handling uncertainty and ambiguity in decision-making. In this paper, we introduce a new numerical reasoning task under uncertainty for large language models, focusing on estimating the privacy risk of user-generated documents containing privacy-sensitive information. We propose BRANCH, a new LLM methodology that estimates the k-privacy value of a text-the size of the population matching the given information. BRANCH factorizes a joint probability distribution of personal information as random variables. The probability of each factor in a population is estimated separately using a Bayesian network and combined to compute the final k-value. Our experiments show that this method successfully estimates the k-value 73% of the time, a 13% increase compared to o3-mini with chain-of-thought reasoning. We also find that LLM uncertainty is a good indicator for accuracy, as high-variance predictions are 37.47% less accurate on average.
comment: 10 pages, Accepted to NeurIPS 2025
♻ ☆ Learning to Weight Parameters for Training Data Attribution
We study gradient-based data attribution, aiming to identify which training examples most influence a given output. Existing methods for this task either treat network parameters uniformly or rely on implicit weighting derived from Hessian approximations, which do not fully model functional heterogeneity of network parameters. To address this, we propose a method to explicitly learn parameter importance weights directly from data, without requiring annotated labels. Our approach improves attribution accuracy across diverse tasks, including image classification, language modeling, and diffusion, and enables fine-grained attribution for concepts like subject and style.
♻ ☆ AbsTopK: Rethinking Sparse Autoencoders For Bidirectional Features
Sparse autoencoders (SAEs) have emerged as powerful techniques for interpretability of large language models (LLMs), aiming to decompose hidden states into meaningful semantic features. While several SAE variants have been proposed, there remains no principled framework to derive SAEs from the original dictionary learning formulation. In this work, we introduce such a framework by unrolling the proximal gradient method for sparse coding. We show that a single-step update naturally recovers common SAE variants, including ReLU, JumpReLU, and TopK. Through this lens, we reveal a fundamental limitation of existing SAEs: their sparsity-inducing regularizers enforce non-negativity, preventing a single feature from representing bidirectional concepts (e.g., male vs. female). This structural constraint fragments semantic axes into separate, redundant features, limiting representational completeness. To address this issue, we propose AbsTopK SAE, a new variant derived from the $\ell_0$ sparsity constraint that applies hard thresholding over the largest-magnitude activations. By preserving both positive and negative activations, AbsTopK uncovers richer, bidirectional conceptual representations. Comprehensive experiments across four LLMs and seven probing and steering tasks show that AbsTopK improves reconstruction fidelity, enhances interpretability, and enables single features to encode contrasting concepts. Remarkably, AbsTopK matches or even surpasses the Difference-in-Mean method, a supervised approach that requires labeled data for each concept and has been shown in prior work to outperform SAEs.
♻ ☆ Forecasting Generative Amplification
Generative networks are perfect tools to enhance the speed and precision of LHC simulations. It is important to understand their statistical precision, especially when generating events beyond the size of the training dataset. We present two complementary methods to estimate the amplification factor without large holdout datasets. Averaging amplification uses Bayesian networks or ensembling to estimate amplification from the precision of integrals over given phase-space volumes. Differential amplification uses hypothesis testing to quantify amplification without any resolution loss. Applied to state-of-the-art event generators, both methods indicate that amplification is possible in specific regions of phase space, but not yet across the entire distribution.
comment: 23 pages, 15 figures. v2: added link to github repo, extended acknowledgements
♻ ☆ Unraveling Indirect In-Context Learning Using Influence Functions
In this work, we introduce a novel paradigm for generalized In-Context Learning (ICL), termed Indirect In-Context Learning. In Indirect ICL, we explore demonstration selection strategies tailored for two distinct real-world scenarios: Mixture of Tasks and Noisy ICL. We systematically evaluate the effectiveness of Influence Functions (IFs) as a selection tool for these settings, highlighting the potential of IFs to better capture the informativeness of examples within the demonstration pool. For the Mixture of Tasks setting, demonstrations are drawn from 28 diverse tasks, including MMLU, BigBench, StrategyQA, and CommonsenseQA. We demonstrate that combining BertScore-Recall (BSR) with an IF surrogate model can further improve performance, leading to average absolute accuracy gains of 0.37\% and 1.45\% for 3-shot and 5-shot setups when compared to traditional ICL metrics. In the Noisy ICL setting, we examine scenarios where demonstrations might be mislabeled or have adversarial noise. Our experiments show that reweighting traditional ICL selectors (BSR and Cosine Similarity) with IF-based selectors boosts accuracy by an average of 2.90\% for Cosine Similarity and 2.94\% for BSR on noisy GLUE benchmarks. For the adversarial sub-setting, we show the utility of using IFs for task-agnostic demonstration selection for backdoor attack mitigation. Showing a 32.89\% reduction in Attack Success Rate compared to task-aware methods. In sum, we propose a robust framework for demonstration selection that generalizes beyond traditional ICL, offering valuable insights into the role of IFs for Indirect ICL.
comment: Under Review
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
LPAC: Learnable Perception-Action-Communication Loops with Applications to Coverage Control
Coverage control is the problem of navigating a robot swarm to collaboratively monitor features or a phenomenon of interest not known a priori. The problem is challenging in decentralized settings with robots that have limited communication and sensing capabilities. We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem, wherein a convolutional neural network (CNN) processes localized perception; a graph neural network (GNN) facilitates robot communications; finally, a shallow multi-layer perceptron (MLP) computes robot actions. The GNN enables collaboration in the robot swarm by computing what information to communicate with nearby robots and how to incorporate received information. Evaluations show that the LPAC models -- trained using imitation learning -- outperform standard decentralized and centralized coverage control algorithms. The learned policy generalizes to environments different from the training dataset, transfers to larger environments with more robots, and is robust to noisy position estimates. The results indicate the suitability of LPAC architectures for decentralized navigation in robot swarms to achieve collaborative behavior.
comment: 20 Pages, 20 figures, Accepted for publication in the IEEE Transactions on Robotics
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Neurosymbolic Association Rule Mining from Tabular Data
Association Rule Mining (ARM) is the task of mining patterns among data features in the form of logical rules, with applications across a myriad of domains. However, high-dimensional datasets often result in an excessive number of rules, increasing execution time and negatively impacting downstream task performance. Managing this rule explosion remains a central challenge in ARM research. To address this, we introduce Aerial+, a novel neurosymbolic ARM method. Aerial+ leverages an under-complete autoencoder to create a neural representation of the data, capturing associations between features. It extracts rules from this neural representation by exploiting the model's reconstruction mechanism. Extensive evaluations on five datasets against seven baselines demonstrate that Aerial+ achieves state-of-the-art results by learning more concise, high-quality rule sets with full data coverage. When integrated into rule-based interpretable machine learning models, Aerial+ significantly reduces execution time while maintaining or improving accuracy.
comment: This paper has been accepted and presented at the 19th International Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
♻ ☆ A Few Large Shifts: Layer-Inconsistency Based Minimal Overhead Adversarial Example Detection
Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle, imperceptible perturbations that can lead to incorrect predictions. While detection-based defenses offer a practical alternative to adversarial training, many existing methods depend on external models, complex architectures, or adversarial data, limiting their efficiency and generalizability. We introduce a lightweight, plug-in detection framework that leverages internal layer-wise inconsistencies within the target model itself, requiring only benign data for calibration. Our approach is grounded in the A Few Large Shifts Assumption, which posits that adversarial perturbations induce large, localized violations of layer-wise Lipschitz continuity in a small subset of layers. Building on this, we propose two complementary strategies--Recovery Testing (RT) and Logit-layer Testing (LT)--to empirically measure these violations and expose internal disruptions caused by adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both standard and adaptive threat models, our method achieves state-of-the-art detection performance with negligible computational overhead. Furthermore, our system-level analysis provides a practical method for selecting a detection threshold with a formal lower-bound guarantee on accuracy. The code is available here: https://github.com/c0510gy/AFLS-AED.
♻ ☆ Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning
Low-rank adapters have become standard for efficiently fine-tuning large language models, but they often fall short of achieving the performance of full fine-tuning. We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full fine-tuning within low-rank subspaces using a carefully designed initialization strategy. We theoretically demonstrate that the architecture of LoRA-XS, which inserts a learnable r x r matrix between B and A while keeping other matrices fixed, provides the precise conditions needed for this approximation. We leverage its constrained update space to achieve optimal scaling for high-rank gradient updates while removing the need for scaling factor tuning. We prove that our initialization offers an optimal low-rank approximation of the initial gradient and preserves update directions throughout training. Extensive experiments across mathematical reasoning, commonsense reasoning, and language understanding tasks demonstrate that our approach exceeds the performance of LoRA (and baselines) while using 27-90 times fewer learnable parameters, and comprehensively outperforms LoRA-XS. Our findings establish that it is possible to simulate full fine-tuning in low-rank subspaces, and achieve significant parameter efficiency gains without sacrificing performance. Our code is publicly available at: https://github.com/CERT-Lab/lora-sb.
comment: Kaustubh Ponkshe and Raghav Singhal contributed equally to this work
♻ ☆ Enhancing Corpus Callosum Segmentation in Fetal MRI via Pathology-Informed Domain Randomization MICCAI 2025
Accurate fetal brain segmentation is crucial for extracting biomarkers and assessing neurodevelopment, especially in conditions such as corpus callosum dysgenesis (CCD), which can induce drastic anatomical changes. However, the rarity of CCD severely limits annotated data, hindering the generalization of deep learning models. To address this, we propose a pathology-informed domain randomization strategy that embeds prior knowledge of CCD manifestations into a synthetic data generation pipeline. By simulating diverse brain alterations from healthy data alone, our approach enables robust segmentation without requiring pathological annotations. We validate our method on a cohort comprising 248 healthy fetuses, 26 with CCD, and 47 with other brain pathologies, achieving substantial improvements on CCD cases while maintaining performance on both healthy fetuses and those with other pathologies. From the predicted segmentations, we derive clinically relevant biomarkers, such as corpus callosum length (LCC) and volume, and show their utility in distinguishing CCD subtypes. Our pathology-informed augmentation reduces the LCC estimation error from 1.89 mm to 0.80 mm in healthy cases and from 10.9 mm to 0.7 mm in CCD cases. Beyond these quantitative gains, our approach yields segmentations with improved topological consistency relative to available ground truth, enabling more reliable shape-based analyses. Overall, this work demonstrates that incorporating domain-specific anatomical priors into synthetic data pipelines can effectively mitigate data scarcity and enhance analysis of rare but clinically significant malformations.
comment: Presented at the PIPPI Workshop of MICCAI 2025
♻ ☆ Machine learning for accuracy in density functional approximations
Machine learning techniques have found their way into computational chemistry as indispensable tools to accelerate atomistic simulations and materials design. In addition, machine learning approaches hold the potential to boost the predictive power of computationally efficient electronic structure methods, such as density functional theory, to chemical accuracy and to correct for fundamental errors in density functional approaches. Here, recent progress in applying machine learning to improve the accuracy of density functional and related approximations is reviewed. Promises and challenges in devising machine learning models transferable between different chemistries and materials classes are discussed with the help of examples applying promising models to systems far outside their training sets.
♻ ☆ Superficial Safety Alignment Hypothesis
As large language models (LLMs) are overwhelmingly more and more integrated into various applications, ensuring they generate safe responses is a pressing need. Previous studies on alignment have largely focused on general instruction-following but have often overlooked the distinct properties of safety alignment, such as the brittleness of safety mechanisms. To bridge the gap, we propose the Superficial Safety Alignment Hypothesis (SSAH), which posits that safety alignment teaches an otherwise unsafe model to choose the correct reasoning direction - fulfill or refuse users' requests - interpreted as an implicit binary classification task. Through SSAH, we hypothesize that only a few essential components can establish safety guardrails in LLMs. We successfully identify four types of attribute-critical components: Safety Critical Unit (SCU), Utility Critical Unit (UCU), Complex Unit (CU), and Redundant Unit (RU). Our findings show that freezing certain safety-critical components during fine-tuning allows the model to retain its safety attributes while adapting to new tasks. Similarly, we show that leveraging redundant units in the pre-trained model as an "alignment budget" can effectively minimize the alignment tax while achieving the alignment goal. All considered, this paper concludes that the atomic functional unit for safety in LLMs is at the neuron level and underscores that safety alignment should not be complicated.
♻ ☆ What if I ask in \textit{alia lingua}? Measuring Functional Similarity Across Languages EMNLP 2025
How similar are model outputs across languages? In this work, we study this question using a recently proposed model similarity metric $\kappa_p$ applied to 20 languages and 47 subjects in GlobalMMLU. Our analysis reveals that a model's responses become increasingly consistent across languages as its size and capability grow. Interestingly, models exhibit greater cross-lingual consistency within themselves than agreement with other models prompted in the same language. These results highlight not only the value of $\kappa_p$ as a practical tool for evaluating multilingual reliability, but also its potential to guide the development of more consistent multilingual systems.
comment: Accepted into Multilingual Representation Learning (MRL) Workshop at EMNLP 2025
♻ ☆ Consistent End-to-End Estimation for Counterfactual Fairness
Fairness in predictions is of direct importance in practice due to legal, ethical, and societal reasons. This is often accomplished through counterfactual fairness, which ensures that the prediction for an individual is the same as that in a counterfactual world under a different sensitive attribute. However, achieving counterfactual fairness is challenging as counterfactuals are unobservable, and, because of that, existing baselines for counterfactual fairness do not have theoretical guarantees. In this paper, we propose a novel counterfactual fairness predictor for making predictions under counterfactual fairness. Here, we follow the standard counterfactual fairness setting and directly learn the counterfactual distribution of the descendants of the sensitive attribute via tailored neural networks, which we then use to enforce fair predictions through a novel counterfactual mediator regularization. Unique to our work is that we provide theoretical guarantees that our method is effective in ensuring the notion of counterfactual fairness. We further compare the performance across various datasets, where our method achieves state-of-the-art performance.
♻ ☆ A Family of Kernelized Matrix Costs for Multiple-Output Mixture Neural Networks
Pairwise distance-based costs are crucial for self-supervised and contrastive feature learning. Mixture Density Networks (MDNs) are a widely used approach for generative models and density approximation, using neural networks to produce multiple centers that define a Gaussian mixture. By combining MDNs with contrastive costs, this paper proposes data density approximation using four types of kernelized matrix costs: the scalar cost, the vector-matrix cost, the matrix-matrix cost (the trace of Schur complement), and the SVD cost (the nuclear norm), for learning multiple centers required to define a mixture density.
♻ ☆ MissionHD: Hyperdimensional Refinement of Distribution-Deficient Reasoning Graphs for Video Anomaly Detection
LLM-generated reasoning graphs, referred to as mission-specific graphs (MSGs), are increasingly used for video anomaly detection (VAD) and recognition (VAR). These MSGs are novel artifacts: they often exhibit skewed connectivity and lack large-scale datasets for pre-training, which makes existing graph structure refinement (GSR) methods ineffective. To address this challenge, we propose HDC-constrained Graph Structure Refinement (HDC-GSR), a paradigm that leverages hyperdimensional computing (HDC) to optimize decodable graph representations without relying on structural-distribution learning. Building on this paradigm, we introduce MissionHD, an HDC framework that encodes graphs with constrained graph-neural operations, aligns them directly with downstream task loss, and decodes refined structures. Experiments on VAD/VAR benchmarks demonstrate that MissionHD-refined graphs consistently improve performance, establishing HDC-GSR as an effective pre-processing step for structured reasoning in video anomaly tasks.
♻ ☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral; v2: fixed a typo in the title and updated experimental results
♻ ☆ Beyond Outliers: A Study of Optimizers Under Quantization
As new optimizers gain traction and model quantization becomes standard for efficient deployment, a key question arises: how does the choice of optimizer affect model performance in the presence of quantization? Despite progress in both areas, systematic evidence on optimizer-quantization interactions remains limited. To fill this gap, we study the impact of optimizer choice on model robustness under quantization, considering both post-training quantization (PTQ), and quantization-aware training (QAT). We first train full-precision models, ranging from 50M to 1.5B parameters, with six optimizers, to explore the hyperparameter landscape, and establish well-tuned baselines. We then apply PTQ to evaluate how model performance degrades when trained with different optimizers. We find that outlier-related metrics, such as the max-to-mean ratio (MMR) and Kurtosis, fail to predict the PTQ performance across different optimizers. We show analytically that this is due to the MMR capturing only isolated layer errors, while ignoring how quantization errors accumulate and propagate through the network. To study the QAT degradation, we train quantized models from scratch and compare them to our original-precision baselines. We find that optimizers performing well in the original pretraining setup may not remain optimal under QAT, and that models trained with Shampoo show the lowest accuracy degradation. Finally, we derive scaling laws for quantization-aware training under different optimizers, showing that Shampoo achieves the highest parameter efficiency of all tested optimizers.
comment: 20 pages
♻ ☆ LoFT: Parameter-Efficient Fine-Tuning for Long-tailed Semi-Supervised Learning in Open-World Scenarios
Long-tailed learning has garnered increasing attention due to its wide applicability in real-world scenarios. Among existing approaches, Long-Tailed Semi-Supervised Learning (LTSSL) has emerged as an effective solution by incorporating a large amount of unlabeled data into the imbalanced labeled dataset. However, most prior LTSSL methods are designed to train models from scratch, which often leads to issues such as overconfidence and low-quality pseudo-labels. To address these challenges, we extend LTSSL into the foundation model fine-tuning paradigm and propose a novel framework: LoFT (Long-tailed semi-supervised learning via parameter-efficient Fine-Tuning). We demonstrate that fine-tuned foundation models can generate more reliable pseudolabels, thereby benefiting imbalanced learning. Furthermore, we explore a more practical setting by investigating semi-supervised learning under open-world conditions, where the unlabeled data may include out-of-distribution (OOD) samples. To handle this problem, we propose LoFT-OW (LoFT under Open-World scenarios) to improve the discriminative ability. Experimental results on multiple benchmarks demonstrate that our method achieves superior performance compared to previous approaches, even when utilizing only 1\% of the unlabeled data compared with previous works.
♻ ☆ Sketching Low-Rank Plus Diagonal Matrices
Many relevant machine learning and scientific computing tasks involve high-dimensional linear operators accessible only via costly matrix-vector products. In this context, recent advances in sketched methods have enabled the construction of *either* low-rank *or* diagonal approximations from few matrix-vector products. This provides great speedup and scalability, but approximation errors arise due to the assumed simpler structure. This work introduces SKETCHLORD, a method that simultaneously estimates both low-rank *and* diagonal components, targeting the broader class of Low-Rank *plus* Diagonal (LoRD) linear operators. We demonstrate theoretically and empirically that this joint estimation is superior also to any sequential variant (diagonal-then-low-rank or low-rank-then-diagonal). Then, we cast SKETCHLORD as a convex optimization problem, leading to a scalable algorithm. Comprehensive experiments on synthetic (approximate) LoRD matrices confirm SKETCHLORD's performance in accurately recovering these structures. This positions it as a valuable addition to the structured approximation toolkit, particularly when high-fidelity approximations are desired for large-scale operators, such as the deep learning Hessian.
♻ ☆ Morphlux: Transforming Torus Fabrics for Efficient Multi-tenant ML
We develop Morphlux, a server-scale programmable photonic fabric to interconnect accelerators within servers. We show that augmenting state-of-the-art torus-based ML data-centers with Morphlux can improve the bandwidth of tenant compute allocations by up to 66%, reduce compute fragmentation by up to 70%, and minimize the blast radius of chip failures. We develop a novel end-to-end hardware prototype of Morphlux to demonstrate these performance benefits which translate to 1.72X improvement in training throughput of ML models. By rapidly programming the server-scale fabric in our hardware testbed, Morphlux can replace a failed accelerator chip with a healthy one in 1.2 seconds.
♻ ☆ Scaling Laws for Optimal Data Mixtures
Large foundation models are typically trained on data from multiple domains, with the data mixture--the proportion of each domain used--playing a critical role in model performance. The standard approach to selecting this mixture relies on trial and error, which becomes impractical for large-scale pretraining. We propose a systematic method to determine the optimal data mixture for any target domain using scaling laws. Our approach accurately predicts the loss of a model of size $N$ trained with $D$ tokens and a specific domain weight vector $h$. We validate the universality of these scaling laws by demonstrating their predictive power in three distinct and large-scale settings: large language model (LLM), native multimodal model (NMM), and large vision models (LVM) pretraining. We further show that these scaling laws can extrapolate to new data mixtures and across scales: their parameters can be accurately estimated using a few small-scale training runs, and used to estimate the performance at larger scales and unseen domain weights. The scaling laws allow to derive the optimal domain weights for any target domain under a given training budget ($N$,$D$), providing a principled alternative to costly trial-and-error methods.
♻ ☆ On Predictability of Reinforcement Learning Dynamics for Large Language Models
Recent advances in reasoning capabilities of large language models (LLMs) are largely driven by reinforcement learning (RL), yet the underlying parameter dynamics during RL training remain poorly understood. This work identifies two fundamental properties of RL-induced parameter updates in LLMs: (1) Rank-1 Dominance, where the top singular subspace of the parameter update matrix nearly fully determines reasoning improvements, recovering over 99\% of performance gains; and (2) Rank-1 Linear Dynamics, where this dominant subspace evolves linearly throughout training, enabling accurate prediction from early checkpoints. Extensive experiments across 8 LLMs and 7 algorithms validate the generalizability of these properties. More importantly, based on these findings, we propose AlphaRL, a plug-in acceleration framework that extrapolates the final parameter update using a short early training window, achieving up to 2.5 speedup while retaining \textgreater 96\% of reasoning performance without extra modules or hyperparameter tuning. This positions our finding as a versatile and practical tool for large-scale RL, opening a path toward principled, interpretable, and efficient training paradigm for LLMs.
comment: 43 pages, 28 figures; 43
♻ ☆ Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ Neural Network Parameter-optimization of Gaussian pmDAGs
Finding the parameters of a latent variable causal model is central to causal inference and causal identification. In this article, we show that existing graphical structures that are used in causal inference are not stable under marginalization of Gaussian Bayesian networks, and present a graphical structure that faithfully represent margins of Gaussian Bayesian networks. We present the first duality between parameter optimization of a latent variable model and training a feed-forward neural network in the parameter space of the assumed family of distributions. Based on this observation, we develop an algorithm for parameter optimization of these graphical structures based on a given observational distribution. Then, we provide conditions for causal effect identifiability in the Gaussian setting. We propose an meta-algorithm that checks whether a causal effect is identifiable or not. Moreover, we lay a grounding for generalizing the duality between a neural network and a causal model from the Gaussian to other distributions.
comment: 52 pages
Break the ID-Language Barrier: An Adaption Framework for LLM-based Sequential Recommendation
The recent breakthrough of large language models (LLMs) in natural language processing has sparked exploration in recommendation systems, however, their limited domain-specific knowledge remains a critical bottleneck. Specifically, LLMs lack key pieces of information crucial for sequential recommendations, such as user behavior patterns. To address this critical gap, we propose IDLE-Adapter, a novel framework that integrates pre-trained ID embeddings, rich in domain-specific knowledge, into LLMs to improve recommendation accuracy. IDLE-Adapter acts as a bridge, transforming sparse user-item interaction data into dense, LLM-compatible representations through a Pre-trained ID Sequential Model, Dimensionality Alignment, Layer-wise Embedding Refinement, and Layer-wise Distribution Alignment. Furthermore, IDLE-Adapter demonstrates remarkable flexibility by seamlessly integrating ID embeddings from diverse ID-based sequential models and LLM architectures. Extensive experiments across various datasets demonstrate the superiority of IDLE-Adapter, achieving over 10\% and 20\% improvements in HitRate@5 and NDCG@5 metrics, respectively, compared to state-of-the-art methods.
♻ ☆ Momentum-SAM: Sharpness Aware Minimization without Computational Overhead
The recently proposed optimization algorithm for deep neural networks Sharpness Aware Minimization (SAM) suggests perturbing parameters before gradient calculation by a gradient ascent step to guide the optimization into parameter space regions of flat loss. While significant generalization improvements and thus reduction of overfitting could be demonstrated, the computational costs are doubled due to the additionally needed gradient calculation, making SAM unfeasible in case of limited computationally capacities. Motivated by Nesterov Accelerated Gradient (NAG) we propose Momentum-SAM (MSAM), which perturbs parameters in the direction of the accumulated momentum vector to achieve low sharpness without significant computational overhead or memory demands over SGD or Adam. We evaluate MSAM in detail and reveal insights on separable mechanisms of NAG, SAM and MSAM regarding training optimization and generalization. Code is available at https://github.com/MarlonBecker/MSAM.
♻ ☆ Differentially Private Federated Learning: A Systematic Review
In recent years, privacy and security concerns in machine learning have promoted trusted federated learning to the forefront of research. Differential privacy has emerged as the de facto standard for privacy protection in federated learning due to its rigorous mathematical foundation and provable guarantee. Despite extensive research on algorithms that incorporate differential privacy within federated learning, there remains an evident deficiency in systematic reviews that categorize and synthesize these studies. Our work presents a systematic overview of the differentially private federated learning. Existing taxonomies have not adequately considered objects and level of privacy protection provided by various differential privacy models in federated learning. To rectify this gap, we propose a new taxonomy of differentially private federated learning based on definition and guarantee of various differential privacy models and federated scenarios. Our classification allows for a clear delineation of the protected objects across various differential privacy models and their respective neighborhood levels within federated learning environments. Furthermore, we explore the applications of differential privacy in federated learning scenarios. Our work provide valuable insights into privacy-preserving federated learning and suggest practical directions for future research.
comment: 36pages
♻ ☆ Large Language Models Inference Engines based on Spiking Neural Networks
Foundational models based on the transformer architecture are currently the state-of-the-art in general language modeling, as well as in scientific areas such as material science and climate. However, training and deploying these models is computationally challenging as the time and space complexity has a quadratic relation to the input sequence length. Several efforts exploring efficient computational paradigms and model architectures to address these limitations have been made. In this work, we explore spiking neural networks (SNNs) to design transformer models. A challenge in training large-scale SNNs, using existing surrogate learning methods is inefficient and time-consuming. On the other hand, techniques to convert existing transformer-based models to their SNN equivalent are not scalable, as achieving optimal performance comes at the cost of a large number of spike time-steps, i.e. increased latency. To address this, we propose NeurTransformer, a methodology for designing transformer-based SNN for inference using a supervised fine-tuning approach with existing conversion methods. The proposed methodology works by: (1) replacing the self-attention mechanism with a spike-based self-attention (SSA), (2) converting the feed-forward block of the trained transformer model to its equivalent SNN, and (3) fine-tuning the SSA block using SNN-based surrogate learning algorithms. We benchmark the proposed methodology and demonstrate its accuracy and scalability using three variants of the GPT-2 model of increasing model size. We observe that the converted GPT-2 small models demonstrate a 5-12% loss in cosine similarity and a 9.7% reduction in perplexity. Finally, we demonstrate the energy efficiency of the SSA block compared to the ASA block and show between 64.71% and 85.28% reductions in estimated energy consumption when implementing the self-attention mechanism on a digital hardware.
♻ ☆ Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
♻ ☆ QSpec: Speculative Decoding with Complementary Quantization Schemes
Quantization is widely adopted to accelerate inference and reduce memory consumption in large language models (LLMs). While activation-weight joint quantization enables efficient low-precision decoding, it suffers from substantial performance degradation on multi-step reasoning tasks. We propose QSpec, a novel quantization paradigm that decouples efficiency from quality by integrating two complementary schemes via speculative decoding: low-precision joint quantization for fast drafting and high-precision weight-only quantization for accurate verification. QSpec reuses both weights and KV cache across stages, enabling near-zero-cost switching without retraining or auxiliary models. Compared to high-precision baselines, QSpec achieves up to 1.64x speedup without quality degradation, and outperforms state-of-the-art speculative decoding methods by up to 1.55x in batched settings. Furthermore, QSpec supports plug-and-play deployment and generalizes well across model scales, quantization methods, and workloads. These properties make QSpec a practical and scalable solution for high-fidelity quantized LLM serving under memory-constrained scenarios. Our code is available at https://github.com/hku-netexplo-lab/QSpec.
♻ ☆ CrediBench: Building Web-Scale Network Datasets for Information Integrity
Online misinformation poses an escalating threat, amplified by the Internet's open nature and increasingly capable LLMs that generate persuasive yet deceptive content. Existing misinformation detection methods typically focus on either textual content or network structure in isolation, failing to leverage the rich, dynamic interplay between website content and hyperlink relationships that characterizes real-world misinformation ecosystems. We introduce CrediBench: a large-scale data processing pipeline for constructing temporal web graphs that jointly model textual content and hyperlink structure for misinformation detection. Unlike prior work, our approach captures the dynamic evolution of general misinformation domains, including changes in both content and inter-site references over time. Our processed one-month snapshot extracted from the Common Crawl archive in December 2024 contains 45 million nodes and 1 billion edges, representing the largest web graph dataset made publicly available for misinformation research to date. From our experiments on this graph snapshot, we demonstrate the strength of both structural and webpage content signals for learning credibility scores, which measure source reliability. The pipeline and experimentation code are all available here, and the dataset is in this folder.
comment: 16 pages,4 figures
♻ ☆ Accuracy of Discretely Sampled Stochastic Policies in Continuous-time Reinforcement Learning
Stochastic policies (also known as relaxed controls) are widely used in continuous-time reinforcement learning algorithms. However, executing a stochastic policy and evaluating its performance in a continuous-time environment remain open challenges. This work introduces and rigorously analyzes a policy execution framework that samples actions from a stochastic policy at discrete time points and implements them as piecewise constant controls. We prove that as the sampling mesh size tends to zero, the controlled state process converges weakly to the dynamics with coefficients aggregated according to the stochastic policy. We explicitly quantify the convergence rate based on the regularity of the coefficients and establish an optimal first-order convergence rate for sufficiently regular coefficients. Additionally, we prove a $1/2$-order weak convergence rate that holds uniformly over the sampling noise with high probability, and establish a $1/2$-order pathwise convergence for each realization of the system noise in the absence of volatility control. Building on these results, we analyze the bias and variance of various policy evaluation and policy gradient estimators based on discrete-time observations. Our results provide theoretical justification for the exploratory stochastic control framework in [H. Wang, T. Zariphopoulou, and X.Y. Zhou, J. Mach. Learn. Res., 21 (2020), pp. 1-34].
♻ ☆ GeoSQL-Eval: First Evaluation of LLMs on PostGIS-Based NL2GeoSQL Queries
Large language models (LLMs) have shown strong performance in natural language to SQL (NL2SQL) tasks within general databases. However, extending to GeoSQL introduces additional complexity from spatial data types, function invocation, and coordinate systems, which greatly increases generation and execution difficulty. Existing benchmarks mainly target general SQL, and a systematic evaluation framework for GeoSQL is still lacking. To fill this gap, we present GeoSQL-Eval, the first end-to-end automated evaluation framework for PostGIS query generation, together with GeoSQL-Bench, a benchmark for assessing LLM performance in NL2GeoSQL tasks. GeoSQL-Bench defines three task categories-conceptual understanding, syntax-level SQL generation, and schema retrieval-comprising 14,178 instances, 340 PostGIS functions, and 82 thematic databases. GeoSQL-Eval is grounded in Webb's Depth of Knowledge (DOK) model, covering four cognitive dimensions, five capability levels, and twenty task types to establish a comprehensive process from knowledge acquisition and syntax generation to semantic alignment, execution accuracy, and robustness. We evaluate 24 representative models across six categories and apply the entropy weight method with statistical analyses to uncover performance differences, common error patterns, and resource usage. Finally, we release a public GeoSQL-Eval leaderboard platform for continuous testing and global comparison. This work extends the NL2GeoSQL paradigm and provides a standardized, interpretable, and extensible framework for evaluating LLMs in spatial database contexts, offering valuable references for geospatial information science and related applications.
♻ ☆ What happens when generative AI models train recursively on each others' outputs?
The internet serves as a common source of training data for generative AI (genAI) models but is increasingly populated with AI-generated content. This duality raises the possibility that future genAI models may be trained on other models' generated outputs. Prior work has studied consequences of models training on their own generated outputs, but limited work has considered what happens if models ingest content produced by other models. Given society's increasing dependence on genAI tools, understanding such data-mediated model interactions is critical. This work provides empirical evidence for how data-mediated interactions might unfold in practice, develops a theoretical model for this interactive training process, and experimentally validates the theory. We find that data-mediated interactions can benefit models by exposing them to novel concepts perhaps missed in original training data, but also can homogenize their performance on shared tasks.
comment: 9 pages
♻ ☆ Shilling Recommender Systems by Generating Side-feature-aware Fake User Profiles
Recommender systems (RS) greatly influence users' consumption decisions, making them attractive targets for malicious shilling attacks that inject fake user profiles to manipulate recommendations. Existing shilling methods can generate effective and stealthy fake profiles when training data only contain rating matrix, but they lack comprehensive solutions for scenarios where side features are present and utilized by the recommender. To address this gap, we extend the Leg-UP framework by enhancing the generator architecture to incorporate side features, enabling the generation of side-feature-aware fake user profiles. Experiments on benchmarks show that our method achieves strong attack performance while maintaining stealthiness.
♻ ☆ Differentially Private Clustering in Data Streams
Clustering problems (such as $k$-means and $k$-median) are fundamental unsupervised machine learning primitives, and streaming clustering algorithms have been extensively studied in the past. However, since data privacy becomes a central concern in many real-world applications, non-private clustering algorithms may not be as applicable in many scenarios. In this work, we provide the first differentially private algorithms for $k$-means and $k$-median clustering of $d$-dimensional Euclidean data points over a stream with length at most $T$ using space that is sublinear (in $T$) in the continual release setting where the algorithm is required to output a clustering at every timestep. We achieve (1) an $O(1)$-multiplicative approximation with $\tilde{O}(k^{1.5} \cdot poly(d,\log(T)))$ space and $poly(k,d,\log(T))$ additive error, or (2) a $(1+\gamma)$-multiplicative approximation with $\tilde{O}_\gamma(poly(k,2^{O_\gamma(d)},\log(T)))$ space for any $\gamma>0$, and the additive error is $poly(k,2^{O_\gamma(d)},\log(T))$. Our main technical contribution is a differentially private clustering framework for data streams which only requires an offline DP coreset or clustering algorithm as a blackbox.
comment: Fixed previous technical issues, and changed presentation of results
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.
♻ ☆ Theoretical Foundations of Representation Learning using Unlabeled Data: Statistics and Optimization
Representation learning from unlabeled data has been extensively studied in statistics, data science and signal processing with a rich literature on techniques for dimension reduction, compression, multi-dimensional scaling among others. However, current deep learning models use new principles for unsupervised representation learning that cannot be easily analyzed using classical theories. For example, visual foundation models have found tremendous success using self-supervision or denoising/masked autoencoders, which effectively learn representations from massive amounts of unlabeled data. However, it remains difficult to characterize the representations learned by these models and to explain why they perform well for diverse prediction tasks or show emergent behavior. To answer these questions, one needs to combine mathematical tools from statistics and optimization. This paper provides an overview of recent theoretical advances in representation learning from unlabeled data and mentions our contributions in this direction.
♻ ☆ Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.
comment: This paper contains 10 pages, 8 figures and 8 tables. For associated supplementary code, see https://github.com/mdppml/TEA
♻ ☆ Time-o1: Time-Series Forecasting Needs Transformed Label Alignment NeurIPS 2025
Training time-series forecast models presents unique challenges in designing effective learning objectives. Existing methods predominantly utilize the temporal mean squared error, which faces two critical challenges: (1) label autocorrelation, which leads to bias from the label sequence likelihood; (2) excessive amount of tasks, which increases with the forecast horizon and complicates optimization. To address these challenges, we propose Time-o1, a transformation-augmented learning objective tailored for time-series forecasting. The central idea is to transform the label sequence into decorrelated components with discriminated significance. Models are then trained to align the most significant components, thereby effectively mitigating label autocorrelation and reducing task amount. Extensive experiments demonstrate that Time-o1 achieves state-of-the-art performance and is compatible with various forecast models. Code is available at https://github.com/Master-PLC/Time-o1.
comment: Accepted as poster in NeurIPS 2025
♻ ☆ LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. To address this, we introduce \textsc{LEXam}, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Deploying an ensemble LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately, closely aligning with human expert assessments. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. We have open-sourced our code on \href{https://github.com/LEXam-Benchmark/LEXam}{GitHub} and released our data on \href{https://huggingface.co/datasets/LEXam-Benchmark/LEXam}{Hugging Face}. Project page: https://lexam-benchmark.github.io/
♻ ☆ VFP: Variational Flow-Matching Policy for Multi-Modal Robot Manipulation
Flow-matching-based policies have recently emerged as a promising approach for learning-based robot manipulation, offering significant acceleration in action sampling compared to diffusion-based policies. However, conventional flow-matching methods struggle with multi-modality, often collapsing to averaged or ambiguous behaviors in complex manipulation tasks. To address this, we propose the Variational Flow-Matching Policy (VFP), which introduces a variational latent prior for mode-aware action generation and effectively captures both task-level and trajectory-level multi-modality. VFP further incorporates Kantorovich Optimal Transport (K-OT) for distribution-level alignment and utilizes a Mixture-of-Experts (MoE) decoder for mode specialization and efficient inference. We comprehensively evaluate VFP on 41 simulated tasks and 3 real-robot tasks, demonstrating its effectiveness and sampling efficiency in both simulated and real-world settings. Results show that VFP achieves a 49% relative improvement in task success rate over standard flow-based baselines in simulation, and further outperforms them on real-robot tasks, while still maintaining fast inference and a compact model size. More details are available on our project page: https://sites.google.com/view/varfp/
♻ ☆ PlaceFM: A Training-free Geospatial Foundation Model of Places using Large-Scale Point of Interest Data
With the rapid growth and continual updates of geospatial data from diverse sources, geospatial foundation model pre-training for urban representation learning has emerged as a key research direction for advancing data-driven urban planning. Spatial structure is fundamental to effective geospatial intelligence systems; however, existing foundation models often lack the flexibility to reason about places, context-rich regions spanning multiple spatial granularities that may consist of many spatially and semantically related points of interest. To address this gap, we propose PlaceFM, a geospatial foundation model that captures place representations through a training-free, clustering-based approach. PlaceFM summarizes the entire point of interest graph constructed from U.S. Foursquare data, producing general-purpose region embeddings while automatically identifying places of interest. These embeddings can be directly integrated into geolocation data pipelines to support a variety of urban downstream tasks. Without the need for costly pre-training, PlaceFM provides a scalable and efficient solution for multi-granular geospatial analysis. Extensive experiments on two real-world prediction tasks, ZIP code-level population density and housing prices, demonstrate that PlaceFM not only outperforms most state-of-the-art graph-based geospatial foundation models but also achieves up to a 100x speedup in generating region-level representations on large-scale POI graphs. The implementation is available at https://github.com/mohammadhashemii/PlaceFM.
♻ ☆ AI-Powered Inverse Design of Ku-Band SIW Resonant Structures by Iterative Residual Correction Network
Designing high-performance substrate-integrated waveguide (SIW) filters with both closely spaced and widely separated resonances is challenging. Consequently, there is a growing need for robust methods that reduce reliance on time-consuming electromagnetic (EM) simulations. In this study, a deep learning-based framework was developed and validated for the inverse design of multi-mode SIW filters with both closely spaced and widely separated resonances. A series of SIW filters were designed, fabricated, and experimentally evaluated. A three-stage deep learning framework was implemented, consisting of a Feedforward Inverse Model (FIM), a Hybrid Inverse-Forward Residual Refinement Network (HiFR\textsuperscript{2}-Net), and an Iterative Residual Correction Network (IRC-Net). The design methodology and performance of each model were systematically analyzed. Notably, IRC-Net outperformed both FIM and HiFR\textsuperscript{2}-Net, achieving systematic error reduction over five correction iterations. Experimental results showed a reduction in mean squared error (MSE) from 0.00191 to 0.00146 and mean absolute error (MAE) from 0.0262 to 0.0209, indicating improved accuracy and convergence. The proposed framework demonstrates the capability to enable robust, accurate, and generalizable inverse design of complex microwave filters with minimal simulation cost. This approach is expected to facilitate rapid prototyping of advanced filter designs and could extend to other high-frequency components in microwave and millimeter-wave technologies.
comment: The final published version is available at: https://doi.org/10.1016/j.aeue.2025.156003
♻ ☆ The Data-Quality Illusion: Rethinking Classifier-Based Quality Filtering for LLM Pretraining
Large-scale models are pretrained on massive web-crawled datasets containing documents of mixed quality, making data filtering essential. A popular method is Classifier-based Quality Filtering (CQF), which trains a binary classifier to distinguish between pretraining data and a small, high-quality set. It assigns each pretraining document a quality score defined as the classifier's score and retains only the top-scoring ones. We provide an in-depth analysis of CQF. We show that while CQF improves downstream task performance, it does not necessarily enhance language modeling on the high-quality dataset. We explain this paradox by the fact that CQF implicitly filters the high-quality dataset as well. We further compare the behavior of models trained with CQF to those trained on synthetic data of increasing quality, obtained via random token permutations, and find starkly different trends. Our results challenge the view that CQF captures a meaningful notion of data quality.
comment: 21 pages, 20 figures, 2 tables, preprint
♻ ☆ Enhanced DACER Algorithm with High Diffusion Efficiency
Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, achieving state-of-the-art performance. However, it still suffers from a core trade-off: more diffusion steps ensure high performance but reduce efficiency, while fewer steps degrade performance. This remains a major bottleneck for deploying diffusion policies in real-time online RL. To mitigate this, we propose DACERv2, which leverages a Q-gradient field objective with respect to action as an auxiliary optimization target to guide the denoising process at each diffusion step, thereby introducing intermediate supervisory signals that enhance the efficiency of single-step diffusion. Additionally, we observe that the independence of the Q-gradient field from the diffusion time step is inconsistent with the characteristics of the diffusion process. To address this issue, a temporal weighting mechanism is introduced, allowing the model to effectively eliminate large-scale noise during the early stages and refine its outputs in the later stages. Experimental results on OpenAI Gym benchmarks and multimodal tasks demonstrate that, compared with classical and diffusion-based online RL algorithms, DACERv2 achieves higher performance in most complex control environments with only five diffusion steps and shows greater multimodality.
♻ ☆ Localized Forest Fire Risk Prediction: A Department-Aware Approach for Operational Decision Support
Forest fire prediction involves estimating the likelihood of fire ignition or related risk levels in a specific area over a defined time period. With climate change intensifying fire behavior and frequency, accurate prediction has become one of the most pressing challenges in Artificial Intelligence (AI). Traditionally, fire ignition is approached as a binary classification task in the literature. However, this formulation oversimplifies the problem, especially from the perspective of end-users such as firefighters. In general, as is the case in France, firefighting units are organized by department, each with its terrain, climate conditions, and historical experience with fire events. Consequently, fire risk should be modeled in a way that is sensitive to local conditions and does not assume uniform risk across all regions. This paper proposes a new approach that tailors fire risk assessment to departmental contexts, offering more actionable and region-specific predictions for operational use. With this, we present the first national-scale AI benchmark for metropolitan France using state-of-the-art AI models on a relatively unexplored dataset. Finally, we offer a summary of important future works that should be taken into account. Supplementary materials are available on GitHub.
comment: 8 pages, 4 figures, 4 tables, submitted to CFP: 7th IEEE Computers, Communications and IT Applications Conference December
♻ ☆ Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design
Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this paper we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. Further, this allows us to formulate and solve the choice of "where to look next" as a Bayesian experimental design problem using the Expected Information Gain criterion. Experiments on the Frey faces and MNIST datasets demonstrate the effectiveness of our models.
comment: 19 pages, 3 figures
♻ ☆ GARG-AML against Smurfing: A Scalable and Interpretable Graph-Based Framework for Anti-Money Laundering
Purpose: This paper introduces a novel graph-based method, GARG-AML, for efficient and effective anti-money laundering (AML). It quantifies smurfing risk, a popular money laundering method, by providing each node in the network with a single interpretable score. The proposed method strikes a balance among computational efficiency, detection power and transparency. Different versions of GARG-AML are introduced for undirected and directed networks. Methodology: GARG-AML constructs the adjacency matrix of a node's second-order neighbourhood in a specific way. This allows us to use the density of different blocks in the adjacency matrix to express the neighbourhood's resemblance to a pure smurfing pattern. GARG-AML is extended using a decision tree and gradient-boosting classifier to increase its performance even more. The methods are tested on synthetic and on open-source data against the current state-of-the-art in AML. Findings: We find that GARG-AML obtains state-of-the-art performance on all datasets. We illustrate that GARG-AML scales well to massive transactions graphs encountered at financial institutions. By leveraging only the adjacency matrix of the second-order neighbourhood and basic network features, this work highlights the potential of fundamental network properties towards advancing fraud detection. Originality: This paper uses only basic network features and expert knowledge on smurfing to construct a performant AML system. The originality lies in the translation of smurfing detection to these features and network representation. Our proposed method is built around the real business needs of scalability and interpretability. It therefore provides a solution that can be easily implemented at financial institutions or incorporated in existing AML solutions.
♻ ☆ Feature Representation Transferring to Lightweight Models via Perception Coherence
In this paper, we propose a method for transferring feature representation to lightweight student models from larger teacher models. We mathematically define a new notion called \textit{perception coherence}. Based on this notion, we propose a loss function, which takes into account the dissimilarities between data points in feature space through their ranking. At a high level, by minimizing this loss function, the student model learns to mimic how the teacher model \textit{perceives} inputs. More precisely, our method is motivated by the fact that the representational capacity of the student model is weaker than the teacher model. Hence, we aim to develop a new method allowing for a better relaxation. This means that, the student model does not need to preserve the absolute geometry of the teacher one, while preserving global coherence through dissimilarity ranking. Importantly, while rankings are defined only on finite sets, our notion of \textit{perception coherence} extends them into a probabilistic form. This formulation depends on the input distribution and applies to general dissimilarity metrics. Our theoretical insights provide a probabilistic perspective on the process of feature representation transfer. Our experiments results show that our method outperforms or achieves on-par performance compared to strong baseline methods for representation transferring.
♻ ☆ Can LLMs Find Fraudsters? Multi-level LLM Enhanced Graph Fraud Detection ACM MM 2025
Graph fraud detection has garnered significant attention as Graph Neural Networks (GNNs) have proven effective in modeling complex relationships within multimodal data. However, existing graph fraud detection methods typically use preprocessed node embeddings and predefined graph structures to reveal fraudsters, which ignore the rich semantic cues contained in raw textual information. Although Large Language Models (LLMs) exhibit powerful capabilities in processing textual information, it remains a significant challenge to perform multimodal fusion of processed textual embeddings with graph structures. In this paper, we propose a \textbf{M}ulti-level \textbf{L}LM \textbf{E}nhanced Graph Fraud \textbf{D}etection framework called MLED. In MLED, we utilize LLMs to extract external knowledge from textual information to enhance graph fraud detection methods. To integrate LLMs with graph structure information and enhance the ability to distinguish fraudsters, we design a multi-level LLM enhanced framework including type-level enhancer and relation-level enhancer. One is to enhance the difference between the fraudsters and the benign entities, the other is to enhance the importance of the fraudsters in different relations. The experiments on four real-world datasets show that MLED achieves state-of-the-art performance in graph fraud detection as a generalized framework that can be applied to existing methods.
comment: Accepted by ACM MM 2025
♻ ☆ Template-Guided 3D Molecular Pose Generation via Flow Matching and Differentiable Optimization
Predicting the 3D conformation of small molecules within protein binding sites is a key challenge in drug design. When a crystallized reference ligand (template) is available, it provides geometric priors that can guide 3D pose prediction. We present a two-stage method for ligand conformation generation guided by such templates. In the first stage, we introduce a molecular alignment approach based on flow-matching to generate 3D coordinates for the ligand, using the template structure as a reference. In the second stage, a differentiable pose optimization procedure refines this conformation based on shape and pharmacophore similarities, internal energy, and, optionally, the protein binding pocket. We introduce a new benchmark of ligand pairs co-crystallized with the same target to evaluate our approach and show that it outperforms standard docking tools and open-access alignment methods, especially in cases involving low similarity to the template or high ligand flexibility.
♻ ☆ Unmute the Patch Tokens: Rethinking Probing in Multi-Label Audio Classification ICLR2026
Although probing frozen models has become a standard evaluation paradigm, self-supervised learning in audio defaults to fine-tuning. A key reason is that global pooling creates an information bottleneck causing linear probes to misrepresent the embedding quality: The $\texttt{cls}$-token discards crucial token information about dispersed, localized events in multi-label audio. This weakness is rooted in the mismatch between the pretraining objective (operating globally) and the downstream task (localized events). Across a comprehensive benchmark of 13 datasets and 6 spectrogram-based encoders, we first investigate the global pooling bottleneck. We then introduce binarized prototypical probes: a lightweight and simple pooling method that learns prototypes to perform class-wise information aggregation. Despite its simplicity, our method notably outperforms linear and attentive probing. Our work establishes probing as a competitive and efficient paradigm for evaluating audio SSL models, challenging the reliance on costly fine-tuning.
comment: Currently under review @ICLR2026
♻ ☆ Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model NeurIPS 2025
Understanding molecules is key to understanding organisms and driving advances in drug discovery, requiring interdisciplinary knowledge across chemistry and biology. Although large molecular language models have achieved notable success in task transfer, they often struggle to accurately analyze molecular features due to limited knowledge and reasoning capabilities. To address this issue, we present Mol-LLaMA, a large molecular language model that grasps the general knowledge centered on molecules and exhibits explainability and reasoning ability. To this end, we design key data types that encompass the fundamental molecular features, taking into account the essential abilities for molecular reasoning. Further, to improve molecular understanding, we propose a module that integrates complementary information from different molecular encoders, leveraging the distinct advantages of molecular representations. Our experimental results demonstrate that Mol-LLaMA is capable of comprehending the general features of molecules and providing informative responses, implying its potential as a general-purpose assistant for molecular analysis. Our project page is at https://mol-llama.github.io/.
comment: NeurIPS 2025
♻ ☆ Flow Matching for Robust Simulation-Based Inference under Model Misspecification
Simulation-based inference (SBI) is transforming experimental sciences by enabling parameter estimation in complex non-linear models from simulated data. A persistent challenge, however, is model misspecification: simulators are only approximations of reality, and mismatches between simulated and real data can yield biased or overconfident posteriors. We address this issue by introducing Flow Matching Corrected Posterior Estimation (FMCPE), a framework that leverages the flow matching paradigm to refine simulation-trained posterior estimators using a small set of real calibration samples. Our approach proceeds in two stages: first, a posterior approximator is trained on abundant simulated data; second, flow matching transports its predictions toward the true posterior supported by real observations, without requiring explicit knowledge of the misspecification. This design enables FMCPE to combine the scalability of SBI with robustness to distributional shift. Across synthetic benchmarks and real-world datasets, we show that our proposal consistently mitigates the effects of misspecification, delivering improved inference accuracy and uncertainty calibration compared to standard SBI baselines, while remaining computationally efficient.
♻ ☆ WWAggr: A Window Wasserstein-based Aggregation for Ensemble Change Point Detection
Change Point Detection (CPD) aims to identify moments of abrupt distribution shifts in data streams. Real-world high-dimensional CPD remains challenging due to data pattern complexity and violation of common assumptions. Resorting to standalone deep neural networks, the current state-of-the-art detectors have yet to achieve perfect quality. Concurrently, ensembling provides more robust solutions, boosting the performance. In this paper, we investigate ensembles of deep change point detectors and realize that standard prediction aggregation techniques, e.g., averaging, are suboptimal and fail to account for problem peculiarities. Alternatively, we introduce WWAggr -- a novel task-specific method of ensemble aggregation based on the Wasserstein distance. Our procedure is versatile, working effectively with various ensembles of deep CPD models. Moreover, unlike existing solutions, we practically lift a long-standing problem of the decision threshold selection for CPD.
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis of EAP-IG
The development of trustworthy artificial intelligence requires moving beyond black-box performance metrics toward an understanding of models' internal computations. Mechanistic Interpretability (MI) aims to meet this need by identifying the algorithmic mechanisms underlying model behaviors. Yet, the scientific rigor of MI critically depends on the reliability of its findings. In this work, we argue that interpretability methods, such as circuit discovery, should be viewed as statistical estimators, subject to questions of variance and robustness. To illustrate this statistical framing, we present a systematic stability analysis of a state-of-the-art circuit discovery method: EAP-IG. We evaluate its variance and robustness through a comprehensive suite of controlled perturbations, including input resampling, prompt paraphrasing, hyperparameter variation, and injected noise within the causal analysis itself. Across a diverse set of models and tasks, our results demonstrate that EAP-IG exhibits high structural variance and sensitivity to hyperparameters, questioning the stability of its findings. Based on these results, we offer a set of best-practice recommendations for the field, advocating for the routine reporting of stability metrics to promote a more rigorous and statistically grounded science of interpretability.
♻ ☆ Learning Equivariant Models by Discovering Symmetries with Learnable Augmentations
Recently, a trend has emerged that favors shifting away from designing constrained equivariant architectures for data in geometric domains and instead (1) modifying the training protocol, e.g., with a specific loss and data augmentations (soft equivariance), or (2) ignoring equivariance and inferring it only implicitly. However, both options have limitations, e.g., soft equivariance still requires a priori knowledge about the underlying symmetries, while implicitly learning equivariance from data lacks interpretability. To address these limitations, we propose SEMoLA, an end-to-end approach that jointly (1) discovers a priori unknown symmetries in the data via learnable data augmentations, and uses them to (2) encode the respective approximate equivariance into arbitrary unconstrained models. Hence, it enables learning equivariant models that do not need prior knowledge about symmetries, offer interpretability, and maintain robustness to distribution shifts. Empirically, we demonstrate the ability of SEMoLA to robustly discover relevant symmetries while achieving high prediction performance across various datasets, encompassing multiple data modalities and underlying symmetry groups.
♻ ☆ SCoT: Unifying Consistency Models and Rectified Flows via Straight-Consistent Trajectories
Pre-trained diffusion models are commonly used to generate clean data (e.g., images) from random noises, effectively forming pairs of noises and corresponding clean images. Distillation on these pre-trained models can be viewed as the process of constructing advanced trajectories within the pair to accelerate sampling. For instance, consistency model distillation develops consistent projection functions to regulate trajectories, although sampling efficiency remains a concern. Rectified flow method enforces straight trajectories to enable faster sampling, yet relies on numerical ODE solvers, which may introduce approximation errors. In this work, we bridge the gap between the consistency model and the rectified flow method by proposing a Straight Consistent Trajectory~(SCoT) model. SCoT enjoys the benefits of both approaches for fast sampling, producing trajectories with consistent and straight properties simultaneously. These dual properties are strategically balanced by targeting two critical objectives: (1) regulating the gradient of SCoT's mapping to a constant, (2) ensuring trajectory consistency. Extensive experimental results demonstrate the effectiveness and efficiency of SCoT.
AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
Despite progress in language model (LM) capabilities, evaluations have thus far focused on models' performance on tasks that humans have previously solved, including in programming (Jimenez et al., 2024) and mathematics (Glazer et al., 2024). We therefore propose testing models' ability to design and implement algorithms in an open-ended benchmark: We task LMs with writing code that efficiently solves computationally challenging problems in computer science, physics, and mathematics. Our AlgoTune benchmark consists of 154 coding tasks collected from domain experts and a framework for validating and timing LM-synthesized solution code, which is compared to reference implementations from popular open-source packages. In addition, we develop a baseline LM agent, AlgoTuner, and evaluate its performance across a suite of frontier models. AlgoTuner uses a simple, budgeted loop that edits code, compiles and runs it, profiles performance, verifies correctness on tests, and selects the fastest valid version. AlgoTuner achieves an average 1.72x speedup against our reference solvers, which use libraries such as SciPy, sk-learn and CVXPY. However, we find that current models fail to discover algorithmic innovations, instead preferring surface-level optimizations. We hope that AlgoTune catalyzes the development of LM agents exhibiting creative problem solving beyond state-of-the-art human performance.
♻ ☆ Neural Diffusion Processes for Physically Interpretable Survival Prediction
We introduce DeepFHT, a survival-analysis framework that couples deep neural networks with first hitting time (FHT) distributions from stochastic process theory. Time to event is represented as the first passage of a latent diffusion process to an absorbing boundary. A neural network maps input variables to physically meaningful parameters including initial condition, drift, and diffusion, within a chosen FHT process such as Brownian motion, both with drift and driftless. This yields closed-form survival and hazard functions and captures time-varying risk without assuming proportional-hazards. We compare DeepFHT with Cox survival model using synthetic and real-world datasets. The method achieves predictive accuracy on par with state-of-the-art approaches, while maintaining a physics-based interpretable parameterization that elucidates the relation between input features and risk. This combination of stochastic process theory and deep learning provides a principled avenue for modeling survival phenomena in complex systems.
comment: 11 pages, 6 figures
♻ ☆ How Much Is Too Much? Adaptive, Context-Aware Risk Detection in Naturalistic Driving
Reliable risk identification based on driver behavior data underpins real-time safety feedback, fleet risk management, and evaluation of driver-assist systems. While naturalistic driving studies have become foundational for providing real-world driver behavior data, the existing frameworks for identifying risk based on such data have two fundamental limitations: (i) they rely on predefined time windows and fixed thresholds to disentangle risky and normal driving behavior, and (ii) they assume behavior is stationary across drivers and time, ignoring heterogeneity and temporal drift. In practice, these limitations can lead to timing errors and miscalibration in alerts, weak generalization to new drivers/routes/conditions, and higher false-alarm and miss rates, undermining driver trust and reducing safety intervention effectiveness. To address this gap, we propose a unified, context-aware framework that adapts labels and models over time and across drivers via rolling windows, joint optimization, dynamic calibration, and model fusion, tailored for time-stamped kinematic data. The framework is tested using two safety indicators, speed-weighted headway and harsh driving events, and three models: Random Forest, XGBoost, and Deep Neural Network (DNN). Speed-weighted headway yielded more stable and context-sensitive classifications than harsh-event counts. XGBoost maintained consistent performance under changing thresholds, whereas DNN achieved higher recall at lower thresholds but with greater variability across trials. The ensemble aggregated signals from multiple models into a single risk decision, balancing responsiveness to risky behavior with control of false alerts. Overall, the framework shows promise for adaptive, context-aware risk detection that can enhance real-time safety feedback and support driver-focused interventions in intelligent transportation systems.
comment: 24 pages
♻ ☆ Interpretable Machine Learning for Urban Heat Mitigation: Attribution and Weighting of Multi-Scale Drivers
Urban heat islands (UHIs) are often accentuated during heat waves (HWs) and pose a public health risk. Mitigating UHIs requires urban planners to first estimate how urban heat is influenced by different land use types (LUTs) and drivers across scales - from synoptic-scale climatic background processes to small-scale urban- and scale-bridging features. This study proposes to classify these drivers into driving (D), urban (U), and local (L) features, respectively. To increase interpretability and enhance computation efficiency, a LUT-distinguishing machine learning approach is proposed as a fast emulator for Weather Research and Forecasting model (WRF) coupled to the Noah land surface model (LSM) to predict ground- (TSK) and 2-meter air temperature (T2). Using random forest regression (RFR) with extreme gradient boosting (XGB) trained on WRF output over Zurich, Switzerland, during heatwave (HW) periods in 2017 and 2019, this study proposes LUT-based (LB) models that categorize features by scales and practical controllability, allowing optional categorical weighting. This approach enables category-specific feature ranking and sensitivity estimation of T2 and TSK to most important small-scale drivers - most notably surface emissivity, albedo, and leaf area index (LAI). Models employing the LB framework are statistically significantly more accurate than models that do not, with higher performance when more HW data is included in training. With RFR-XGB robustly performing optimal with unit weights, the method substantially increase interpretability. Despite the needs to reduce uncertainties and test the method on other cities, the proposed approach offers urban planners a direct framework for feasibility-centered UHI mitigation assessment.
♻ ☆ Subspace Node Pruning
Improving the efficiency of neural network inference is undeniably important in a time where commercial use of AI models increases daily. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers to significantly reduce inference time while retaining network performance. In this work, we propose the projection of unit activations to an orthogonal subspace in which there is no redundant activity and within which we may prune nodes while simultaneously recovering the impact of lost units via linear least squares. We furthermore show that the order in which units are orthogonalized can be optimized to maximally rank units by their redundancy. Finally, we leverage these orthogonal subspaces to automatically determine layer-wise pruning ratios based upon the relative scale of node activations in our subspace, equivalent to cumulative variance. Our method matches or exceeds state-of-the-art pruning results on ImageNet-trained VGG-16, ResNet-50 and DeiT models while simultaneously having up to 24x lower computational cost than alternative methods. We also demonstrate that this method can be applied in a one-shot manner to OPT LLM models, again outperforming competing methods.
comment: 18 pages, 10 figures, 5 tables
♻ ☆ Optimal Denoising in Score-Based Generative Models: The Role of Data Regularity
Score-based generative models achieve state-of-the-art sampling performance by denoising a distribution perturbed by Gaussian noise. In this paper, we focus on a single deterministic denoising step, and compare the optimal denoiser for the quadratic loss, we name ''full-denoising'', to the alternative ''half-denoising'' introduced by Hyv{\"a}rinen (2024). We show that looking at the performances in term of distance between distribution tells a more nuanced story, with different assumptions on the data leading to very different conclusions. We prove that half-denoising is better than full-denoising for regular enough densities, while full-denoising is better for singular densities such as mixtures of Dirac measures or densities supported on a low-dimensional subspace. In the latter case, we prove that full-denoising can alleviate the curse of dimensionality under a linear manifold hypothesis.
♻ ☆ How Foundational are Foundation Models for Time Series Forecasting? NeurIPS 2025
Foundation Models are designed to serve as versatile embedding machines, with strong zero shot capabilities and superior generalization performance when fine-tuned on diverse downstream tasks. While this is largely true for language and vision foundation models, we argue that the inherent diversity of time series data makes them less suited for building effective foundation models. We demonstrate this using forecasting as our downstream task. We show that the zero-shot capabilities of a time series foundation model are significantly influenced and tied to the specific domains it has been pretrained on. Furthermore, when applied to unseen real-world time series data, fine-tuned foundation models do not consistently yield substantially better results, relative to their increased parameter count and memory footprint, than smaller, dedicated models tailored to the specific forecasting task at hand.
comment: Accepted at NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)
♻ ☆ Are Time Series Foundation Models Susceptible to Catastrophic Forgetting?
Time Series Foundation Models (TSFMs) have shown promising zero-shot generalization across diverse forecasting tasks. However, their robustness to continual adaptation remains underexplored. In this work, we investigate the extent to which TSFMs suffer from catastrophic forgetting when fine-tuned sequentially on multiple datasets. Using synthetic datasets designed with varying degrees of periodic structure, we measure the trade-off between adaptation to new data and retention of prior knowledge. Our experiments reveal that, while fine-tuning improves performance on new tasks, it often causes significant degradation on previously learned ones, illustrating a fundamental stability-plasticity dilemma.
♻ ☆ Learnable cut flow for high energy physics
Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but requires extensive manual tuning to identify optimal cut boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this strategy, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF 1. accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, 2. assigns higher importance to discriminative features with minimal overlap, 3. handles redundant or correlated features robustly, and 4. performs effectively in real-world scenarios. In the diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance. Source code and experimental data are available at https://github.com/Star9daisy/learnable-cut-flow.
comment: 31 pages, 26 figures, 8 tables, source code and data are available at GitHub
♻ ☆ Learning Task-Agnostic Motifs to Capture the Continuous Nature of Animal Behavior
Animals flexibly recombine a finite set of core motor motifs to meet diverse task demands, but existing behavior segmentation methods oversimplify this process by imposing discrete syllables under restrictive generative assumptions. To better capture the continuous structure of behavior generation, we introduce motif-based continuous dynamics (MCD) discovery, a framework that (1) uncovers interpretable motif sets as latent basis functions of behavior by leveraging representations of behavioral transition structure, and (2) models behavioral dynamics as continuously evolving mixtures of these motifs. We validate MCD on a multi-task gridworld, a labyrinth navigation task, and freely moving animal behavior. Across settings, it identifies reusable motif components, captures continuous compositional dynamics, and generates realistic trajectories beyond the capabilities of traditional discrete segmentation models. By providing a generative account of how complex animal behaviors emerge from dynamic combinations of fundamental motor motifs, our approach advances the quantitative study of natural behavior.
comment: 9 pages and 4 figures for the main text
♻ ☆ Beyond Slater's Condition in Online CMDPs with Stochastic and Adversarial Constraints
We study \emph{online episodic Constrained Markov Decision Processes} (CMDPs) under both stochastic and adversarial constraints. We provide a novel algorithm whose guarantees greatly improve those of the state-of-the-art best-of-both-worlds algorithm introduced by Stradi et al. (2025). In the stochastic regime, \emph{i.e.}, when the constraints are sampled from fixed but unknown distributions, our method achieves $\widetilde{\mathcal{O}}(\sqrt{T})$ regret and constraint violation without relying on Slater's condition, thereby handling settings where no strictly feasible solution exists. Moreover, we provide guarantees on the stronger notion of \emph{positive} constraint violation, which does not allow to recover from large violation in the early episodes by playing strictly safe policies. In the adversarial regime, \emph{i.e.}, when the constraints may change arbitrarily between episodes, our algorithm ensures sublinear constraint violation without Slater's condition, and achieves sublinear $\alpha$-regret with respect to the \emph{unconstrained} optimum, where $\alpha$ is a suitably defined multiplicative approximation factor. We further validate our results through synthetic experiments, showing the practical effectiveness of our algorithm.
♻ ☆ Reason to Rote: Rethinking Memorization in Reasoning EMNLP 2025
Large language models readily memorize arbitrary training instances, such as label noise, yet they perform strikingly well on reasoning tasks. In this work, we investigate how language models memorize label noise, and why such memorization in many cases does not heavily affect generalizable reasoning capabilities. Using two controllable synthetic reasoning datasets with noisy labels, four-digit addition (FDA) and two-hop relational reasoning (THR), we discover a reliance of memorization on generalizable reasoning mechanisms: models continue to compute intermediate reasoning outputs even when retrieving memorized noisy labels, and intervening reasoning adversely affects memorization. We further show that memorization operates through distributed encoding, i.e., aggregating various inputs and intermediate results, rather than building a look-up mechanism from inputs to noisy labels. Moreover, our FDA case study reveals memorization occurs via outlier heuristics, where existing neuron activation patterns are slightly shifted to fit noisy labels. Together, our findings suggest that memorization of label noise in language models builds on, rather than overrides, the underlying reasoning mechanisms, shedding lights on the intriguing phenomenon of benign memorization.
comment: EMNLP 2025 Main. 21 pages, 14 figures
♻ ☆ Multi-Domain Brain Vessel Segmentation Through Feature Disentanglement
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific model design and data harmonization between the source and the target domain. This is accomplished by employing disentanglement techniques to independently manipulate different image properties, allowing them to move from one domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation. Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types. Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices. The results highlight our framework's robustness and versatility, demonstrating the potential of domain adaptation methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available at https://github.com/i-vesseg/MultiVesSeg.
comment: 19 pages, 7 figures, 3 tables. Joint first authors: Francesco Galati and Daniele Falcetta. Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:021. Code available at https://github.com/i-vesseg/MultiVesSeg
♻ ☆ GSM-Agent: Understanding Agentic Reasoning Using Controllable Environments
As LLMs are increasingly deployed as agents, agentic reasoning - the ability to combine tool use, especially search, and reasoning - becomes a critical skill. However, it is hard to disentangle agentic reasoning when evaluated in complex environments and tasks. Current agent benchmarks often mix agentic reasoning with challenging math reasoning, expert-level knowledge, and other advanced capabilities. To fill this gap, we build a novel benchmark, GSM-Agent, where an LLM agent is required to solve grade-school-level reasoning problems, but is only presented with the question in the prompt without the premises that contain the necessary information to solve the task, and needs to proactively collect that information using tools. Although the original tasks are grade-school math problems, we observe that even frontier models like GPT-5 only achieve 67% accuracy. To understand and analyze the agentic reasoning patterns, we propose the concept of agentic reasoning graph: cluster the environment's document embeddings into nodes, and map each tool call to its nearest node to build a reasoning path. Surprisingly, we identify that the ability to revisit a previously visited node, widely taken as a crucial pattern in static reasoning, is often missing for agentic reasoning for many models. Based on the insight, we propose a tool-augmented test-time scaling method to improve LLM's agentic reasoning performance by adding tools to encourage models to revisit. We expect our benchmark and the agentic reasoning framework to aid future studies of understanding and pushing the boundaries of agentic reasoning.
comment: 39 pages, 8 figures
IndexNet: Timestamp and Variable-Aware Modeling for Time Series Forecasting
Multivariate time series forecasting (MTSF) plays a vital role in a wide range of real-world applications, such as weather prediction and traffic flow forecasting. Although recent advances have significantly improved the modeling of temporal dynamics and inter-variable dependencies, most existing methods overlook index-related descriptive information, such as timestamps and variable indices, which carry rich contextual semantics. To unlock the potential of such information and take advantage of the lightweight and powerful periodic capture ability of MLP-based architectures, we propose IndexNet, an MLP-based framework augmented with an Index Embedding (IE) module. The IE module consists of two key components: Timestamp Embedding (TE) and Channel Embedding (CE). Specifically, TE transforms timestamps into embedding vectors and injects them into the input sequence, thereby improving the model's ability to capture long-term complex periodic patterns. In parallel, CE assigns each variable a unique and trainable identity embedding based on its index, allowing the model to explicitly distinguish between heterogeneous variables and avoid homogenized predictions when input sequences seem close. Extensive experiments on 12 diverse real-world datasets demonstrate that IndexNet achieves comparable performance across mainstream baselines, validating the effectiveness of our temporally and variably aware design. Moreover, plug-and-play experiments and visualization analyses further reveal that IndexNet exhibits strong generality and interpretability, two aspects that remain underexplored in current MTSF research.
♻ ☆ The Future of Artificial Intelligence and the Mathematical and Physical Sciences (AI+MPS)
This community paper developed out of the NSF Workshop on the Future of Artificial Intelligence (AI) and the Mathematical and Physics Sciences (MPS), which was held in March 2025 with the goal of understanding how the MPS domains (Astronomy, Chemistry, Materials Research, Mathematical Sciences, and Physics) can best capitalize on, and contribute to, the future of AI. We present here a summary and snapshot of the MPS community's perspective, as of Spring/Summer 2025, in a rapidly developing field. The link between AI and MPS is becoming increasingly inextricable; now is a crucial moment to strengthen the link between AI and Science by pursuing a strategy that proactively and thoughtfully leverages the potential of AI for scientific discovery and optimizes opportunities to impact the development of AI by applying concepts from fundamental science. To achieve this, we propose activities and strategic priorities that: (1) enable AI+MPS research in both directions; (2) build up an interdisciplinary community of AI+MPS researchers; and (3) foster education and workforce development in AI for MPS researchers and students. We conclude with a summary of suggested priorities for funding agencies, educational institutions, and individual researchers to help position the MPS community to be a leader in, and take full advantage of, the transformative potential of AI+MPS.
comment: Community Paper from the NSF Future of AI+MPS Workshop, Cambridge, Massachusetts, March 24-26, 2025, supported by NSF Award Number 2512945; v2: minor clarifications
♻ ☆ Learning Low-Dimensional Embeddings for Black-Box Optimization
When gradient-based methods are impractical, black-box optimization (BBO) provides a valuable alternative. However, BBO often struggles with high-dimensional problems and limited trial budgets. In this work, we propose a novel approach based on meta-learning to pre-compute a reduced-dimensional manifold where optimal points lie for a specific class of optimization problems. When optimizing a new problem instance sampled from the class, black-box optimization is carried out in the reduced-dimensional space, effectively reducing the effort required for finding near-optimal solutions.
♻ ☆ Golden Ratio Weighting Prevents Model Collapse
Recent studies identified an intriguing phenomenon in recursive generative model training known as model collapse, where models trained on data generated by previous models exhibit severe performance degradation. Addressing this issue and developing more effective training strategies have become central challenges in generative model research. In this paper, we investigate this phenomenon within a novel framework, where generative models are iteratively trained on a combination of newly collected real data and synthetic data from the previous training step. To develop an optimal training strategy for integrating real and synthetic data, we evaluate the performance of a weighted training scheme in various scenarios, including Gaussian distribution estimation, generalized linear models, and nonparametric estimation. We theoretically characterize the impact of the mixing proportion and weighting scheme of synthetic data on the final model's performance. Our key finding is that, across different settings, the optimal weighting scheme under different proportions of synthetic data asymptotically follows a unified expression, revealing a fundamental trade-off between leveraging synthetic data and model performance. In some cases, the optimal weight assigned to real data corresponds to the reciprocal of the golden ratio. Finally, we validate our theoretical results on extensive simulated datasets and a real tabular dataset.
♻ ☆ Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Class imbalance remains a major challenge in machine learning, especially for high-dimensional biomedical data where nonlinear manifold structures dominate. Traditional oversampling methods such as SMOTE rely on local linear interpolation, often producing implausible synthetic samples. Deep generative models like Conditional Variational Autoencoders (CVAEs) better capture nonlinear distributions, but standard variants treat all minority samples equally, neglecting the importance of uncertain, boundary-region examples emphasized by heuristic methods like Borderline-SMOTE and ADASYN. We propose Local Entropy-Guided Oversampling with a CVAE (LEO-CVAE), a generative oversampling framework that explicitly incorporates local uncertainty into both representation learning and data generation. To quantify uncertainty, we compute Shannon entropy over the class distribution in a sample's neighborhood: high entropy indicates greater class overlap, serving as a proxy for uncertainty. LEO-CVAE leverages this signal through two mechanisms: (i) a Local Entropy-Weighted Loss (LEWL) that emphasizes robust learning in uncertain regions, and (ii) an entropy-guided sampling strategy that concentrates generation in these informative, class-overlapping areas. Applied to clinical genomics datasets (ADNI and TCGA lung cancer), LEO-CVAE consistently improves classifier performance, outperforming both traditional oversampling and generative baselines. These results highlight the value of uncertainty-aware generative oversampling for imbalanced learning in domains governed by complex nonlinear structures, such as omics data.
comment: 16 pages, 2 figures
♻ ☆ Downgrade to Upgrade: Optimizer Simplification Enhances Robustness in LLM Unlearning
Large language model (LLM) unlearning aims to surgically remove the influence of undesired data or knowledge from an existing model while preserving its utility on unrelated tasks. This paradigm has shown promise in addressing privacy and safety concerns. However, recent findings reveal that unlearning effects are often fragile: post-unlearning manipulations such as weight quantization or fine-tuning can quickly neutralize the intended forgetting. Prior efforts to improve robustness primarily reformulate unlearning objectives by explicitly assuming the role of vulnerability sources. In this work, we take a different perspective by investigating the role of the optimizer, independent of unlearning objectives and formulations, in shaping unlearning robustness. We show that the 'grade' of the optimizer, defined by the level of information it exploits, ranging from zeroth-order (gradient-free) to first-order (gradient-based) to second-order (Hessian-based), is tightly linked to the resilience of unlearning. Surprisingly, we find that downgrading the optimizer, such as using zeroth-order methods or compressed-gradient variants (e.g., gradient sign-based optimizers), often leads to stronger robustness. While these optimizers produce noisier and less precise updates, they encourage convergence to harder-to-disturb basins in the loss landscape, thereby resisting post-training perturbations. By connecting zeroth-order methods with randomized smoothing, we further highlight their natural advantage for robust unlearning. Motivated by these insights, we propose a hybrid optimizer that combines first-order and zeroth-order updates, preserving unlearning efficacy while enhancing robustness. Extensive experiments on the MUSE and WMDP benchmarks, across multiple LLM unlearning algorithms, validate that our approach achieves more resilient forgetting without sacrificing unlearning quality.
♻ ☆ Near-Optimal Sample Complexities of Divergence-based S-rectangular Distributionally Robust Reinforcement Learning
Distributionally robust reinforcement learning (DR-RL) has recently gained significant attention as a principled approach that addresses discrepancies between training and testing environments. To balance robustness, conservatism, and computational traceability, the literature has introduced DR-RL models with SA-rectangular and S-rectangular adversaries. While most existing statistical analyses focus on SA-rectangular models, owing to their algorithmic simplicity and the optimality of deterministic policies, S-rectangular models more accurately capture distributional discrepancies in many real-world applications and often yield more effective robust randomized policies. In this paper, we study the empirical value iteration algorithm for divergence-based S-rectangular DR-RL and establish near-optimal sample complexity bounds of $\widetilde{O}(|\mathcal{S}||\mathcal{A}|(1-\gamma)^{-4}\varepsilon^{-2})$, where $\varepsilon$ is the target accuracy, $|\mathcal{S}|$ and $|\mathcal{A}|$ denote the cardinalities of the state and action spaces, and $\gamma$ is the discount factor. To the best of our knowledge, these are the first sample complexity results for divergence-based S-rectangular models that achieve optimal dependence on $|\mathcal{S}|$, $|\mathcal{A}|$, and $\varepsilon$ simultaneously. We further validate this theoretical dependence through numerical experiments on a robust inventory control problem and a theoretical worst-case example, demonstrating the fast learning performance of our proposed algorithm.
♻ ☆ Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
The ionosphere critically influences Global Navigation Satellite Systems (GNSS), satellite communications, and Low Earth Orbit (LEO) operations, yet accurate prediction of its variability remains challenging due to nonlinear couplings between solar, geomagnetic, and thermospheric drivers. Total Electron Content (TEC), a key ionospheric parameter, is derived from GNSS observations, but its reliable forecasting is limited by the sparse nature of global measurements and the limited accuracy of empirical models, especially during strong space weather conditions. In this work, we present a machine learning framework for ionospheric TEC forecasting that leverages Temporal Fusion Transformers (TFT) to predict sparse ionosphere data. Our approach accommodates heterogeneous input sources, including solar irradiance, geomagnetic indices, and GNSS-derived vertical TEC, and applies preprocessing and temporal alignment strategies. Experiments spanning 2010-2025 demonstrate that the model achieves robust predictions up to 24 hours ahead, with root mean square errors as low as 3.33 TECU. Results highlight that solar EUV irradiance provides the strongest predictive signals. Beyond forecasting accuracy, the framework offers interpretability through attention-based analysis, supporting both operational applications and scientific discovery. To encourage reproducibility and community-driven development, we release the full implementation as the open-source toolkit \texttt{ionopy}.
♻ ☆ Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.
♻ ☆ Dynamic Bundling with Large Language Models for Zero-Shot Inference on Text-Attributed Graphs NeurIPS 2025
Large language models (LLMs) have been used in many zero-shot learning problems, with their strong generalization ability. Recently, adopting LLMs in text-attributed graphs (TAGs) has drawn increasing attention. However, the adoption of LLMs faces two major challenges: limited information on graph structure and unreliable responses. LLMs struggle with text attributes isolated from the graph topology. Worse still, they yield unreliable predictions due to both information insufficiency and the inherent weakness of LLMs (e.g., hallucination). Towards this end, this paper proposes a novel method named Dynamic Text Bundling Supervision (DENSE) that queries LLMs with bundles of texts to obtain bundle-level labels and uses these labels to supervise graph neural networks. Specifically, we sample a set of bundles, each containing a set of nodes with corresponding texts of close proximity. We then query LLMs with the bundled texts to obtain the label of each bundle. Subsequently, the bundle labels are used to supervise the optimization of graph neural networks, and the bundles are further refined to exclude noisy items. To justify our design, we also provide theoretical analysis of the proposed method. Extensive experiments across ten datasets validate the effectiveness of the proposed method.
comment: Accepted by NeurIPS 2025
♻ ☆ Adaptive Batch-Wise Sample Scheduling for Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as an effective approach for aligning large language models (LLMs) with human preferences. However, its performance is highly dependent on the quality of the underlying human preference data. To address this bottleneck, prior work has explored various data selection strategies, but these methods often overlook the impact of the evolving states of the language model during the optimization process. In this paper, we introduce a novel problem: Sample Scheduling for DPO, which aims to dynamically and adaptively schedule training samples based on the model's evolving batch-wise states throughout preference optimization. To solve this problem, we propose SamS, an efficient and effective algorithm that adaptively selects samples in each training batch based on the LLM's learning feedback to maximize the potential generalization performance. Notably, without modifying the core DPO algorithm, simply integrating SamS significantly improves performance across tasks, with minimal additional computational overhead. This work points to a promising new direction for improving LLM alignment through batch-wise sample selection, with potential generalization to RLHF and broader supervised learning paradigms.
♻ ☆ Learning Beyond Experience: Generalizing to Unseen State Space with Reservoir Computing
Machine learning techniques offer an effective approach to modeling dynamical systems solely from observed data. However, without explicit structural priors -- built-in assumptions about the underlying dynamics -- these techniques typically struggle to generalize to aspects of the dynamics that are poorly represented in the training data. Here, we demonstrate that reservoir computing -- a simple, efficient, and versatile machine learning framework often used for data-driven modeling of dynamical systems -- can generalize to unexplored regions of state space without explicit structural priors. First, we describe a multiple-trajectory training scheme for reservoir computers that supports training across a collection of disjoint time series, enabling effective use of available training data. Then, applying this training scheme to multistable dynamical systems, we show that RCs trained on trajectories from a single basin of attraction can achieve out-of-domain generalization by capturing system behavior in entirely unobserved basins.
comment: 18 pages, 12 figures. Updated to include results with RC generalization to unseen segregated and asymmetric basins of attraction and unseen chaotic attractors
♻ ☆ MetaFaith: Faithful Natural Language Uncertainty Expression in LLMs EMNLP 2025
A critical component in the trustworthiness of LLMs is reliable uncertainty communication, yet LLMs often use assertive language when conveying false claims, leading to over-reliance and eroded trust. We present the first systematic study of $\textit{faithful confidence calibration}$ of LLMs, benchmarking models' ability to use linguistic expressions of uncertainty that $\textit{faithfully reflect}$ their intrinsic uncertainty, across a comprehensive array of models, datasets, and prompting strategies. Our results demonstrate that LLMs largely fail at this task, and that existing interventions are insufficient: standard prompt approaches provide only marginal gains, and existing, factuality-based calibration techniques can even harm faithful calibration. To address this critical gap, we introduce MetaFaith, a novel prompt-based calibration approach inspired by human metacognition. We show that MetaFaith robustly improves faithful calibration across diverse models and task domains, enabling up to 61% improvement in faithfulness and achieving an 83% win rate over original generations as judged by humans.
comment: EMNLP 2025
♻ ☆ VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
♻ ☆ World Model for AI Autonomous Navigation in Mechanical Thrombectomy MICCAI 2025
Autonomous navigation for mechanical thrombectomy (MT) remains a critical challenge due to the complexity of vascular anatomy and the need for precise, real-time decision-making. Reinforcement learning (RL)-based approaches have demonstrated potential in automating endovascular navigation, but current methods often struggle with generalization across multiple patient vasculatures and long-horizon tasks. We propose a world model for autonomous endovascular navigation using TD-MPC2, a model-based RL algorithm. We trained a single RL agent across multiple endovascular navigation tasks in ten real patient vasculatures, comparing performance against the state-of-the-art Soft Actor-Critic (SAC) method. Results indicate that TD-MPC2 significantly outperforms SAC in multi-task learning, achieving a 65% mean success rate compared to SAC's 37%, with notable improvements in path ratio. TD-MPC2 exhibited increased procedure times, suggesting a trade-off between success rate and execution speed. These findings highlight the potential of world models for improving autonomous endovascular navigation and lay the foundation for future research in generalizable AI-driven robotic interventions.
comment: Published in Medical Image Computing and Computer Assisted Intervention - MICCAI 2025, Lecture Notes in Computer Science, vol 15968
♻ ☆ Comparison of Machine Learning Models to Classify Documents on Digital Development
Automated document classification is a trending topic in Natural Language Processing (NLP) due to the extensive growth in digital databases. However, a model that fits well for a specific classification task might perform weakly for another dataset due to differences in the context. Thus, training and evaluating several models is necessary to optimise the results. This study employs a publicly available document database on worldwide digital development interventions categorised under twelve areas. Since digital interventions are still emerging, utilising NLP in the field is relatively new. Given the exponential growth of digital interventions, this research has a vast scope for improving how digital-development-oriented organisations report their work. The paper examines the classification performance of Machine Learning (ML) algorithms, including Decision Trees, k-Nearest Neighbors, Support Vector Machine, AdaBoost, Stochastic Gradient Descent, Naive Bayes, and Logistic Regression. Accuracy, precision, recall and F1-score are utilised to evaluate the performance of these models, while oversampling is used to address the class-imbalanced nature of the dataset. Deviating from the traditional approach of fitting a single model for multiclass classification, this paper investigates the One vs Rest approach to build a combined model that optimises the performance. The study concludes that the amount of data is not the sole factor affecting the performance; features like similarity within classes and dissimilarity among classes are also crucial.
comment: 16 pages, 4 figures, 4 tables, presented at First International Conference, DSAI 2023, Bangkok
♻ ☆ SIM-Shapley: A Stable and Computationally Efficient Approach to Shapley Value Approximation
Explainable artificial intelligence (XAI) is essential for trustworthy machine learning (ML), particularly in high-stakes domains such as healthcare and finance. Shapley value (SV) methods provide a principled framework for feature attribution in complex models but incur high computational costs, limiting their scalability in high-dimensional settings. We propose Stochastic Iterative Momentum for Shapley Value Approximation (SIM-Shapley), a stable and efficient SV approximation method inspired by stochastic optimization. We analyze variance theoretically, prove linear $Q$-convergence, and demonstrate improved empirical stability and low bias in practice on real-world datasets. In our numerical experiments, SIM-Shapley reduces computation time by up to 85% relative to state-of-the-art baselines while maintaining comparable feature attribution quality. Beyond feature attribution, our stochastic mini-batch iterative framework extends naturally to a broader class of sample average approximation problems, offering a new avenue for improving computational efficiency with stability guarantees. Code is publicly available at https://github.com/nliulab/SIM-Shapley.
comment: 21 pages, 6 figures, 5 tables
♻ ☆ FTSCommDetector: Discovering Behavioral Communities through Temporal Synchronization
Why do trillion-dollar tech giants AAPL and MSFT diverge into different response patterns during market disruptions despite identical sector classifications? This paradox reveals a fundamental limitation: traditional community detection methods fail to capture synchronization-desynchronization patterns where entities move independently yet align during critical moments. To this end, we introduce FTSCommDetector, implementing our Temporal Coherence Architecture (TCA) to discover similar and dissimilar communities in continuous multivariate time series. Unlike existing methods that process each timestamp independently, causing unstable community assignments and missing evolving relationships, our approach maintains coherence through dual-scale encoding and static topology with dynamic attention. Furthermore, we establish information-theoretic foundations demonstrating how scale separation maximizes complementary information and introduce Normalized Temporal Profiles (NTP) for scale-invariant evaluation. As a result, FTSCommDetector achieves consistent improvements across four diverse financial markets (SP100, SP500, SP1000, Nikkei 225), with gains ranging from 3.5% to 11.1% over the strongest baselines. The method demonstrates remarkable robustness with only 2% performance variation across window sizes from 60 to 120 days, making dataset-specific tuning unnecessary, providing practical insights for portfolio construction and risk management.
♻ ☆ PiCa: Parameter-Efficient Fine-Tuning with Column Space Projection
Fine-tuning large foundation models is essential for building expert models tailored to specialized tasks and domains, but fully updating billions of parameters is computationally prohibitive. Reducing the number of trainable parameters using parameter-efficient fine-tuning is therefore crucial not only to reduce training costs but also to mitigate storage, caching, and serving overheads during deployment. Prior works, such as Singular Vectors-guided Fine-Tuning, have shown that exploiting the geometry of pre-trained weights can significantly improve parameter-efficiency, but they lack a solid theoretical foundation. In this paper, we introduce Parameter-efficient Fine-tuning with Column Space Projection (PiCa), a novel theoretically grounded PEFT method. We prove that projecting gradients onto the principal column space of pre-trained weights provides an effective inductive bias for adaptation and further enhance parameter efficiency through a novel weight-sharing strategy. Across diverse NLP and vision tasks, PiCa consistently outperforms state-of-the-art baselines under comparable or smaller parameter budgets, demonstrating both theoretical rigor and practical effectiveness.
♻ ☆ nDNA -- the Semantic Helix of Artificial Cognition
As AI foundation models grow in capability, a deeper question emerges: What shapes their internal cognitive identity -- beyond fluency and output? Benchmarks measure behavior, but the soul of a model resides in its latent geometry. In this work, we propose Neural DNA (nDNA) as a semantic-genotypic representation that captures this latent identity through the intrinsic geometry of belief. At its core, nDNA is synthesized from three principled and indispensable dimensions of latent geometry: spectral curvature, which reveals the curvature of conceptual flow across layers; thermodynamic length, which quantifies the semantic effort required to traverse representational transitions through layers; and belief vector field, which delineates the semantic torsion fields that guide a model's belief directional orientations. Like biological DNA, it encodes ancestry, mutation, and semantic inheritance, found in finetuning and alignment scars, cultural imprints, and architectural drift. In naming it, we open a new field: Neural Genomics, where models are not just tools, but digital semantic organisms with traceable inner cognition. Modeling statement. We read AI foundation models as semantic fluid dynamics: meaning is transported through layers like fluid in a shaped conduit; nDNA is the physics-grade readout of that flow -- a geometry-first measure of how meaning is bent, paid for, and pushed -- yielding a stable, coordinate-free neural DNA fingerprint tied to on-input behavior; with this fingerprint we cross into biology: tracing lineages across pretraining, fine-tuning, alignment, pruning, distillation, and merges; measuring inheritance between checkpoints; detecting drift as traits shift under new data or objectives; and, ultimately, studying the evolution of artificial cognition to compare models, diagnose risks, and govern change over time.
♻ ☆ Handling Heterophily in Recommender Systems with Wavelet Hypergraph Diffusion
Recommender systems are pivotal in delivering personalised user experiences across various domains. However, capturing the heterophily patterns and the multi-dimensional nature of user-item interactions poses significant challenges. To address this, we introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in hypergraph-based recommendation tasks. The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies. Extensive experiments on real-world datasets demonstrate that FWHDNN surpasses state-of-the-art methods in accuracy, robustness, and scalability in capturing high-order interconnections between users and items.
comment: Fixed and extended results
♻ ☆ Optimal and Provable Calibration in High-Dimensional Binary Classification: Angular Calibration and Platt Scaling
We study the fundamental problem of calibrating a linear binary classifier of the form $\sigma(\hat{w}^\top x)$, where the feature vector $x$ is Gaussian, $\sigma$ is a link function, and $\hat{w}$ is an estimator of the true linear weight $w^\star$. By interpolating with a noninformative $\textit{chance classifier}$, we construct a well-calibrated predictor whose interpolation weight depends on the angle $\angle(\hat{w}, w_\star)$ between the estimator $\hat{w}$ and the true linear weight $w_\star$. We establish that this angular calibration approach is provably well-calibrated in a high-dimensional regime where the number of samples and features both diverge, at a comparable rate. The angle $\angle(\hat{w}, w_\star)$ can be consistently estimated. Furthermore, the resulting predictor is uniquely $\textit{Bregman-optimal}$, minimizing the Bregman divergence to the true label distribution within a suitable class of calibrated predictors. Our work is the first to provide a calibration strategy that satisfies both calibration and optimality properties provably in high dimensions. Additionally, we identify conditions under which a classical Platt-scaling predictor converges to our Bregman-optimal calibrated solution. Thus, Platt-scaling also inherits these desirable properties provably in high dimensions.
♻ ☆ scSiameseClu: A Siamese Clustering Framework for Interpreting single-cell RNA Sequencing Data
Single-cell RNA sequencing (scRNA-seq) reveals cell heterogeneity, with cell clustering playing a key role in identifying cell types and marker genes. Recent advances, especially graph neural networks (GNNs)-based methods, have significantly improved clustering performance. However, the analysis of scRNA-seq data remains challenging due to noise, sparsity, and high dimensionality. Compounding these challenges, GNNs often suffer from over-smoothing, limiting their ability to capture complex biological information. In response, we propose scSiameseClu, a novel Siamese Clustering framework for interpreting single-cell RNA-seq data, comprising of 3 key steps: (1) Dual Augmentation Module, which applies biologically informed perturbations to the gene expression matrix and cell graph relationships to enhance representation robustness; (2) Siamese Fusion Module, which combines cross-correlation refinement and adaptive information fusion to capture complex cellular relationships while mitigating over-smoothing; and (3) Optimal Transport Clustering, which utilizes Sinkhorn distance to efficiently align cluster assignments with predefined proportions while maintaining balance. Comprehensive evaluations on seven real-world datasets demonstrate that scSiameseClu outperforms state-of-the-art methods in single-cell clustering, cell type annotation, and cell type classification, providing a powerful tool for scRNA-seq data interpretation.
♻ ☆ When Reasoning Meets Compression: Understanding the Effects of LLMs Compression on Large Reasoning Models
Compression methods, including quantization, distillation, and pruning, improve the computational efficiency of large reasoning models (LRMs). However, existing studies either fail to sufficiently compare all three compression methods on LRMs or lack in-depth interpretation analysis. In this paper, we investigate how the reasoning capabilities of LRMs are compromised during compression, through performance benchmarking and mechanistic interpretation. To uncover the effects of compression on reasoning performance, we benchmark quantized, distilled, and pruned DeepSeek-R1 models on four reasoning datasets (AIME 2024, FOLIO, Temporal Sequences, and MuSiQue). To precisely locate compression effects on model weights, we adapt difference of means and attribution patching techniques, focusing on the activation of every linear component in compressed LRMs, to interpret fine-grained causal relationships between weights and various reasoning capabilities. This fine-grained interpretation addresses a fundamental question of compression: which weights are the most important for reasoning? Overall, we find dynamically quantized 2.51-bit R1 reaches close-to-R1 performance. With empirical verification, we present three main findings that generalize across both Llama and Qwen: (1) Weight count has a greater impact on LRMs' knowledge memorization than reasoning, highlighting the risks of pruning and distillation; (2) The MLP up projection in the final layer of distilled LRMs is one of the most important components, offering a new perspective on locating critical weights - a fundamental problem in model compression; and (3) Current quantization methods overly compress the final-layer modules and MLP gate projections, so protecting just 2% of all weights that are excessively compressed can raise average accuracy by 6.57%, greatly surpassing the state-of-the-art.
♻ ☆ Synergizing LLMs and Knowledge Graphs: A Novel Approach to Software Repository-Related Question Answering
Software repositories contain valuable information for understanding the development process. However, extracting insights from repository data is time-consuming and requires technical expertise. While software engineering chatbots support natural language interactions with repositories, chatbots struggle to understand questions beyond their trained intents and to accurately retrieve the relevant data. This study aims to improve the accuracy of LLM-based chatbots in answering repository-related questions by augmenting them with knowledge graphs. We use a two-step approach: constructing a knowledge graph from repository data, and synergizing the knowledge graph with an LLM to handle natural language questions and answers. We curated 150 questions of varying complexity and evaluated the approach on five popular open-source projects. Our initial results revealed the limitations of the approach, with most errors due to the reasoning ability of the LLM. We therefore applied few-shot chain-of-thought prompting, which improved accuracy to 84%. We also compared against baselines (MSRBot and GPT-4o-search-preview), and our approach performed significantly better. In a task-based user study with 20 participants, users completed more tasks correctly and in less time with our approach, and they reported that it was useful. Our findings demonstrate that LLMs and knowledge graphs are a viable solution for making repository data accessible.
comment: Submitted to ACM Transactions on Software Engineering and Methodology for review
♻ ☆ AutoScale: Scale-Aware Data Mixing for Pre-Training LLMs
Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of LLM pre-training. We show that data mixtures that perform well at smaller scales may not retain their advantage at larger scales, challenging the existing practice of determining competitive mixtures in small-scale experiments and directly applying them at much larger scales. To address this, we propose AutoScale, a two-stage, scale-aware data composition framework. First, AutoScale fits a parametric model that predicts the model's loss under different data compositions, then uses it to find an approximate best allocation at smaller, more manageable budgets. Next, leveraging a novel theoretical analysis of how optimal compositions evolve with scale, AutoScale extrapolates that composition to larger budgets without further retraining. Empirically, AutoScale accelerates convergence and improves downstream performance. For instance, when pre-training GPT-2 Large, it achieves a 28% faster perplexity reduction than baselines and up to a 38% speed-up over unweighted training, while yielding best-average results on various downstream tasks. Overall, our findings illustrate how domain importance shifts with training scale, underscoring the need for scale-dependent data curation in LLM training. Our code is open-sourced.
comment: Published as a conference paper at COLM 2025
GEPO: Group Expectation Policy Optimization for Stable Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training becomes essential. However, traditional Reinforcement Learning (RL) methods, crucial for enhancing large model post-training, cannot adapt to decentralized distributed training due to the tight coupling between parameter learning and rollout sampling. For this, we propose HeteroRL, a heterogeneous RL architecture that decouples these processes, enabling stable training across geographically distributed nodes connected via the Internet. The core component is Group Expectation Policy Optimization (GEPO), an asynchronous RL algorithm robust to latency caused by network delays or heterogeneity in computational resources. Our study reveals that high latency significantly increases KL divergence, leading to higher variance in importance sampling weights and training instability. GEPO mitigates this issue by using group expectation weighting to exponentially reduce the variance of importance weights, with theoretical guarantees. Experiments show that GEPO achieves superior stability, with only a 3\% performance drop from online to 1800s latency, demonstrating strong potential for decentralized RL in geographically distributed, resource-heterogeneous computing environments.
♻ ☆ Finite Sample Analysis of Linear Temporal Difference Learning with Arbitrary Features
Linear TD($\lambda$) is one of the most fundamental reinforcement learning algorithms for policy evaluation. Previously, convergence rates are typically established under the assumption of linearly independent features, which does not hold in many practical scenarios. This paper instead establishes the first $L^2$ convergence rates for linear TD($\lambda$) operating under arbitrary features, without making any algorithmic modification or additional assumptions. Our results apply to both the discounted and average-reward settings. To address the potential non-uniqueness of solutions resulting from arbitrary features, we develop a novel stochastic approximation result featuring convergence rates to the solution set instead of a single point.
♻ ☆ Improving Virtual Contrast Enhancement using Longitudinal Data MICCAI 2025
Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) to enhance lesion detection and characterisation, particularly in the field of neuro-oncology. Nevertheless, concerns regarding gadolinium retention and accumulation in brain and body tissues, most notably for diseases that require close monitoring and frequent GBCA injection, have led to the need for strategies to reduce dosage. In this study, a deep learning framework is proposed for the virtual contrast enhancement of full-dose post-contrast T1-weighted MRI images from corresponding low-dose acquisitions. The contribution of the presented model is its utilisation of longitudinal information, which is achieved by incorporating a prior full-dose MRI examination from the same patient. A comparative evaluation against a non-longitudinal single session model demonstrated that the longitudinal approach significantly improves image quality across multiple reconstruction metrics. Furthermore, experiments with varying simulated contrast doses confirmed the robustness of the proposed method. These results emphasize the potential of integrating prior imaging history into deep learning-based virtual contrast enhancement pipelines to reduce GBCA usage without compromising diagnostic utility, thus paving the way for safer, more sustainable longitudinal monitoring in clinical MRI practice.
comment: 11 pages, 4 figures, Workshop MICCAI 2025 - Learning with Longitudinal Medical Images and Data
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: There are quality issues with the paper and it requires major revisions
How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook IJCAI25
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA Updated to include papers accepted by IJCAI25, KDD25, ICML25, NeurIPS25 4 figures or tables, 19 pages, 251 references
♻ ☆ Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization CIKM 2025
We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.
comment: 8 pages, 3 figures, Accepted at CIKM 2025 FinAI Workshop
♻ ☆ MS-DFTVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Deformable Convolution
Research on long-term time series prediction has primarily relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this, we propose a novel multi-scale time series reshape module that effectively captures cross-period patch interactions and variable dependencies. Building on this, we develop MS-DFTVNet, the multi-scale 3D deformable convolutional framework tailored for long-term forecasting. Moreover, to handle the inherently uneven distribution of temporal features, we introduce a context-aware dynamic deformable convolution mechanism, which further enhances the model's ability to capture complex temporal patterns. Extensive experiments demonstrate that MS-DFTVNet not only significantly outperforms strong baselines but also achieves an average improvement of about 7.5% across six public datasets, setting new state-of-the-art results.
♻ ☆ Wasserstein multivariate auto-regressive models for modeling distributional time series
This paper is focused on the statistical analysis of data consisting of a collection of multiple series of probability measures that are indexed by distinct time instants and supported over a bounded interval of the real line. By modeling these time-dependent probability measures as random objects in the Wasserstein space, we propose a new auto-regressive model for the statistical analysis of multivariate distributional time series. Using the theory of iterated random function systems, results on the second order stationarity of the solution of such a model are provided. We also propose a consistent estimator for the auto-regressive coefficients of this model. Due to the simplex constraints that we impose on the model coefficients, the proposed estimator that is learned under these constraints, naturally has a sparse structure. The sparsity allows the application of the proposed model in learning a graph of temporal dependency from multivariate distributional time series. We explore the numerical performances of our estimation procedure using simulated data. To shed some light on the benefits of our approach for real data analysis, we also apply this methodology to two data sets, respectively made of observations from age distribution in different countries and those from the bike sharing network in Paris.
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth\_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ Analyzing Latent Concepts in Code Language Models
Interpreting the internal behavior of large language models trained on code remains a critical challenge, particularly for applications demanding trust, transparency, and semantic robustness. We propose Code Concept Analysis (CoCoA): a global post-hoc interpretability framework that uncovers emergent lexical, syntactic, and semantic structures in a code language model's representation space by clustering contextualized token embeddings into human-interpretable concept groups. We propose a hybrid annotation pipeline that combines static analysis tool-based syntactic alignment with prompt-engineered large language models (LLMs), enabling scalable labeling of latent concepts across abstraction levels. We analyse the distribution of concepts across layers and across three finetuning tasks. Emergent concept clusters can help identify unexpected latent interactions and be used to identify trends and biases within the model's learned representations. We further integrate LCA with local attribution methods to produce concept-grounded explanations, improving the coherence and interpretability of token-level saliency. Empirical evaluations across multiple models and tasks show that LCA discovers concepts that remain stable under semantic-preserving perturbations (average Cluster Sensitivity Index, CSI = 0.288) and evolve predictably with fine-tuning. In a user study on the programming-language classification task, concept-augmented explanations disambiguated token roles and improved human-centric explainability by 37 percentage points compared with token-level attributions using Integrated Gradients.
♻ ☆ Preconditioned subgradient method for composite optimization: overparameterization and fast convergence
Composite optimization problems involve minimizing the composition of a smooth map with a convex function. Such objectives arise in numerous data science and signal processing applications, including phase retrieval, blind deconvolution, and collaborative filtering. The subgradient method achieves local linear convergence when the composite loss is well-conditioned. However, if the smooth map is, in a certain sense, ill-conditioned or overparameterized, the subgradient method exhibits much slower sublinear convergence even when the convex function is well-conditioned. To overcome this limitation, we introduce a Levenberg-Morrison-Marquardt subgradient method that converges linearly under mild regularity conditions at a rate determined solely by the convex function. Further, we demonstrate that these regularity conditions hold for several problems of practical interest, including square-variable formulations, matrix sensing, and tensor factorization. Numerical experiments illustrate the benefits of our method.
comment: 84 pages, 8 figures
On the Effect of Sampling Diversity in Scaling LLM Inference
Large language model (LLM) scaling inference is key to unlocking greater performance, and leveraging diversity has proven an effective way to enhance it. Motivated by the observed relationship between solution accuracy and meaningful response diversity, we systematically study the effect of prompt diversity in scaling inference. We theoretically explain why diversified sampling improves Best-of-$N$ scaling, showing that responses generated from meaningful diverse prompts after Best-of-$N$ selection exhibit significantly lower error rates than those produced from stationary prompts. To promote solution diversity, we analyze perturbation fidelity and show that moderately relevant perturbations improve performance, providing guidance for effective perturbation design. Further, we present a set of effective perturbations, including task-level and query-level ones, and analyze the conditions under which they succeed. We systematically evaluate diversified sampling across tasks, finding relative gains of 10.8% in EM@100 for reasoning, 9.6% for mathematics, and 9.5% in Pass@100 for code generation.
comment: 30 pages
♻ ☆ Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in multimodal LLMs
Hallucinations in large language models (LLMs) remain a fundamental obstacle to trustworthy AI, particularly in high-stakes multimodal domains such as medicine, law, and finance. Existing evaluation techniques are largely heuristic -- anchored in qualitative benchmarking or ad-hoc empirical mitigation -- providing neither principled quantification nor actionable theoretical guarantees. This gap leaves a critical blind spot in understanding how hallucinations arise, propagate, and interact across modalities. We introduce the first (to our knowledge) rigorous information geometric framework in diffusion dynamics for quantifying hallucinations in multimodal LLMs (MLLMs), advancing the field from qualitative detection to mathematically grounded measurement. Our approach represents MLLM outputs as the spectral embeddings over multimodal graph Laplacians and characterizes the manifold gaps of truth vs inconsistencies as the semantic distortion, enabling the tight Rayleigh--Ritz bounds on the multimodal hallucination energy as a functional of time-dependent temperature profiles. By leveraging eigenmode decompositions in Reproducing Kernel Hilbert Space (RKHS) embeddings, our framework delivers modality-aware, theoretically interpretable metrics that capture the evolution of hallucinations across time and input prompts through temperature annealing. This work establishes a principled foundation for quantifying and bounding hallucinations, transforming them from a qualitative risk to a tractable, analyzable phenomenon.
comment: 29 pages, 3 figures, 1 table
♻ ☆ Graph Theory Meets Federated Learning over Satellite Constellations: Spanning Aggregations, Network Formation, and Performance Optimization
We introduce Fed-Span, a novel federated/distributed learning framework designed for low Earth orbit satellite constellations. Fed-Span aims to address critical challenges inherent to distributed learning in dynamic satellite networks, including intermittent satellite connectivity, heterogeneous computational capabilities of satellites, and time-varying satellites' datasets. At its core, Fed-Span leverages minimum spanning tree (MST) and minimum spanning forest (MSF) topologies to introduce spanning model aggregation and dispatching processes for distributed learning. To formalize Fed-Span, we offer a fresh perspective on MST/MSF topologies by formulating them through a set of continuous constraint representations (CCRs), thereby devising graph-theoretical abstractions into an optimizable framework for satellite networks. Using these CCRs, we obtain the energy consumption and latency of operations in Fed-Span. Moreover, we derive novel convergence bounds for Fed-Span, accommodating its key system characteristics and degrees of freedom (i.e., tunable parameters). Finally, we propose a comprehensive optimization problem that jointly minimizes model prediction loss, energy consumption, and latency of Fed-Span. We unveil that this problem is NP-hard and develop a systematic approach to transform it into a geometric programming formulation, solved via successive convex optimization with performance guarantees. Through evaluations on real-world datasets, we demonstrate that Fed-Span outperforms existing methods, with faster model convergence, greater energy efficiency, and reduced latency. These results highlight Fed-Span as a novel solution for efficient distributed learning in satellite networks.
comment: 8 Figures, 6 Appendix
♻ ☆ Injecting Measurement Information Yields a Fast and Noise-Robust Diffusion-Based Inverse Problem Solver
Diffusion models have been firmly established as principled zero-shot solvers for linear and nonlinear inverse problems, owing to their powerful image prior and iterative sampling algorithm. These approaches often rely on Tweedie's formula, which relates the diffusion variate $\mathbf{x}_t$ to the posterior mean $\mathbb{E} [\mathbf{x}_0 | \mathbf{x}_t]$, in order to guide the diffusion trajectory with an estimate of the final denoised sample $\mathbf{x}_0$. However, this does not consider information from the measurement $\mathbf{y}$, which must then be integrated downstream. In this work, we propose to estimate the conditional posterior mean $\mathbb{E} [\mathbf{x}_0 | \mathbf{x}_t, \mathbf{y}]$, which can be formulated as the solution to a lightweight, single-parameter maximum likelihood estimation problem. The resulting prediction can be integrated into any standard sampler, resulting in a fast and memory-efficient inverse solver. Our optimizer is amenable to a noise-aware likelihood-based stopping criteria that is robust to measurement noise in $\mathbf{y}$. We demonstrate comparable or improved performance against a wide selection of contemporary inverse solvers across multiple datasets and tasks.
♻ ☆ Relative Advantage Debiasing for Watch-Time Prediction in Short-Video Recommendation
Watch time is widely used as a proxy for user satisfaction in video recommendation platforms. However, raw watch times are influenced by confounding factors such as video duration, popularity, and individual user behaviors, potentially distorting preference signals and resulting in biased recommendation models. We propose a novel relative advantage debiasing framework that corrects watch time by comparing it to empirically derived reference distributions conditioned on user and item groups. This approach yields a quantile-based preference signal and introduces a two-stage architecture that explicitly separates distribution estimation from preference learning. Additionally, we present distributional embeddings to efficiently parameterize watch-time quantiles without requiring online sampling or storage of historical data. Both offline and online experiments demonstrate significant improvements in recommendation accuracy and robustness compared to existing baseline methods.
♻ ☆ Disentangling the Complex Multiplexed DIA Spectra in De Novo Peptide Sequencing
Data-Independent Acquisition (DIA) was introduced to improve sensitivity to cover all peptides in a range rather than only sampling high-intensity peaks as in Data-Dependent Acquisition (DDA) mass spectrometry. However, it is not very clear how useful DIA data is for de novo peptide sequencing as the DIA data are marred with coeluted peptides, high noises, and varying data quality. We present a new deep learning method DIANovo, and address each of these difficulties, and improves the previous established systems by a large margin, via equipping the model with a deeper understanding of coeluted DIA spectra. This paper also provides criteria about when DIA data could be used for de novo peptide sequencing and when not to by providing a comparison between DDA and DIA, in both de novo and database search mode. We find that while DIA excels with narrow isolation windows on older-generation instruments, it loses its advantage with wider windows. However, with Orbitrap Astral, DIA consistently outperforms DDA due to narrow window mode enabled. We also provide a theoretical explanation of this phenomenon, emphasizing the critical role of the signal-to-noise profile in the successful application of de novo sequencing.
♻ ☆ Best Policy Learning from Trajectory Preference Feedback
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful approach for aligning generative models, but its reliance on learned reward models makes it vulnerable to mis-specification and reward hacking. Preference-based Reinforcement Learning (PbRL) offers a more robust alternative by directly leveraging noisy binary comparisons over trajectories. We study the best policy identification problem in PbRL, motivated by post-training optimization of generative models, for example, during multi-turn interactions. Learning in this setting combines an offline preference dataset--potentially biased or out-of-distribution and collected from a rater of subpar 'competence'--with online pure exploration, making systematic online learning essential. To this end, we propose Posterior Sampling for Preference Learning ($\mathsf{PSPL}$), a novel algorithm inspired by Top-Two Thompson Sampling that maintains posteriors over the reward model and dynamics. We provide the first Bayesian simple regret guarantees for PbRL and introduce an efficient approximation that outperforms existing baselines on simulation and image generation benchmarks.
♻ ☆ FinP: Fairness-in-Privacy in Federated Learning by Addressing Disparities in Privacy Risk
Ensuring fairness in machine learning extends to the critical dimension of privacy, particularly in human-centric federated learning (FL) settings where decentralized data necessitates an equitable distribution of privacy risk across clients. This paper introduces FinP, a novel framework specifically designed to address disparities in privacy risk by mitigating disproportionate vulnerability to source inference attacks (SIA). FinP employs a two-pronged strategy: (1) server-side adaptive aggregation, which dynamically adjusts client contributions to the global model to foster fairness, and (2) client-side regularization, which enhances the privacy robustness of individual clients. This comprehensive approach directly tackles both the symptoms and underlying causes of privacy unfairness in FL. Extensive evaluations on the Human Activity Recognition (HAR) and CIFAR-10 datasets demonstrate FinP's effectiveness, achieving improvement in fairness-in-privacy on HAR and CIFAR-10 with minimal impact on utility. FinP improved group fairness with respect to disparity in privacy risk using equal opportunity in CIFAR-10 by 57.14% compared to the state-of-the-art. Furthermore, FinP significantly mitigates SIA risks on CIFAR-10, underscoring its potential to establish fairness in privacy within FL systems without compromising utility.
♻ ☆ Learning to Interact in World Latent for Team Coordination
This work presents a novel representation learning framework, interactive world latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning (MARL). Building effective representation for team coordination is a challenging problem, due to the intricate dynamics emerging from multi-agent interaction and incomplete information induced by local observations. Our key insight is to construct a learnable representation space that jointly captures inter-agent relations and task-specific world information by directly modeling communication protocols. This representation, we maintain fully decentralized execution with implicit coordination, all while avoiding the inherent drawbacks of explicit message passing, e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity to bandwidth constraints. In practice, our representation can be used not only as an implicit latent for each agent, but also as an explicit message for communication. Across four challenging MARL benchmarks, we evaluate both variants and show that IWoL provides a simple yet powerful key for team coordination. Moreover, we demonstrate that our representation can be combined with existing MARL algorithms to further enhance their performance.
comment: Web: https://dongsuleetech.github.io/projects/IWoL/
♻ ☆ Fractional signature: a generalisation of the signature inspired by fractional calculus
In this paper, we propose a novel generalisation of the signature of a path, motivated by fractional calculus, which is able to describe the solutions of linear Caputo controlled FDEs. We also propose another generalisation of the signature, inspired by the previous one, but more convenient to use in machine learning. Finally, we test this last signature in a toy application to the problem of handwritten digit recognition, where significant improvements in accuracy rates are observed compared to those of the original signature.
comment: 8 pages, 1 figure
♻ ☆ Feature Dynamics as Implicit Data Augmentation: A Depth-Decomposed View on Deep Neural Network Generalization
Why do deep networks generalize well? In contrast to classical generalization theory, we approach this fundamental question by examining not only inputs and outputs, but the evolution of internal features. Our study suggests a phenomenon of temporal consistency that predictions remain stable when shallow features from earlier checkpoints combine with deeper features from later ones. This stability is not a trivial convergence artifact. It acts as a form of implicit, structured augmentation that supports generalization. We show that temporal consistency extends to unseen and corrupted data, but collapses when semantic structure is destroyed (e.g., random labels). Statistical tests further reveal that SGD injects anisotropic noise aligned with a few principal directions, reinforcing its role as a source of structured variability. Together, these findings suggest a conceptual perspective that links feature dynamics to generalization, pointing toward future work on practical surrogates for measuring temporal feature evolution.
♻ ☆ Demystifying Network Foundation Models
This work presents a systematic investigation into the latent knowledge encoded within Network Foundation Models (NFMs) that focuses on hidden representations analysis rather than pure downstream task performance. Different from existing efforts, we analyze the models through a three-part evaluation: Embedding Geometry Analysis to assess representation space utilization, Metric Alignment Assessment to measure correspondence with domain-expert features, and Causal Sensitivity Testing to evaluate robustness to protocol perturbations. Using five diverse network datasets spanning controlled and real-world environments, we evaluate four state-of-the-art NFMs, revealing that they all exhibit significant anisotropy, inconsistent feature sensitivity patterns, an inability to separate the high-level context, payload dependency, and other properties. Our work identifies numerous limitations across all models and demonstrates that addressing them can significantly improve model performance (by up to +0.35 $F_1$ score without architectural changes).
♻ ☆ DM-Bench: Benchmarking LLMs for Personalized Decision Making in Diabetes Management
We present DM-Bench, the first benchmark designed to evaluate large language model (LLM) performance across real-world decision-making tasks faced by individuals managing diabetes in their daily lives. Unlike prior health benchmarks that are either generic, clinician-facing or focused on clinical tasks (e.g., diagnosis, triage), DM-Bench introduces a comprehensive evaluation framework tailored to the unique challenges of prototyping patient-facing AI solutions in diabetes, glucose management, metabolic health and related domains. Our benchmark encompasses 7 distinct task categories, reflecting the breadth of real-world questions individuals with diabetes ask, including basic glucose interpretation, educational queries, behavioral associations, advanced decision making and long term planning. Towards this end, we compile a rich dataset comprising one month of time-series data encompassing glucose traces and metrics from continuous glucose monitors (CGMs) and behavioral logs (e.g., eating and activity patterns) from 15,000 individuals across three different diabetes populations (type 1, type 2, pre-diabetes/general health and wellness). Using this data, we generate a total of 360,600 personalized, contextual questions across the 7 tasks. We evaluate model performance on these tasks across 5 metrics: accuracy, groundedness, safety, clarity and actionability. Our analysis of 8 recent LLMs reveals substantial variability across tasks and metrics; no single model consistently outperforms others across all dimensions. By establishing this benchmark, we aim to advance the reliability, safety, effectiveness and practical utility of AI solutions in diabetes care.
♻ ☆ Sharpness of Minima in Deep Matrix Factorization: Exact Expressions
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss, which measures the sharpness of the landscape. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in general overparameterized deep matrix factorization (i.e., deep linear neural network training) problems, resolving an open question posed by Mulayoff & Michaeli (2020). To complement our theory, we empirically investigate an escape phenomenon observed during gradient-based training near a minimum that crucially relies on our exact expression of the sharpness.
comment: 18 pages, 7 figures
♻ ☆ Activated LoRA: Fine-tuned LLMs for Intrinsics
Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for finetuning the weights of large foundation models, and has become the go-to method for data-driven customization of LLMs. Despite the promise of highly customized behaviors and capabilities, switching between relevant LoRAs in a multiturn setting is inefficient, as the key-value (KV) cache of the entire turn history must be recomputed with the LoRA weights before generation can begin. To address this problem, we propose Activated LoRA (aLoRA), an adapter architecture which modifies the LoRA framework to only adapt weights for the tokens in the sequence after the aLoRA is invoked. This change crucially allows aLoRA to accept the base model's KV cache of the input string, meaning that aLoRA can be instantly activated whenever needed in a chain without recomputing the prior keys and values. This enables building what we call intrinsics, i.e. specialized models invoked to perform well-defined operations on portions of an input chain or conversation that otherwise uses the base model by default. We train a set of aLoRA-based intrinsics models, demonstrating competitive accuracy with standard LoRA while significantly improving inference efficiency. We contributed our Activated LoRA implementation to the Huggingface PEFT library https://github.com/huggingface/peft.
♻ ☆ PrisonBreak: Jailbreaking Large Language Models with at Most Twenty-Five Targeted Bit-flips
We study a new vulnerability in commercial-scale safety-aligned large language models (LLMs): their refusal to generate harmful responses can be broken by flipping only a few bits in model parameters. Our attack jailbreaks billion-parameter language models with just 5 to 25 bit-flips, requiring up to 40$\times$ fewer bit flips than prior attacks on much smaller computer vision models. Unlike prompt-based jailbreaks, our method directly uncensors models in memory at runtime, enabling harmful outputs without requiring input-level modifications. Our key innovation is an efficient bit-selection algorithm that identifies critical bits for language model jailbreaks up to 20$\times$ faster than prior methods. We evaluate our attack on 10 open-source LLMs, achieving high attack success rates (ASRs) of 80-98% with minimal impact on model utility. We further demonstrate an end-to-end exploit via Rowhammer-based fault injection, reliably jailbreaking 5 models (69-91% ASR) on a GDDR6 GPU. Our analyses reveal that: (1) models with weaker post-training alignment require fewer bit-flips to jailbreak; (2) certain model components, e.g., value projection layers, are substantially more vulnerable; and (3) the attack is mechanistically different from existing jailbreak methods. We evaluate potential countermeasures and find that our attack remains effective against defenses at various stages of the LLM pipeline.
comment: Pre-print
♻ ☆ Mutual Information Guided Backdoor Mitigation for Pre-trained Encoders
Self-supervised learning (SSL) is increasingly attractive for pre-training encoders without requiring labeled data. Downstream tasks built on top of those pre-trained encoders can achieve nearly state-of-the-art performance. The pre-trained encoders by SSL, however, are vulnerable to backdoor attacks as demonstrated by existing studies. Numerous backdoor mitigation techniques are designed for downstream task models. However, their effectiveness is impaired and limited when adapted to pre-trained encoders, due to the lack of label information when pre-training. To address backdoor attacks against pre-trained encoders, in this paper, we innovatively propose a mutual information guided backdoor mitigation technique, named MIMIC. MIMIC treats the potentially backdoored encoder as the teacher net and employs knowledge distillation to distill a clean student encoder from the teacher net. Different from existing knowledge distillation approaches, MIMIC initializes the student with random weights, inheriting no backdoors from teacher nets. Then MIMIC leverages mutual information between each layer and extracted features to locate where benign knowledge lies in the teacher net, with which distillation is deployed to clone clean features from teacher to student. We craft the distillation loss with two aspects, including clone loss and attention loss, aiming to mitigate backdoors and maintain encoder performance at the same time. Our evaluation conducted on two backdoor attacks in SSL demonstrates that MIMIC can significantly reduce the attack success rate by only utilizing <5% of clean data, surpassing seven state-of-the-art backdoor mitigation techniques.
♻ ☆ Pre-training Limited Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes--both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We introduce Limited Memory Language Models (LMLM), a new class of language models that externalizes factual knowledge to external database during pre-training rather than memorizing them. Our pre-training approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ Active Alignments of Lens Systems with Reinforcement Learning
Aligning a lens system relative to an imager is a critical challenge in camera manufacturing. While optimal alignment can be mathematically computed under ideal conditions, real-world deviations caused by manufacturing tolerances often render this approach impractical. Measuring these tolerances can be costly or even infeasible, and neglecting them may result in suboptimal alignments. We propose a reinforcement learning (RL) approach that learns exclusively in the pixel space of the sensor output, eliminating the need to develop expert-designed alignment concepts. We conduct an extensive benchmark study and show that our approach surpasses other methods in speed, precision, and robustness. We further introduce relign, a realistic, freely explorable, open-source simulation utilizing physically based rendering that models optical systems with non-deterministic manufacturing tolerances and noise in robotic alignment movement. It provides an interface to popular machine learning frameworks, enabling seamless experimentation and development. Our work highlights the potential of RL in a manufacturing environment to enhance efficiency of optical alignments while minimizing the need for manual intervention.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Activation Functions Considered Harmful: Recovering Neural Network Weights through Controlled Channels RAID
With high-stakes machine learning applications increasingly moving to untrusted end-user or cloud environments, safeguarding pre-trained model parameters becomes essential for protecting intellectual property and user privacy. Recent advancements in hardware-isolated enclaves, notably Intel SGX, hold the promise to secure the internal state of machine learning applications even against compromised operating systems. However, we show that privileged software adversaries can exploit input-dependent memory access patterns in common neural network activation functions to extract secret weights and biases from an SGX enclave. Our attack leverages the SGX-Step framework to obtain a noise-free, instruction-granular page-access trace. In a case study of an 11-input regression network using the Tensorflow Microlite library, we demonstrate complete recovery of all first-layer weights and biases, as well as partial recovery of parameters from deeper layers under specific conditions. Our novel attack technique requires only 20 queries per input per weight to obtain all first-layer weights and biases with an average absolute error of less than 1%, improving over prior model stealing attacks. Additionally, a broader ecosystem analysis reveals the widespread use of activation functions with input-dependent memory access patterns in popular machine learning frameworks (either directly or via underlying math libraries). Our findings highlight the limitations of deploying confidential models in SGX enclaves and emphasise the need for stricter side-channel validation of machine learning implementations, akin to the vetting efforts applied to secure cryptographic libraries.
comment: 20 pages, 12 figures. Please cite this work as: Jesse Spielman, David Oswald, Mark Ryan, Jo Van Bulck, "Activation Functions Considered Harmful: Recovering Neural Network Weights through Controlled Channels" in Proceedings of the 28th International Symposium on Research in Attacks, Intrusions and Defenses (RAID), Gold Cost, Australia, October 2025
♻ ☆ A Multi-Fidelity Control Variate Approach for Policy Gradient Estimation
Many reinforcement learning (RL) algorithms are impractical for deployment in operational systems or for training with computationally expensive high-fidelity simulations, as they require large amounts of data. Meanwhile, low-fidelity simulators -- such as reduced-order models, heuristic rewards, or generative world models -- can cheaply provide useful data for RL training, even if they are too coarse for zero-shot transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a control variate formed from a large volume of low-fidelity simulation data to construct an unbiased, variance-reduced estimator for on-policy policy gradients. We instantiate the framework with a multi-fidelity variant of the classical REINFORCE algorithm. We show that under standard assumptions, the MFPG estimator guarantees asymptotic convergence of REINFORCE to locally optimal policies in the target environment, and achieves faster finite-sample convergence rates compared to training with high-fidelity data alone. Empirically, we evaluate the MFPG algorithm across a suite of simulated robotics benchmark tasks with limited high-fidelity data but abundant off-dynamics, low-fidelity data. With mild-moderate dynamics gaps, MFPG reliably improves the median performance over a high-fidelity-only baseline, matching the performance of leading multi-fidelity baselines despite its simplicity and minimal tuning overhead. Under large dynamics gaps, MFPG demonstrates the strongest robustness among the evaluated multi-fidelity approaches. An additional experiment shows that MFPG can remain effective even under low-fidelity reward misspecification. Thus, MFPG not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
♻ ☆ Thinkquel: A Model Dedicated to Text-to-dbt Using Synthetic Data and a Span-Aware Objective
Transforming natural-language requests into reliable, production-ready data transformations remains challenging: correctness depends on precise schema linking and warehouse-specific SQL dialects, while the strongest supervision available during training--execution success and result matching--are provided only at the sequence level. At the same time, assembling large, execution-validated corpora is costly, and token-level objectives misalign with these global signals, yielding unstable optimization and limited portability. We introduce Thinkquel, a fine-tuned model for producing robust, portable, and execution-validated database queries. Methodologies in Thinkquel integrates a novel synthetic data pipeline, TS-SQL, that leverages dbt as a portable intermediate representation with a span-aware reinforcement learning objective, and Token-Sequence GRPO (TS-GRPO), specifically designed to bridge the gap between token-level training signals and sequence-level execution rewards when finetuning LLMs. On the 500-example TS-SQL test set, Thinkquel (32B) reaches 93.2% execution success and 61.8% exact-result match with a two-stage SFT curriculum, improving over the base model by 67.2% (exec.) and 44.4% (match). In Spider (14B) experiments, TS-GRPO increases training stability and speeds convergence of the execution-match reward relative to GRPO and GSPO.
♻ ☆ Flow-Induced Diagonal Gaussian Processes
We present Flow-Induced Diagonal Gaussian Processes (FiD-GP), a compression framework that incorporates a compact inducing weight matrix to project a neural network's weight uncertainty into a lower-dimensional subspace. Critically, FiD-GP relies on normalising-flow priors and spectral regularisations to augment its expressiveness and align the inducing subspace with feature-gradient geometry through a numerically stable projection mechanism objective. Furthermore, we demonstrate how the prediction framework in FiD-GP can help to design a single-pass projection for Out-of-Distribution (OoD) detection. Our analysis shows that FiD-GP improves uncertainty estimation ability on various tasks compared with SVGP-based baselines, satisfies tight spectral residual bounds with theoretically guaranteed OoD detection, and significantly compresses the neural network's storage requirements at the cost of increased inference computation dependent on the number of inducing weights employed. Specifically, in a comprehensive empirical study spanning regression, image classification, semantic segmentation, and out-of-distribution detection benchmarks, it cuts Bayesian training cost by several orders of magnitude, compresses parameters by roughly 51%, reduces model size by about 75%, and matches state-of-the-art accuracy and uncertainty estimation.
comment: 15 pages
Graphics 9
☆ Spec-Gloss Surfels and Normal-Diffuse Priors for Relightable Glossy Objects
Accurate reconstruction and relighting of glossy objects remain a longstanding challenge, as object shape, material properties, and illumination are inherently difficult to disentangle. Existing neural rendering approaches often rely on simplified BRDF models or parameterizations that couple diffuse and specular components, which restricts faithful material recovery and limits relighting fidelity. We propose a relightable framework that integrates a microfacet BRDF with the specular-glossiness parameterization into 2D Gaussian Splatting with deferred shading. This formulation enables more physically consistent material decomposition, while diffusion-based priors for surface normals and diffuse color guide early-stage optimization and mitigate ambiguity. A coarse-to-fine optimization of the environment map accelerates convergence and preserves high-dynamic-range specular reflections. Extensive experiments on complex, glossy scenes demonstrate that our method achieves high-quality geometry and material reconstruction, delivering substantially more realistic and consistent relighting under novel illumination compared to existing Gaussian splatting methods.
☆ ROI-GS: Interest-based Local Quality 3D Gaussian Splatting
We tackle the challenge of efficiently reconstructing 3D scenes with high detail on objects of interest. Existing 3D Gaussian Splatting (3DGS) methods allocate resources uniformly across the scene, limiting fine detail to Regions Of Interest (ROIs) and leading to inflated model size. We propose ROI-GS, an object-aware framework that enhances local details through object-guided camera selection, targeted Object training, and seamless integration of high-fidelity object of interest reconstructions into the global scene. Our method prioritizes higher resolution details on chosen objects while maintaining real-time performance. Experiments show that ROI-GS significantly improves local quality (up to 2.96 dB PSNR), while reducing overall model size by $\approx 17\%$ of baseline and achieving faster training for a scene with a single object of interest, outperforming existing methods.
comment: 4 pages, 3 figures, 2 tables
☆ MIRAGE: Patient-Specific Mixed Reality Coaching for MRI via Depth-Only Markerless Registration and Immersive VR
Magnetic resonance imaging (MRI) is an indispensable diagnostic tool, yet the confined bore and acoustic noise can evoke considerable anxiety and claustrophobic reactions. High anxiety leads to motion artifacts, incomplete scans and reliance on pharmacological sedation. MIRAGE (Mixed Reality Anxiety Guidance Environment) harnesses the latest mixed reality (MR) hardware to prepare patients for MRI through immersive virtual reality (VR) and markerless augmented reality (AR) registration. In this paper, we extend our previous work by providing a comprehensive review of related research, detailing the system architecture, and exploring metrics for patient and clinician experience. We also present considerations for clinical deployment of MR systems within hospital workflows. Our results indicate that depth-based registration achieves sub-centimeter accuracy with minimal setup, while the immersive coaching environment reduces patient anxiety and yields favourable usability scores.
Multimodal Feedback for Task Guidance in Augmented Reality
Optical see-through augmented reality (OST-AR) overlays digital targets and annotations on the physical world, offering promising guidance for hands-on tasks such as medical needle insertion or assembly. Recent work on OST-AR depth perception shows that target opacity and tool visualization significantly affect accuracy and usability; opaque targets and rendering the real instrument reduce depth errors, whereas transparent targets and absent tools impair performance. However, reliance on visual overlays may overload attention and leaves little room for depth cues when occlusion or lighting hampers perception. To address these limitations, we explore multimodal feedback that combines OST-AR with wrist-based vibrotactile haptics. The past two years have seen rapid advances in haptic technology. Researchers have investigated skin-stretch and vibrotactile cues for conveying spatial information to blind users, wearable ring actuators that support precise pinching in AR, cross-modal audio-haptic cursors that enable eyes-free object selection, and wrist-worn feedback for teleoperated surgery that improves force awareness at the cost of longer task times. Studies comparing pull versus push vibrotactile metaphors found that pull cues yield faster gesture completion and lower cognitive load. These findings motivate revisiting OST-AR guidance with a fresh perspective on wrist-based haptics. We design a custom wristband with six vibromotors delivering directional and state cues, integrate it with a handheld tool and OST-AR, and assess its impact on cue recognition and depth guidance. Through a formative study and two experiments (N=21 and N=27), we show that participants accurately identify haptic patterns under cognitive load and that multimodal feedback improves spatial precision and usability compared with visual-only or haptic-only conditions.
☆ MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics NeurIPS 2025
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/
comment: Accepted to NeurIPS 2025
♻ ☆ ViscoReg: Neural Signed Distance Functions via Viscosity Solutions
Implicit Neural Representations (INRs) that learn Signed Distance Functions (SDFs) from point cloud data represent the state-of-the-art for geometrically accurate 3D scene reconstruction. However, training these Neural SDFs often requires enforcing the Eikonal equation, an ill-posed equation that also leads to unstable gradient flows. Numerical Eikonal solvers have relied on viscosity approaches for regularization and stability. Motivated by this well-established theory, we introduce ViscoReg, a novel regularizer that provably stabilizes Neural SDF training. Empirically, ViscoReg outperforms state-of-the-art approaches such as SIREN, DiGS, and StEik on ShapeNet, the Surface Reconstruction Benchmark, and 3D scene reconstruction datasets. Additionally, we establish novel generalization error estimates for Neural SDFs in terms of the training error, using the theory of viscosity solutions.
comment: 21 pages, 7 figures
♻ ☆ Interactive Expressive Motion Generation Using Dynamic Movement Primitives IROS
Our goal is to enable social robots to interact autonomously with humans in a realistic, engaging, and expressive manner. The 12 Principles of Animation are a well-established framework animators use to create movements that make characters appear convincing, dynamic, and emotionally expressive. This paper proposes a novel approach that leverages Dynamic Movement Primitives (DMPs) to implement key animation principles, providing a learnable, explainable, modulable, online adaptable and composable model for automatic expressive motion generation. DMPs, originally developed for general imitation learning in robotics and grounded in a spring-damper system design, offer mathematical properties that make them particularly suitable for this task. Specifically, they enable modulation of the intensities of individual principles and facilitate the decomposition of complex, expressive motion sequences into learnable and parametrizable primitives. We present the mathematical formulation of the parameterized animation principles and demonstrate the effectiveness of our framework through experiments and application on three robotic platforms with different kinematic configurations, in simulation, on actual robots and in a user study. Our results show that the approach allows for creating diverse and nuanced expressions using a single base model.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ Automatic inference of a anatomically meaningful solid wood texture from a single photograph
Wood is a volumetric material with a very large appearance gamut that is further enlarged by numerous finishing techniques. Computer graphics has made considerable progress in creating sophisticated and flexible appearance models that allow convincing renderings of wooden materials. However, these do not yet allow fully automatic appearance matching to a concrete exemplar piece of wood, and have to be fine-tuned by hand. More general appearance matching strategies are incapable of reconstructing anatomically meaningful volumetric information. This is essential for applications where the internal structure of wood is significant, such as non-planar furniture parts machined from a solid block of wood, translucent appearance of thin wooden layers, or in the field of dendrochronology. In this paper, we provide the two key ingredients for automatic matching of a procedural wood appearance model to exemplar photographs: a good initialization, built on detecting and modelling the ring structure, and a phase-based loss function that allows to accurately recover growth ring deformations and gives anatomically meaningful results. Our ring-detection technique is based on curved Gabor filters, and robustly works for a considerable range of wood types.
♻ ☆ PCG-Informed Neural Solvers for High-Resolution Homogenization of Periodic Microstructures
The mechanical properties of periodic microstructures are pivotal in various engineering applications. Homogenization theory is a powerful tool for predicting these properties by averaging the behavior of complex microstructures over a representative volume element. However, traditional numerical solvers for homogenization problems can be computationally expensive, especially for high-resolution and complicated topology and geometry. Existing learning-based methods, while promising, often struggle with accuracy and generalization in such scenarios. To address these challenges, we present CGINS, a preconditioned-conjugate-gradient-solver-informed neural network for solving homogenization problems. CGINS leverages sparse and periodic 3D convolution to enable high-resolution learning while ensuring structural periodicity. It features a multi-level network architecture that facilitates effective learning across different scales and employs minimum potential energy as label-free loss functions for self-supervised learning. The integrated preconditioned conjugate gradient iterations ensure that the network provides PCG-friendly initial solutions for fast convergence and high accuracy. Additionally, CGINS imposes a global displacement constraint to ensure physical consistency, addressing a key limitation in prior methods that rely on Dirichlet anchors. Evaluated on large-scale datasets with diverse topologies and material configurations, CGINS achieves state-of-the-art accuracy (relative error below 1%) and outperforms both learning-based baselines and GPU-accelerated numerical solvers. Notably, it delivers 2 times to 10 times speedups over traditional methods while maintaining physically reliable predictions at resolutions up to $512^3$.